
Run-time Monitoring of Electronic Contracts

Marcel Kyas⋆, Cristian Prisacariu⋆⋆, and Gerardo Schneider⋆⋆

Department of Informatics, University of Oslo,
P.O. Box 1080 Blindern, N-0316 Oslo, Norway.

{kyas,cristi,gerardo}@ifi.uio.no

Abstract. Electronic inter-organizational relationships are governed by
contracts regulating their interaction. It is necessary to run-time mon-
itor the contracts, as to guarantee their fulfillment. The present work
shows how to obtain a run-time monitor for contracts written in CL,
a formal specification language which allows to write conditional obli-
gations, permissions and prohibitions over actions. The trace semantics
of CL formalizes the notion of a trace fulfills a contract. We show how
to obtain, for a given contract, an alternating Büchi automaton which
accepts exactly the traces that fulfill the contract. This automaton is
the basis for obtaining a finite state machine which acts as a run-time
monitor for CL contracts.

1 Introduction

Internet inter-business collaborations, virtual organizations, and web services,
usually communicate through service exchanges which respect an implicit or
explicit contract. Such a contract must unambiguously determine correct inter-
actions, and what are the exceptions allowed, or penalties imposed in case of
incorrect behavior.

Legal contracts, as found in the usual judicial or commercial arena, may serve
as basis for defining such machine-oriented electronic contracts (or e-contracts
for short). Ideally, e-contracts should be shown to be contradiction-free both
internally, and with respect to the governing policies under which the contract is
enacted. Moreover, there must be a run-time system ensuring that the contract
is respected. In other words, contracts should be amenable to formal analysis
allowing both static and dynamic verification, and therefore written in a formal
language. In this paper we are interested in the run-time monitoring of electronic
contracts, and not in the static verification of their consistency or conformance
with policies.

CL, introduced in [12], is an action-based formal language tailored for writ-
ing e-contracts, with the following properties: (1) Avoids most of the common

⋆ Author supported by the EU-project IST-33826 “CREDO: Modelling and analysis
of evolutionary structures for distributed services” (http://credo.cwi.nl).

⋆⋆ Authors supported by the Nordunet3 project “COSoDIS – Contract-Oriented Soft-
ware Development for Internet Services” (http://www.ifi.uio.no/cosodis/).



2 Kyas, Prisacariu, and Schneider

C := CO | CP | CF | C ∧ C | [β]C | ⊤ | ⊥
CO := OC(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := FC(α) | CF ∨ [α]CF

α := 0 | 1 | a | α&α | α · α | α + α

β := 0 | 1 | a | β&β | β · β | β + β | β∗ | C?

Table 1. Syntax of the CL language to use for specifying contracts.

philosophical paradoxes of deontic logic [18]; (2) Has a formal semantics given
in terms of Kripke structures [13]; (3) It can express (conditional) obligations,
permission and prohibition over concurrent actions; as well as (4) contrary-to-
duty obligations (CTD) and contrary-to-prohibitions (CTP). CTDs/CTPs spec-
ify the obligation/prohibition to be fulfilled and which is the reparation/penalty
to be applied in case of violation. The use of e-contracts, and in particular
of CL, goes beyond the application domain of service-exchanges, comprising
component-based development systems, fault-tolerant and embedded systems.

The main contribution of this paper is an automatic procedure for obtaining
a run-time monitor for contracts, directly extracted from the CL specification.
The road-map of the paper starts by recalling main results on CL in first part of
Section 2 and we give a trace semantics for the expressions of CL in the second
part. This expresses the fact that a trace respects (does not violate) a contract
clause (expression of CL). In Section 3 we show how to construct for a contract an
alternating Büchi automaton which recognizes exactly all the traces respecting
the contract. The automaton is used in Section 4 for constructing the monitor
as a Moore machine (for monitoring the contract). Though we concentrate on
theoretical aspects, we use throughout the paper the following small didactic
example to exemplify some of the main concepts we define.

Example 1. “If the Client exceeds the bandwidth limit then (s)he must pay
[price] immediately, or (s)he must delay the payment and notify the Provider
by sending an e-mail. If in breach of the above (s)he must pay double.”

