
Runtime Verification of Hyperproperties for Deterministic
Programs

Srinivas Pinisetty

University of Gothenburg

Gothenburg, Sweden

srinivas.pinisetty@gu.se

Gerardo Schneider

University of Gothenburg

Gothenburg, Sweden

gersch@chalmers.se

David Sands

Chalmers University of Technology

Gothenburg, Sweden

dave@chalmers.se

ABSTRACT
In this paper, we consider the runtime verification problem of safety

hyperproperties for deterministic programs. Several security and

information-flow policies such as data minimality, non-interference,

integrity, and software doping are naturally expressed formally as

safety hyperproperties. Although there are monitoring results for

hyperproperties, the algorithms are very complex since these are

properties over set of traces, and not over single traces. For the

deterministic input-output programs that we consider, and the

specific safety hyperproperties we are interested in, the problem

can be reduced to monitoring of trace properties. In this paper, we

present a simpler monitoring approach for safety hyperproperties

of deterministic programs. The approach involves transforming

the given safety hyperproperty into a trace property, extracting a

characteristic predicate for the given hyperproperty, and providing

a parametric monitor taking such predicate as parameter. For any

hyperproperty in the considered subclass, we show how runtime

verification monitors can be synthesised. We have implemented

our approach in the form of a parameterised monitor for the given

class, and have applied it to a number of hyperproperties including

data minimisation, non-interference, integrity and software doping.

We show results concerning both offline and online monitoring.

CCS CONCEPTS
• Theory of computation → Logic and verification; • Soft-
ware and its engineering → Formal software verification; •
Security and privacy→ Formal methods and theory of secu-
rity;

KEYWORDS
Monitoring, Runtime Verification, Security, Information-flow

ACM Reference Format:
Srinivas Pinisetty, Gerardo Schneider, and David Sands. 2018. Runtime

Verification of Hyperproperties for Deterministic Programs. In FormaliSE
’18: FormaliSE ’18: 6th Conference on Formal Methods in Software Engineering
, June 2, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3193992.3193995

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FormaliSE ’18, June 2, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5718-0/18/06. . . $15.00

https://doi.org/10.1145/3193992.3193995

1 INTRODUCTION
A program monitor for a given property observes the input-output

actions of a program and provides, on observation of each event, a

verdict as to whether the program has (not) satisfied the property, or

whether it remains an open question that can (at best) be determined

by future events.

Not all properties are monitorable (in the sense that there exits

a computable monitor for that property), but it is straightforward

to construct monitors for combinations of safety and co-safety

properties. Concrete constructions have been proposed formonitors

by deriving them from properties expressed as automata or linear

temporal logic (LTL) [6, 12, 15].

In this paper we are concerned with information-flow prop-

erties such as non-interference – a class of properties that have

been dubbed hyperproperties [11], defined over sets of sets of traces
instead of over set of traces. As a simple example, consider the prop-

erty “there is at most one possible value output by the program”.

Without any information about the program to be monitored, this

property cannot be characterised by a single set of input-output

traces, since the property does not specify a specific value to be out-
put. In the terminology of Clarkson and Schneider this is a 2-safety
hyperproperty [11], meaning that it can be expressed as a universal

quantification over pairs of finite traces. In this example the prop-

erty can be expressed as: for all pairs of traces (of the program), the

output value is the same in both traces.

Although it is not possible to construct monitors for hyperprop-

erties in general [9], it is possible, in a certain sense, to construct

monitors for safety hyperproperties [1, 9]. This may seem surpris-

ing from the perspective of enforcement of program properties by

reference monitors, since it is known that we cannot enforce such
properties [25]. There are essentially two reasons why monitoring

is possible. Firstly, the notion of monitoring from runtime verifica-

tion is different from the demands of an enforcement mechanism,

since it accepts the inevitable incompleteness (the “don’t know yet”

answer), but still demands optimality from the black-box perspec-

tive: you should not answer “don’t know” unless there is genuine

uncertainty. Secondly, works on monitoring hyperproperties make

the implicit assumption that multiple clones of the system can be

made and monitored. This latter assumption enables the monitor

to detect satisfaction or violation of properties stated in terms of

multiple runs of the system. At the same time this suggests that

hyperproperty monitoring is an offline testing activity rather than

an online mechanism for observing the behaviour of an actual

operational system. We argue that the main beneficial characteris-

tics of online runtime verification is simplicity and low technical

complexity, but that this is lost when considering monitoring of

hyperproperties [1, 9]; runtime verification mechanisms become

https://doi.org/10.1145/3193992.3193995
https://doi.org/10.1145/3193992.3193995

FormaliSE ’18, June 2, 2018, Gothenburg, Sweden Srinivas Pinisetty, Gerardo Schneider, and David Sands

very complex when compared with runtime monitoring approaches

for trace properties [6, 7].

In this paper we simplify the view of monitoring of hyperproper-

ties by reducing it to the simple case of monitoring of trace proper-

ties, thus regaining the lost simplicity. To do this we study 2-safety

hyperproperties for simple programs whose execution consists of

a single event, an input output pair. Here, 2-safety hyperproperties,

denoted as Hyper2S , are just properties expressed with universal

quantification over two traces. Though this might seem a restriction,

this class includes termination insensitive
1
variants of many inter-

esting security properties including noninteference [10], integrity

[10], software doping [5, 13], and data minimality [3].

We make some modest assumptions about such programs, and

show that under these assumptions, hyperproperties reduce to trace

properties and thus the monitoring problem reduces to monitoring

of trace properties; firstly we assume that programs are determinis-

tic, and secondly we assume that programs are executed repeatedly,

but without persistent state between executions – in the manner

of a stateless server. Under these assumptions we obtain a program

in a loop, and a corresponding extension of the property of interest

to traces. Specifically we make the following contributions:

i) We define a runtime monitor to check properties in Hyper2S ,

parameterised by a predicate that characterises different prop-

erties in the class. The monitor operates over traces (and not

over set of traces) due to a previous transformation of the mon-

itored system by putting the program in a loop. We show that

this transformation is sound (Section 3), and define a runtime

verification monitor (Section 4). We provide a way to automati-

cally synthesise the monitor. Based on the runtime verification

monitor definition in Section 4, we present an online runtime

verification algorithm for any property φ expressed in Hyper2S
(Section 5).

ii) We show that whenever the input domain is finite, using run-

time monitoring in a controlled (pre-deployment) environment,

gives a definite answer as to whether the program satisfies a

given property φ or not. For the particular case of data min-

imisation, when monitoring in a controlled (pre-deployment)

environment, we can extract a pre-processor (a minimiser)
which may be composed with the system in order to guarantee

minimality. In this case, we are thus synthesising an enforcer
(Section 6).

iii) We implemented the above as a parameterised monitoring

algorithm
2
.

2 PRELIMINARIES AND NOTATIONS
A finite word over a finite alphabet Σ is a finite sequence σ =
a1 · a2 · · ·an of elements of Σ. The set of all finite words over Σ
is denoted by Σ∗. The length of a finite word σ is denoted by |σ |.
The empty word over Σ is denoted by ϵΣ, or ϵ when clear from

the context. The concatenation of two words σ and σ ′ is denoted
as σ · σ ′. A word σ ′ is a prefix of a word σ , denoted as σ ′ ≼ σ ,
whenever there exists a word σ ′′ such that σ = σ ′ ·σ ′′; and σ ′ ≺ σ
if additionally σ ′ , σ ; conversely σ is said to be an extension of σ ′.

1
Termination insensitivity, or more generally progress sensitivity (see e.g. [4]), means

that the property in question ignores the influence of progress or termination.

