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Abstract. We revisited decidability of the reachability problem for low
dimensional hybrid systems. Even though many attempts have been done
to draw the boundary between decidable and undecidable hybrid systems
there are still many open problems in between. In this paper we show
that the reachability question for some two dimensional hybrid systems
are undecidable and that for other 2-dim systems this question remains
unanswered, showing that it is as hard as the reachability problem for
Piecewise Affine Maps, that is a well known open problem.

1 Introduction

Although many intense research activity in the last years have been done in
the domain of hybrid systems (systems combining discrete and continuous be-
haviors), there is no clear boundary between what is decidable or not on such
systems. In this paper we address only the reachability problem, we refer the
reader interested in decidability of other problems, such as stability, to [10].

It is well known that for particular cases the reachability question is de-
cidable. For continuous-time hybrid systems, the reachability is decidable for
timed automata (TA) [3], their generalizations such as multirate automata [2,
30], some kinds of updatable timed automata [12, 13] and initialized rectangular
automata [20, 32]. For all these models the decidability depends on existence of
a finite bisimulation and holds for systems of any dimensions. Another class of
decidability results concerns planar systems. The method was suggested in [27],
where decidability was stated for 2-dim PCD (systems with the dynamics given
by Piecewise Constant Derivatives). The results were extended to planar multi-
polynomial systems in [16] and to non-deterministic planar polygonal systems
(SPDI) in [8]. All these results are based on topological properties of the plane
and the method does not work neither in higher dimension nor for systems with
“jumping” discontinuous trajectories. On the negative side there are many un-
decidability results, and we cannot give an exhaustive list. For dimension 3 or
more the reachability is undecidable for Linear Hybrid Automata [20], and even
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for PCDs [7]. Undecidability proofs are based on simulation of Turing or Minsky
(counter) machines. A more economic simulation allows to prove undecidability
for systems with stringent restrictions on the continuous dynamics, guards and
resets: for example reachability is undecidable for rectangular automata with at
least 5 clocks and one two-slope variable [20], or for TA with two skewed clocks
[2].

Another group of results is related to the reachability problem for discrete-
time dynamical systems, in particular iterations of piecewise affine or more com-
plex functions. Roughly speaking, as it is well known since Poincaré’s work,
continuous-time systems of dimension n+ 1 are “as complex as” discrete itera-
tions in dimension n. On the negative side, as stated in [25], TM can be simulated
by iterations of 2-dim piecewise affine maps(PAM), and hence reachability is un-
decidable in dimension 2. In dimension one the known undecidable discrete-time
systems involve rather complex dynamics, e.g. in [26] an elementary function (a
combination of sines an cosines) that simulates Turing machines (TM) with an
exponential slowdown is constructed. Another class of systems with undecidable
reachability in dimension one are countable PAMs (PAMs with an infinite num-
ber of intervals). As for the most natural class of one dimensional systems: finite
PAMs, the decidability of reachability is an old standing open question (see [24,
11] for a thorough discussion), related to other open questions in number theory
and linear algebra. This problem (we call it REACHPAM ) plays the key rôle in
this paper.

In this paper we analyze continuous-time hybrid systems which are close to
the boundary between decidable and undecidable. As it was mentioned, planar
systems with continuous trajectories are decidable, 3-dim are not. That is why
we explore planar systems with jumps, and also systems with continuous tra-
jectories on 2-dim manifolds. For such systems instead of proving decidability
or undecidability, we establish an equivalence to the problem REACHPAM . A
finer analysis allows to show that the reachability for some constrained systems
(e.g. with 2 clocks and affine resets) is also as hard as for REACHPAM . For a
little bit more complex 2-dim systems with a simple infinitary pattern we prove
undecidability.

The paper is organized as follows. In section 2 we define several classes of
hybrid automata, two dimensional manifolds, and our reference model: Piecewise
affine maps (PAM). In section 3 we introduce Hierarchical PCDs (HPCD) and
we show that the reachability problem for HPCD, PCD on manifolds, and some
other classes of 2-dim systems is as hard as the reachability for PAM. In section 4
we show that enriching HPCD with one counter, or an infinite partition leads to
the undecidability of the reachability question. We conclude in the last section
with a summary. Due to space limitations we give only sketches of proofs for
most results. The reader can find more details in the thesis [33].



