
Artificial Intelligence and Law manuscript No.
(will be inserted by the editor)

Contract Automata
An Operational View of Contracts Between Interactive Parties

Shaun Azzopardi · Gordon J. Pace · Fernando
Schapachnik · Gerardo Schneider

Received: date / Accepted: date

Abstract Deontic logic as a way of formally reasoning about norms, an important
area in AI and law, has traditionally concerned itself about formalising provisions of
general statutes. Despite the long history of deontic logic, given the wide scope of
the logic, it is difficult, if not impossible, to formalise all these notions in a single
formalism, and there are still ongoing debates on appropriate semantics for deontic
modalities in different contexts. In this paper, we restrict our attention to contracts
between interactive parties, which are both general enough to be an interesting object
of study but specific enough so as to narrow down the debates regarding the meaning
of modalities, and present a formalism for reasoning about them.

Keywords Deontic Logic · Contract Automata · CL

Published in the Journal of Artificial Intelligence and Law, 24(3):203-243, September 2016. DOI:
10.1007/s10506-016-9185-2

Shaun Azzopardi
Department of Computer Science
University of Malta
E-mail: shaun.azzopardi@um.edu.mt

Gordon J. Pace
Department of Computer Science
University of Malta
E-mail: gordon.pace@um.edu.mt

Fernando Schapachnik
Departamento de Computación, FCEyN,
Universidad de Buenos Aires, Argentina
E-mail: fschapachnik@dc.uba.ar

Gerardo Schneider
Department of Computer Science and Engineering
University of Gothenburg
E-mail: gerardo@cse.gu.se

2 Azzopardi, Pace, Schapachnik & Schneider

1 Introduction

Deontic logic as a way of formally reasoning about norms, an important area in AI
and law, has traditionally concerned itself about formalising provisions of general
statutes. Despite the long history of deontic logic, given the wide scope of the logic
(from the philosophical perspective), it is difficult, if not impossible, to formalise all
these notions in a single formalism, and there are still ongoing debates on appropriate
semantics for deontic modalities in different contexts, as witnessed by the extensive
research from both the philosophical and the logical point of view [42, 26]. In this
paper, we restrict our attention to contracts, agreements between different parties
regulating their behaviour, which are both general enough to be an interesting object
of study but specific enough so as to narrow down the debates regarding the meaning
of modalities. In particular, we focus on contracts over interactive parties.

To represent contracts in a formal manner, we present contract automata — a
kernel formalism, i.e., not a way for people to write their contracts, but rather a for-
malism into which contracts could be compiled, much like Kripke structures [18] as
used in model checking, or the simplified forms of Java and other languages used in
program analysis [38]. In this formalism, contracts are represented using automata
tagged with deontic clauses in each state. With the behaviour of the participating par-
ties similarly modelled using synchronous automata, one can formally articulate the
semantics of the contract.

This article synthesises much of our prior work about this formalism [28, 30, 32,
3] and extends it with the following new contributions:

– We present a cleaner and more complete formalisation of contract automata;
– We give an overview of tool support we have built, supporting reasoning about

conflicts in contracts;
– We extend our previous discussion of alternative ways of dealing with reparations

in contract automata, and present a new approach — that of Hierarchical Contract
Automata;

– We present a semantic preserving bidirectional translation from contract automata
to a subset of the formal language for contracts CL [34, 36].

To enable formal reasoning about contracts, one requires a model in which the
two parties interact — where interaction is taken to mean that they have to agree as
to which actions are to be performed. Here we present such a model structured as
follows:

– The behaviour of each interacting party is modelled using a multi-action au-
tomaton (Definition 1). Parties interact through synchronous composition [1] and
multi-action labels on transitions1.

– Contracts that regulate the behaviour of the parties are also modelled using multi-
action automata (contract automata, see Definition 2), tagged with deontic clauses
(Definitions 5, 6 and 7).

1 Multi-actions are necessary, since it would otherwise be impossible not to violate a contract which
enforces two different obligations at the same time.

Contract Automata 3

– The synchronous composition of the parties and the contract is called a regulated
two-party system (Definition 3). It provides the ability to predicate over deontic
clauses enforced at each possible step of interaction between the two parties.

– A notion of a well-behaved party is presented in Definition 10, as a party that is
guaranteed not to violate the contract.

– The notion of relative contract strictness is then presented (Section 2.2), allowing
results about deontic operators, e.g., the desired property of deontic logics that
whatever is obligation is stricter than permission from the perspective of both
parties (see Section 2.3).

– Finally, with the introduction of mutually exclusive actions, we can see more
interesting relationships among deontic modalities (Section 2.4).

Once the basics are established, Section 3 discusses conflicting clauses defined
over a simple axiomatic framework. Section 4 enhances the formalism to enable
reasoning about reparations, discussing different alternatives including Hierarchi-
cal Contract Automata that, besides being useful for writing contract automata more
compactly, serve the purpose of allowing both compositional reasoning and repara-
tions.

The formalism has been successfully employed to provide a new insight on the
discussion of whether or not the Hohfeldian modalities [16] are primitive in the con-
text of interacting systems. That is, whether they can be deduced from standard de-
ontic operators — which we show that in the context of contracts between interacting
parties, they can. Section 5 gives a brief account of this and other applications.

Contract automata provide an explicit state view of contracts, which aids auto-
mated analysis but does not always correlate with the structure of a contract in natu-
ral language as much as logic-based formalisms typically do. In Section 6 we present
a weak-correctness preserving bidirectional translation into a restricted version of
CL , another deontic formalism that allows to predicate over traces of behaviours
expressed in a flavour of dynamic logic.

Finally Section 7 and Section 8 close the article with comparisons to related work
and conclusions.

2 Contract Automata

In this section we present the concept of contract automata, and their semantics. Since
our work is in the context of interacting systems, we start by defining the notions of
multi-action automata and their interaction through synchronous composition.

Definition 1 – Multi-Action Automaton
A multi-action automaton S is a 4-tuple with components 〈Σ , Q, q0, →〉, where Σ

is the alphabet of actions, Q is the set of states, q0 ∈ Q is the initial state and →⊆
Q×2Σ ×Q is the transition relation. We will write acts(q) to be the set of all action

sets on the outgoing transitions from q (defined to be {A | ∃q′ · q A−→ q′}).We will write
w
=⇒ for the transitive closure of −→ (with w ∈ (2Σ)∗), and for deterministic automata,
we will write q w

=⇒ to indicate the unique state q′ such that q w
=⇒ q′.

4 Azzopardi, Pace, Schapachnik & Schneider

The synchronous composition of two automata S1 and S2 (with Si = 〈Σ ,Qi, q0i,→i
〉), and synchronising over alphabet G, written S1‖GS2, is defined to be 〈Σ ,Q1 ×
Q2, (q01,q02),→〉, where→ is the classical synchronous composition relation (e.g.,
[1]), as defined below.

q1
A−→1 q′1

(q1,q2)
A−→ (q′1,q2)

A∩G = /0
q2

A−→2 q′2

(q1,q2)
A−→ (q1,q′2)

A∩G = /0

q1
A−→1 q′1, q2

B−→2 q′2

(q1,q2)
A∪B−−→ (q′1,q

′
2)

A∩G = B∩G 6= /0

We can now define contracts to be automata with each state tagged with the clauses
which will be in force at that point. The contracts will be able to refer to both presence
and absence of an action. Given an alphabet of actions Σ , we write !Σ to refer to the
alphabet extended with actions preceded with an exclamation mark ! to denote their

absence: !Σ
d f
= Σ ∪{!a | a ∈ Σ}.

