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ABSTRACT
Smart contracts are self-executing programs running in the blockchain
allowing for decentralised storage and execution without a middle-
man. On-chain execution is expensive, with miners charging fees
for distributed execution according to a cost model defined in the
protocol. In particular, transactions have a high fixed cost. In this
paper we present MultiCall, an interpreter that reduces the cost of
smart contract execution by emulating sequences of transactions
from multiple users in one transaction. We have implemented and
integrated MultiCall into Ethereum. Our evaluation shows that
using MultiCall provides a saving between 56.8% and 98.9% of the
fixed per-transaction cost compared to the standard approach of
sending transactions individually.

CCS CONCEPTS
•Applied computing→Digital cash; •Computer systems or-
ganization → Peer-to-peer architectures; • Security and pri-
vacy → Public key encryption; • Software and its engineer-
ing → Interpreters.
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1 INTRODUCTION
Distributed ledger technologies and smart contracts provide ex-
citing new capabilities, allowing mutually distrustful parties to
transact and contract without a middleman. To prevent a denial
of service attack, distributed ledger protocols require a cost model
which limits the total computational cost of executing transactions.
In the blockchain Ethereum [15], for instance, this is implemented
via a unit of account called gas. Gas is charged for each transaction
included in a block, each byte uploaded and EVM instruction ex-
ecuted. The gas used per block, and the rate of block creation, is
limited by the protocol —currently to around 12 million and about
once every 17 seconds, respectively [8]. On-chain processing ca-
pacity is valuable, expensive and strictly limited; miners charge
users via transaction fees proportional to the gas used. This cost is
significant, ranging from a few cents to several dollars for the fixed
transaction cost alone [8].
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contract Token {
...//Other variables
mapping(address => uint)accounts;

function xfer(address recipient, uint amount) public {
uint senderAmount = accounts[msg.sender];
if (senderAmount < amount)revert();
accounts[recipient] += amount;
accounts[msg.sender] = senderAmount - amount;
}
...//Other methods }

Figure 1: The smart contract Token

Let us consider a subset of the smart contract Token (see Fig. 1).
The contract implements a ledger of tokens which depositors can
transfer to each other. While simple, it resembles real Ethereum
contracts implementing the popular ERC-20 [3] interface. Balances
of the Token token are stored in the accounts object, a mapping
from Ethereum addresses to 256-bit unsigned integers. The contract
supports a xfer method, which depositors can use to pay other
recipients integral amounts of the token. The standard way for users
to interact with contracts today is to send an individual transaction
corresponding to a method call. Profiling on a private chain shows
making a xfer method call in this manner costs approximately
34000 gas.1 Of that, 21000 gas, or about two-thirds, is the fixed
per-transaction cost. Consider a user that wishes to transfer many
tokens to different recipients, such as the operator of an exchange
or mining pool. Reducing their gas costs by even a small proportion
may provide significant monetary savings. Our solution provides
more than a small cost reduction; for the example above it reduces
the marginal cost of a token transfer by 67.4% to 11008 gas, or the
total cost by 59.6% when making 10 transfers (the solution has an
overhead of 26436 gas, which can be amortised by making more
transfers).

In the example above one can see that a large part of the ex-
ecution cost comes from the fixed per-transaction cost. Our aim
in this paper is to find a practical and systematic way to reduce
smart contract gas consumption. We do so by proposing an architec-
ture to do transaction batching, and we provide a proof-of-concept
implementation for the blockchain Ethereum.

The key module of our approach isMultiCall, an Ethereum smart
contract which reduces the gas cost of on-chain execution by emu-
lating multiple transactions using a single one (a process known as
batching). Batching is not novel; existing batchers emulate multiple
calls from a single sender using Solidity, the most popular Ethereum
smart contract programming language.

133817 to be exact, but it could cost less if the address of the recipient contains zero
bytes; the addresses we used did not.
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MultiCall differs from prior batchers in that it is a proper multi-
instruction interpreter, and its instruction set can emulate function-
ality equivalent to an arbitrary block of transactions in a single
transaction.

Our interpreter is quite efficient: the volatile memory accesses,
arithmetic and branching required for interpretation are much
cheaper in the Ethereum cost model than accessing the ledger
state or verifying signatures. The overhead of interpretation when
batching transactions is therefore manageable.

More concretely, the main contributions of this paper are:
i) An architecture to improve gas consumption based on a mid-

dleware (MultiCall and its off-chain API code) that can emulate
arbitrary sequences of transactions. (Section 3)

ii) A proof-of-concept implementation of the MultiCall Ethereum
smart contract. (Section 4)

iii) An evaluation of our approach to show its feasibility and ad-
vantages. Our evaluation of MultiCall’s performance relative
to unbatched transactions shows a saving of between 57% and
99% of the fixed per-transaction cost compared to sending indi-
vidual transactions. We also compare MultiCall’s performance
to an existing batcher, with favourable results. (Section 5)

In section 2 we present some preliminaries on Ethereum and
Solidity. In section 3 and 4, we describe the design decisions under-
lying the MultiCall smart contract and its implementation details
respectively. In section 5, we evaluate the contract’s performance;
security issues and avenues for future work are discussed in section
6. Related work and our conclusion are presented in section 7 and
8.

2 BACKGROUND
The fundamental purpose of the Ethereum ecosystem is to enable
parties to transact: to enter into contracts, to interact with those
contracts (for example by making choices or executing clauses) and
make payments. The contracts entered into using distributed ledger
technology are computerised and self-enforcing; such contracts are
termed smart contracts.2

Like many computer systems, the Ethereum ecosystem can be
thought of as implemented in multiple layers of abstraction (see
Table 1). The highest is what might be called the abstract layer,
which consists of payments and contracts that the parties wish
to make. It is implementation-agnostic so it could for instance be
implemented as a centralised ledger or using scalable decentralised
solutions such as state channels [14].