2 Preliminaries

2.1 Hybrid automata

There are many (more or less) equivalent definitions of hybrid systems/automata
(see for example [1, 21, 35]). We will adopt in this paper the following definition.

A hybrid system is a dynamical system that combines discrete and continuous
components. A natural model for hybrid systems is hybrid automata [21] that
are automata such that at each discrete location the dynamics is governed by a
differential equation (over continuous variables) and whose transitions (between
locations) are enabled by conditions on the values of the variables.

Formally, an n-dimensional hybrid automaton is a tupleH = (X , Q, f, I0, Inv, δ)
where

– X ⊆ Rn is the continuous state space. Elements of X are written as x =
(x1, x2, . . . , xn), for {x1, x2, . . . , xn} ∈ V, where V is a finite set of variables;

– Q is a finite set of discrete locations ;
– f : Q → (X → Rn) assigns a continuous vector field on X to each discrete

location. While in discrete location ℓ ∈ Q, the evolution of the continuous
variables is governed by the differential equation ẋ = fℓ(x). We say that the
differential equation defines the dynamics of location ℓ;

– The initial condition I0 : Q → 2X is a function that for each state defines
the initial values of the variables of X ;

– The invariant or staying conditions Inv : Q → 2X , Inv(ℓ) is the condition
that must be satisfied by the continuous variables in order to stay in location
ℓ ∈ Q;

– δ is a set of transitions of the form tr = (ℓ, g, γ, ℓ′) with ℓ, ℓ′ ∈ Q. Such a
quadruple means that a transition from ℓ to ℓ′ can be taken whenever the
guard g ⊂ X is satisfied and then the reset γ : X → X is applied.

In what follows we will consider deterministic systems unless the contrary be
specified.

A state is a pair (ℓ,x) consisting of a location ℓ ∈ Q and x ∈ X . A state can
change in two ways: (1) by discrete and instantaneous transition that changes
both the location and the values of the variables according to the transition
relation, and (2) by a time delay that changes only the values of the variables
according to the dynamics of the current location. The system may stay at a
location only if the invariant is true, and a transition must be taken before the
invariant becomes false.

A trajectory of a hybrid automaton H is a function Θ : [0, T ] → Q × X ,
Θ(t) = (ℓ(t), ξ(t)) such that there exists a sequence of times values t0 = 0 <

t1 < . . . < tn = T for which the following holds for each 1 ≤ i ≤ n: (1) ℓ is
constant on (ti, ti+1) (we describe its value there by ℓi) and ξ is derivable on
(ti, ti+1), it is left continuous and with right limits everywhere; (2) There is a
transition (ℓ(ti), g, γ, ℓ(ti+1)) ∈ δ such that ξ−(ti+1) ∈ g(ℓi, ℓi+1) and ξ(ti+1) =
γ(ξ−(ti+1))

1; (3) For any 0 ≤ i ≤ n, for any t ∈ (ti, ti+1), ξ̇(t) = fl(t)(ξ(t)).

1 ξ−(t) is the left limit of ξ(t).
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ẏ = b2

x < 0

y > 1

R1

R4R3

(a1, b1)

(a4, b4)(a3, b3)

(a2, b2)

R2

x = 0 ∧ y > 1

x = 0 ∧ y < 1

x > 0 ∧ y = 1 x < 0 ∧ y = 1

R1 R2

R3R4

Fig. 1. (a) A simple PCD; (b) Its corresponding hybrid automaton.

2.2 Rectangular and linear hybrid automata

A hybrid automaton H is linear [21, 1] if the following restrictions are met: (1)
The initial and invariant conditions as well as the guard are boolean combina-
tions of linear inequalities; (2) The dynamics are defined by differential equations
of the form ẋ = kx, one for each variable x ∈ V, where kx ∈ Z is an integer con-
stant. We say that kx is the slope (or rate) of the variable x at a given location.

We say that a variable x is a memory cell if it has slope 0 in every location
of H. A variable x is a clock if it has slope 1 in every location. A variable x is a
skewed clock if there is a rational k ∈ Q\{0, 1} such that x has slope k in each
location. The variable x is a two-slope clock if there is a rational k such that for
each location ẋ = k or ẋ = 1. A stopwatch is a two-slope clock with k = 0.