Each clause in a contract automata refers to one of two parties, with the set of
parties being Party = {1,2}. We will use variables p, p1 and p2 to range over this
type, and write p to refer to the party other than p (i.e., 1 = 2 and 2 = 1).

Contract clauses are either (i) obligation clauses of the form Op(a) or Op(!a),
which say that party p is obliged to perform or not perform action a respectively; or
(ii) permission clauses which can be either of the form of Pp(a) or Pp(!a) (party p
is permitted to perform, or not perform action a respectively). We will use variables x,
y and z to stand for either presence or absence of an action. E.g. Pp(x) would match
both Pp(a) and Pp(!a). If x is already an inverted action x =!a, then expression !x
is interpreted to be a.

Definition 2 – Contract Automaton
A contract clause over alphabet Σ is structured as follows (where action x ∈!Σ , party
p ∈ {1,2}):

Clause ::= Op(x) |Pp(x)
A contract automaton S is a total and deterministic multi-action automaton with

S = 〈Σ , Q, q0, →〉, together with a total function contract ∈Q→ 2Clause assigning
a set of clauses to each state.

Example 1
Consider, for instance, the contract between a music service provider p and a user u.
The contract states that the service provider is obliged to make a one-time offer to the
user, which, if accepted, permits her to listen to a piece of music up to three times.

If we use accept for the action with which the one-time offer is accepted, and
listen for the listening of the piece of music, we can express the contract as a contract
automaton with 5 states, the first one σ in which the user has not yet accepted the
offer, and the remaining 4, named σ0 to σ3, representing the cases when the user still
has permission to listen to the music from 0 to 3 times respectively. The automaton is
depicted in Fig. 1, in which each state is tagged with its name and the set of contract
clauses that are active in that state.

Contract Automata 5

σ : {Fu(listen),
Op(accept)}

σ3 : {Pu(listen)} σ2 : {Pu(listen)} σ1 : {Pu(listen)}

σ0 : /0

A s.t. accept ∈ A

A s.t. listen ∈ A A s.t. listen ∈ A

A s.t. listen ∈ A

A s.t. accept /∈ A A

A s.t. listen /∈ AA s.t. listen /∈ AA s.t. listen /∈ A

Fig. 1 Example of a music provider contract.

Note that, for the sake of conciseness in the example, rather than draw every tran-
sition, we are (visually) representing multiple transitions with a simplified notation
where we write e.g. A s.t. listen∈ A as a shorthand for drawing all the transitions with
a set of actions that include listen.

Given a two-party system (S1,S2), and a contract automaton A , we can now put
them together as a regulated two-party system.

Definition 3 – Regulated Two-Party System
A regulated two-party system synchronising over the set of actions G is a tuple
R = 〈S1,S2〉AG , where Si = (Σi,Qi,q0i,→i) is a multi-action automaton specifying
the behaviour of party i, and A is a contract automaton over alphabet Σ1∪Σ2.

The behaviour of a regulated two-party system R, written [[R]], is defined to be
the automaton (S1‖GS2)‖Σ A . To make states in such systems more readable, we will
write ((q1,q2),qA) as (q1,q2)qA

.
A regulated two-party system is said to be well-formed if S1‖GS2 never deadlocks:

∀(q1,q2) · acts((q1,q2)) 6= /0.

In the rest of the paper we will assume that all systems are well-formed. One way
of guaranteeing this may be by having all system states provide a transition with the
empty action set.

Also note that the totality of the contract automaton guarantees that the system be-
haviour is not constrained, but simply acts to tag the states with the relevant contracts
at each point in time.

We can now define whether or not either party is violating the contract when a
particular state is reached or a transition is taken.

Definition 4 – Viable Action Sets
Action set A is said to be viable with respect to a set O of obliged actions and a
set F or forbidden actions, written viable(A,O,F), if (i) all the obliged actions are
included in A but; (ii) no action which the party is forbidden (obliged not) to perform
is included in A:

viable(A,O,F)
d f
= O⊆ A∧F ∩A = /0.

6 Azzopardi, Pace, Schapachnik & Schneider

Functions Op(qA) and Fp(qA) give the set of actions respectively obliged to be
performed and forbidden (obliged not) to be performed by party p. They are defined
in terms of the contract clauses in the state.

Op(qA)
d f
= {a |Op(a) ∈ contract(qA)}

Fp(qA)
d f
= {a |Op(!a) ∈ contract(qA)}.

We thus can define the viable actions for a party p in a state qA : action set A is
said to be viable for party p in a contract automaton state qA , written viablep(qA ,A),
if (i) all her obliged actions are included in A but; (ii) no actions which the party is
obliged not to perform are included in A:

viablep(qA ,A)
d f
= viable(A,Op(qA),Fp(qA)).

Since we would like to be able to place blame in the case of a violation, we
parametrise contract satisfaction by party. It is also worth noting that while obligation
to perform an action, for instance, is violated in a transition which does not include
the action, permission is violated by a state in which the opportunity to perform the
permitted action is not present. The satisfaction operator `p will thus be overloaded
to be applicable to both states and transitions. The operator X `p C will denote that
reaching state X , or traversing transition X , does not constitute a violation of clause
C for party p. X ranges over states and transitions in the composed system.

We start by defining the satisfaction of the different deontic operators. Note that
in these definitions we use qp1 to refer to the action of party p1, i.e., qp1 can refer to
either q1 or q2.

Definition 5 – Permission
If party p is permitted to perform shared action a, then the other party p must provide
p with at least one viable outgoing transition which contains a but does not include
any forbidden actions. Permission to perform unsychronised actions cannot be vio-
lated.

Satisfaction of a single permission is defined as:

(q1,q2)qA
`p1 Pp2(a)

d f
=

true if p1 = p2∨a /∈ G

∃A ∈ acts(qp1), A′ ⊆ (Σ −G) ·
a ∈ A ∧ viablep2(qA ,A∪A′) if p1 6= p2∧a ∈ G

Similarly, if party p is permitted to not perform action a, then the other party p
must provide p with at least one viable outgoing transition which does not include a
nor any forbidden action. Permission to perform local actions can never be violated.
In the case of a single permission, this can be expressed as follows:

(q1,q2)qA
`p1 Pp2(!a)

d f
=

true if p1 = p2∨a /∈ G

∃A ∈ acts(qp1), A′ ⊆ (Σ −G) ·
a /∈ A ∧ viablep2(qA ,A∪A′) if p1 6= p2∧a ∈ G

Contract Automata 7

While actual obligation violations occur when an action is not performed, viola-
tions of a permission occur when no appropriate action is possible. In this paper we
give a semantics that tags as a violation a state in which one party is permitted to
perform an action, while the other provides no way of actually doing so.

Definition 6 – Obligation
In an interacting system, obligations put constraints on both parties. Given that party
p is obliged to perform action a in a state means that (i) party p must include the
action in any outgoing transition in the composed system in which it participates;
and (ii) the other party p must provide a viable synchronisation action set which,
together with other asynchronous actions performed by p, allows p to perform all
its obligations, positive and negative. Obligation to not perform action a (Op(!a))
can be similarly expressed. We combine all positive and negative obligations in the
following definitions.