2
https://github.com/SrinivasPinisetty/monDP_HyperP

Given a word σ of length n, for any i ∈ [1,n], σi denotes i
th

element in σ . Given two integers i and j where 1 ≤ i ≤ j ≤ |σ |, the
subword from index i to j is noted σ[i · · ·j], and the suffix of word

σ starting from index i is denoted as σ[i · · ·]. Given an n-tuple of
symbols e = (e1, . . . , en), for i ∈ [1,n], Πi (e) is the projection of e

on its i-th element, i.e., Πi (e)
def

= ei .
A trace property φ is a set of words over alphabet Σ, i.e., φ ⊆ Σ∗.

Property φ is prefix-closed (also known as a safety property) if all

prefixes of all words in φ also belong to φ (i.e., ∀σ ∈ φ, ∀σ ′ ∈ Σ∗

: σ ′ ≼ σ =⇒ σ ′ ∈ φ). Conversely, property φ is extension-closed
(co-safety) if all extensions of words in φ also belong to φ (i.e.,

∀σ ∈ φ, ∀σ ′ ∈ Σ∗ : σ ≼ σ ′ =⇒ σ ′ ∈ φ).

2.1 Runtime verification monitor for trace
properties

In this section, we present a definition of a monitor for any given

trace property φ, and discuss some important properties that it

satisfies.

A runtime verification (RV) monitor is a device that reads/ob-

serves a finite trace (an execution of the system being monitored)

and emits a certain verdict regarding satisfaction of a given prop-

erty φ. The verdicts provided by the monitor belong to the set

D = {⊤,⊥, ?}, where verdicts true (⊤), and false (⊥) are conclusive
verdicts, and unknown (?) is an inconclusive verdict. A monitor for

any given property φ is denoted asMφ . Let us revise the definition

of a verification monitor for any given trace property φ ⊆ Σ∗ [6].

Definition 2.1 (RV monitor). Let σ ∈ Σ∗ denote current obser-
vation of an execution of the system, and consider a property

φ ⊆ Σ∗. A runtime verification monitor (RV monitor) is a function

Mφ : Σ∗ → D, where D = {⊤,⊥, ?} defined as follows:

Mφ (σ) =

⊤ if ∀σ ′ ∈ Σ∗ : σ · σ ′ ∈ φ
⊥ if ∀σ ′ ∈ Σ∗ : σ · σ ′ < φ
? Otherwise

Property φ is a set of finite words over alphabet Σ (i.e., φ ⊆ Σ∗).
Verdicts true (⊤) and false (⊥) are conclusive verdicts, and verdict

unknown (?) is an inconclusive verdict.Mφ (σ) returns ⊤ if for any

continuation σ ′ ∈ Σ∗, σ · σ ′ satisfies φ.Mφ (σ) returns ⊥ if for any

continuation σ ′ ∈ Σ∗, σ · σ ′ falsifies φ.Mφ (σ) returns unknown (?)

otherwise.

Remark 1 (Monitorability). A property φ ⊆ Σ∗ is monitorable

[6, 15, 24] if for any observed word σ ∈ Σ∗, there exists a finite
word σ ′ ∈ Σ∗ such that the property φ can be positively or negatively
evaluated forσ ·σ ′. That is, ∀σ ∈ Σ∗,∃σ ′ ∈ Σ∗ : Mφ (σ ·σ

′) ∈ {⊤,⊥}.
All safety (resp. co-safety) properties are monitorable [6, 15]. For

a safety (resp. co-safety) property, a monitor can provide a conclu-
sive verdict ⊥ (resp. ⊤) when it observes a finite word that violates
(resp. satisfies) the property. It is shown that safety and co-safety
properties represent only a subset of monitorable properties [6, 14, 15].
Monitorable properties according to safety-progress classification of
properties has been discussed in [15], where it is shown that Boolean
combinations of safety and co-safety properties are monitorable. There
are some response properties, such as “Every request is acknowledged”,
which are non-monitorable since for all finite words, it is never possi-
ble to decide satisfaction or violation of the property. This is because

https://github.com/SrinivasPinisetty/monDP_HyperP

Runtime Verification of Hyperproperties for Deterministic Programs FormaliSE ’18, June 2, 2018, Gothenburg, Sweden

every finite word can be extended both to a word that belongs to the
property and to a word that does not belong to the property.

Proposition 2.2. For any given property φ ⊆ Σ∗ that is moni-
torable, monitorMφ as per Definition 2.1 satisfies the following con-
straints:
Impartiality ∀σ ∈ Σ∗,
Mφ (σ) = ? iff
(σ ∈ φ ∧ ∃σ ′ ∈ Σ∗ : σ · σ ′ < φ) ∨ (σ < φ ∧ ∃σ ′ ∈ Σ∗ : σ · σ ′ ∈ φ)

(Imp)
Anticipation ∀σ ∈ Σ∗,

Mφ (σ) = ⊤ iff (∀σ ′ ∈ Σ∗ : σ · σ ′ ∈ φ)
Mφ (σ) = ⊥ iff (∀σ ′ ∈ Σ∗ : σ · σ ′ < φ) (Acp)

Impartiality expresses that for a finite trace σ ∈ Σ∗, the monitor

provides inconclusive verdict ? if and only if there exists a continu-

ation of σ leading to another verdict. That is, if σ is consistent with

φ, but there is some extension of σ which is not, or conversely, if

σ is not consistent with φ but some extension is, then the monitor

must give verdict ? on σ .
Anticipation states that for a finite trace σ ∈ Σ∗, the monitor

Mφ (σ) should provide a conclusive verdict ⊤ (resp. ⊥) iff every

continuation of σ satisfies (resp. violates) φ. Thus, anticipation also

means that if Mφ (σ) is ⊤ (resp. ⊥), then every continuation of σ
also evaluates to ⊤ (resp. ⊥).

Constraints Imp and Acp ensure that the monitor provides a

conclusive verdict as soon as possible. The terms impartiality and

anticipation are introduced as requirements of monitors in other

works related to runtime verification for trace properties [18].

2.2 Deterministic programs
In this paper we consider monitoring deterministic programs which

are executed repeatedly. In each execution of the program, it con-

sumes an input, and emits an output.
3
Thus a single execution of

such a program is an input-output event (i,o) ∈ I × O , where I
denote a finite set of inputs, and O denotes a finite set of outputs.

Traces over Σ = I ×O will be obtained by repeated execution. Since

we focus on deterministic programs we will not work with Σ∗, but
instead with Σ#, the subset of deterministic traces, given by the

following property:

∀σ ∈ Σ#,∀i, j ∈ [1, |σ |], if Π1(σi) = Π1(σj) then Π2(σi) = Π2(σj).

Σ# corresponds to traces obtained by making repeated runs of some

deterministic program which has no history, and is thus the set of

all finite words over alphabet Σ that do not contain input-output

events which have the same input values but differ in their output

values.
4

We are interested in checking whether a program satisfies prop-

erties such as data minimality, integrity and software doping (intro-

duced later in Section 2.4). These are in fact hyperproperties [11, 17],
that is defined over sets of sets of traces. In order to monitor hyper-

properties we need to consider multiple executions of the program

being monitored and the analysis of sets of traces [8].

Since we consider the program being monitored to be executed

repeatedly, as if in a loop, the properties we consider may be treated

3
In the remainder of this paper, deterministic programs are referred to as programs.

4Σω will denote all infinite words over alphabet Σ satisfying this determinism condi-

tion.

as trace properties instead of as hyperproperties, reducing the mon-

itoring problem to the analysis of single traces (explained in Section

3). Note that this “transformation” is not as strange as it might seem.