The most popular means of implementing abstract contracts on
the Ethereum platform is using the smart contract programming
language Solidity [4]. Solidity is a statically typed object-oriented
language which lets the user write Ethereum smart contracts as
objects which expose methods and contain persistent state. Abstract
arrangements, such as an escrow agreement or a new issue of
tokens, then correspond to one or more Solidity contract objects
(or state within such objects). Users offer new arrangements to
counterparties by creating Solidity contracts, and interact with

2The term refers both to the entirety of self-enforcing arrangements, including off-
chain components, and to individual on-chain program objects on the blockchain. The
relation between smart contracts in the general and narrow sense is analogous to that
between programs consisting of multiple OS processes and each individual OS process,
which is also a program.

those contracts using method calls. Ether payments are treated as
a special .transfer method.

The Solidity layer is in turn translated into primitive Ethereum
transactions. Transactions are an indivisible unit of interaction
with the blockchain; each block contains a sequence of transac-
tions. There are two Ethereum transaction types, create and call.
Solidity constructor calls (which instantiate a new contract) are
translated into create transactions, and method calls are trans-
lated into call transactions. When appended to the blockchain,
transactions modify the distributed ledger by performing a call or
create action respectively from the signatory key’s account.

There are two types of account on the Ethereum ledger: ex-
ternally owned accounts (EOAs) and smart contracts. EOAs are
controlled by an Ethereum private key, and their address is the
corresponding 160-bit public key. Transactions submitted to the
blockchain effect calls or creates from an EOA. Calling an EOA
transfers the Ether value specified in the call from the caller to the
callee account. Smart contract accounts contain additional state: im-
mutable bytecode and a mutable persistent storage space. When a
smart contract is called, in addition to optionally effecting an Ether
payment, the contract’s bytecode is interpreted by the EthereumVir-
tual Machine (EVM). The EVM is a Turing-complete stack machine
with instructions specialised for the blockchain environment. In par-
ticular, the EVM supports instructions for querying the bytestring
calldata sent in the call, querying the address of the caller, and
performing calls and creates with equivalent effect to transactions.
Solidity method identifiers and arguments are encoded as calldata,
the msg.sender expression is compiled to the EVM CALLER instruc-
tion; method and constructor calls in the text of a contract compile
to EVM CALL and CREATE instructions.

Payments in the native cryptocurrency Ether are a special case
of call transactions with an empty calldata. Ether payments may be
translated directly from the abstract layer to transactions, or may
be viewed as the special .transfer Solidity method call. Payments
in user-issued tokens such as those managed by ERC-20 contracts
are translated to method calls to that contract.

Let us see how the above works through an example. When Alice
wishes to perform the abstract action of giving Bob some Token
tokens (see Fig.1), they specify an Ethereum public key BobAddr
controlled by Bob and instruct their Ethereum client software to
make a payment of Token to that address. The action is translated
in their client software to a Solidity method call to the token con-
tract’s address TokenAddr and then to an Ethereum call transaction,
signed by some private key controlled by Alice whose correspond-
ing public key is AliceAddr. Finally the transaction is broadcast to
the Ethereum network and ultimately mined and included in the
blockchain. That modifies the distributed Ethereum ledger state,
effecting a call action from the EOA at address AliceAddr to the
smart contract at address TokenAddr. This process is illustrated in
Fig. 2.

We are interested in reducing the gas cost of execution on the
Ethereum blockchain. To optimise execution on the Ethereum
ledger, one must first understand its capabilities and cost model. A
detailed description of Ethereum’s cost model and semantics can
be found in the latest version of Ethereum Yellow Paper [15]. We
will not present Ethereum’s cost model in detail but rather what is



Table 1: Ethereum’s layers of abstraction

Layer Identities Payments Contract initiation Contract execution
Abstract Users Payment Offer to counterparties Choice, complaint etc
Solidity Addresses .transfer method Constructor call Method call
Primitive Addresses Call txn/instruction Create txn/instruction Call txn/instruction

Figure 2: An illustrated payment of a user-issued token.

relevant to understand how MultiCall works, namely the following
key facts:

(1) Call transactions cost 21000 gas, not including the cost of
contract execution.

(2) Call instructions executed by a contract (which have a prac-
tically equivalent effect) cost 700 or 7400 gas depending on
whether they involve an Ether payment, not including the
cost of contract execution.

(3) Create transactions cost 53000 gas: the fixed transaction cost
and an additional creation cost of 32000 gas.

(4) Create instructions executed by a contract (which have a
practically equivalent effect) cost only 32000 gas.

(5) Compared to instructions which modify the persistent ledger
state (such as calls and storage writes), the arithmetic and
control flow EVM instructions needed for interpretation is
very cheap.

(6) The cost of uploading data (such as scripts) is also relatively
low.

3 MULTICALL DESIGN
Our solution provides value by batching transactions. To do so we
need to modify the Ethereum transaction submission workflow in
the wallets and on the Ethereum ledger. Instead of converting an
action into a transaction and sending it immediately, it is converted
to a MultiCall instruction and saved. Multiple instructions can
be concatenated and signed to create a metatransaction [10]. A
metatransaction is data which is not a valid Ethereum transaction
but is signed by an Ethereum private key, then verified and executed
in a smart contract. TheMultiCall metatransactions can then be sent
to a batching server, which sends their concatenation to MultiCall
in a single transaction. MultiCall acts “under the hood” so the
user need not be aware of it. As shown in Fig. 3, MultiCall and its
associated off-chain code works as middleware between the wallet
frontend and the backend, and adds some additional machinery to
aggregate instructions before delivering them to Ethereum nodes.