Note that we treat differently the obligations imposed on a party and the ones
that arise in order to let the other fulfil her own obligations. In the latter case we tag
the violation at the state level (i.e., we tag the non-existence of any valid outgoing
transition). In the former case, we want to flag individual transitions as satisfying
or not the obligations. Thus, we overload the satisfaction operator to also consider
transitions.

(q1,q2)qA
`p1 Op2(x)

d f
=

true if p1 = p2

∃A ∈ acts(qp1), A′ ⊆ (Σ −G) ·
viablep2(qA ,A∪A′) if p1 6= p2

(q1,q2)qA

A−→ (q′1,q
′
2)q′A

`p1 Op2(x)
d f
=

 viablep1(qA ,A) if p1 = p2

true if p1 6= p2

Example 2
Consider a contract between a passenger p and the airline representative a represented
as a contract automaton. When the passenger arrives at the flight boarding-check, the
contract will be in a state with three clauses:

– The passenger is permitted to board one piece of hand luggage (encoded as action
l): Pp(l).

– The passenger is obliged to show her id card (encoded as action s): Op(s).
– The passenger is also obliged to show her boarding pass (action b):Op(b).

For the sake of this example, we will assume that actions l and b are shared, but
s is not. Now, if the airline system is in a state with at least an outgoing transition
labelled with action set {l,b}, the permission to board with one piece of hand lug-
gage is satisfied, even though the current state of the passenger’s automaton has no
matching transition. Note that action s need not to be present since it is a local action.
I.e., no synchronisation takes place on that action.

8 Azzopardi, Pace, Schapachnik & Schneider

However, to fulfil the obligation to show the id card and the boarding pass, the
passenger’s current state must have an outgoing transition including the set of ac-
tions {s,b}. Note that even though s is not shared and thus still not needed for the
synchronisation, it must nevertheless be present to comply with the obligation.

We can now complete the definition of the basic deontic modalities.

Definition 7 – Prohibition and Equivalences for Absence of Actions

– Party p not being permitted to perform an action is equivalent to p being obliged
not to perform the action:

!Pp(a)
d f
= Op(!a) !Pp(!a)

d f
= Op(a)

– Party p not being obliged to perform an action is equivalent to p being permitted
not to perform the action:

!Op(a)
d f
= Pp(!a) !Op(!a)

d f
= Pp(a)

– Prohibition contract clauses Fp(a) and Fp(!a), prohibiting party p from per-
forming and not performing a respectively, can be expressed in terms of permis-
sion:

Fp(a)
d f
= !Pp(a) Fp(!a)

d f
= !Pp(!a)

– Prohibition to perform an action is equivalent to obligation not to perform the
action:

Fp(x) = Op(!x)

It should be noted that we are equating lack of permission to do a to an obligation
to perform an action set which does not include a. Although at first glance, this may
appear to disallow a party from doing nothing as a way of satisfying lack of permis-
sion, this is not the case, since the empty set of actions does satisfy the constraint.

It is interesting to note that in a two party system there are alternative notions
of opposites to permission and obligation. Consider party p not being permitted to
perform action a. Apart from the interpretation we gave, in which the norm places
the onus on party p not to perform a, an alternative view is to push the responsibility
to p and interpret it as: party p may not provide a viable action set which includes a.
This is distinct from !Pp(a) (and indeed from the other modalities we have).

Similarly, consider party p not being obliged to perform action a. The interpreta-
tion we adopted permits party p to not perform a, but once again, alternative defini-
tions may be adopted. One possibility is to push the responsibility to p and interpret
it as: party p must provide a viable transition which does not include a.

These duals, in which the outer negation of a norm also corresponds to shifting
of responsibility, give an interesting alternative view of norm opposites in a two-
party system. Another interesting alternative would be to interpret these negations
as modalities whose only effect is the cancelling of existing clauses. We will not
explore these alternative modalities any further in this paper, since the modalities
we adopt provide a clean notion of conflicts, as discussed in Section 3. Should they
be needed for a particular application, any of the above mentioned interpretations
could be included as alternative type of negation. One of the advantages of clear
formal semantics is that there is no need to dispute the meaning of a given term, since

Contract Automata 9

F j(transfer), P j(login)

P j(transfer)

F j(login), F j(transfer)

login logout

malicious cleared

Fig. 2 Internet banking contracts.

different ones can be defined and the appropriate one be picked to convey specific
meanings.

Definition 8 – Contract Satisfaction
Contract satisfaction for a set of clauses C is defined as:

(q1,q2)qA
`p C

d f
= ∀C ∈ C · (q1,q2)qA

`p C

General contract satisfaction for contract automata A is defined as follows. Note
that in the case of a transition the set of clauses that the transition should satisfy is
taken from the source state.

satAp ((q1,q2)qA
)

d f
= (q1,q2)qA

`p contract(qA)

satAp ((q1,q2)qA

A−→ (q′1,q
′
2)q′A

)
d f
= (q1,q2)qA

A−→ (q′1,q
′
2)q′A

`p contract(qA)

When A is clear for the context we will write satp(X) instead of satAp (X).

Example 3
If p is permitted to withdraw money from the bank, permitted not to deposit, obliged
to pay the fee, and obliged not to steal (Pp(w), Pp(!d), Op(f), Op(!s)), p should
provide at least one transition that contains both a w and an f and contains neither a
d nor an s.

Example 4
Consider John signing a contract with his bank. The contract says that (i) whenever
he is logged into his Internet banking account, he is to be permitted to make money
transfers; and (ii) if a malicious attempt to log in to his account is identified, logging
in and making transfers will be prohibited until the situation is cleared. The two
statements can be expressed in the contract automaton shown in Fig. 2.

10 Azzopardi, Pace, Schapachnik & Schneider

2.1 Compliance

We extend the operational semantics of contract automata by tagging transitions with
the compliance status of each party: A−−−−→

(ψ,ψ ′)
where ψ and ψ ′ are one of X, × and

R indicating satisfaction, violation without the possibility of reparation and violation
but going to a reparation state respectively2.

Definition 9 A state of a regulated system and action set pair (q,A) is said to be
violating for party p, written violp(q,A) if the state or any of its outgoing transitions
does not satisfy the active contract clauses:

violp(q,A)≡ ¬(satp(q)∧∀q′ · satp(q
A−→ q′))

We will write viol(q,A) to denote when either party has violated the contract:
violp(q,A)∨ violp(q,A). By defining δ

ψ

ψ ′(p,q,A) to be ψ ′ if party p violates the con-
tract when the system is in state q and action set A is performed (violp(q,A)) and ψ

otherwise, we can define the extended operation semantics: for a transition q A−→ q′,
we can deduce

q A−−−−−−−−−−−−−→
(δX× (1,q,A),δX× (2,q,A))

q′

Definition 10 – Breach Incapable
A party p is said to be incapable of breaching a contract in a regulated two-party
system R = 〈S1,S2〉AG , written breachIncapablep(R), if p cannot be in violation in
any of the reachable states and transitions of R. We write breachIncapable(R) if it
holds for both parties.

Note that a party being breach-incapable is stronger than just being compliant for
one specific run — breachIncapablep(R) means that there is no possible trace of R,
in which p breaches the contract.

2.2 Contract Strength

We can now define strictness relationships over contracts.