2 CL – A Formal Language for Contracts

CL is an action-based language for writing contracts [12]. In this paper we are
interested in monitoring the actions of a contract. Therefore, we give here a
slightly different version of CL where we have dropped the assertions from the
old CL, keeping only the modalities over actions. Other differences are in the
expressivity: we have incorporated the Kleene star operator over the actions in
the dynamic box modality, and we have attached to the obligations the corre-
sponding reparations (modelling the CTDs directly).

Syntax: CL formulas are defined by the grammar in Table 1. In what follows
we provide intuitions for the CL syntax and define our notation and terminology.

We call an expression C a (general) contract clause. CO, CP , and CF are called
respectively obligation, permission, and prohibition clauses. We call OC(α), P (α),
and FC(α) the deontic modalities, and they represent the obligation, permission,



Run-time Monitoring of Electronic Contracts 3

or prohibition of performing a given action α. Intuitively OC(α) states the obli-
gation to execute α, and the reparation C in case the obligation is violated, i.e.
whenever α is not performed.1 The reparation may be any contract clause. Obli-
gations without reparations are written as O⊥(α) where ⊥ (and conversely ⊤) is
the Boolean false (respectively true). We usually write O(α) instead of O⊥(α).
The prohibition modality FC(α) states the actual forbearing of the action F (α)
together with the reparation C in case the prohibition is violated. Note that it
is possible to express nested CTDs and CTPs.

Throughout the paper we denote by a, b, c ∈ AB the basic actions, by indexed
α ∈ A compound actions, and by indexed β the actions found in propositional
dynamic logic [4] with intersection [5]. Actions α are used inside the deontic
modalities, whereas the (more general) actions β are used inside the dynamic
modality. An action is an expression containing one or more of the following
binary constructors: choice “+”, sequence “ ·”, concurrency “&” and are con-
structed from the basic actions a ∈ AB and 0 and 1 (called the violating action
and respectively skip action). Indepth reading and results related to the α ac-
tions can be found in [13]. Actions β have the extra operators Kleene star ∗ and
test ?.2 To avoid using parentheses we give a precedence over the constructors:
& > · > +. Concurrent actions, denoted by α&, are actions of A&

B ⊂ A gener-
ated from basic actions using only the & constructor (e.g. a, a&a, a&b ∈ A&

B and
a + b, a&b+ c, a · b 6∈ A&

B). Note that A&
B is finite because AB is defined as finite

and & is defined idempotent over basic actions. Therefore, we consider concur-
rent actions of A&

B as sets over basic actions of AB. We have now a natural way
to compare concurrent actions using ⊆ set inclusion. We say that an action, e.g.
a & b & c is more demanding than another action, e.g. a & b iff {a, b} ⊆ {a, b, c}.
The negation α of action α is a function : A → A.

We use the propositional operators ∧, ∨, and ⊕ (exclusive or). The dynamic
logic modality [·]C is parameterized by actions β. The expression [β]C states
that after the action β is performed C must hold. The [·] modality allows having
a test inside, and [C1?]C2 must be understood as C1 ⇒ C2. In CL we can write
conditional obligations (permissions and prohibitions) of two kinds: [β]O(α)
read as “after performing β, one is obliged to do α”, and using the test operator
[C?]O(α) to simulate implication. Similarly for permission and prohibition.

Example 1 in CL syntax : The transition from the conventional contract of
introduction to the CL expression below is manual.

[e]OO⊥(p·p)(p + d&n)

where the basic actions are AB = {e, p,n, d} (standing for “extend bandwidth
limit”, “pay”, “notify by email”, and “delay”). In short the expression is read as:
After executing the action e there is the obligation of choosing between either p or
at the same time d and n. The CL expression also states the reparation O⊥(p ·p)

1 The modality OC(α) (resp. FC(α)) represents what is called CTD (resp. CTP) in the
deontic logic community.

2 The investigation of the PDL actions β can be found in the literature related to
dynamic and Kleene algebras [7].



4 Kyas, Prisacariu, and Schneider

σ |= OC(α&) if α& ⊆ σ(0), or if σ(1..) |= C.

σ |= OC(α · α′) if σ |= OC(α) and σ |= [α]OC(α′).

σ |= OC(α + α
′) if σ |= O⊥(α) or σ |= O⊥(α′) or σ |= [α + α′]C.