One of the key features of MultiCall is the ability to batch trans-
actions from multiple users in a single call, while providing each
user a unique identity. Consider the Token example again: each user
should be able to transfer tokens from their account, and only their



Figure 3: An illustration of the modified workflow using MultiCall

account. This is done by querying the caller in the xfer method,
msg.sender (see Fig. 1) and deducting from their account. Using
the caller address to authenticate and identify users is a common
smart contract pattern. Because smart contracts often deal with the
transfer and use of assets, method calls which require user authen-
tication are a key part of smart contract functionality. MultiCall
would therefore not be very useful if it did not provide each user
a unique identity; it does so through proxies. Proxies are a well-
known Ethereum development pattern: puppet contracts which
perform call and create actions when commanded to do so by their
controller. That may be achieved by checking the address of the
proxy’s caller, or by using metatransactions. In the case of MultiCall,
its proxies check that it is the caller. Each proxy belongs to a single
MultiCall user (represented as an Ethereum address); MultiCall will
only command a proxy to create a contract or call an address when
executing on behalf of the address that owns it (we explain how
that works in more detail later).

The MultiCall contract is written in a low-level EVM code-
generating DSL rather than Solidity. That made it easier to achieve
an efficient data layout for instruction arguments as we avoided
the inefficient abstractions and calling convention of Solidity.

Instruction set. MultiCall is a smart contract implementing a spe-
cialised interpreter which, when called, interprets its bytestring
argument as a sequence (or script) of MultiCall instructions and
executes each sequentially. Its instruction set is designed purely for
transaction batching, emulating the functionality of several transac-
tions in one. Unlike interpreters such as the JVM or EVM, MultiCall

is deliberately not Turing-complete in order to ease design and
future formal verification. It has eight principal instructions of
interest to the user (described below), not counting variants and
admin-only instructions. MultiCall executes on behalf of a single
Ethereum address at a time, charging any Ether costs incurred when
executing instructions to the user’s account.

(1) call_address(gas,address,eth_value,data) performs
an EVM CALL with the given arguments directly from Mul-
tiCall; it is useful for Ether payments to users and method
calls which do not require authentication.

(2) proxy_dot_call_address(gas,address,eth_value,data)
instructs the user’s proxy to perform the call instead.

(3) create(eth_value,data) creates a contract directly from
MultiCall.

(4) proxy_dot_create(eth_value,data) creates a contract from
the user’s proxy.

(5) deposit_address(address,eth_value) credits the given
address’ account in MultiCall’s persistent storage; it is a
cheaper way of paying a MultiCall user Ether than making
a call.

(6) createProxy(eth_value) creates a new proxy with the
given Ether endowment.

(7) signed(sig,len,deadline,eth_value,nonce,script)
checks the given signature against the other arguments, then
executes the given script on behalf of the signatory if the
signature is valid. The given eth_value is paid to the caller



to motivate them to include the script. If the time is greater
than the deadline then the script becomes invalid; the EVM
provides an instruction TIMESTAMP for querying the time.

(8) stop() terminates a signed script, or exits the interpreter if
MultiCall is not executing a signed script.

Intuitively, every Ethereum transaction conceived to create or
call a contract can be mapped into one of MultiCall’s instructions
create, proxy_dot_create (if creator authentication is required),
or call_address, proxy_dot_call_address, respectively. Further-
more, Ether payments may either be translated to call instructions
or a deposit_address instruction. Multiple instructions may be
concatenated into scripts before being signed and sent to a batch-
ing server. The batching server in turn collects multiple signed
scripts and then broadcasts a call transaction (signed by its own
key) which calls the MultiCall interpreter smart contract with the
signed scripts as calldata. When mined, this transaction effects a
call to MultiCall, which then performs the actions from the users,
such as making method calls and payments. Like Token, MultiCall
contains a mapping from Ethereum addresses to accounts in its
persistent state; Ether payments performed on behalf of a user are
deducted from the user’s account.

Revisited example. Suppose Alice wishes to make payments of
Amount1 to Amount10 respectively of the token tracked in the Token
contract to 10 different recipients, Bob1 to Bob10. Each payment is
translated into a MultiCall instruction

proxy_dot_call(G,TokenAddr,0,C(BobN,AmountN))

where G is some reasonable gas limit chosen by Alice or the wallet
and C(BobN,AmountN) is the calldata corresponding to the method
.xfer(BobN,AmountN). BobN and AmountN refer to one of the recip-
ient addresses and the amount of tokens to pay them respectively.
Note that a proxy call is appropriate because Token’s method .xfer
requires authentication to spend from the caller’s account. The wal-
let could at this point wait for more instructions to be added before
signing them, but let’s suppose it does not. It then selects an appro-
priate deadline and tip. A reasonable choice would be the current
time plus one hour, and the cost of the given instructions at the
current gas price. The wallet then signs the instructions and as-
sociated deadline D and tip T, and then constructs an instruction
signed(Sig,Script.length,D,T,Script). The expressions Sig
and Script are the signature and the concatenated instructions
respectively.

Another choice would be for Alice to send the instructions to
MultiCall herself, without going through a batching server. In that
case, profiling shows it costs 136516 gas, as opposed to 338170 to
send the payments individually.3 Considering the fixed cost of the
transaction to send the script, 59.6% of the fixed transaction cost was
eliminated relative to sending 10 transactions individually. Blocks
may contain over 100 transactions (and when using MultiCall you
could effectively make many more within the block gas limit), so
fixed overheads would be negligible in practice if using a batching
server.

Deployment. To use the MultiCall smart contract, an instance of it
must first be uploaded to the blockchain with a create transaction.

3The cost may vary slightly due to the number of zero bytes in addresses; a nonzero
byte in calldata costs 16 gas, while a zero byte costs only 4.

For each individual user to gain access to the full functionality of
MultiCall, they must allocate an account and create a proxy. That
is achieved by depositing Ether to MultiCall with a call transac-
tion or receiving a deposit from another user, and by running the
createProxy instruction respectively.

4 IMPLEMENTATION
The implementation of the interpreter consists of five main compo-
nents:4

• A volatile state;
• A table of registered users with their corresponding Ether
balances and metatransaction nonces;

• A jump table of MultiCall instructions;
• interpreter initialisation code which sets the volatile state on
entry, and

• an instruction set which defines the available instructions.

We briefly discuss each of these below.