As an example, one may think of a program to be some service

provided by a web server in such a way that its (service) function-

ality is not just used once but multiple times with (different) inputs

(e.g., different clients invoking the service). In what follows we fur-

ther elaborate on deterministic programs and their corresponding

programs-in-loop.

2.2.1 Iterated deterministic programs. For certain properties it

will be necessary to consider the inputs and outputs to be tuples.

We consider a finite number of input sources n ≥ 1, where the

set of input events I = I1 × · · · × In . For all id ∈ [1,n], Iid is a

finite set of possible inputs for input source id , and an input event

(i1, · · · , in) ∈ I , where iid ∈ Ii . Similarly, we consider a finite

number of outputsm ≥ 1 the set of output events isO = O1 × · · · ×

Om . In every execution of the program, it consumes an input event

(i1, · · · , in) ∈ I , and emits an output event (o1, · · · ,om) ∈ O . In
order to describe security properties we classify each input (resp.

output) as either low (public) or high (secret). For an input event i ∈ I ,
iH denotes projection on high inputs, and iL denotes projection

on low inputs. Similarly, for an output event o ∈ O , oH (resp. oL)
denote projection on high outputs (resp. low outputs).

A program can be considered as a (partial) function denoted as

P : I1 × · · · × In → O1 × · · · ×Om . The language of P is denoted

as L(P) = {(i,o) ∈ I × O : o = P(i)}, and L(P) ⊆ I × O . Note,
∀i ∈ I ,∀o ∈ O, (i,o) ∈ L(P) ⇒ (∀o′ , o ∈ O : (i,o′) < L(P)). We

monitor both inputs and outputs of a programP. A single execution

of P is an input-output event (i,o) ∈ I ×O .
As explained before, we consider observing (monitoring) the

input-output behaviour over several executions of P. Given a pro-

gram P, we denote by Pl the transformed program consisting in

putting P in a loop.We say that Pl is the program-in-loop version of
P.5 An execution of Pl is an unbounded sequence of input-output

events σ ∈ Σω , where Σ = I ×O .
The behaviour of program Pl is denoted as exec(Pl) ⊆ Σω . The

language of Pl is denoted by L(Pl) = {σ ∈ Σ#, | ∃σ ′ ∈ exec(Pl) ∧
σ ≼ σ ′} i.e. L(Pl) is the set of all finite prefixes of the sequences
in exec(Pl). Given a property φ ⊆ Σ#, we have that Pl |= φ iff

L(Pl) ⊆ L(φ). Given a word σ ∈ Σ∗, σ |= φ iff σ ∈ L(φ).

Example 2.3 (Program P and its corresponding program-in-loop
Pl). Let us consider a simple example illustrated in Figure 1. In this

example, the program has one input and one output. An example

program P : I → O is illustrated in Figure 1a, that takes salary

information (which is an integer, i.e., set of possible inputs I = N),
and returns whether eligible for benefits or not (i.e., the set of

possible outputsO = B). The output of the function is true if salary
is less than 10000, and false otherwise. Figure 1b illustrates an

example of program Pl which corresponds to repeated execution

of P in Figure 1a. Thus, input to Pl is a sequence of inputs events
σI ∈ I

∗
, and the output is a of outputs σO ∈ O

∗
. In this example,

σI = 5000 · 11000 · · · , and σO = true · false · · · . The set of input-
output events Σ = N × B, and a finite prefix of an execution of

Pl is (5000, true) · (11000, false), where in the first iteration of the

5
In the rest of the paper, Pl will always denote the program-in-loop version of the

program under consideration P.

FormaliSE ’18, June 2, 2018, Gothenburg, Sweden Srinivas Pinisetty, Gerardo Schneider, and David Sands

input (s a l a r y)
b e n e f i t := (s a l a r y < 10000)
output (b en e f i t)

Benefit

True

Salary

5000

(a) Example of a program P

whi le (t rue)
input (s a l a r y)
b e n e f i t := (s a l a r y < 10000)
output (b en e f i t)

end whi l e

Benefit∗

· · ·False · True
Salary∗

· · · 11000 · 5000

(b) Example of Pl (repeated execution of P)

Figure 1: A program P and its corresponding program Pl

while-loop, input is 5000 and output is true, and in the second

iteration, input is 11000 and output is false. (5000, true) ∈ L(Pl),
and (5000, true) · (11000, false) ∈ L(Pl). □

2.3 Hyperproperties and Hyper2S
Hyperproperties [11] are sets of trace properties, that can express

complex security and privacy properties. Logics for verification

of hyperproperties such as HyperLTL have been proposed [10]. In

this section, we briefly revisit HyperLTL, and discuss the subset of

HyperLTL we consider in our work. In Section 2.4 we will discuss

some examples of security and information-flow properties and

how they can be defined using the considered subset of HyperLTL.

Linear Temporal Logic (LTL) [23] implicitly quantifies over a

single execution of a system. HyperLTL [10] generalises LTL al-

lowing explicit quantification over multiple executions of a system,

relating events occurrences in different traces. We refer readers to

[9, 10] for details on syntax and semantics of HyperLTL.

Considered subset of HyperLTL. Note that HyperLTL formulas

with alternating quantifiers are not monitorable in general, but this

is not the case for the alternation-free fragment of HyperLTL [9].

The monitoring algorithms proposed for the alternation-free frag-

ment are relatively complex since they focus on monitor synthesis

for the set of all hyperproperties that are monitorable. Though the

generality of such algorithms is highly appreciated, many security

and information-flow properties commonly encountered in practice

may be expressed as 2-safety hyperproperties.

The concepts of safety and liveness for trace properties [2], are
generalised to hyperproperties as safety hyperproperties and live-
ness hyperproperties [11]. Safety properties express that nothing

bad should ever happen, where violation of a safety property is

finitely observable. Thus, if a set of traces Tr violates a safety hy-

perproperty, this can be witnessed by a finite set Tr ′ ⊆ Tr that will
show an undesirable behaviour. If the size of Tr ′ never needs to be

larger than k , then it is called a k-safety hyperproperty. For example,

properties considered in Section 2.4 are 2-safety hyperproperties

since violation of those properties can be shown by observing two

bad traces. Violation of a safety hyperproperty is irrecoverable, and

thus if a set Tr violates a safety hyperproperty, then any exten-

sion of the set Tr also violates it. Formal characterisation of safety

hyperproperties is given in [1].

We consider HyperLTL formulas without alternating quantifiers.

Specifically, we restrict to 2-safety hyperproperties, expressed in

HyperLTL in the following form ∀π ,∀π ′ : ψ with:

ψ ::= aπ | ¬ψ |ψ ∨ψ

where π ,π ′ are trace variables, and aπ ∈ Σ. Conjunction (∧), im-

plication (→) and bi-implication (↔) are defined using negation

and disjunction.

A co-safety hyperproperty is a generalisation of the notion of co-

safety for trace properties. Intuitively a co-safety property describes

the occurrence of good things. Details about formal characterisation

of co-safety hyperproperties are given in [1]. Note that a 2-co-safety
hyperproperty is of the form ∃π ,∃π ′ : ψ , which can be expressed

as negation of a safety hyperproperty and vice-versa. We call this

fragment Hyper2S .

It is straightforward to extend the approach we present to formu-

las with more than two universal (resp. existential) trace quantifiers.

We restrict here to two quantifiers only to ease presentation and

since most interesting security and information-flow properties

may be expressed using only two trace quantifiers.

2.4 Properties expressed in Hyper2S
In this section, we consider some security and information-flow

properties, and present how they can be formulated as safety hy-

perproperties using Hyper2S .

Data minimisation. Data minimisation is a privacy enhancing

principle, stating that personal data collected should be no more

than necessary for the specific purpose consented by the user.