σ |= FC(α&) if α& 6⊆ σ(0), or if α& ⊆ σ(0) and σ(1..) |= C.

σ |= FC(α · α′) if σ |= F⊥(α) or σ |= [α]FC(α′).

σ |= FC(α + α
′) if σ |= FC(α) and σ |= FC(α′).

σ |= [α&]C if α& 6⊆ σ(0) and σ(1..) |= C, or if α& ⊆ σ(0).

σ |= [α · α′]C if σ |= [α]C and σ |= [α][α′]C.

σ |= [α + α′]C if σ |= [α]C or σ |= [α′]C.

Table 2. Trace semantics of CL. Dynamic and propositional operators are omitted [6].

in case the obligation above is violated which is an obligation of doing twice in
a row the action of paying. Note that this second obligation has no reparation
attached, therefore if it is violated then the whole contract is violated. Note also
that we translate “pay double” into the CL sequential composition of the same
action p of paying.

Semantics on Respecting Traces: The rest of this section is devoted to
presenting a semantics for CL with the goal of monitoring electronic contracts.
For this we are interested in identifying the traces of actions which are respecting
or violating a contract clause. We follow the many works in the literature which
have a presentation based on traces e.g. [11].

Definition 1 (traces). Consider a trace denoted σ = a0, a1, . . . as an ordered
sequence of concurrent actions. Formally a trace is a map σ : N → A&

B from
natural numbers (denoting positions) to concurrent actions from A&

B. Take mσ ∈
N∪∞ to be the length of a trace. A (infinite) trace which from some position mσ

onwards has only action 1 is considered finite. We use ε to denote the empty
trace. We denote by σ(i) the element of a trace at position i, by σ(i..j) a finite
subtrace, and by σ(i..) the infinite subtrace starting at position i in σ. The
concatenation of two traces σ′ and σ′′ is denoted σ′σ′′ and is defined iff the trace
σ′ is finite; σ′σ′′(i) = σ′(i) if i < mσ′ and σ′σ′′(i) = σ′′(i − mσ′) for i ≥ mσ′

(e.g. σ(0) is the first action of a trace, σ = σ(0..i)σ′ where σ′ = σ(i+1..)).

Definition 2 (Semantics of CL). We give in Table 2 a recursive definition of
the satisfaction relation |= over pairs (σ, C) of traces and contracts; it is usually
written σ |= C and we read it as “trace σ respects the contract (clause) C”. We
write σ 6|= C instead of (σ, C) 6∈ |= and read it as “σ violates C.”

A trace σ respects an obligation OC(α&) if either of the two complementary
conditions is satisfied. The first condition deals with the obligation itself: the
trace σ respects the obligation O(α&) if the first action of the trace includes α&.
Otherwise, in case the obligation is violated,3 the only way to fulfill the contract

3 Violation of an obligatory action is encoded by the action negation.



Run-time Monitoring of Electronic Contracts 5

is by respecting the reparation C; i.e. σ(1..) |= C. Respecting an obligation of a
choice action OC(α1+α2) means that it must be executed one of the actions α1 or
α2 completely; i.e. obligation needs to consider only one of the choices. If none of
these is entirely executed then a violation occurs (thus the negation of the action
is needed) so the reparation C must be respected. An important requirement
when modelling electronic contracts is that the obligation of a sequence of actions
OC(α ·α′) must be equal to the obligation of the first action OC(α) and after the
first obligation is respected the second obligation must hold [α]OC(α′). Note that
if OC(α) is violated then it is required that the second obligation is discarded,
and the reparation C must hold. Violating OC(α) means that α is not executed
and thus, by the semantic definition, [α]OC(α′) holds regardless of OC(α′).

From [6] we know how to encode LTL only with the dynamic [·] modality
and the Kleene ∗; e.g. “always obliged to do α” is encoded as [any∗]O(α) where

any
△

= +γ∈A&

B

γ is the choice between any concurrent action.