Volatile state. When called, the MultiCall smart contract uses the
following volatile state:
i) The program counter pc is used to track the next MultiCall
instruction to be executed from the calldata; pc is stored on
the stack, the rest in memory.

ii) The variable balance caches the credit of the current user, de-
ducted for instructions which spend Ether such as calls, creates
and deposits.

iii) Because MultiCall may batch transactions from many users
in a single call, a mutable variable is required to track this:
signatory tracks the Ethereum public key of the user on
whose behalf MultiCall is currently executing.

iv) The variable nonce is used to protect from replay attacks when
executing signed scripts: it is 0 when MultiCall is not executing
a signed script.

v) The variable stashedBalance is used to remember the balance
of the caller when it is required to execute a signed script, and
MultiCall needs to temporarily change on whose behalf it is
executing.

Registered users table. Each user (identified by an Ethereum ad-
dress) has an entry in the table of registered users, which records
a 48-bit balance of Ether denominated in gwei (a billion times the
smallest unit of Ether, the wei) and a 16-bit nonce for protection
from metatransaction replay attacks. This is implemented by an
array of account structs in persistent storage.

Jump table. MultiCall’s jump table consists of an array of EVM
code entries, each of which is a JUMPDEST instruction marking a
valid jump destination followed by a jump to a constant address
(the address of the instruction code). The interpreter’s one-byte
opcodes are used as byte offsets into the table; the dispatch code
simply jumps into the table using the opcode as a byte offset. The
jump table is therefore only 256 bytes long, and because each entry
is 5 bytes (one byte for JUMPDEST, 4 for a constant jump) it can
fit at most 52 instructions. Thankfully that is sufficient for Multi-
Call’s functionality, but future interpreters may require a different

4The source code can be made available via the PC chairs.



dispatch scheme. MultiCall’s dispatching mechanism is efficient
enough for our purposes, costing only 41 gas as compared to 3
gas for an add or push EVM instruction. Its cost is negligible com-
pared to the cost of executing transaction-emulating instructions,
as shown in Section 5.

Initialization code. When MultiCall is invoked, MultiCall sets the
in-memory variables signatory (the address on whose behalf Mul-
tiCall is executing) to the caller, balance to the number of gwei
deposited by the caller, and the stack variable pc (the program
counter) to 0. It then dispatches, entering the first instruction.

Instruction set. For efficiency there is no separate interpreter loop;
each instruction dispatches to the next. Each MultiCall instruc-
tion consists of a contiguous block of EVM bytecode. MultiCall
instructions modify the state of the interpreter and perform some
side effects (such as internal state changes or EVM calls), until an
instruction throws an exception or a stop instruction exits the
interpreter.

Making payments. Paying instructions such as calls, creates and
deposits perform a side effect which may cost Ether: performing an
EVM call, creating a contract, and crediting another user’s account
respectively. Such instructions deduct the payment from the volatile
balance variable, rather than directly from the account of the
signatory on whose behalf MultiCall is executing. That saves gas
since persistent storage writes are significantly more expensive
than memory writes.

Stopping execution. The volatile balance is settled against the
signatory’s account in the stop instruction, which ends a signed
script, or exits the interpreter if MultiCall is not in a signed script.
Whether MultiCall is executing a signed script is detected by check-
ing whether the variable nonce is 0. It may seem unsafe to check
whether the user can afford to make payments after the payments
have been made. However, the EVM reverts the side effects of a
call if it throws an exception. By throwing an exception when the
user’s account balance is insufficient, incorrect behaviour is pre-
vented. The stop instruction is the only means of ending a call
to MultiCall; if the script passed in the calldata does not contain
a stop, then the interpreter will loop until it runs out of gas and
throws an exception, reverting any desirable side effects.

Proxies. Each user controls a proxy contract, whose address can
be computed from the user’s address. Proxies are allocated with the
createProxy instruction, which creates a proxy using the EVM in-
struction CREATE2. The instruction behaves like CREATE, except that
the address of the created contract is deterministically computed
from the creator address (in this case, the address of MultiCall),
the initialization code and a salt. The salt used is the address of
the signatory. That eliminates the need to store the proxy’s ad-
dress in the user’s account, as the address can be recomputed when
needed by the proxy_dot_create and proxy_dot_callMultiCall
instructions.

All proxies created by the same instance of MultiCall have the
same bytecode, which checks whether the caller is its creator (Mul-
tiCall) and the calldata is ended by the magic 32-bit number indi-
cating a proxy call or create command. If that is the case, the proxy
performs the commanded call or create.

The trivial way for a proxy to store its creator’s address would
be to place it in persistent storage and read it on each call, but
that would be inefficient as storage reads are expensive. Instead,
during contract creation the creator’s address (which can then be
compared to the CALLER) is written into a push instruction in the
in-memory bytestring which is returned as the final code of the
proxy. The end result is that fetching MultiCall’s address in order
to compare the caller’s to it costs 3 gas, as opposed to 803.

Metatransactions. MultiCall metatransactions consist of a signed
instruction, containing a number of MultiCall instructions termi-
nated by a stop instruction. In section 3 we state that the signed
instruction checks its signature immediate argument against the
hash of its other arguments and begins executing "on behalf of" the
signatory if the signature is valid. Signature verification is achieved
by calling the primitive contract ECRECOVER, which recovers the
public key of the signatory given a hash and an Ethereum signature
of the hash. What executing "on behalf of" a public key means is
that the signatory variable is set to that public key. The value
of signatory is restored to the caller upon the next stop instruc-
tion. The balance of the caller is also saved to the stashedBalance
variable, and the signatory executes with a new balance. The tip is
deducted from the new balance and credited to the stashed balance.
When signed execution stops (at the next stop instruction) then the
signatory’s balance is settled, the stashed balance is restored, and
MultiCall reverts to executing on behalf of the caller. Since there is
only one stashedBalance variable rather than a stack of balances
and addresses, then nested metatransactions are disallowed.