Definition 11 – Contract Strictness
A contract automaton A ′ is said to be stricter than contract automaton A for party
p (or A said to be more lenient than A ′ for party p), written A vp A ′, if for any
systems S1 and S2, p being incapable of breaching A ′ implies that p is incapable
of breaching A . We say that two contract automata A and A ′ are equivalent for
party p, written A =p A ′, if A vp A ′ and A ′ vp A . Similarly, we define strictly
more lenient relation @p as vp \ =p. We define global contract strictness A v A ′

to hold if A vp A ′ holds for all parties p, and similarly global contract equivalence
A = A ′.

2 Although we have no notion of reparation yet, we introduce this possible state to be used in Section 4.

Contract Automata 11

Proposition 1 The relation over contracts v is a partial order.

Structurally isomorphic contract automata provide a useful proof technique that we
would use on the rest of the article many times.

Proposition 2 Given two structurally isomorphic contract automata A and A ′,
A vA ′ if and only if, for any state or transition X, satA

′
p (X) =⇒ satAp (X).

This proof principle can be proved to hold by showing that (i) the automata ob-
tained from the synchronous composition with the two contracts are structurally iden-
tical; and (ii) using the definition of breach incapability. The principle can be used to
prove that contract automata are monotonic.

Proposition 3 Given two structurally isomorphic contract automata A and A ′,
with contract clause functions contract and contract′ respectively, satisfying that ∀q ·
contract(q)⊆ contract′(q), it follows that A vA ′.

The proof follows from the observation that satp(X) is essentially a conjunction
of a proposition for each contract clause in the state. Hence, satA

′
p (X) (which has

a larger set of clauses) implies satAp (X). Applying Proposition 2 to this observation
completes the proof.

Although contracts are expressed as automata, we would like to be able to com-
pare individual clauses. To do this we will need to relate contract automata which are
equivalent except for a particular clause replaced by another.

Definition 12 – Clause Strictness
Given two contract clauses C and C′, the relation over contract automata [C→C′]⊆
CA ×CA relates two contract automata A and A ′ if A is equivalent to A ′ except
possibly for a number of instances of clause C replaced by C′.

We extend the notion of strictness to contract clauses. We say that clause C′ is
stricter than clause C for party p, written C vp C′, if for any contract automata A
and A ′ such that (A ,A ′) ∈ [C→C′], it follows that A vp A ′. We similarly extend
the notion of strictness for all parties v.

The following proposition allows us to use the proof principle given in Proposi-
tion 2 for reasoning about clause strictness:

Proposition 4 Given clauses C and C′, any two contract automata related by [C→
C′] are structurally isomorphic.

2.3 Strictness Theorems

The strictness relationship between clauses allows us to state the following theorems.

Theorem 1 Obligation is stricter than permission: (i) Pp(a)vOp(a); and (ii) Pp(!a)v
Op(!a).

12 Azzopardi, Pace, Schapachnik & Schneider

Proof We present the proof of (i) — the proof of (ii) is very similar. We need to prove
that for any contract automata A and A ′ such that (A ,A ′) ∈ [Pp(a)→ Op(a)],
then it follows that A v A ′. Using Proposition 4, we know that A and A ′ are
structurally isomorphic, allowing us to apply the proof principle of Proposition 2.

We thus have to show that satA
′

p (X) implies satAp (X). Since the permission in A
which is replaced by an obligation, never yields violations for party p nor for any
party on transitions, it suffices to prove that this implication holds on states for party
p.
The satisfaction function for p’s obligations in states is:

∃A ∈ acts(qp), A′ ⊆ (Σ −G) · viablep(qA ′ ,A∪A′)
If a ∈ G, and since a ∈ Op(qA ′), we can conclude that a ∈ A:

a ∈ G =⇒ ∃A ∈ acts(qp), A′ ⊆ (Σ −G) · a ∈ A∧viablep(qA ′ ,A∪A′)
Furthermore, since qA has less obligations than qA ′ , viability for qA ′ implies via-
bility for qA :

a ∈ G =⇒ ∃A ∈ acts(qp), A′ ⊆ (Σ −G) · a ∈ A∧viablep(qA ,A∪A′)
Hence, the satisfaction function for the permission Pp(a) holds and thus, by Propo-
sition 2 we can conclude that A vA ′.

Theorem 2 For synchronised actions, obligation for one party is stricter than per-
mission for the other: (i) Pp(a)v Op(a); and (ii) Pp(!a)v Op(!a).

Proof As in the previous theorem, we observe that Pp(a) can only yield violations
for states and for party p.

Observe that the obligation Op(a) in a state qA ′ guarantees that all outgoing

transitions from the state (q1,q2)qA ′
A−→ (q′1,q

′
2)q′

A ′
satisfy viablep(qA ′ ,A).

Since we assume that the system does not deadlock, there is at least one such
transition which party p participates in. Furthermore, if a ∈ G, it must also appear
in the actions on the transition:

a ∈ G =⇒ ∃A ∈ acts(qp), A′ ⊆ (Σ −G) · a ∈ A∧viablep(qA ′ ,A∪A′).

This guarantees that (q1,q2)qA
`p Pp(a), and allows us to complete the proof using

Proposition 2.

It is interesting to note that if we had a weaker semantics which simply identifies
a violation without identifying the guilty party, we would be able to show equivalence
between Op(a) and Op(a), since a lack of a on a transition would cause a violation of
both obligations. However, since our semantics characterise violations for the parties
separately, and the partial ordervp is parametrised by the party, we can show that the
two obligations are in fact different [29].

2.4 Mutually Exclusive Actions

Although we adopt a multi-action approach, modelling real-world scenarios means
that certain actions should never occur concurrently. For instance, one would expect
that the automata never perform the action openDoor and closeDoor on the same
transition. This allows us to identify strictness laws which hold only for mutually
exclusive actions.

Contract Automata 13

Definition 13 – Mutually Exclusive Actions
Given a multi-action automaton 〈Σ , Q, q0, →〉, two actions a and b ({a,b} ⊆ Σ) are
said to be mutually exclusive, written a ./ b, if they can never appear in the same set
of actions on transitions. Thus, for any automaton, it should be the case that:

∀(q,A,q′) ∈→ · a ∈ A =⇒ b /∈ A.

In the rest of the article we will assume that mutually exclusive actions never appear
in the synchronisation sets. This is done to simplify the presentation, since otherwise
we would need a more complex rule for synchronous composition (not allowing syn-
chronisation when the asynchronous actions of party are in conflict with those of the
other) and a modified definition for the satisfaction of obligations (the other party
must provide a viable action set which does not include any actions which may con-
flict with the obligations of the party to whom the obligation applies). Removing this
restriction, however, does not affect the results we present.

The following theorem shows how mutually exclusive actions and action absence
are related together under both obligation and permission:

Theorem 3 If a ./ b then (i) Op(!a)v Op(b); and (ii) Pp(!a)vPp(b).

Proof To show (i), we need to prove that for any contract automata A and A ′ such
that (A , A ′) ∈ [Op(!a)→ Op(b)], then it follows that A v A ′. As in the previ-
ous proofs, we can use Proposition 4 to conclude that A and A ′ are structurally
isomorphic, allowing us to apply the proof principle of Proposition 2.