3 Satisfiability checking using alternating automata

Automata theoretic approach to satisfiability of temporal logics was introduced
in [17] and has been extensively used and developed since. We recall first basic
theory of automata on infinite objects. We follow the presentation and use the
notation of Vardi [16]. Given an alphabet Σ, a word over Σ is a sequence a0, a1 . . .

of symbols from Σ. The set of infinite words is denoted by Σω.
We denote by B+(X) the set of positive Boolean formulas θ (i.e. containing

only ∧ and ∨, and not the ¬) over the set X together with the formulas true

and false. For example θ = (s1 ∨ s2) ∧ (s3 ∨ s4) where si ∈ X . A subset Y ⊆ X

is said to satisfy a formula θ iff the truth assignment which assigns true only to
the elements of Y assigns true also to θ. In the example, the set {s1, s3} satisfies
θ; but this set is not unique.

An alternating Büchi automaton [2, 10] is a tuple A = (S, Σ, s0, ρ, F ), where
S is a finite nonempty set of states, Σ is a finite nonempty alphabet, s0 ∈ S is
the initial state, and F ⊆ S is the set of accepting states. The automaton can
move from one state when it reads a symbol from Σ according to the transition
function ρ : S×Σ → B+(S). For example ρ(s0, a) = (s1∨s2)∧(s3∨s4) means
that the automaton moves from s0 when reading a to state s1 or s2 and at the
same time to state s3 or s4. Intuitively the automaton chooses for each transition
ρ(s, a) = θ one set S′ ∈ S which satisfies θ and spawns a copy of itself for each
state si ∈ S′ which should test the acceptance of the remaining word from that
state si. Alternating automata combine existential choice of nondeterministic
finite automata (i.e. disjunction) with the universal choice (i.e. conjunction) of
∀-automata [9] (where from a state the automaton must move to all the next
states given by the transition function).

Because the alternating automaton moves to all the states of a (nondeter-
ministically chosen) satisfying set of θ, a run of the automaton is a tree of states.
Formally, a run of the alternating automaton on an input word α = a0, a1, . . . is
an S-labeled tree (T,V) (i.e. the nodes of the tree are labeled by V with state
names of the automaton) such that V(ε) = s0 and the following hold:



6 Kyas, Prisacariu, and Schneider

FL(⊤) , {⊤} FL(⊥) , {⊥} FL(P (α)) , {P (α)}

FL(OC(α&)) , {OC(α&)} ∪ FL(C)

FL(OC(α · α′)) , {OC(α · α′)} ∪ FL(OC(α)) ∪ FL([α]OC(α′))

FL(OC(α + α
′)) , {OC(α + α

′)} ∪ FL(O⊥(α)) ∪ FL(O⊥(α′)) ∪ FL(C)

FL(FC(α&) , {FC(α&} ∪ FL(C)

FL(FC(α · α′)) , {FC(α · α′)} ∪ FL(F⊥(α)) ∪ FL(FC(α′))

FL(FC(α + α
′)) , {FC(α + α

′)} ∪ FL(FC(α)) ∪ FL(FC(α′))

Table 3. Computing the Fisher-Ladner Closure (see [6] for the standard operators).

for a node x with |x| = i s.t. V(x) = s and ρ(s, ai) = θ then x has k children
{x1, . . . , xk} which is the number of states in the chosen satisfying set of
states of θ, say {s1, . . . , sk}, and the children are labeled by the states in the
satisfying set; i.e. {V(x1) = s1, . . . ,V(xk) = sk}.

For example, if ρ(s0, a) = (s1 ∨ s2) ∧ (s3 ∨ s4) then the nodes of the run
tree at the first level have one label among s1 or s2 and one label among s3 or
s4. When ρ(V(x), a) = true, then x need not have any children; i.e. the branch
reaching x is finite and ends in x. A run tree of an alternating Büchi automaton
is accepting if every infinite branch of the tree includes infinitely many nodes
labeled by accepting states of F . Note that the run tree may also have finite
branches in the cases when the transition function returns true.

Fischer-Ladner closure for CL: For constructing the alternating automaton
for a CL expression we need the Fischer-Ladner closure [4] for our CL logic. We
follow the presentation in [6] and use similar terminology. We define a function
FL : CL→2CL which for each expression C of the logic CL returns the set of its
subexpressions. The function FL is defined inductively in Table 3 (see also [14]).

Theorem 1 (automaton construction). Given a CL expression C, one can
build an alternating Büchi automaton AN (C) which will accept all and only the
traces σ respecting the contract expression.