Note that if the metatransaction is terminated with a stop pre-
maturely, it is the caller that pays for subsequent instructions. If
it is not terminated with a stop at all, any caller is free to append
their own instructions when running the signed script, enabling the
theft of any Ether in the account and any ERC-20 tokens controlled
by the account’s proxy contract.

An attractive feature of metatransaction scripts is that multiple
user actions can be authorized with a single signature verification.

5 PERFORMANCE EVALUATION
We will showcase the cost savings provided by MultiCall with
micro-benchmarks as well as by revisiting the example Token from
Section 1, where MultiCall saves 59.6% of the gas required for token-
transfer costs. We also compare the performance of MultiCall with
a preexisting batcher, MultiSend.

5.1 Micro-benchmarks
To evaluate the gas cost savings provided by MultiCall, we ran a
number of MultiCall instructions in sequence and measured their
marginal cost. We uploaded MultiCall to a private test chain run
using ganache-cli v6.10.2 [2] and tested it using truffle v5.1.43 [1],
a development framework for Ethereum which can provide an
interactive JavaScript console to the private chain. The savings
provided by using transaction-emulating instructions relative to
transactions as a proportion of the fixed transaction are shown in
Table 2. To clarify: if an instructionwhich emulates a call transaction
has a cost of X , its savings are reported as (21000 − X )/21000,
rounded to the nearest tenth of a percentage point. To calculate
the savings of instructions which emulate create transactions, we



Table 2: MultiCall gas costs and savings vs unbatched trans-
actions

MultiCall action Gas cost Savings
Ether-paying call 8062 61.6%
Non-paying call 1360 93.5%
Ether-paying proxy call 9064 56.8%
Non-paying proxy call 2352 88.8%
Create 32233 98.9%
Proxy create 33289 93.9%
Deposit 6392 69.6%

first deduct the 32000 gas cost which is paid either way and then
perform the above calculation.

The calldata used for calls and creates were empty; the contracts
called were dummies which return immediately upon being called,
in order to eliminate any gas cost confounding from contract exe-
cution. There is a negligible overhead of approximately 3 gas per
word for copying calldata into memory when batching, rather than
sending transactions directly. The fact that MultiCall create instruc-
tions cost more than the fixed transaction cost of 21000 gas and
yet still provide savings may be surprising; note that the 32000
contract creation cost is paid by create transactions as well. Create
transactions have a minimum gas cost of 53000, which includes
both the 32000 gas cost of creation and the 21000 fixed transaction
cost. The proportional cost saving of batching is computed as a
fraction of the 21000 gas fixed transaction cost saved, not the 53000
gas cost which includes the create. We conclude that batching via
MultiCall provides significant cost savings.

5.2 Metatransactions
MultiCall metatransactions use the signed instruction, which takes
a script of MultiCall instructions and a signature of it (and some
additional arguments) and executes the script on the signatory’s
behalf. The signed instruction can be used to allow multiple signa-
tories to share a single call transaction for their batching. However,
signed has some overhead - incrementing the signatory’s nonce
requires a storage write, and signature verification is an expensive
operation. If the instruction cost more than 21000 gas, it would of
course not be of any use - then users might as well send transactions
separately.

To evaluate the signed instruction, it was profiled by sending
varying numbers of metatransactions with empty scripts (contain-
ing only a stop instruction). Profiling is somewhatmore complicated
than for other instructions. Different signatories must be used for
each signed in the call to avoid amortisation of the write to the
signatory’s account; repeated storage writes to the same index cost
less in the gas cost model. Also, each time a new signed script is
run for the same account, it must have a different nonce. For that
reason, signed was profiled separately from the other instructions.

In short, the gas cost of each signed varies slightly due to vari-
ation in the number of zero bytes in the signature (which cost 12
gas less to upload in transaction calldata than nonzero bytes), but
never exceeds 12000 gas. The end user may assume they save at
least 9000 gas using a metatransaction to share a call compared to

xfer = (to) => api.iset.proxy_dot_call(20480,T.address,0,
"0x" + util.abi_method("xfer(address,uint256)")

+ util.abi_address(to) + api.abi_uint(1));
web3.eth.sendTransaction({
from: sender,
to: MultiCall,

data: "0x" + xfer(recipient1) + ... + xfer(recipientN) +
api.iset.stop(),

gas: 1000000
})

Figure 4: Batching contract calls using MultiCall
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Figure 5: The gas cost of 1-10 .xfer method calls to the con-
tract Token shown in Section 1, compared to the cost of un-
batched EVMmethod calls.

calling MultiCall themselves. A noteworthy implication is that it’s
cheaper to send a MultiCall metatransaction which contains only a
single Ether transfer than use an unbatched transaction.

5.3 Token transfers
Consider once more the example of Alice making one token pay-
ment each to N recipients, using the method .xfer(address,uint)
of the Solidity contract Token—recall Section 1. The gas cost of do-
ing so in one transaction via MultiCall compared to sending N
transactions individually is shown in Figure 5, for N ranging from 1
to 10. We can see in the figure that the savings are significant, i.e.
up to 59.6% for 10 payments, and the proportional savings improve
as the fixed overhead of MultiCall is amortised.

On the one hand, we launch N transfers with truffle by sim-
ply making N standalone JavaScript method calls T.xfer(to,amt).
Such calls are then translated into call transactions to the address
T.address, with calldata containing the 32-bit method identifier for
xfer followed by the 160-bit address argument to (left-padded to
32 bytes) and 256-bit token amount amt. When making N unbatched
Solidity method calls, each transaction executes independently and



costs the same amount of gas: 33817. The total cost is therefore
N*33817.