We thus have to show that satA
′

p (X) implies satAp (X). We look at transitions and
states separately:

Transitions: The satisfaction function for the combined obligations for a transition
(q1,q2)qA ′

A−→ (q′1,q
′
2)q′

A ′
in automaton A ′ is that viablep(qA ′ ,A). By definition

of viability and the obligation Op(b) in qA ′ , we can thus conclude that b ∈ A.
However, since a ./ b, this means that a /∈ A, from which we can conclude that
viablep(qA ,A) and hence that the satisfaction function also holds for transitions
in A .

States: The satisfaction function applied to states acts on the other party p. For state
(q1,q2)qA ′ , it is defined to be ∃A ∈ acts(qp), A′ ⊆ (Σ−G) · viablep(qA ′ ,A∪A′).
Since a ∈ G, the proof is identical to the previous case.

Hence, the satisfaction function for Op(a) holds and thus, by Proposition 2 we
can conclude that A vA ′ and hence (i) holds.

The proof of (ii) follows similarly.

A similar result can be shown, but referring to the other party in the contract:

Theorem 4 If a ./ b then Op(!b)vOp(a).

Proof We take an approach identical to the previous theorems and prove that for any
contract automata A and A ′ such that (A , A ′)∈ [Op(!b)→Op(a)], then it follows
that A vA ′. Propositions 4 and 2 can then be used to complete the proof. As before,
we consider the satisfaction relation on states and transitions separately:

14 Azzopardi, Pace, Schapachnik & Schneider

Transitions: The satisfaction function for the combined obligations for a transition
(q1,q2)qA ′

A−→ (q′1,q
′
2)q′

A ′
in automaton A ′ is that viablep(qA ′ ,A). By definition

of viability and the obligation Op(a) in qA ′ , we can thus conclude that a ∈ A.
However, since a ./ b, this means that b /∈ A. The same transition must be viable
for p in A ′, so viablep(qA ′ ,A) holds. The absence of b also allows us to conclude
that viablep(qA ,A), which is the satisfaction function for Op(!b) over transitions
in A .

States: For state (q1,q2)qA ′ , since we assume deadlock freedom and satisfaction of
the obligation to perform a, we know of the existence of an outgoing transition
with action a such that a ∈ A. Since party p is participating in this transition, and
a ∈ G, we can conclude that there is a transition viable for p, leaving from qp
and with an action set which includes a and hence not b. Propositions 4 and 2
can then be conclude that ∃A ∈ acts(qp), A′ ⊆ (Σ −G) · viablep(qA ,A∪A′).

Although one may be tempted to induce that a similar result can be shown for
permission (analogous to part (ii) of Theorem 3) — Pp(!b)vPp(a) does not always
hold. As a simple example of a system satisfying Pp(a) but not Pp(!b), consider
party p being able to perform just one transition with action set {b}, and party p being
able to perform one of two transitions: one with action set {a}, the other with action
set {b}. Party p is permitted to perform a but party p is not permitted to perform !b.

3 Conflicts and Tool Support

Contract clauses are not always compatible with one another. Many definitions of
conflict are possible — in this article we deal only with one particular class of con-
flicts which focusses on conflicting norms and mutually exclusive actions, but some
interesting issues arise from party interdependence.

As expected, the obligation on a party to perform an action a and the obligation
on the same party not to perform the same action can never be satisfied together.
Another interesting example is that of Pp(!a) and Op(a). Although one is tempted
to intuitively think that having the possibility of doing something other than a does
not conflict with the obligation of doing a, multi-action semantics in contracts are
different: to satisfy the permission party p must provide a-free action sets which
allow p to satisfy her obligations, but that requires that they contain a.

3.1 Definitions and Results

In this section we axiomatise the notion of conflicts in interacting two-party systems
and investigate some consequences.

Definition 14 Contract conflicts is a relation between contract clausesz∈Clause↔
Clause and is defined to be the least relation satisfying the following axioms:
Axiom 1: Opposite permissions conflict: `Pp(x)z !Pp(x).
Axiom 2: Obligation to perform mutually exclusive actions is a conflict: a ./ b `
Op(a)z Op(b).

Contract Automata 15

Axiom 3: Conflicts are closed under symmetry: CzC′ `C′ zC.
Axiom 4: Conflicts are closed under increased strictness: CzC′∧C′ vC′′ `CzC′′.

Although conflicts are only identified for opposing permissions in the axioms,
they also arise in opposing obligations, and can be shown to follow from the axioms.

Proposition 5 Opposite obligations conflict with each other: Op(x)z !Op(x).

Proof The proof uses the definition of negated permission and obligation to derive
the desired result:

definition of conflict on opposing permissions
=⇒ Pp(x)z !Pp(x)
=⇒ for some y, x =!y

Pp(!y)z !Pp(!y)
=⇒ definition of !Pp(y) and !Op(y)

!Op(y)z Op(y)
=⇒ symmetry of z

Op(y)z !Op(y)

Various other conflicts can be derived from the axioms. The following show con-
flicts between permissions and obligations and arising from enforcing norms over
both the presence and absence of an action.

Proposition 6 Obligation to perform an action conflicts with both permission and
obligation to not perform it: (i) Op(x)zPp(!x); and (ii) Op(x)zOp(!x). Obligation
to perform an action also conflicts with lack of permission to perform the action: (iii)
Op(x)z !Pp(x).

Proof By Proposition 5, we know that Op(x)z !Op(x), which, by definition of !Op(x)
is equivalent to Op(x)zPp(!x), hence completing the proof for (i).
By result (i) and Pp(!x) v Op(!x), we can use the strictness axiom of conflicts to
conclude that (ii) holds: Op(x)z Op(!x).
Result (iii) follows directly from the definition of !Pp(x) and result (ii).

Finally, we show how making two conflicting contracts stricter does not get rid of the
conflict:

Proposition 7 Given two conflicting clauses C1zC2, making the two clauses stricter
does not resolve the conflict: if C1 vC′1 and C2 vC′2, then C′1 zC′2.

Proof The proof follows by applying axiom of closure under increased strictness
twice and the axiom of symmetry.

Example: For example, consider John signing a contract with his bank. The contract
says that (i) whenever he is logged into his Internet banking account, he is to be
permitted to make money transfers; and (ii) if a malicious attempt to log in to his
account is identified, logging in and making transfers will be prohibited until the
situation is cleared. The two statements can be expressed in the two contract automata
shown in Fig. 3. Combining the two statements, however results in an automaton
where initially, after performing action set {login, malicious}, one ends up in a state
with both Pp(transfer) and Fp(transfer), which are in conflict by Proposition 6.

16 Azzopardi, Pace, Schapachnik & Schneider

F j(transfer) P j(transfer) P j(login) F j(login), F j(transfer)

login

logout

malicious

cleared

Fig. 3 Internet banking contracts.

t

Looking for conflicts in the set of clauses:

F_1(a)

O_1(a)

Normalised to:

O_1(!a)

O_1(a)

Conflict discovered between O_1(a) and O_1(!a)

PROOF:

O_1(a) # P_1(!a)

(by Axiom 1 of conflicts (P_p(a) # !P_p(a)) and

Axiom 3 of conflicts (symmetry of #))

P_1(!a) <= O_1(!a) (proved below)

P_1(!a)

<= { Theorem: O_p(x) => P_p(x) }

O_1(!a)

O_1(a) # O_1(!a)

(by Axiom 4 - closure under increased strictness)

Fig. 4 Tool support for automated conflict discovery.