Proof: Take an expression C of CL, we construct the alternating Büchi au-
tomaton AN (C) = (S, Σ, s0, ρ, F ) as follows. The alphabet Σ = A&

B consists of
the finite set of concurrent actions. Therefore the automaton accepts traces as
in Definition 1. The set of states S = FL(C)∪FL(C) contains the subexpressions
of the start expression C and their negations. Note that in CL the negation ¬C is
[C?]⊥, thus ∀C ∈ FL(C) then [C?]⊥∈ FL(C). The initial state s0 is the expression
C itself.

The transition function ρ : S × A&
B → B+(S) is defined in Table 4 (the

dynamic logic operators are omitted; see [14]) and is based on the following
dualizing construction: for a Boolean formula θ ∈ B+(S) the dual θ is obtained
by switching ∨ and ∧, true and false; and the dual of a state C is the state
[C?] ⊥ containing the negation of the expression. By looking at the definition of



Run-time Monitoring of Electronic Contracts 7

ρ(⊥, γ) , false ρ(⊤, γ) , true ρ(P (α), γ) , true

ρ(OC(α&), γ) , if α& ⊆ γ then true else C

ρ(OC(α · α′), γ) , ρ(OC(α), γ) ∧ ρ([α]OC(α′), γ)

ρ(OC(α + α
′), γ) , ρ(O⊥(α), γ) ∨ ρ(O⊥(α′), γ) ∨ C

ρ(FC(α&), γ) , if α& 6⊆ γ then true else C

ρ(FC(α · α′), γ) , ρ(F⊥(α), γ) ∨ FC(α′)

ρ(FC(α + α
′), γ) , ρ(FC(α), γ) ∧ ρ(FC(α′), γ)

ρ([α&]C, γ) , if α& ⊆ γ then C else true

ρ([C1?]C2, γ) , ρ(C1, γ) ∨ (ρ(C1, γ) ∧ ρ(C2, γ))

Table 4. Transition Function of Alternating Büchi Automaton for CL.

ρ we see that the expression [β∗]C is the only expression which requires repeated
evaluation of itself at a later point (causing the infinite unwinding) in the run
tree. It is easy to see that if a run tree has an infinite path then this path goes
infinitely often through a state of the form [β∗]C, therefore the set of final states
F contains all the expressions of the type [β∗]C.

The rest of the proof shows the correctness of the automaton construction.
Soundness : given an accepting run tree (T,V) of AN (C) over a trace σ we

prove that ∀x ∈ T a node of the run tree with depth |x| = i, i ≥ 0, labeled by
V(x) = Cx a state of the automaton represented by a subexpression Cx ∈ FL(C),
it is the case that σ(i..) |= Cx. Thus we have as a special case that also σ(0..) |=
V(ε) = C, which means that if the automaton AN (C) accepts a trace σ then the
trace respects the initial contract C. We use induction on the structure of the
expression Cx.

Completeness : given a trace σ s.t. σ |= C we prove that the constructed
automaton AN (C) accepts σ (i.e. there exists an accepting run tree (T,V) over
the trace σ). �

Example 1 as alternating automata: We shall now briefly show how for the
CL expression C = [e]OO⊥(p·p)(p + d&n) of page 3 we construct an alternating
automaton which accepts all the traces that satisfy C and none others. The
Fischer-Ladner closure of C generates the following set of subexpressions:

FL(C) = {C, OO⊥(p·p)(p + d&n), O⊥(p),⊥, O⊥(d&n), O⊥(p · p), [p]O⊥(p)}

The set A&
B of concurrent actions is the set {e, p,n, d}& of basic actions closed

under the constructor &. The alternating automaton is:

AN (C) = (FL(C) ∪ FL(C), {e, p,n, d}&, C, ρ, ∅)

Note that there is no expression of the form [β∗]C in FL because we have no
recursion in our original contract clause from Example 1. This means that the
automaton is accepting all run trees which end in a state where the transition



8 Kyas, Prisacariu, and Schneider

function returns true on the input symbol.4 The transition function ρ is defined
in table below where C1 = OO⊥(p·p)(p + d&n):