Antignac et. al. [3] defined the concept of data minimiser as a

pre-processor that filters the input of the given program in such a

way that the functionality of the program does not change but it

only receives data that is necessary and sufficient for the intended

computation. From there they derived the concept of data minimi-

sation and they showed how to obtain data minimisers for both the

monolithic case (only one source of input) and the distributed case
(more than one, independent, source of inputs).

We briefly discuss the data minimality principle in themonolithic

case. The data minimality principle ensures that the range of inputs

provided to a program is reduced such that when two inputs result

in the same response, then one of them can be considered redundant.

Ideally, a program satisfying the data minimisation principle should

be one such that the cardinality of the output domain is equal to

the cardinality of the input domain.

One way to achieve data minimality is to define an input pre-

processor Pre : I → I , filtering the set of possible inputs I for the
program P [3] . The idea of the function Pre is to transform the

inputs before they are fed to program P : I → O as it it considered

to be un-trusted.

Definition 2.4 (Pre-processor). Given program P : I → O , we say

that Pre : I → I is a pre-processor for P iff:

(1) ∀i ∈ I : P(Pre(i)) = P(i), and
(2) ∀i ∈ I : Pre(i) = Pre(Pre(i)).

Runtime Verification of Hyperproperties for Deterministic Programs FormaliSE ’18, June 2, 2018, Gothenburg, Sweden

inputPre (s a l a r y)
i f (s a l a r y < 6000)

salaryRep = 1000
e l s e i f (6000 < s a l a r y <10000)

salaryRep = 6000
e l s e :

sa laryRep= 10000
return (salaryRep)

Figure 2: An input pre-processor for P in Figure 1a.

Condition 1 states that the pre-processor should not change the

behavior of the program. For any input i ∈ I , the output that the
program produces by consuming the pre-processed input should

be equal to the output it produces by directly consuming the input

i . Condition 2 states that for any input i ∈ I , if we feed the pre-

processed input to the pre-processor again, then it returns back the

same pre-processed input.

Pre-processors perform some degree of domain reduction, and

range(Pre) ⊆ I (with range(Pre) denoting the range of function Pre ,
i.e., {Pre(i)|i ∈ I }. A trivial pre-processor is the identity function

that simply forwards any user input to program P.

Example 2.5 (Input data pre-processor). Figure 2 presents an ex-

ample input pre-processor for program P illustrated in Figure 1a. If

salary is less than 6000 it is mapped to representative 1000, if salary

is greater than 6000 and less than 10000 it is mapped to 6000, and

salary is mapped to 10000 otherwise.

Definition 2.6 expresses in Hyper2S that a program P : I → O
(with I ′ ⊆ I) is monolithic minimal for I ′ if for any two inputs

i1, i2 ∈ I
′
, where i1 is different from i2, the output that program P

produces for input i2 should differ from the output that it produces

for input i1. Note that π and π ′ in the definition are traces of

length 1 because of the sort of programs we consider in this work

(see Section 2, Definition of L(P)). For an input-output trace π ,
projection on inputs is denoted as πI and projection on outputs is

denoted as πO .

Definition 2.6 (Monolithic minimality of program P). Given pro-

gram P : I → O , P is monolithic minimal for I ′ ⊆ I iff the follow-

ing property holds:

∀π ,∀π ′ : ((πI ∈ I ′ ∧ π ′I ∈ I ′) ∧ (πI , π ′I)) =⇒ πO , π
′
O .

The Hyper2S formula in the above definition expresses that for

any two traces π and π ′ where the inputs in both the traces belong

to I ′ and are different (i.e., πI , π
′
I)), the outputs in both the traces

should be also different (i.e., πO , π
′
O). So, for the monolithic case,

data minimisation corresponds to injectivity (this is not the case for
the distributed setting —see the accompanying appendix available

online at [22]).

Note that when we say that P is (non-) minimal we mean that

the composition of P with a pre-processor (Pre : I → I ′) is (non-)
minimal. We consider the scenario illustrated in Figure 2. If com-

position of P with Pre is (non-) minimal, and if Pre is the identity
function then P itself is (non-) minimal.

Property Property expressed in Hyper2S
Data minimisation

(Monolithic minimality) ∀π ,∀π ′ : πI , π ′I =⇒ πO , π
′
O .

Non-Interference ∀π ,∀π ′ : (πI,L = π ′I,L) =⇒ (πO,L = π
′
O,L)

Integrity ∀π ,∀π ′ : (πI,H = π ′I,H) =⇒ (πO,H = π
′
O,H)

Software doping

(doping free program)

∀π ,∀π ′ :
((πParm ∈ PIntrs) ∧ (π

′
Parm ∈ PIntrs) ∧ (πI = π

′
I))

=⇒ (πO = π
′
O)

Strong distributed minimality

∀π ,∀π ′,
let πi = (i1, · · · , in),π

′
i = (i

′
1
, · · · , i ′n).

(∃x ∈ [1,n] : ix , i ′x∧
∀y ∈ [1,n] : y , x =⇒ iy = i

′
y) =⇒ πo , π

′
o .

Table 1: Example of properties expressed in Hyper2S

Other Properties. In this section (and the rest of the paper) we

have restricted our presentation to data minimisation, and in par-

ticular to the monolithic case (programs with one input source).

The decision to restrict our presentation has been taken in order

to simplify the explanation of the approach and for space consid-

erations. In what follows we briefly describe other properties in

the class we have considered, for which all our results apply. The

properties are summarised in Table 1 and are further explained in

the accompanying online appendix [22].

Distributed Minimality Our approach extends to the more

complex case of distributed data minimisation (more than

one independent input sources).

Noninterference A program satisfies non-interference [10] if
the low (public) outputs only depend on the low inputs (i.e.

are uninfluenced by the secrets). This can be expressed for-

mally by saying that every pair of traces with the same low

inputs have the same low outputs.

Integrity Integrity is just an alternative interpretation of non-

interference [10]: traces having the same high inputs but

possibly different low inputs should have the same high out-

puts (i.e. high integrity "trusted" outputs do not depend on

low integrity "untrusted" inputs).

Doping A software system can be considered as doped if it in-
cludes behaviour that serves some hidden interest favouring

a certain manufacturer, or vendor which cannot be justified

by the interest of the licensee [5, 13]. We have considered

one simple definition of characterisation of a doping-free
software from [13] and formulated it using Hyper2S .

3 FROM HYPERPROPERTIES TO TRACE
PROPERTIES

Here we show how, for deterministic programs and Hyper2S prop-

erties, the monitoring problem can be reduced to the problem of

monitoring trace properties.

When considering the program P to be executed in a loop, we

reduce the problem of monitoring hyperproperties to monitoring

trace properties. For the set of safety hyperproperties expressed in

Hyper2S , i.e., properties of the form ∀π ,∀π ′ : ψ , the transformation

is straightforward. In the remainder of this paper we denote a

hyperproperty expressed in Hyper2S as φ and its corresponding

trace property as φT .

FormaliSE ’18, June 2, 2018, Gothenburg, Sweden Srinivas Pinisetty, Gerardo Schneider, and David Sands

Definition 3.1 (φT corresponding to a given φ). Given a safety

hyperproperty φ expressed in Hyper2S (of the form ∀π ,∀π ′ : ψ),
where π ,π ′ ∈ Σ, its corresponding trace property φT is the set of

all words σ ∈ Σ# satisfying the following constraint: ∀σ ∈ φT ,∀i ∈
[1, |σ |],∀j ∈ [1, |σ |] · ψT , where ψT corresponds to the condition

expressed byψ in property φ by treating the element at index i as
trace π and the element at index j as trace π ′, where both π and π ′

are traces of length one.