In contrast, when making N payments using MultiCall, only a
single call transaction to MultiCall is sent; the calldata consists of
the concatenation of N proxy_dot_call instructions. Each proxy
call instruction calls the user’s proxy, which in turn calls the Token
contract instance T.address, with the same calldata as used in a
standalone .xfer transaction. The JavaScript code for making the
call to MultiCall from truffle is shown in Fig. 4. The cost of making
a single payment via MultiCall is 37444. After that the marginal
cost of making an additional payment is always the same: 11008
gas! That’s a 67.4% saving compared to sending token payment
transactions individually. The shared fixed cost for the sequence of
payments is 26436 gas, corresponding approximately to the fixed
transaction cost and the cost of a storage write. Since batched Token
payments are implemented using a proxy call which does not make
an Ether payment, one would expect from the micro-benchmarking
that approximately 2352 of the 11008 gas cost is the overhead of
MultiCall, and the remaining 8656 is the .xfer method’s execu-
tion cost—that is surprisingly low, since the method performs two
storage increments, which typically cost 5800 gas each. However,
repeated writes to the same storage index are cheaper in the cost
model. We believe that since the proxy’s balance is deducted re-
peatedly, the marginal cost of updating it is reduced. The ability
to amortise the cost of storage writes made during contract exe-
cution makes batching transactions even more attractive than the
micro-benchmarks would indicate.

5.4 Setup cost
Using MultiCall requires some initial on-chain setup work, which
costs gas. There are four tasks which must be completed before an
individual user can access the full features of the interpreter:

(1) An instance of MultiCall must be present on the Ethereum
ledger.

(2) A user account must be allocated.
(3) A user proxy contract must be allocated.
(4) A call to MultiCall must be executed.
Uploading MultiCall is expensive, costing 1,751,894 gas.5 How-

ever, the creation cost can be amortised over all users. Allocating
an account can be done by depositing Ether as part of a call to
MultiCall; the marginal cost of allocating the account is 22158. That
is an upper bound on the cost; it can also be allocated by another
party making a deposit to it, which costs only 21393 gas. Creating
a proxy with the createProxy instruction costs 61358 gas. In total
a user must pay 82749 gas to set up their account. Then follows the
fixed overhead per invocation of MultiCall, which is up to 28158 gas
assuming the caller spends ether fromMultiCall, or 22215 if they do
not. Benchmarking shows that at least 10000 gas can be saved per
marginal batched transaction. Assuming pessimistically that users
don’t use signed scripts to amortise MultiCall’s fixed call overhead,
then if each user batches 5 transactions at a time, they will recoup
the setup cost for their account after 25 batched transactions. If they
batch a large number of transactions, they may recoup the cost after
only 12 batched transactions. If each user makes 30 transactions

5Future updates to MultiCall may affect the code size and therefore gas cost somewhat,
but the order of magnitude is likely to remain the same.

in batches of 5, approximately 85 users and 2550 transactions in
total would be required to recoup the cost of deploying MultiCall
in terms of gas. Since Ethereum has many more than 85 users and
hundreds of thousands of transactions are sent per day, that is not
an insurmountable obstacle.

That shows that deploying at least one batcher on the blockchain
is worthwhile considering the setup cost, but not that MultiCall
itself is profitable to deploy - one must then compare the deploy-
ment cost to the cost of using existing batchers instead (in both gas
and usage fees). That is more complex to estimate considering their
different features, and is beyond the scope of this paper. In practice
it would also be advisable to iterate further on the contract, adding
features and optimisations to deploy once and for all; continuous
deployment is costly on Ethereum. However, that does not diminish
MultiCall’s value as a research prototype.

5.5 MultiCall vs. MultiSend
In this section we will show that MultiCall is more performant than
MultiSend 6, a popular batcher implemented in Solidity assembly
with the purpose of reducing gas costs.

Before going into the details of our comparison, we summarise
the main result. For the only comparable feature (call batching),
MultiSend costs 200 more gas per batched call. Since the upload
cost of each MultiCall call instruction is about 200 gas lower than
its MultiSend equivalent, we speculate that the difference lies in
MultiCall’s highly optimised instruction argument packing and
parsing, generated by a DSL combinator. Access to combinators
which can be reused to generate efficient bytecode is an advantage
of the DSL over Solidity assembly.

As explained earlier, transaction batching is an established tech-
nique. To evaluate MultiCall’s performance, it is of interest not only
to compare its overhead relative to the fixed transaction cost, but
to compare it to an existing batcher. We have chosen to compare
to the popular batcher MultiSend, because it is written in Solidity
inline assembly to maximise performance. One might expect that
would allow improved performance, especially since it allows one
to avoid Solidity’s space-inefficient ABI calling convention.

Profiling details. The cost of paying and non-paying MultiSend
calls was evaluated the same way as MultiCall calls were, using calls
with the same calldata (the empty bytestring) to the same contract
(a dummy which stops immediately). Batches of 1 to 20 calls of
each type were made, and the marginal cost of a call inferred by
calculating the gas cost delta. Marginal gas costs varied in a range of
1464 to 1610 for non-paying calls, and 8176 to 8311 for paying calls,
without a clear downward trend. On average, non-paying calls cost
1557 gas and paying calls 8268. Both are approximately 200 gas
more expensive than their MultiCall equivalent, approximately 1%
of the fixed transaction cost. Since the fixed transaction cost in real
terms can rise to several U.S. dollars and the rate of transactions per
second hovers around 10 to 15 [8], that can add up to a significant
difference over time - 13.8 million dollars a year at the current
transaction rate of 13.6 per second and gas price of 3.21 dollars
per 21000 as of January 30, 2021 (assuming all current Ethereum
transactions were instead batched).
6https://github.com/gnosis/safe-contracts/blob/8443cfaa410bfb197cc708b1c5e06ffa0c49c217/
contracts/libraries/MultiSend.sol
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Table 3: MultiCall gas cost vs MultiSend

Action MultiCall cost MultiSend cost (average)
Ether-paying call 8062 8268
Non-paying call 1360 1557

As MultiSend is a popular batcher written in assembly with the
purpose of reducing gas costs compared to plain Solidity, that is an
encouraging result.

Comparison discussion. It bears noting that comparing the cost
of calls does not factor in the additional features required to use
MultiSend that are built into MultiCall. Because MultiSend doesn’t
support metatransactions or have multiple account records for
different users, each user is expected to separately delegate to it
from a different contract. Payments between users ofMultiSend also
require at least one call, while multiple users could make deposits
to other users without performing a call in MultiCall. Baking many
features into the same contract reduces the overhead of context
switching; interpreters like MultiCall are a promising avenue for
doing so.