A rectangle of dimension n R =
∏

1≤i≤n Ii is the product of n intervals
Ii ⊆ R of the real line with rational or infinite extremities.

A hybrid automaton is a rectangular automaton [21, 20, 32] if (1) all the initial
conditions, invariants and graphs of resets are rectangles; (2) for each location
ℓ, the dynamics has the form ẋ ∈ Rℓ, where Rℓ is a rectangle.

Another special case of linear hybrid automata are PCDs, that are described
in next section.

2.3 PCD

A piecewise constant derivative system (PCD) [7, 27] is a pair H = (P,F) with
P = {Ps}s∈S a finite family of non-overlapping convex polygonal sets in R2 with
non-empty interiors, and F = {cs}s∈S a family of vectors in R2. The dynamics
of the PCD is determined by the equation ẋ = cs for x ∈ Ps. Hence trajectories
are broken lines.

A well known technique for planar differential equations and in particular for
PCD is to replace the analysis of those systems by analysis of edge-to-edge dis-
crete successors [7, 8, 27] (also known as Poincaré map [22]). Given an edge e, each
point on e can be represented by a local one dimensional coordinate. A one-step
edge-to-edge successor in such coordinates can be written as Succee′ (x) = ax+b.
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Fig. 2. Representations of a Torus: (a) a surface in R3; (b) a square with identified
edges; (c) a triangulated surface.

In general, a n-step successor for a given sequence of edges σ = e1, e2, . . . , en is
again a function of the above form (see for example [7] for a better understand-
ing).

Notice that PCDs can be viewed as linear hybrid automata without reset. In
Figure 1 a simple PCD and its corresponding hybrid automata are shown.

2.4 Two dimensional manifolds

All the (topological) definitions, examples and results of this section are done
following the combinatorial method and follow [19].

A topological space is triangulable if it can be obtained from a set of triangles
by the identification of edges and vertices subject to the restriction that any two
triangles are identified either along a single edge or at a single vertex, or are
completely disjoint. The identification should be done via an affine bijection.

A surface (or 2-dim manifold) is a triangulable space for which in addition:
(1) each edge is identified with exactly one other edge; and (2) the triangles
identified at each vertex can always be arranged in a cycle T1, . . . , Tk, T1 so that
adjacent triangles are identified along an edge. Typical examples are the sphere,
the torus (see Figure 2) or the Klein’s bottle.

A surface with boundary is a topological space obtained by identifying edges
and vertices of a set of triangles as for surfaces except that certain edges may
not be identified with another edge. These edges, which violate the definition of
a surface, are called boundary edges, and their vertices, which also violate the
definition of surface, are called boundary vertices. Typical examples of surfaces
with boundary are the cylinder and the Möbius strip. Indeed, the cylinder is
equivalent to a sphere with two disks cut out.

We state now an important theorem in the topological theory of surfaces:

Theorem 1 (Classification theorem(see [19], p.122)).

– Every compact, connected surface is topologically equivalent to a sphere, or
a connected sum of tori, or a connected sum of projective planes.



– Every compact, connected surface with boundary is equivalent to either a
sphere, or a connected sum of tori, or a connected sum of projective planes,
in any case with some finite number of disks removed.

2.5 Piecewise Affine Maps (PAM)

We define in this section one dimensional Piecewise affine maps (PAM) [11, 24,
25]. We say that a function f : R → R is piecewise affine (PAM) if f is of the
form f(x) = aix+ bi for x ∈ Ii, where Ii = [li, ui] is an interval with li, ui ∈ Q.
Coefficients ai, bi and the extremities of Ii are supposed to be rational.

Let REACHPAM , the reachability problem for PAMs, be the following prob-
lem.

Problem 1. Given a PAM A and two points x and y, is y reachable from x?

Even for a function f with just two linear pieces, there is no known decision
algorithm for the above problem. The same problem is known to be undecidable
in dimension 2 and if piecewise affine maps are replaced by polynomials, the
problem is open for any dimension [11, 24, 25].

3 Between Decidability and Undecidability

We show in this section that for several natural classes of 2-dim hybrid systems
the reachability problem is s as hard as for 1-dim PAMs, for which such problem
is known to be open. Recall that the reachability problem is decidable [27] for
planar PCDs and undecidable for dimensions greater than two [6].