Example 3.2 (Data minimality as trace property). Consider φ to

be the data minimality property discussed in Section 2.4: ∀π ,∀π ′ :
(πI , π ′I) =⇒ πO , π ′O . Its corresponding trace property

φT ⊆ Σ#, is the set of all words belonging to Σ# satisfying the

following constraint:

∀σ ∈ φT ,∀i ∈ [1, |σ |],∀j ∈ [1, |σ |],
if (Π1(σi) , Π1(σj)) then (Π2(σi) , Π2(σj)).

Monolithic minimality, as trace property φT ⊆ Σ#, is the set of all
words in Σ#, such that for any word σ ∈ φT , for any two events at

different indexes in σ , if the projection on inputs of the two events

differ, then the projection on outputs of the two events also differ.

Proposition 3.3 (φT is a (prefix-closed) safety property).

Given any safety hyperproperty φ expressed in Hyper2S , its corre-
sponding trace property φT is a (prefix-closed) safety property.

Let σ ∈ Σ# be a prefix of an execution of a program Pl . Given a

hyperproperty φ, where φT is its corresponding trace property, we

have that σ satisfies property φT iff σ ∈ φT .

Lemma 3.4 (φT = Σ# \ φT). Consider a given hyperproperty φ
expressed in Hyper2S , where φT is its corresponding trace property.
The negation of property φT is denoted as φT , where φT = Σ# \ φT .
A word σ ∈ Σ# satisfies φT if σ ∈ φT . We thus have that
• ∀σ ∈ Σ#,σ ∈ φT =⇒ σ < φT .
• ∀σ ∈ Σ#,σ ∈ φT =⇒ σ < φT .

Let us consider P and its corresponding program-in-loop Pl .
Consider a trace property φT (with φT its negation) corresponding

to a hyperproperty φ. The following theorem states that, if there

exists an observation of an execution of program Pl that violates
the property φT , then program P violates property φ. If every
word that belongs to L(Pl) also belongs to property φT (i.e., every

possible observation of execution ofPl satisfiesφT), thenP satisfies

property φ.

Theorem 3.5. Given program P, and property φ expressed in
Hyper2S , and the corresponding program-in-loop Pl where L(Pl) ⊆
Σ#, then the following hold:
• P violates property φ iff (∃σ ∈ Σ# : σ ∈ L(Pl) ∧ σ ∈ φT).
• P satisfies property φ iff (∀σ ∈ Σ# : σ ∈ L(Pl) ⇒ σ ∈ φT).

4 RUNTIME VERIFICATION MONITOR
SYNTHESIS

Recall that an RV monitor for a trace property φT is a device that

reads a finite trace and yields a certain verdict. We consider online
verification monitoring, where the monitor treat executions in an

incremental manner. Whenever the monitor observes a new event

(thus changing the observed input-output word), it emits a verdict.

A verdict is a value from the domain D = {⊤,⊥, ?}, where the

verdict unknown (?) is an inconclusive verdict.

Let us recall that the set of input-output events that the monitor

can observe (receive) as input is denoted using Σ, where Σ = I ×O ,

and an input-output event is denoted as (i,o) where i ∈ I and
o ∈ O . After n executions of the program P, the monitor for a given

property φT observes a word σ = (i1,o1), · · · , (in ,on) ∈ L(P)
as input. φT denotes the trace property corresponding to a given

property φ, and chkφ is a predicate extracted from the property φT .

Definition 4.1 (chkφ). Consider a propertyφ expressed inHyper2S ,

where φT denotes its corresponding trace property. We denote the

predicate obtained from φT by ignoring the outermost universal

quantifier (i.e., by ignoring ∀σ ∈ φT) as chkφ .
Example 4.2 (Predicate chkφ from property φT). Let the safety

hyperproperty to be monitored φ be the monolithic minimality

property in Definition 2.6. Its corresponding trace property φT
is described in Example 3.2. The condition to check for (chkφ) is
obtained from φT by ignoring the outermost universal quantifier

(i.e., by ignoring ∀σ ∈ φT). For the considered monolithic mini-

mality example, chkφ is: ∀i ∈ [1, |σ |],∀j ∈ [1, |σ |], if (Π1(σi) ,
Π1(σj)) then (Π2(σi) , Π2(σj)).

The following proposition expresses that if a word σ belongs to

property φT , then every possible extension of σ also belongs to φT .

Proposition 4.3. ∀σ ∈ Σ#, if σ ∈ φT then (∀σ ′ ∈ Σ# : σ ≼
σ ′ =⇒ σ ′ ∈ φT).

Condition for conclusive verdict ⊥. From Proposition 4.3, the con-

dition of the second case of the monitorMφT (Definition 2.1) can

be reduced to checking whether the current observation σ satisfies

φT .

Remark 2 (Impossibility of checking condition of the first

case (satisfaction of property φT)). Note that regarding the
condition of the ⊤ case (satisfaction of φT), checking whether the
current observed word σ belongs to φT (i.e.,whether chkφ (σ) is true)
is not sufficient, and does not ensure that every extension of σ will
also belong to φT if σ belongs to φT . Thus, testing the condition of
the first case is not possible in general.

By providing the monitor with knowledge about the input do-

main and when the input domain is bounded, it is possible to test

the condition of the first case related to satisfaction of property φT .
We introduce the function in-ex : I × Σ# → B in order to test

whether every input belonging to I appears at least once in a given

input-output word σ ∈ Σ#. It is defined as follows:

in-ex(I ,σ) =

{
true if (∀i ∈ I ,∃id ∈ [1, |σ |] : Π1(σid) = i)

false Otherwise

Condition for conclusive verdict ⊤. The condition of the first case

inMφT as per Definition 2.1 for property φT reduces to checking

whether σ satisfies the following two conditions:

• every input belonging the set of inputs I appear at least once
in σ , i.e., in-ex(I ,σ) = true and
• σ satisfies φT , i.e., chkφ (σ) = true.

Note that if σ contains all possible inputs in I , and if σ satisfies φT ,
then every possible extension of σ also satisfies φT .

Runtime Verification of Hyperproperties for Deterministic Programs FormaliSE ’18, June 2, 2018, Gothenburg, Sweden

σ M(σ)

(5000, true) ?

(5000, true) · (11000, false) ?

(5000, true) · (11000, false) · (8000, true) ⊥

(5000, true) · (11000, false) · (8000, true) · (12000, false) · · · ⊥

Table 2: Example illustrating behavior of the monitor.

Proposition 4.4. Given any word σ ∈ Σ#, where Σ = I ×O , and
|σ | > 1, we have that if (in-ex(I ,σ) ∧ chkφ (σ)) then (∀σ ′, if σ ≼
σ ′ then σ ′ ∈ φT).

Thus, using Propositions 4.3 and 4.4, the conditions of the first

two cases in Definition 2.1 can be simplified. Consider property

φT ⊆ Σ#. Recall that the RV monitor is a function MφT : Σ# →
D, where D = {⊤,⊥, ?}. For σ = ϵ and any word σ of length 1,

MφT (σ) =?. Let σ ∈ Σ
#
denote a finite input-output word over the

alphabet Σ.MφT is defined as follows:

Definition 4.5 (MonitorMφT). Given property φ (where φT is its

corresponding trace property), the RV monitor for property φT is a

functionMφT : Σ# → D, where D = {⊤,⊥, ?}, defined as follows:

MφT (σ) =

⊤ if |σ | > 1 ∧ in-ex(I ,σ) ∧ chkφ (σ)

⊥ if |σ | > 1 ∧ ¬(chkφ (σ))

? Otherwise

with in-ex(I ,σ) = (∀i ∈ I ,∃id ∈ [1, |σ |] : Π1(σid) = i). chkφ is a

predicate extracted from φT .