Each individual call instruction to MultiCall or MultiSend re-
quires some data to be uploaded; comparing the upload costs of
the different instructions, it appears that MultiCall’s instructions
are about 200 gas cheaper to upload. MultiCall’s advantage likely
originates in more efficient instruction packing and parsing. The
DSL approach made it easy to write a code-generating combinator
that parses a given list of argument types once, and then use it
in many different instructions; Solidity assembly does not provide
such code combinators. Since development effort is finite, more
ergonomic development can lead to better performance.

In summary, the results of evaluation are promising and suggest
greater adoption of batching would be advisable. MultiCall’s inter-
preter design does not appear to impose unacceptable overheads,
and could be reused in future smart contracts.

6 DISCUSSION
This work has focused primarily on the basic concept of a batching
interpreter, and on a prototype on-chain implementation. While
the gas usage of the prototype has been profiled with good results,
a number of challenges stand between MultiCall and real-world
adoption.

First of all, the question arises why batching has not yet achieved
mass adoption, despite preexisting batchers which could also pro-
vide significant gas savings. We speculate that for individual users
who don’t frequently send many transactions at once, the effort of
learning the user interface of an existing batching tool is not worth
the money saved. MultiCall’s ability to share calls between multiple
users via metatransactions may ease adoption of batching, as it
makes even single calls from one signatory cheaper to batch than
send directly. However, changes to wallet user interface software
would be required to make batcher use effortless for the end user.
The problem of aligning incentives of wallet client providers and
batcher developers is beyond the scope of this paper.

Security and incentive alignment of participants is a critical
issue. Indeed, we are aware of two so-called transaction ordering-
dependency vulnerabilities in MultiCall. Transaction ordering at-
tacks occur when a malicious party observes transactions in flight
(when they’re broadcast but not yet added to the blockchain) and
preempts them, or causes transactions to be mined in a harmful
order [13]. The first attack on MultiCall works as follows: when a
batching server Bob combines multiple metatransactions into a sin-
gle call transaction to MultiCall, then the attacker runs one of them
in a different transaction first. Since metatransactions are replay-
protected, that will make one in the original transaction invalid. For
efficiency, the validity check is only done after the metatransaction
execution (alongside the settling of the user’s balance based on
their ether expenditure, calculated during execution), necessitating
a revert if it’s found to be invalid. Consequently, the attacker can
waste all the gas used by Bob, costing them money. Since MultiCall
is meant to fit an entire block’s worth of transactions into a single
one, the amount lost could be significant. The second attack is sim-
ilar: a metatransaction can also be invalidated by its signatory by
simply spending ether from the user’s MultiCall account in another
transaction, causing it to be insufficient when the metatransaction
is run. A trivial mitigation for both attacks would be to announce
the ether to be spent in the signed instruction, do the validity check
in the beginning, and skip the metatransaction rather than throw
an exception if it is invalid. However, the cost of the balance read
and metatransaction upload is significant and would still be wasted.
The problem would seem to arise from insufficient control of who
may modify user accounts in MultiCall, enabling attempts to spend
from them to be invalidated by attackers. The issue could be solved
entirely by allowing users to specify a specific batching server
which has the exclusive right to access their account promptly, thus
allowing the server to batch the user’s metatransaction without
fear of tampering.

One potential objection to the approach of using an off-chain
batching server would be that it imposes centralisation on a system
designed to be decentralised, which might compromise censorship
resistance. However, we argue allowing multiple competing batch-
ing servers would render them analogous to mining pools. While it
is true that a system without more-central nodes such as mining
pools or exchanges would be more decentralised, in practice the
current arrangement is "decentralised enough" because all or most
of them would have to collude to successfully impose transaction
censorship.

Verification of the security of MultiCall with the help of exist-
ing tools such as [12] is a subject for future work. The off-chain
component of batching merits deeper investigation, in particular
from the perspective of preventing front-running and denial of ser-
vice. Whether and to what degree batching increases the latency of
batched transactions (especially urgent metatransactions batched
into a large high gas price transaction) would be an interesting
subject of an empirical study.

7 RELATEDWORK
MultiCall is a technology intended to reduce the execution cost of
on-chain contract calls and creation. Off-chain scaling solutions
such as state channels [14] which save gas by avoiding on-chain



execution entirely are of independent interest, but we choose to
focus on on-chain optimisation solutions.

These can broadly be divided into two groups: micro-level and
macro-level optimisation. Micro-level optimisations optimise indi-
vidual contracts to reduce their creation and execution cost without
changing their externally observable behaviour. Macro-level op-
timisations save gas by restructuring smart contracts, changing
their API and potentially the transaction workflow. Essentially,
they optimise systems of contracts. MultiCall and other batchers
are of the latter sort. The approaches are complementary: micro-
level optimisations can be applied to contracts after their structure
and API have been designed. However, there is reason to think
macro-optimisation can provide larger savings: making a particular
contract use less gas with the same behaviour will not enable it to
use fewer transactions, for example. Other expensive operations
such as storage writes may also be easier to eliminate by varying the
design of multi-contract systems than optimising single contracts.

7.1 Micro-optimisation
Chen et al. [6] developed GASPER, a tool which searches for inef-
ficient patterns in EVM bytecode. Applied to all contracts on the
blockchain as of 2016, it showed a significant proportion of con-
tracts were under-optimised. One example inefficient pattern was
fetching a storage word in a loop; that’s optimised by fetching it
once and caching it.

In a spiritual sequel to [6], Chen et al. introduce GasReducer [7],
a tool which finds more inefficient patterns and performs bytecode-
to-bytecode optimisation. GasReducer is evaluated by tracing the
EVM code execution of all transactions as of 2017. The evaluation
showed 9 billion gaswaswasted to inefficient code patterns detected
by GasReducer, vindicating the approach.