3.1 HPCD

Hierarchical piecewise constant derivative systems (HPCDs) can be seen as hy-
brid automata such that at each location the dynamics is given by a PCD. More
formally, an HPCD is a hybrid automaton HPCD = (X , Q, f, I0, Inv, δ) such that
Q and I0 are as before while the dynamics at each ℓ is a PCD and each tran-
sition tr = (ℓ, g, γ, ℓ′) is such that (1) its guard g is a predicate of the form
P (x, y) ≡ (ax+ by+ c = 0∧ x ∈ I ∧ y ∈ J) where I and J are intervals and a, b,
c and the extremities of I and J are rational-valued and (2) the reset functions
γ are affine functions: γ(x) = Ax+b. Last, Inv is defined as the negation of the
union of the guards, i.e. we can stay in location ℓ as long as no guard is satisfied.
If all the PCDs are bounded, then the HPCD is said to be bounded.

We need to introduce a 1-dim coordinate system on each edge e. We will
denote a point with local coordinates x on edge e by (e, x) or whenever no
confusion may arise, just as x.

It can be argued that the term hierarchical in the above definition is super-
fluous and that in fact HPCDs are just 2 dimensional linear hybrid automata.
Even though this is true, the definition is intentional since we want to emphasize
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Fig. 4. (a) The HPCD that simulates a PAM. (b) An equivalent RA1cl1mc.

the fact that there are just “few” real discontinuities due to jumps and reset and
that in general the trajectory behaves like a PCD.

Let REACHHPCD be the following problem:

Problem 2. Given a HPCD H and two points x0 and xf , is xf reachable from
x0?

We will prove that HPCDs can simulate PAMs and vice versa. For that we
show first that each HPCD H is simulated by a PAM A and that for each PAM
A there is a HPCD H such that H simulates A. For proving the first, we should:
(1) Encode an initial and final point of H by points on some intervals of A;
(2) Represent a configuration of H by a configuration of A; (3) Simulate an
edge-to-edge transition of H by some function application on A.

Lemma 1 (PAMs simulate HPCDs). Every bounded 2-dimensional HPCD
H can be simulated by a PAM.

Sketch of the proof: We arrange all the edges of H in the Real line (in an
arbitrary order) and we represent each edge-to-edge successor function and each
reset function by an affine map (restricted to an interval). Assembling all those
affine maps together yields the PAM A simulating H (see Figure 3). ⊓⊔

Lemma 2 (HPCDs simulate PAMs). Every PAM A can be simulated by a
2-dim HPCD.



Proof: Let A be defined by f(z) = aiz + bi if z ∈ Ii for i ∈ {1, · · · , k} where
Ii = [li, ui] are rational intervals. We define a one-location HPCD with a one-
region PCD defined by y ≥ 0 ∧ y ≤ 1, i.e. there are two edges e ≡ y = 0 and
e′ ≡ y = 1, and dynamics defined by vector (0, 1) as shown in figure 4-(a). There
are as many transitions as intervals Ii of the PAM. The guards are of the form
y ∈ e ∧ x ∈ Ii and the reset functions associated with these guards are of the
form γ(e′, x, y) = (e, aix + bi, 0). The initial point z0 of the PAM is encoded as
a point (x0, y0) ∈ e with local coordinate λ0 = x0 = z0. Hence, it is easy to see
that zf = f(z0) iff λf = γ(e′, λ′) where λ′ = Succee′ (λ0). ⊓⊔
From the above two lemmas, we have then the following theorem.

Theorem 2 (HPCDs are equivalent to PAMs). REACHHPCD is decidable
iff REACHPAM is. ⊓⊔

Remark. It can be said that encoding everything in reset functions is not fair.
Indeed, the simulation works for less general resets. In fact, it can be shown
that any PAM can be simulated by an HPCD with isometric (length preserving)
reset functions. Let us denote the corresponding HPCD by HPCDiso and its
reachability problem by REACHHPCDiso

. Hence we have the following theorem
(the exact construction can be found in [33]).