For any word σ ∈ Σ# (current observation of execution of Pl)
where |σ | > 1, MφT , as per Definition 2.1, is an RV monitor for

property φT . The monitor returns ⊤when σ followed by any exten-

sion of it satisfies the property φT . The monitor returns⊥when the

current observation of execution of Pl followed by any extension

of it violates φT (resp. satisfies φT). It returns ? (unknown) for the
current observation if the other two cases do not hold.

Proposition 4.6. Given any property φT , MφT (as defined in
Definition 4.5) is a RV monitor for property φT (i.e., MφT satisfies
Imp and Acp).

Example 4.7 (Behaviour of the monitorMφT). Let us again con-

sider the monolithic minimality property introduced in Section

2.4 (cf. Definition 2.6; with its corresponding trace property φT
as presented in Example 3.2). Let the program to be monitored

be the one in Figure 1. In Table 2, we present some example ob-

servations of an execution of program Pl being monitored, de-

noted as σ , and the verdict provided by the monitor for σ . Ini-
tially, when the first event observed in (5000, true), the monitor

returns verdict unknown (?). In each step, the current observa-

tion is extended with a new event. Let the new event observed in

the second step be (11000, false). For the current observation σ =
(5000, true) · (11000, false), the monitor returns verdict unknown.

After observing the third event (8000, true), the monitor returns

verdict false (⊥) for σ = (5000, true) · (11000, false) · (8000, true),
and will return the same verdict for any extension of it. □

The following proposition states that changing the order of

events does not effect the verdict given by the monitor.

Proposition 4.8 (Order of events does not matter). Given
φ (where φT correspond to its trace property),

∀σ ∈ Σ#, ∀σ ′ ∈ γ (σ), (MφT (σ) = ⊥ =⇒ MφT (σ
′) = ⊥)∧

(MφT (σ) = ⊤ =⇒ MφT (σ
′) = ⊤).

where γ (σ) are the set of all words obtained from σ by changing order.
Each word in γ (σ) is of same length as σ , and contains every element
in σ (with possibly different index).

5 ONLINE MONITORING ALGORITHM

Algorithm 1 Monitorφ
1: σ ← ϵ
2: φT ← get_trace_prop(φ)
3: C ← get_condition(φT)
4: while true do
5: (i,o) ← await_event()
6: if σ = ϵ then
7: notify(?)
8: else
9: eval ← check_condition(C,σ · (i,o))
10: if ¬eval then
11: RETURN ⊥

12: else
13: if in-ex(I ,σ · (i,o)) then
14: RETURN ⊤

15: else
16: notify(?)
17: end if
18: end if
19: end if
20: σ ← σ · (i,o)
21: end while

Consider property φ expressed in Hyper2S , and a program-in-

loop Pl with input domain I . Algorithm 1 describes an online RV

monitoring procedure for property φ.
In Algorithm 1, σ denotes the input-output word received by

the monitor (i.e., observed execution of program Pl being mon-

itored). Function get_trace_prop takes property φ as input and

returns its corresponding trace property, assigned to φT . Function
get_condition takes a trace property as input and returns a pred-

icate to be checked on the observed trace at runtime. Function

check_condition takes a word σ and a predicate C and returns a

Boolean, indicating whether σ satisfies C or not.

Algorithm 1 is an infinite loop that waits for input events, from

the program Pl being monitored. After each iteration, it receives

an event (i,o) which is one execution of program P. In the first

iteration (i.e., when σ will be ϵ), verdict unknown is notified, and

the algorithm proceeds to the next iteration. From the second

iteration, after receiving the event (i,o), whether σ · (i,o) satis-
fies predicate C is checked using the function check_condition. If
check_condition returns false, then the algorithm returns conclu-

sive verdict ⊥. Otherwise (when check_condition returns true), it
is checked whether σ · (i,o) covers all the inputs in I using function
in-ex. If in-ex(I ,σ · (i,o)) returns true, then the algorithm returns

FormaliSE ’18, June 2, 2018, Gothenburg, Sweden Srinivas Pinisetty, Gerardo Schneider, and David Sands

conclusive verdict⊤. Otherwise (when check_condition(C,σ ·(i,o))
is true and in-ex(I ,σ · (i,o)) is false), the algorithm outputs ? (un-

known), and proceeds to the next iteration. Before the next iteration,

the observed trace is updated (i.e., event (i,o), is appended to the

observed trace σ).

Proposition 5.1 (|σ | < |I |). When the length of the input-output
word σ ∈ Σ# is less that the cardinality of the set of inputs, then
in-ex(I ,σ) is false:

∀σ ∈ Σ# : |σ | < |I | =⇒ in-ex(I ,σ) = false.

Note that when it is not possible to test whether the current

observation σ covers all inputs (i.e., when the input domain I is
unknown), it is not possible to compute in-ex(I ,σ). In this case, one

can consider a monitor with two cases (where the ⊤ case is merged

with the unknown (?) case). The monitor returns ⊥ indicating

violation of the given property φ, and ? otherwise.

Remark 3 (Complexity of Algorithm 1). The monitoring al-
gorithm (Algorithm 1) has an offline and an online component. The
offline component involves transformation to trace property φT and
extracting the condition C to check at runtime. Both these operations
have constant time complexity and thus the offline component has con-
stant time complexity. Regarding the online component, the expensive
computation is a check implemented by check_condition(C,σ) (i.e.,
test whether σ satisfies conditionC). Note, in Algorithm 1, in some iter-
ation k where (i,o) is the new event received, check_condition(C,σ ·
(i,o)) in step 8 will be invoked only if check_condition(C,σ) (in
the previous iteration) evaluates to true. If check_condition(C,σ)
was false in step k − 1, the algorithm would have returned ⊥, and
would not have entered iteration k . Thus in Algorithm 1, imple-
mentation of check_condition(C,σ · (i,o)), can be simplified (since
check_condition(C,σ) is true). Thus, to realise check_condition(C,σ ·
(i,o)), the event received in the current step needs to be compared with
every event in σ in the worst case, giving overall quadratic complexity
in the length of the input trace.

Implementation of Algorithm 1. Regarding implementabality of

Algorithm 1, from a given property φ in Hyper2S , getting its cor-

responding trace property φT (function get_trace_prop), and the

condition to test on the observed execution at runtime (function

get_condition) is straightforward as described in Section 3. The

other functions used in Algorithm 1 are check_condition() and
in_exh(), which are also straightforward to implement. Algorithm

1 has been implemented in Python that directly takes the condition

to be checked (C) on the observed execution as input parameter.

In order to validate the feasibility and practicality of the proposed

approach, the implementation has been tested with some exam-

ple properties such as data minimality and the other properties

discussed in Section 2.4.

6 PRE-DEPLOYMENT TESTING AND
ENFORCER SYNTHESIS

Consider a given safety hyperproperty φ, and its corresponding

verification monitor as per Definition 4.5, given in Algorithm 1.

In order to provide conclusive verdict ⊤ from an observed input-

output word σ ∈ Σ#, testing whether σ satisfies (resp. violates) a

condition C (extracted from φ) is not sufficient. In addition, the

monitor has to be provided with information about the set of all

possible inputs I , and it should check whether every possible input

in I appears in σ at least once (i.e., test whether in-ex(I ,σ) holds).
In runtime monitoring, the word σ ∈ Σ# (observation of current

execution of P) that is fed to a monitor is of finite bounded length

(σ and its length are both known). Thus, for any given σ ∈ Σ# and
any set of inputs I , testing in-ex(I ,σ) is straightforward.