That Chen et al scan existing contracts and show there are sig-
nificant savings (in monetary terms) to be made is interesting; not
only does it show the value of gas optimisation, it’s an inspiring
approach to evaluating on-chain artefacts. Since the cost model is
formalised and the actual transaction history is publicly available,
obtaining real and accurate performance data is much easier than
on physical machines. Augmenting evaluation of MultiCall with
real transaction history could be a subject for future work.

Albert et al. created a super-optimising tool for the EVM, which
finds the optimal code for straight-line segments containing arith-
metic and bitwise instructions by exhaustive search [5]. Using a
data set of transactions to the 128 most-called smart contracts, they
obtain a potential gas optimisation of 0.59%. We suspect that the
dominance of the cost of instructions which access the ledger state
compared to arithmetic is responsible for the small saving relative
to that provided by batchers. Nonetheless, any gas cost reduction
is welcome.

MultiCall consists of manually optimised EVM assembly and
already uses techniques such as caching storage words, but it would
be interesting to apply automatic optimisation to it. Optimising
MultiCall was already a significant effort; manually optimisingmore
complex interpreters with additional functionality may quickly
become infeasible as they grow.

7.2 Macro-optimisation
The patterns used in MultiCall’s design (batching, proxies and
metatransactions) are well-established, but the manner in which
they’ve been combined is novel.

MultiCall is to our knowledge unique in being expressly designed
to batch a full block of transactions in one, and the first applica-
tion of an interpreter smart contract to batching. Aside from its
interpreter design and programming language used, the features
provided by MultiCall differ in two main ways. First, it combines
account structs in the batcher with metatransactions to allow multi-
ple signatories to control a single batcher smart contract (MultiCall)
in a single call. Secondly, MultiCall and the proxies it controls allow
the batching of create transactions as well as calls (both directly
from MultiCall and via a proxy).

Transaction batching, metatransactions and proxies. Transaction
batching is a method of reducing on-chain transaction execution
costs by emulating a number of transactions with a smaller num-
ber that have an equivalent effect. The concept is well-known to
Ethereum developers. Different batching techniques used for air-
drops (mass transfers of a token intended to boost adoption of it)
were studied and compared in [9]. Several payment batching con-
tracts on the blockchain7 8 allow the caller to make payments in a
single currency to a number of recipients. The company Autherium
also provides wallet proxy contracts written in Solidity which can
batch calls on behalf of their owner9. Such contracts can receive
an array of metatransactions (specifying a call to make) signed by
the contract’s owner, verify the signature of each and then execute
them. MultiCall allows signature verification to be shared across a
sequence of actions, which is more efficient. Storing batching logic
in individual users’ wallet contracts is also expensive, because code
storage costs gas.

The batcher MultiSend10 (mentioned in section 5) solves the
code size issue by allowing user wallet contracts to delegate to a
shared library using the EVM instruction DELEGATECALL, which
executes the code of the callee in the storage context of the caller.

Existing batchers could be retrofitted with most of MultiCall’s
functionality by combining them: one batcher such as MultiSend
can be used to send metatransactions to wallet contracts such as
Authereum’s which accept them. Wallets which can only perform
calls can be retrofitted with the ability to create contracts by calling
a simple contract which just creates a contract using the given
calldata as its creation code. We do not consider this a threat to
MultiCall’s validity: as calls are costly, a monolithic approach is
efficient. MultiCall is a prototype of that approach.

Transaction batching is also used in Bitcoin: transactions natively
support sending to multiple outputs, which can be used to reduce
transaction costs by up to 80% [11].

7https://multisender.app/
8https://etherscan.io/address/0x2f6321db2461f68676f42f396330a4dc4a8f49df#code
9https://github.com/authereum/contracts/blob/master/contracts/account/
AuthKeyMetaTxAccount.sol
10https://github.com/gnosis/safe-contracts/blob/8443cfaa410bfb197cc708b1c5e06ffa0c49c217/
contracts/libraries/MultiSend.sol
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7.3 On-chain interpreters
Other smart contracts which implement interpreters have been
developed for Ethereum in order to scale contract execution. The
Optimistic Virtual Machine (OVM) is an interesting example, used
by the Optimistic Rollup scaling solution11. Optimistic Rollup al-
lows users to run another less-replicated and therefore cheaper
blockchain linked to Ethereum. The rollup chain is secured by en-
abling users to verify its execution and prove fraud via a verifier
contract on the Ethereum chain. To enable Ethereum smart contract
execution on the rollup chain, the verifier contract implements an
EVM code interpreter called OVM (Optimistic Virtual Machine). Its
purpose is quite different: where MultiCall instructions are run to
perform actions on the blockchain, OVM is used to verify off-chain
computations in the event of dispute. To be useful, MultiCall must
be run, whereas the OVM need only be available to be run in the
optimistic case. Moving computation off-chain can yield significant
savings, but because off-chain scaling still requires transactions
on the main chain to be secure, on-chain gas optimisation is not
obsolete. An interpreter for a simple virtual machine called Lanai is
also used to verify off-chain computations12 as part of the TrueBit
scaling solution.

8 CONCLUSION
We have implemented MultiCall, an interpreter for the Ethereum
blockchain whose instruction set is designed for batching transac-
tions.We demonstrated significant savings for bothmicro-benchmarks
as well as a typical token-transfer smart contract, and MultiCall’s
performance is compared favourably to a preexisting batcher that
was also written at a low level of abstraction in order to maximise
performance.

Our idea of deploying batching interpreter smart contracts with
rich instruction sets has been shown to be an effective and sys-
tematic mechanism to substantially save gas. To the best of our
knowledge this paper is the first work to demonstrate that.

MultiCall’s metatransaction and deposit features allow multiple
users to operate the batcher in a single call, and to interact with
other users. It is an example of how allowing safe resource shar-
ing between mutually distrustful parties (the signatories) can help
reduce costs.

As future work, we plan to expand the MultiCall instruction set
to permit more safe sharing of resources.
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