Theorem 3 (HPCDiso are equivalent to PAMs). REACHHPCDiso
is decid-

able iff REACHPAM is. ⊓⊔

3.2 About rectangular and linear 2-dimensional hybrid automata

In this section we prove some corollaries of Theorem 2 and Theorem 3.
The class of rectangular hybrid automata with one clock y, one memory cell

x, invariants of the form C ≤ y ≤ D, guards of the form y = D and resets of the
form γ(x, y) = (ax+ b, 0) will be denoted as RA1cl1mc. It is easy to observe that
the HPCD defined for simulating a PAM (see Figure 4-(a)) is in fact a RA1cl1mc

(see Figure 4-(b)) and to deduce the following result.

Corollary 1 (RA1cl1mc are equivalent to PAMs). Reachability for RA1cl1mc

is decidable iff reachability for PAMs is. The same is true for one-state RA1cl1mc.

The class of rectangular hybrid automata with two clocks x and y, invariants
of the form C ≤ y ≤ D, guards of the form y = D and resets of the form
γ(x, y) = (ax+ b, 0) will be denoted as RA2cl.

Corollary 2 (RA2cl are equivalent to PAMs). Reachability for RA2cl is de-
cidable iff reachability for PAMs is.

Sketch of the proof: In Lemma 2 an HPCD H (see Figure 4) that simulates a
PAM was built. We obtain another HPCD H′ applying an affine transformation
to H, where the edge e remains unchanged whereas e′ is translated by one unit
to the right. H′ is represented in Figure 5-(a), where given I = [l, u] I + 1 is a
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Fig. 5. (a) Another HPCD that simulates a PAM; (b) The corresponding RA2cl.

short for [l+1, u+1]. It is not difficult to see that the automaton of Figure 5-(b)
is a RA2cl equivalent to H′. ⊓⊔

Notice that RA2cl automata can be considered as updatable timed automata [12,
13] with more general resets (of the form y := ax+ b).

The next two corollaries are consequences of Theorem 3.

We denote by RA1sk1sl, the class of rectangular hybrid automata with one
two-slope clock x (taking values on {−1, 1}) and one positive n-skewed clock y

with the following restrictions: (1) on each transition, x is reset to function of
y of the form x := y + d and y is reinitialized with a constant value c, where
c is the inferior bound of y in ℓ′; (2) the values of the two variables are never
compared, and (3) the guard of a transition from location ℓ to ℓ′ is of the form
x = A, where A is one of the bounds of x in the invariant of location ℓ.

It can be seen that the construction of Theorem 3 gives in fact a RA1sk1sl.

Corollary 3 (RA1sk1sl are equivalent to PAMs). Reachability for RA1sk1sl is
decidable iff reachability for PAMs is.

Let H be a linear hybrid automaton with just two (mutually exclusive) stop-
watches x and y with the following restriction: (1’) whenever a transition is
taken, x and y remain unchanged or the new value of x is a function of y of the
form x := y + d and y is reinitialized with a constant value c, where c is the
inferior bound of y in ℓ′; (2’) the guard of a transition from ℓ to ℓ′ is of the form
x = A or ax+ by + c = 0, where A is one of the bounds of x in the invariant of
location ℓ and a, b and c are rational constants. We denote this class by LASt.

It can be shown that LASt can simulate any RA1sk1sl which implies the last
result of this subsection.

Corollary 4 (LASt are equivalent to PAMs). Reachability for LASt is de-
cidable iff reachability for PAMs is.
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3.3 PCD2m: PCDs on 2-dimensional manifolds

Surfaces (or 2-dimensional manifolds) were introduced in section 2.4. To define
a PCD on a triangulated surface S, a PCD should be defined on each of its tri-
angles. We call this class of systems PCD on 2-dimensional manifolds (PCD2m).

In figure Figure 6 we define a PCD on a torus and show how to represent it
as a family of PCDs on triangles.

A point xf is reachable from another point x0 if there exists a trajectory
from x0 to xf . We consider the following problem:

Problem 3. Given a PCD2m H and two points x0 and xf , is xf reachable from
x0?

Lemma 3 (PAMinj simulate PCD2m). Every PCD2m can be simulated by an
injective PAM.