3.2 Automated Conflict Discovery

Conflict discovery has been implemented in a tool written in Haskell, enabling the
automated analysis of sets of clauses. Fig. 4 shows the output from the command-
line tool when attempting to find conflicts in the set of clauses {Op(a), Fp(a)}.
Internally, the tool attempts to discover a proof of a conflict between a pair of clauses
in the given set. At an abstract level, the algorithm works as follows:

1. The clauses are normalised by replacing prohibitions with obligations not to per-
form an action.

2. A search for clause conflicts identifiable through the use of Axioms 1–3 is made.
3. The set of clauses is expanded using strictness closure by applying the results

from Section 2.3 (trying to identify conflicts through the use of Axiom 4).
4. Equivalent clauses are removed from the set, and if any new clauses have been

identified, the search is repeated from step 2.

Contract Automata 17

A more concrete version of the algorithm is given as Algorithm 1.

Example 5
Let us assume we give clauses F1(a) and O1(a) as input to the tool (in variable C).
The normalisation process (lines 1–6) will result in C new containing {!P1(a), O1(a)}.
The analysis loop (lines 10–27) will be triggered since we have new clauses to con-
sider, but no conflicts will be discovered in terms of Axiom 1 which handles oppos-
ing permissions (lines 11–15) or Axiom 2 which handles mutually exclusive actions
(lines 17–19). The analysis takes commutativity of Axiom 3 into consideration.

Since these clauses will not lead to a conflict, the strictness results given in this
paper are used to identify stricter clauses (lines 21–22), resulting in C stricter be-
coming {P1(a), P2(a)}. These are both new clauses, and the loop will be iterated.

This round of the loop, permission P1(a) ∈ C new will be identified in line 12 to
clash with !P1(a) ∈ C discovered, resulting in line 13 returning a CONFLICT.

If a conflict is identified, the tool returns a proof, as shown in Fig. 4. Furthermore,
a module for state-based (as opposed to action-based) deontic clauses is also avail-
able, by encoding the state into two mutually exclusive actions — when it becomes
true, and when it becomes false. This tool has been used in [31] to automate the search
for all the possible “types of rights”, i.e., combinations of Hohfeldian modalities (see
Section 5).

Algorithm 1

1 // Normalise contract

2 C_new = /0
3 foreach c ∈ C

4 case c of

5 F(p,x) -> C_new = C_new ∪ { !P(p,x) }
6 otherwise -> C_new = C_new ∪ { c }
7

8 // Search for conflicts until no new clauses remain to be analysed

9 C_discovered = C_new

10 while (C_new 6= /0) {
11 // Apply axiom 1 (including effect of axiom 3)

12 foreach P(p,x) ∈ C_new

13 if (!P(p,x) ∈ C_discovered) then return CONFLICT

14 foreach !P(p,x) ∈ C_new

15 if (P(p,x) ∈ C_discovered) then return CONFLICT

16

17 // Apply axiom 2 (includes effect of axiom 3)

18 foreach O(p,x) ∈ C_new, O(p,x’) ∈ C_discovered

19 if (x ./ x’) then return CONFLICT

20

21 // Add stricter clauses

22 C_stricter = immediateStricter(C_new)

23

24 // Check what still needs to be analysed

25 C_discovered = C_discovered ∪ C_new

26 C_new = C_stricter \ C_discovered

27 }
28

29 return NO-CONFLICT

18 Azzopardi, Pace, Schapachnik & Schneider

4 Reparations

Since the semantics of contract automata continue enforcing a contract even after vio-
lation, they can simulate reparations in a limited way — consider the contrary-to-duty
clause: The passenger is obliged to show a means of identification when presenting
the ticket, and would otherwise be prohibited from boarding. This can be partially
emulated using the contract automaton shown below.

Op(proveIdentity)start

Fp(boardPlane)

{showTicket, proveIdentity}

{showTicket}

This approach, however, has a number of drawbacks. Firstly, we have no implicit
notion of which transitions are violating from the automaton. Secondly, although
obligation and prohibition reparation can be emulated in this manner, there is no way
we can express a reparation in the case of a permission. Finally, the approach is only
partial, in that it does not distinguish between whether the passenger chose not to
present a means of identification (and hence the airline can apply the reparation) or
whether the airline never even gave the option to the passenger to show the means of
identification by not providing a synchronising action (and hence the passenger can
apply the reparation).

These limitations indicate the need for reparation to be provided as a first class
notion in contract automata. In the rest of this section, we present three different
forms of reparation extensions to these automata.

4.1 Reparation Automata

Reparations are transitions conditionally taken upon contract violation which can
only be detected upon combining the system’s behaviours. The first extension to con-
tract automata hinges on this distinction, providing means of specifying two types of
transitions — reparation ones which are taken if a violation has taken place and is to
be reparated, and normal ones which are otherwise taken.

Consider a contract which states that: (i) The passenger is obliged to present
his boarding pass or would otherwise be obliged to go back to the check-in desk;
after which (ii) he is permitted to board the plane with hand-luggage but if stopped
from doing so, the airline company is obliged to put his hand-luggage in the hold
and allow him to board. The reparation automaton for this agreement is given in the
figure below — red dashed edges are used to identify reparation transitions:3

3 An asterisk ∗ on a transition is used to denote that any action set not matching any other outgoing
transition from the source state would follow this transition. Formally, it would be a set of transitions, one
for each uncatered for action set.

Contract Automata 19

start Op(boardingPass)

Op(goToCheckInDesk)

Pp(boardPlane),
Pp(handLuggage)

Oc(inHold)

{atGate}

*

{boardingPass} {boardPlane}

{boardPlane, handLuggage}

*

{inHold}

Definition 15 A reparation automaton is a contract automaton with two transition
relations→N (normal) and→R (reparation), each a subset of Q×2Σ ×Q. While the
normal relation is to be total and deterministic as in the case of contract automata, the
reparation one need not be total but must be deterministic. We will write hasRep(q,A)

if for some state q′ there is a reparation transition q A−→R q′.

We can now define the tagged operational semantics of a regulated two party
system using the following rules (we write q and q′ to denote the combined states
(q1,q2)q3A

and (q′1,q
′
2)q′3A

respectively):

(q1,q2)
A−→ (q′1,q

′
2), q3A

A−→N q′3A

q A−−−−→
(X,X)

q′
¬viol(q,A)

(q1,q2)
A−→ (q′1,q

′
2), q3A

A−→R q′3A

q A−−−−−−−−−−−−−→
(δXR (1,q,A),δXR (2,q,A))

q′
viol(q,A)

(q1,q2)
A−→ (q′1,q

′
2), q3A

A−→N q′3A

q A−−−−−−−−−−−−−→
(δX× (1,q,A),δX× (2,q,A))

q′
viol(q,A)∧¬hasRep(q,A)

Reparation automata enable the description of reparations but are still limited in
a number of ways. Unlike contract automata, they are not closed under synchronous
composition, since non-determinism can result from the composition. This happens
when a state has more than one active clause since it is impossible to distinguish
which of these has been violated. This is one of the major shortcomings of reparation
automata, which we seek to address in extended reparation automata.

4.2 Extended Reparation Automata

Some situations require identifying which combination of clauses was violated, as
each may be reparated in a different way. For instance, if the passenger is (i) permitted
to have one piece of hand luggage, but if not allowed on board, the crew is obliged to
send it in as cargo; and (ii) he is also permitted to have a coat, but if not allowed on

20 Azzopardi, Pace, Schapachnik & Schneider

board, he may report the issue. To be able to identify which clauses the reparation is
related to, one can tag reparation transitions with the contract clauses the reparation
addresses.