In general, when performing (online) monitoring of program P

(where σ ∈ Σ# is the current observation of execution of P), and

providing knowledge of the set of all possible inputs of P to the

monitor, it is highly unlikely that σ covers all the inputs in I . Thus,
during runtime monitoring, in-ex(I ,σ)most likely will return false,
and thus the condition of the first case (that provides conclusive

verdict ⊤) in Definition 4.5 most likely does not hold, and thus we

notice only verdicts ? or ⊥ in practice.

However, for a given property φ, its monitorMφ can be also used

for testing for satisfaction (resp. violation) prior to deployment. In

a testing environment, the input observation fed to the monitor can

be generated in such a way that it covers all the inputs in I (when I
is finite and bounded).

6.1 Testing in a controlled environment via
monitoring

Algorithm 2 TestEnv

1: I ′ ← I , σ ← ϵ , v ←?

2: while (|I ′ | > 0 ∧v ==?) do
3: i ← pickInp(I ′)
4: o ← P(i)
5: σ ← σ · (i,o)
6: v ← Mφ (σ)
7: I ′ ← I ′ \ {i}
8: end while

When the set of inputs I is bounded, and when testing P in a

controlled environment (i.e., when we have control over the inputs

that are fed to P) for satisfaction (resp. violation) of a given safety

hyperproperty, it is indeed possible to obtain a conclusive verdict

(either ⊤ or ⊥), upon observing a sequence σ of length |I |.
Algorithm 2 (TestEnv) is for testing P for satisfaction (resp.

violation) of a given property φ via monitoring. In Algorithm 2, I ′

contains inputs that are not yet fed to the program P. Initially, I ′

is assigned with the set of inputs I . In every iteration of the while

loop, an input i from the set I ′ is picked non-deterministically,

which is fed to P, and P(i) is assigned to o. The input-output

event (i,o) is then fed to the monitor. Before proceeding to the

next iteration, input i which is already considered in the current

iteration is removed from the set I ′.
Algorithm 2 (TestEnv) can be considered as program Pl where

program P is executed repeatedly. However, here, in every iteration

we invoke P with a new input from the set I (i.e., input that has not
been considered in the previous iterations). The while loop thus

terminates after |I | iterations. After |I | iterations of the algorithm,

the input-output word σ that the monitor receives will be of length

|I |, and in-ex(I ,σ) will evaluate to true. The monitorMφ returns a

conclusive verdict upon receiving an input-output word of length

|I | (using Propositions 4.3 and 4.4).

Runtime Verification of Hyperproperties for Deterministic Programs FormaliSE ’18, June 2, 2018, Gothenburg, Sweden

Proposition 6.1. Let σ ∈ Σ# be an execution of the TestEnv
(Algorithm 2), which is a sequence of input-output word fed to the
monitor. The length of σ will be at most |I |, and the monitor will
certainly return a conclusive verdict ⊤ or ⊥ for σ of length |I |.

Regarding the satisfaction of the property φ, the monitor cannot
provide a verdict ⊤ before observing a word of length |I |. In what

concerns the violation of the property φ, the monitor may provide

a verdict ⊥ before observing word of length |I | (a witness of the
violation may be found before exploring all the inputs). In the latter

the execution of the tester program can stop earlier soon after the

monitor observes the sequence that violates the property φ.

6.2 Enforcer synthesis
Runtime enforcement (RE) [16, 19, 25] is a technique to monitor the

execution of a (black-box) system at runtime and ensure its compli-

ance against a set of desired properties. The enforcer guarantees

that the stream complies with a certain property, by delaying or

modifying events if necessary.

For some hyperproperties expressed in Hyper2S , it is possible

to synthesise an enforcer for the property when the input domain

I is bounded and known, and when we consider testing P via

monitoring as discussed above. For example, when we consider

the data minimality property introduced in Section 2.4, it is possi-

ble to synthesise an enforcer (input pre-processor), such that the

composition of the enforcer with the program satisfies the data

minimality property. For data-minimality we also implemented and

tested the enforcer generation approach for some simple programs

(see [20]). The synthesised enforcer (minimiser) acts as a input pre-

processor of the program P, that transforms inputs from the user

(environment) before they are fed to the program.

7 RELATEDWORK
The notion of hyperproperties has been proposed by Clarkson and

Schneider [11] as a means to describe security policies that cannot

be expressed as traditional trace properties. Hyperproperties gen-

eralize trace properties by also allowing to relate multiple traces,

needed for example to express information-flow policies. HyperLTL

and HyperCTL extend standard temporal logics LTL and CTL with

explicit trace quantification enabling to express hyperproperties

[10]. Algorithms for model checking HyperLTL and HyperCTL

are given in [10, 17]. The complexity of the model checking of the

alternation-free fragment of HyperLTL and HyperCTL formulae

over finite-state kripke structures is shown to be PSPACE-complete

in the size of the formula [10, 17].

Runtime verificationmonitoringmechanisms for trace properties

has been extensively studied and several RV frameworks have been

proposed such as [6, 7, 12, 15]. Most of the existing RV mechanisms

are limited to the analysis of a single trace, and the RV problem

of hyperproperties (dealing with sets of traces), is a recent and

challenging problem. There are very few recent works dealing with

runtime monitoring of HyperLTL. We focus here on [1, 9] as they

are the most closely related to our work. We briefly discuss them

in what follows and compare them with our approach.

In [1] an automata based approach for runtime verification of

k-safety hyperproperties has been described. The algorithm in [1]

can handle properties that reason/compare about position of events

in different traces, which cannot be expressed in Hyper2S . However,

the algorithm in [1] is much more complex. The approach in [1]

is based on runtime formula progression and on-the-fly monitor

synthesis for LTL3 sub-formulae across multiple executions, and

computing runtime verdicts by aggregating progress of each sub-

monitors. The complexity of the algorithm in [1] is mentioned

as O(
(n
k
)
+
∑
ϕ∈φ xϕ), where φ is given k-safety hyperproperty, n

is the number of finite executions, and xϕ is the complexity of

synthesising monitor for LTL sub-formula ϕ of φ.
In a later work in [9] a re-writing based monitoring approach

for general alternation-free fragment of HyperLTL was proposed

that has polynomial time and space complexity with respect to the

number of traces. The approach in [9] involves extracting proposi-

tions of interest from the given HyperLTL formula, extraction of

constraint ci for each incoming trace ti (involving re-writing on

inner LTL formulae, and encoding what the monitor has observed).

The current status/verdict is obtained by combining the evaluation

of ci for each individual trace.

Comparison. Similar to our work, the above discussed works

for monitoring hyperproperties [1, 9] also consider the system be-

ing monitored to be a black-box. The set of hyperproperties we

focus in our work (Hyper2S) is clearly a subset of hyperproeprties

considered in [1, 9]. However, most security and information-flow

properties commonly encountered in practice for the considered

setting (deterministic programs) can be expressed in Hyper2S . As

evident from the approaches for monitoring hyperproperties [1, 9],

when we consider hyperproperties, RV mechanisms become very

complex when compared with RV approaches for trace proper-

ties [6, 7, 12, 15]. The area/ideas of runtime verification (for trace

properties) gained attention and interest (also in practice), due

to its simplicity where the focus in on reasoning about a single

execution trace. In this work, for the considered set of hyper-

properties (Hyper2S), we showed how the problem of monitor-

ing Hyper2S properties can be reduced to the monitoring of trace

properties, simplifying the monitoring algorithm. As discussed in

Remark 3, an iteration of Algorithm 1 has linear complexity in

the length of the trace. Additionally, we take advantage of the

knowledge (assumption about determinism), and also integrate the

possibility of providing conclusive verdict ⊤ for safety hyperprop-

erties when the observed trace covers all possible inputs. General

approaches for monitoring hyperproperties such as [1, 9] can never

provide a conclusive verdict ⊤ for the considered safety hyperprop-

erties also with knowledge about determinism, and when the input

domain is finite and bounded.