Sketch of the proof: Let H be a PCD2m. The reduction is analog to the
simulation of HPCDs by PAMs. Notice that H is in fact an HPCD where a
jump is produced each time we reach an identified edge and the resets are the
identifying bijections between the identified edges. We will not reproduce the
proof here, see Lemma 1. The requirement that each edge is identified with
exactly one other edge ensures injectivity. ⊓⊔

Lemma 4 (PCD2m simulate PAMinj). Every injective (bounded) PAM can be
simulated by a PCD2m.

Sketch of the proof: Let A be an injective PAM defined as f(z) = fi(z) =
aiz+bi if z ∈ Ii for 1 ≤ i ≤ n. We obtain a PCD2m in the following way similar to
the construction of lemma 2. In the rectangle R = [−M ;M ]×[0; 1] (with M large
enough) the dynamics is defined by vector (0, 1). In order to realize the function
f by identification of edges, we introduce several new edges (see Figure 7: on
the bottom side of the rectangle R we define Iki = (fi(Ii)∩ Ik)×{0}, on the top
side we define Jk

i = (Ii ∩ f−1
i (Ik))× {1}). Injectivity of the PAM A guarantees

that these intervals do not overlap.
Next we identify each non-empty Jk

i with Iki via the function fi (which is an
affine bijection between these two edges). It is easy to find a triangulation such
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that Iki and Jk
i are its edge, hence we have represented our system as a PCD on

a compact surface with boundary.

By the Classification Theorem for Surfaces with Boundary (see Theorem 1)
we have that this surface is equivalent to a sphere with some disks removed and
we obtain then a PCD2m just “sewing” the disks. We associate with these disks
a zero slope vector. ⊓⊔

From the above two lemmas we have that zf = f∗(z0) iff Reach(H,x0,xf ),
where x0 has local coordinate λ0 = z0 on a given edge e and xf has local
coordinate λf = zf on an edge e′. Then the following theorem holds.

Theorem 4 (PCD2m are equivalent to PAMinj). Reachability for PCD2m is
decidable iff reachability for injective PAMs is.

4 Undecidability results

We show in this section that modifying HPCD slightly by adding “something
infinite” (a counter, an infinite partition, etc.) yields undecidable systems.

4.1 HPCD with one counter (HPCD1c)

Consider the class of HPCD1c which are HPCD augmented with a counter c.
In each location ℓ the state vector (x, y) evolves according to a PCD, while c

remains constant. Guards have the form P (x, y) ∧ Q(c) where P (x, y) is as for
HPCDs and Q(c) ≡ c = 0 | c > 0 | true. Resets are as for HPCDs, but they can
also increment or decrement c.

We prove that the reachability problem for HPCD1c is undecidable showing
that a HPCD1c H can simulate Minsky (two counter) machines [28] for which
reachability is known to be undecidable.

Proposition 1 (HPCD1c simulates MM). Every Minsky Machine M can be
simulated by a 2-dim HPCD with one counter. Hence reachability is undecidable
for HPCD1c.
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Sketch of the proof: We associate with each qi of M a location ℓi of HPCD1c.
In order to encode a configuration ofM which is a triple (qi,m, n) (with m and n

standing for contents of the two counters), we represent it inH by (ℓi, x, y, c) with
the point (x, y) = (2−m, 0) representing the first counter ofM, and c = n storing
the second one. In any case, the PCD associated to the location ℓi simulates
the instruction for the state qi. Informally speaking, in order to increment or
decrement m we just divide or multiply x by 2 (it can be easily done by a PCD).
In order to test whether m = 0 we check whether x > 0.75. All the operations
on n are done directly on the counter c. Figure 8 represents PCD simulating
instructions m++, m = 0? and n++. PCD for the three other instructions of
Minsky machine (m−−, n−− and n = 0?) are similar.

Putting all those PCDs together we obtain a HPCD1c which simulates M. ⊓⊔

4.2 HPCDs with infinite partition (HPCD∞)

We will consider in this section HPCDs for which we relax the condition of
having a finite number of regions. We call this class of systems, HPCDs with
infinite partition (HPCD∞). We are not going to define this class formally, since
we are just interested in showing that this additional feature (having an infinite
partition) leads immediately to the undecidability of the reachability problem
for HPCD∞.



e2

e3

e1

(0, f(x0) = (−1)⌊2x0⌋)

(0, f(x0) = (−1)⌊2x0⌋)

Fig. 10. Simulation of a TM by a HPCDx.