The solution we adopt is to have transitions tagged not only with an action set,
but also with an expression specifying which clauses were violated (or not) by a party
(Vp(c) and ¬Vp(c)). We use ok to denote that none of the clauses in the source state
are violated by either party:

VExp ::= ok | VParty(Clause) | ¬VExp | VExp∧VExp

To illustrate the use of this approach, recall the reparation automaton given in
the example discussed earlier. Reparation automata can only define one reparation
transition for the action boardPlane, however a party could be in violation in multiple
ways, i.e., either the passenger was not allowed the hand luggage, or the coat, or both.
This can be modelled using extended reparation automata as shown below:4

Pp(boardPlane)
Pp(handLuggage)

Pp(coat)
Pp(report)

Oc(inCargo) Pp(report),
Oc(inCargo)

Op(switchO f f Devices)

Vc(Pp(coat)) .
{boardPlane} ok . {boardPlane}

Vc(Pp(handLuggage)) .
{boardPlane}

Vc(Pp(coat))∧Vc(Pp(handLuggage)) .
{boardPlane}

Definition 16 An extended reparation automaton is a contract automaton where the
transition relation is augmented with a boolean expression over clause violation:→⊆
Q×VExp×2Σ×Q. Totality and determinism of the transition relation is still required
— for any action set A, the disjunction of the violation expressions on transitions
tagged by A must be a tautology and any two such expressions must be mutually
exclusive.

We can now give the tagged semantics of extended reparation automata as follows
(we write (q,A) ` V to denote that violation expression V ∈ VExp is satisfied when
action set A is taken from state q):

(q1,q2)
A−→ (q′1,q

′
2), q3A

ok.A−−−→ q′3A

q A−−−−→
(X,X)

q′
(q,A) ` ok

(q1,q2)
A−→ (q′1,q

′
2), q3A

V .A−−−→ q′3A

q A−−−−−−−−−−−−−→
(δXR (1,q,A),δXR (2,q,A))

q′
V 6= ok, (q,A) `V

4 The expression ok is used to denote that none of the clauses in the source state are violated by either
of the parties.

Contract Automata 21

The totality of the transition relation means that no transitions are unmitigatable
violating ones. We can address this problem by having a violation state, in which
violations with no reparation are sent to. Alternatively, one could modify the seman-
tics of extended reparation automata to allow for partial transitions and treat missing
transitions or the transition (ok,A) as a catch-all when A takes place and no other tran-
sition is activated. The semantics given above are, however, more compositional and
thus preferred. Given that one can now differentiate between a norm being violated
or not, extended reparation automata are closed under synchronous composition.

4.3 Hierarchical Reparation Automata

Logic-based approaches provide compositional structure such as nesting to contracts
which is potentially lost when using an automaton-based approach. For instance, the
reparation for an airline not to allow a passenger to board might be to have to offer
the passenger overnight accommodation, and (later) book them on the next available
flight. By looking at an automata (of both reparation or extended reparation automata
types) describing this behaviour it is not possible to know whether the reparation is
the overnight accommodation offer or whether it extends to the booking on the next
available flight or whether it extends even further. A standard way of introducing
structure and nesting in an automaton-based formalism is to use hierarchical au-
tomata (e.g., see [27]) to be able to encapsulate a whole automaton in a single state,
resulting in different levels of behavioural detail thus giving a means of grouping
behaviour together.

We have used such a nested approach in hierarchical reparation automata, in
which any state can be refined into two automata — the first giving the contract
in force (without reparations) and the second being another contract which will be
triggered if any part of the first contract is violated. This nesting can be done to any
arbitrary depth to enable the description of reparations triggered in case a reparation
itself is violated.

Definition 17 A hierarchical reparation automaton H ∈H consists of (i) a multi-
action automaton S = 〈Σ ,Q,q0,→〉, with: (i) a state partition Q = Q0 ∪QN (with
Q0∩QN = /0) where Q0 are the normal states and QN are the nested states; (ii) a set
of final states F ⊆ Q; (iii) a sink state V ∈ Q0; (iv) a set of clauses associated to each
normal state contract∈Q0→ 2Clause; and (v) two functions used to access the normal
contract and the reparation automata in a nested state: nrm, rep ∈ QN →H .

An example of such an automaton can be seen in Fig. 5. This automaton repre-
sents a contract that is intended to start holding in case of a flight cancellation: The
airline is obliged to book a hotel room for the passenger. If it does not do this it is
obliged to provide a hotel voucher that the passenger can use to book the hotel them-
selves, otherwise a monetary compensation is to be given. Whichever, the passenger
is then obliged to give a copy of the hotel’s booking receipts to the airline. Then, two
hours before the flight the passenger is obliged to check in, otherwise he is forbidden
to board the plane.

22 Azzopardi, Pace, Schapachnik & Schneider

q6
Fp(boardPlane)

q5
Op(checkIn)

H5

H3

Op(receipt)

receipt
q′2

q′′2

H1

q′4

2HrsBefore

q3
q′3

Oc(hotelBooking)
q1 q′1

hotelBooking

hotelVoucher

H

H6 : Reparation of H5

H2 : Reparation of H1

nextDay

q0

q

q2

Oc(monetaryCompensation)
q4

monetaryCompensation
H4 : Reparation of H3

Oc(hotelVoucher)

Fig. 5 Example hierarchical reparation automaton.

The configuration of a hierarchical reparation automaton consists of a stack of
pairs of states and automata specifying where the contract currently lies. In an au-
tomaton H, the stack5 just contains (H, q0(H)) (which we write as conf0(H)) and
advances by (i) moving along the top automaton if no violation is detected, also re-
moving the item from the stack if a final state is reached or adding an item if the state
moved into is a nested one; (ii) moving to the initial state of the reparation automaton
of the next item on the stack (if any) in the case of a violation; or (iii) moving to the
sink state V in case of no reparation automaton. The rules specifying the behaviour
of a regulated system using hierarchical reparation automata are shown in Fig. 6 (we
write q to denote (q1,q2)q3A

).
We can illustrate how these rules are applied when taking a specific trace of

Fig. 5. The trace starts with the crew being obliged to book a hotel for the passen-
ger ((H,q0(H)) which in turn resolves to (H1,q1) : (H,q)), but the crew does not
do this, leading to conf0(H2) : (H,q) using REP, which then resolves to (H3,q3) :
(H2,q2) : (H,q). The crew is then obliged to book a hotel room for the passenger,
however they do not find any empty rooms in its hotel contacts, resulting in a viola-

5 We represent a stack in the following way: (H,qCA) : hs, where (H,qCA) is the item on top of the
stack, qCA is the current state in automaton H and hs is the rest of the stack.