ρ(state, action) e p d e&d e&p d&n e&d&n

C C1 true true C1 C1 true C1

C1 O⊥(p · p) true O⊥(p · p) O⊥(p · p) true true true

O⊥(p) ⊥ true ⊥ ⊥ true ⊥ ⊥
O⊥(d&n) ⊥ ⊥ ⊥ ⊥ ⊥ true true

O⊥(p · p) ⊥ O⊥(p) ⊥ ⊥ O⊥(p) ⊥ ⊥
[p]O⊥(p) true O⊥(p) true true O⊥(p) true true

Computing the values in the table above is routine; e.g.:

ρ(C1, e) = ρ(O⊥(p), e) ∨ ρ(O⊥(d&n), e) ∨ O⊥(p · p) =⊥ ∨ ⊥ ∨ O⊥(p · p)

Because from the state ⊥ nothing can be accepted (as it generates only false)
we have written in the table only O⊥(p · p). There are 24 labels in the alphabet
of AN (C) but we show only some of the more interesting ones. Moreover, none
of the states from FL (i.e. [C1?] ⊥, the complemented expressions) are reachable
nor do they contribute to the computation of any transition to a reachable state
(like e.g. O⊥(d&n) contributes to the computation of ρ(C1, e)), so we have not
included them in the table. The line for state ⊥ is omitted.

4 Monitoring CL Specifications of Contracts

We use the method of [1] and we consequently use a 3-valued semantics approach
to run-time monitoring. The monitor will generate a sequence of observations,
denoted [σ |= C], for a finite trace σ defined as:

[σ |= C] =











tt if ∀σ′ ∈ Σω : σσ′ |= C

ff if ∀σ′ ∈ Σω : σσ′ 6|= C

? otherwise

We use a standard method [16] to construct a exponentially larger nondeter-
ministic Büchi automaton NBA(C) from our alternating automaton AN (C) s.t.
both automata accept the same trace language. Therefore NBA(C) is exponential
in the size of the expression.

The method of [1] is the following: take the NBA(C) for which we know that
[σ |= C] 6= ff if there exists a state reachable by reading σ and from where the
language accepted by NBA(C) is not empty. Similarly for [σ |= C] 6= tt when
taking the complement of NBA(C) (or equivalently we can take the NBA(¬C)
of the negated formula which is [C?] ⊥). Construct a function F : S → {⊤,⊥}
which for each state s of the NBA(C) returns ⊤ iff L(NBA(C), s) 6= ∅ (i.e. the
language accepted by NBA(C) from state s is not empty), and ⊥ otherwise. Using
F one can construct a nondeterministic finite automaton NFA(C) accepting finite

4 Note that for this particular example we do not see the power of alternating au-
tomata. More, the alternating Büchi automata behaves like a NFA.



Run-time Monitoring of Electronic Contracts 9

traces s.t. σ ∈ L(NFA(C)) iff [σ |= C] 6=⊥. This is the same NBA only that the
set of final states contains all the states mapped by F to ⊤. Similarly construct
a NFA(¬C) from NBA(¬C). One uses classical techniques to determinize the two
NFAs. Using the two obtained DFAs one constructs the monitor as a finite state
Moore machine which at each state outputs {tt,ff , ?} if the input read until
that state respectively satisfies the contract clause C, violates it, or it cannot be
decided. The monitor is the product of the two DFA(C) and DFA(¬C).

We need that the monitor can read (and move to a new state) each possible
action from the input alphabet. When doing the product of the two DFAs, if
one of them does not have a transition for one of the symbols then this is lost
for the monitor too. Therefore we add to each DFA a dummy state which is not
accepting and which collects all the missing transitions for all states.

Correctness of the method [1] states λ(ρ(s0, σ)) = [σ |= C], i.e. the output
function λ : S → {tt,ff , ?} of the Moore machine returns for the state reached
by reading σ from the starting state s0 the semantics of C on the finite trace σ.
The monitor generated is proven to have size double-exponential in the size of
the expression; one exponent coming from translation of AN into the NBA and
the other from determinization.

5 Conclusion

The work reported here may be viewed from different angles. On one hand we use
alternating automata which has recently gained popularity [8] in the temporal
logics community. We apply these to our rather unconventional logic CL [12]; i.e.
a process logic (PDL [4]) extended with deontic logic modalities [18]. On another
hand we presented the formal language CL with a trace semantics, and showed
how we specify electronic contracts using it. From a practical point of view we
presented here a first fully automated method of extracting a run-time monitor
for a contract formally specified using the CL logic.