Proposition 2 (HPCD∞ simulate TMs). Every TM M with alphabet {0; 1}
can be simulated by a 2-dimensional (unbounded) HPCD with infinite partition.
Hence reachability is undecidable for HPCD∞.

Sketch of the proof: The system H will have a location lk for each state qk of
the TM. We represent the TM tape contents by a point on the x-axis with the
abscissa x =

∑∞
i=−∞ ai2

i (here a0 is the symbol under the head of the TM) in a
HPCD with infinite partition as in Figure 9. With such a partition it is easy to
test whether the current symbol is 0 or 1: whenever an “even” edge is reached
(ei with i = 2k for k ∈ N), that corresponds to fracx > 1

2 , and hence the current
symbol is 1, otherwise it is 0.

Hence, to simulate an instruction of the form qk0 → . . . we make a jump
from all the odd ei edges of the location lk. For an instruction qk1 → . . . we
make a jump from all the even edges. It is easy to see that this jump is always
affine: shifting the head corresponds to division or multiplication of x by 2, and
replacing the current symbol corresponds to addition or substraction of 1

2 . ⊓⊔

4.3 Origin-dependent rate HPCDs (HPCDx)

Another way of introducing “infinite patterns” is allowing continuous dynamics
with some periodic behavior that depends on the initial points after a reset is
done. An origin-dependent rate PCD is a PCD H = (P,F) such that each region
Ps has dynamics ẋ = φs(x0) (as before, given a generic region P we will also
use the notation φ(P,x0)).

Notice, that after reaching an edge, the system evolves according to a fixed
rate that depends on the initial value x0 of the variables when entering the
region. The idea of having flows (dynamics) that depend on initial sates has
been taken from [5].

In the construction of Proposition 3 we will use rather particular φs functions.

We extend the above definition to HPCDs: an origin-dependent rate HPCD
(HPCDx) is a HPCD with an origin-dependent rate PCD at each location.



Proposition 3 (HPCDx simulate TMs). Every TM M can be simulated by
a 2-dimensional unbounded HPCDx H. Hence the reachability is undecidable for
such systems.

Proof: We associate with each TM-state qi a location ℓi, where the PCDi is
defined by four regions: R1, (y > 0) ∧ (y < 1); R2, (y < 0) ∧ (y > −1); R3,
y < −1; R4, y > 1. The first two regions have dynamics given by the vector
(0, f(x0)) and the last two by (0,1).

Let e1, e2 and e3 be as shown in Figure 10. Let f(x0) = (−1)⌊2x0⌋, where x0

is the first coordinate on edge e0 of the initial point x0 . Notice that f(x) = 1 if
fracx < 1

2 and f(x) = −1 otherwise.
There are two transitions from ℓi: (1) tr1 = (ℓi, g1, γ1, ℓj) where g1 ≡ e2 and

γ1(e2, x) = (e′1, f
′(x)); (2) tr2 = (ℓi, g2, γ2, ℓh) where g2 ≡ e3 and γ2(e3, x) =

(e1, f
′′(x)). Transitions tr1 and tr2 allow the trajectory to continue in locations

ℓj and ℓh with a reset function that implement the instructions of the Turing
machine as before. ⊓⊔

Notice that the above definition allows the dynamics to be defined by any
function of the initial point, but in order to simulate a TM we need very partic-
ular kind of functions, those that have a periodic pattern. We could have chosen
any periodic function like sine or cosine. In any case, the key idea is to obtain
an “infinite pattern” as before.

5 Conclusion

The contribution of this paper is twofold. First, we have shown that between
2 dimensional PCDs (for which the reachability problem is decidable [27]) and
3 dimensional PCDs (reachability is undecidable [7]) there exist an interesting
class, 2-dim HPCD, for which the reachability question is still open. We have also
shown that the same is true for other similar systems, namely 2-dim rectangular
automata and 2-dim linear hybrid automata with some restrictions as well as for
PCD on 2-dim manifolds. Second, we have proved that 2-dim HPCD are really
in the boundary between decidability and undecidability, since adding a simple
counter or allowing some kind of “infinite pattern” to these systems, makes the
reachability problem undecidable.
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