8 CONCLUSION AND FUTUREWORK
In this paper, we considered the problem of runtime verification of

safety hyperproperties for deterministic programs. Though there

are a few runtime monitoring approaches for alternation-free frag-

ment of HyperLTL, those algorithms are very complex compared

to monitoring approaches for trace properties.

In this paper, for the considered subset Hyper2S and under

the determinism assumption on the program being monitored,

we reduced the problem to that of monitoring trace properties.

We thus presented a simpler approach for runtime verification of

FormaliSE ’18, June 2, 2018, Gothenburg, Sweden Srinivas Pinisetty, Gerardo Schneider, and David Sands

Hyper2S properties for deterministic programs. For any hyperprop-

erty in Hyper2S , we show how runtime verification monitors can

be synthesised. Using the additional knowledge (assumptions about

determinism and the input domain), we considered the possibility

of providing conclusive verdict ⊤ when the observed trace covers

all possible inputs. We also discussed about the possibility of synthe-

sising monitors using the proposed approach in a pre-deployment

testing phase.

Predictive runtime verification frameworks such as [21, 26] have

been proposed for trace properties. In predictive monitoring frame-

works [21, 26], instead of considering the system being monitored

as a black-box, the monitor is provided with available knowledge

about the system being monitored (i.e., the system is considered as

a grey-box). The additional knowledge in some cases is useful for

the monitor for instance to provide conclusive verdicts earlier when

possible. The assumption we made about determinism can be seen

as providing additional knowledge about the system being moni-

tored. The problem of predictive monitoring for hyperproperties is

a very important and unexplored one, and we intend to explore and

generalise our results into that direction. We also intend to explore

the problem of synthesising enforcers for the other properties in

Hyper2S , besides data minimisation.

Acknowledgements
This research has been partially supported by The Swedish Founda-

tion for Strategic Research (SSF) under project DataBIN, the Swedish

Research Council (Vetenskapsrådet) under grant Nr. 2015-04154
(PolUser: Rich User-Controlled Privacy Policies), and the European

ICT COST Action IC1402 (Runtime Verification beyond Monitoring
(ARVI)).

REFERENCES
[1] Shreya Agrawal and Borzoo Bonakdarpour. 2016. Runtime Verification of k-Safety

Hyperproperties in HyperLTL. In CSF. 239–252.
[2] Bowen Alpern and Fred B. Schneider. 1984. Defining Liveness. Technical Report.

Ithaca, NY, USA.

[3] Thibaud Antignac, David Sands, and Gerardo Schneider. 2017. Data Minimisation:

A Language-Based Approach. In IFIP SEC’17, Vol. 502. 442–456.
[4] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. 2008. Termination Insensitive

noninterference leaks more than just a bit. In ESORICS.
[5] Gilles Barthe, Pedro R. D’Argenio, Bernd Finkbeiner, and Holger Hermanns. 2016.

Facets of Software Doping. In ISoLA. 601–608.
[6] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime Verifica-

tion for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20, 4, Article 14 (Sept.
2011), 64 pages.

[7] Jan Olaf Blech, Yliès Falcone, and Klaus Becker. 2012. Towards Certified Runtime

Verification. In ICFEM. Springer Berlin Heidelberg, 494–509.

[8] Borzoo Bonakdarpour and Bernd Finkbeiner. 2016. Runtime Verification for

HyperLTL. In RV. Springer, 41–45.
[9] Noel Brett, Umair Siddique, and Borzoo Bonakdarpour. 2017. Rewriting-Based

Runtime Verification for Alternation-Free HyperLTL. In TACAS. 77–93.
[10] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski,

Markus N. Rabe, and César Sánchez. 2014. Temporal Logics for Hyperproperties.

In POST. 265–284.
[11] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput.

Secur. 18, 6 (Sept. 2010), 1157–1210.
[12] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. 2009. LARVA —

Safer Monitoring of Real-Time Java Programs (Tool Paper). In 7th IEEE Interna-
tional Conference on Software Engineering and Formal Methods (SEFM’09). IEEE
Computer Society, 33–37.

[13] Pedro R. D’Argenio, Gilles Barthe, Sebastian Biewer, Bernd Finkbeiner, and Holger

Hermanns. 2017. Is Your Software on Dope?. In ESOP. Springer-Verlag New York,

Inc., New York, NY, USA, 83–110.

[14] Volker Diekert and Martin Leucker. 2014. Topology, monitorable properties and

runtime verification. Theoretical Computer Science 537, Supplement C (2014), 29 –

41. ICTAC 2011.

[15] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. 2009. Runtime
Verification of Safety-Progress Properties. Springer Berlin Heidelberg, 40–59.

[16] Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc Richier.

2011. Runtime enforcement monitors: composition, synthesis, and enforcement

abilities. FMSD 38, 3 (2011), 223–262.

[17] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. 2015. Algorithms for

Model Checking HyperLTL and HyperCTL. In CAV. Springer, 30–48.
[18] Martin Leucker. 2016. Runtime Verification for Linear-Time Temporal Logic. In

SETSS. 151–194.
[19] Jay Ligatti, Lujo Bauer, and David Walker. 2009. Run-Time Enforcement of

Nonsafety Policies. ACM Trans. Inf. Syst. Secur. 12, 3, Article 19 (Jan. 2009),

19:1–19:41 pages.

[20] Srinivas Pinisetty, Thibaud Antignac, David Sands, and Gerardo Schneider. 2018.

Monitoring Data Minimisation. CoRR abs/1801.02484 (2018).

[21] Srinivas Pinisetty, Thierry Jéron, Stavros Tripakis, Yliès Falcone, HervèMarchand,

and Viorel Preoteasa. 2017. Predictive runtime verification of timed properties.

Journal of Systems and Software 132 (2017), 353 – 365.

[22] Srinivas Pinisetty, Gerardo Schneider, and David Sands. 2018. Appendix

to the paper Runtime Verification of Hyperproperties for Deterministic Pro-
grams. https://github.com/SrinivasPinisetty/monitorDM/blob/master/Appendix.

pdf. (Jan. 2018).

[23] Amir Pnueli. 1977. The Temporal Logic of Programs. In SFCS ’77. IEEE Computer

Society, Washington, DC, USA, 46–57.

[24] A. Pnueli and A. Zaks. 2006. PSL Model Checking and Run-Time Verification Via
Testers. Springer Berlin Heidelberg, 573–586.

[25] Fred B. Schneider. 2000. Enforceable security policies. ACM Trans. Inf. Syst. Secur.
3, 1 (2000), 30–50.

[26] Xian Zhang, Martin Leucker, and Wei Dong. 2012. Runtime Verification with

Predictive Semantics. In NFM. Springer Berlin Heidelberg, 418–432.

https://github.com/SrinivasPinisetty/monitorDM/blob/master/Appendix.pdf
https://github.com/SrinivasPinisetty/monitorDM/blob/master/Appendix.pdf

	Abstract
	1 Introduction
	2 Preliminaries and notations
	2.1 Runtime verification monitor for trace properties
	2.2 Deterministic programs
	2.3 Hyperproperties and Hyper2S
	2.4 Properties expressed in Hyper2S

	3 From hyperproperties to trace properties
	4 Runtime verification monitor synthesis
	5 Online monitoring algorithm
	6 Pre-deployment testing and enforcer synthesis
	6.1 Testing in a controlled environment via monitoring
	6.2 Enforcer synthesis

	7 Related work
	8 Conclusion and future work
	References