Note that our main objective is not to enforce a contract, but only to monitor
it, that is to observe that the contract is indeed satisfied. The trace semantics
presented in this paper is intended for monitoring purposes, and not to explain
the language CL. Thus, from the trace semantics point of view [α&]C is equivalent
to FC(α&), but we need such a distinction since this is not the case in CL (see
CL branching semantics [13]).

Related work: For run-time verification our use of alternating automata on infi-
nite traces of actions is a rather new approach. This is combined with the method
of [1] that uses a three value (i.e. true, false, inconclusive) semantics view for run-
time monitoring of LTL specifications. We know of the following two works that
use alternating automata for run-time monitoring: in [3] LTL on infinite traces is
used for specifications and alternating Büchi automata are constructed for LTL
to recognize finite traces. The paper presents several algorithms which work on
alternating automata to check for word inclusion. In [15] LTL has semantics on
finite traces and nondeterministic alternating finite automata are used to recog-



10 Kyas, Prisacariu, and Schneider

nize these traces. A determinization algorithm for alternating automata is given
which can be extended to our alternating Büchi automata.

We have taken the approach of giving semantics to CL on infinite traces of
actions which is more close to [3] but we want a deterministic finite state machine
which at each state checks the finite input trace and outputs an answer telling if
the contract has been violated. For this reason we fount the method of [1] most
appealing. On the other hand a close look at the semantics of CL from Section 2
reveals the nice feature of this semantics which behaves the same for finite traces
as for infinite traces. This coupled with the definition of alternating automata
from Section 3 which accepts both infinite and finite traces gives the opportunity
to investigate the use of alternating finite automata from [15] on the finite trace
semantics. This may generate a monitor which is only single-exponential in size.

References

1. A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-time properties. In
FSTTCS’06, volume 4337 of LNCS, pages 260–272. Springer, 2006.

2. A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–
133, 1981.

3. B. Finkbeiner and H. Sipma. Checking finite traces using alternating automata.
Formal Methods in System Design, 24(2):101–127, 2004.

4. M. J. Fischer and R. E. Ladner. Propositional modal logic of programs. In 9th
ACM Symposium on Theory of Computing (STOC’77), pages 286–294. ACM, 1977.

5. S. Göller, M. Lohrey, and C. Lutz. PDL with Intersection and Converse Is 2 EXP-
Complete. In FoSSaCS, volume 4423 of LNCS, pages 198–212. Springer, 2007.

6. D. Harel, J. Tiuryn, and D. Kozen. Dynamic Logic. MIT Press, 2000.
7. D. Kozen. A completeness theorem for kleene algebras and the algebra of regular

events. Information and Computation, 110(2):366–390, 1994.
8. O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to

branching-time model checking. Journal of ACM, 47(2):312–360, 2000.
9. Z. Manna and A. Pnueli. Specification and verification of concurrent programs by

∀-automata. In POPL’87, pages 1–12, 1987.
10. D. E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata give a

simple explanation of why most temporal and dynamic logics are decidable in
exponential time. In LICS, pages 422–427. IEEE, 1988.

11. V. R. Pratt. Process logic. In POPL’79, pages 93–100. ACM, 1979.
12. C. Prisacariu and G. Schneider. A formal language for electronic contracts. In

FMOODS’07, volume 4468 of LNCS, pages 174–189. Springer, 2007.
13. C. Prisacariu and G. Schneider. CL: A Logic for Reasoning about Legal Contracts

– Semantics. Technical Report 371, Univ. Oslo, 2008.
14. C. Prisacariu and G. Schneider. Run-time Monitoring of Electronic Contracts –

theoretical results. Technical report, Univ. Oslo, 2008.
15. V. Stolz and E. Bodden. Temporal Assertions Using AspectJ. In RV’05, volume

144 of ENTCS, pages 109–124. Elsevier, 2006.
16. M. Y. Vardi. Alternating Automata: Unifying Truth and Validity Checking for

Temporal Logics. In CADE, volume 1249 of LNCS, pages 191–206. Springer, 1997.
17. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification (preliminary report). In LICS, pages 332–344. IEEE, 1986.
18. G. H. von Wright. Deontic logic. Mind, 60:1–15, 1951.