Contract Automata 23

If doing A does not violate the contract, and the next contract state is not a final or nested state, then
transition normally:

(q1,q2)
A−→ (q′1,q

′
2), q3A

A−→ q′3A

(q1,q2)(H,q3A
):hs

A
=⇒ (q′1,q

′
2)(H,q′3A

):hs

¬viol(q,A)∧q′3A
/∈ F(H)∪QN(H) (NORMAL)

If doing A does not violate the contract, and the next contract state is a non-nested, final state, then exit
the current automaton:

(q1,q2)
A−→ (q′1,q

′
2), q3A

A−→ q′3A

(q1,q2)(H,q3A
):(H ′,q′4A

):hs
A
=⇒ (q′1,q

′
2)(H ′,q′4A

):hs

¬viol(q,A)∧q′3A
∈ F(H)\QN(H) (POP)

If doing A does not violate the contract, and the next contract state is a nested state, then transition to the
start state of the automaton associated with the nested state:

(q1,q2)
A−→ (q′1,q

′
2), q3A

A−→ q′3A

(q1,q2)(H,q3A
):hs

A
=⇒ (q′1,q

′
2)conf0(H ′):(H,q′3A

):hs

¬viol(q,A)∧q′3A
∈ QN(H)∧nrm(q′3A

) = H ′

(PUSH)

If doing A violates the contract, and the current contract state has a reparation, then transition to the start
state of the automaton reparating the current state on the stack:

(q1,q2)
A−→ (q′1,q

′
2), q3A

A−→ q′3A

(q1,q2)(H,q3A
):(H ′,q′4A

):hs
A
=⇒ (q′1,q

′
2)conf0(H ′′):(H ′,q′4A

):hs

viol(q,A)∧q′4A
∈ QN(H ′)∧∃H ′′ ·H ′′ = rep(q′4A

)

(REP)

If doing A violates the contract, and the current contract state does not have a reparation, then transition
to the sink state:

(q1,q2)
A−→ (q′1,q

′
2), q3A

A−→ q′3A

(q1,q2)(H,q3A
):hs

A
=⇒ (q′1,q

′
2)V

viol(q,A)∧ 6 ∃H ′′ ·H ′′ = rep(q3A
) (VIOL)

Fig. 6 The formal semantics for hierarchical reparation automata.

tion that leads to conf0(H4) : (H2,q2) : (H,q) using REP, which in turn resolves to
(H4,q4) : (H2,q2) : (H,q). In exchange, the crew gives the passenger a monetary com-
pensation to make up for the hotel’s lack of capacity, which leads to (H2,q2) : (H,q)
using NORMAL. With the passenger booking the hotel and the night passing, the
reparation is satisfied and the obligation to show the receipt to the airline is activated,
leading to (H2,q′2) : (H,q) using NORMAL. Then the passenger shows the receipt,
which leads to (H,q) using NORMAL. Two hours before the flight the passenger
is then obliged to check in to his new flight, leading to (conf0(H5)) : (H,q′) using
PUSH.

As in reparation automata, we cannot differentiate between the norms being vi-
olated and thus hierarchical reparation automaton are not closed under synchronous

24 Azzopardi, Pace, Schapachnik & Schneider

composition. Although one could tag reparation sub-automata with an expression
specifying upon which violation it is to be triggered (similar to extended reparation
automata), this would still not suffice since the normal behaviour automaton may
contain multiple states and thus a single norm may be violated from different states.

5 Applications

Contract automata can be used as a reasoning mechanism for many problems in the
deontic realm. In this section we visit some applications of it by the authors of this
article.

Contract Synthesis and Contract Strictness

In [32] an algorithm for synthesising imposed contracts is presented based on
the idea that one party’s behaviour may impose restrictions on how others may be-
have when interacting with it. These restrictions may be seen as implicit contracts
which the other party has to conform to and may thus be considered inappropriate or
excessive if they overregulate one of the parties.

As an example, consider the contract that binds a customer and a bank, which
stipulates that opening new accounts is free of charge. And yet, at the moment of
opening an account, the bank requires the release of personal information and al-
lowance to send the customer promotional material. The bank is not strictly breaching
the contract, but maybe it is asking “too much”. Can this “too much” be quantified?

As another example consider an airline, which compensates for missed connec-
tions due to delays by providing the traveller with food and lodging. However, the
airline has a policy of not providing this service unless the customers explicitly de-
mands for it. In a way, the airline is turning its unconditional obligation of providing
aid into a conditional or restricted one: given that the customer asks for help, support
will be provided.

The notions of conditional permission and contract strictness come into play so
a party that wants to engage in a contract with another can compare among different
bidders to see who offers the less strict contract – i.e., the one that imposes less
restrictions on its own behaviour.

Hohfeldian Modalities in Contracts

In [31] we used contract automata to clarify Hohfeld’s claim right, power, free-
dom and immunity modalities [16] and contribute to the debate of whether they embed
new building blocks of the deontic though or can be reconstructed from well-known,
more traditional, deontic operators.

Based on Kanger’s prior analysis of the modalities [17], we give formal semantics
to the operators in the context of action-based, interacting two-party systems and we
prove that, at least in this context, neither claim, nor power, nor freedom nor immunity
are foundational modalities, as they can be defined in terms of positive and negative
permissions and obligations, over presence or lack of actions.

Contract Automata 25

For instance, if for a given state of affairs S we define S↑ as the action that brings
about the state of affairs S and S↓ as the action that makes S stop holding, in the
context of contracts p’s claim right over p for state of affairs S becomes Op(S↑).
Similarly, power, freedom and immunity can be encoded as Pp(S↑), Pp(S↑) and
Op(!S↓) respectively.

Runtime Monitoring and Enforcement

Contract automata provides a way of encoding contracts at a low-level of abstrac-
tion. Although it is not meant as a formalism which humans will use to write contracts
directly in, it provides an excellent level of abstraction for automated reasoning tech-
nologies such as runtime monitoring and enforcement.

Using runtime verification [20] techniques, the structure of contract automata can
be automatically used by various tools, with system behaviour being checked at run-
time against the contract clauses in the states to enable identification of violations.
Such an approach can be used, for instance, to monitor web services for compliance
by ensuring that all communication with the service goes through a central monitor
which is traversing the contract represented as a contract automaton. Using such an
approach, one can go further by enforcing a contract by similarly monitoring progress
of the system using a contract automaton, but enacting the active contract clauses
whenever the state changes. In [33] we have been looking at a slight variant of con-
tract automata to enable the runtime verification of privacy policies.

Conflict Analysis

In [2] we have looked at means of analysing natural language contracts to identify
conflicts in an automated manner. Although a deontic logic is used to provide a se-
mantics to the contracts themselves, the conflict analysis procedure is an extension of
the one presented in this paper combined with several off-the-shelf NLP techniques
to provide a more intelligent contract editing tool to lawyers. As a result, a tool that
works as a plugin for a text editor has been developed. The tool was tested by lawyers
and notaries, getting overall positive feedback with suggestions for further work.

6 Comparison to Other Formalisms

Contract automata have been designed specifically to act as a specification language
for “contracts” between synchronising systems, while most of the existing formal lan-
guage for contracts have a different kind of system as target. This, and other specific
details about contract automata as explained below, make it difficult to perform a fair
comparison. For instance, we note that the notions of obligation, permission and pro-
hibition may vary across logics: in the case of contract automata the semantics deal
with interacting systems, thus making an obligation on one party to perform action
a also oblige the other party to allow action a to happen. Also, most logics do not
include party identification and thus, we somehow need to encode this information
which is needed in contract automata.

26 Azzopardi, Pace, Schapachnik & Schneider

C := CO |CP |CF |C∧C | [β]C | > | ⊥
CO := OC(α) |CO⊕CO

CP := P(α) |CP⊕CP

CF := FC(α)

α := 0 | 1 | a | a | α&α | α.α | α +α

β := 0 | 1 | a | a | β&β | β .β | β +β | β ∗

Fig. 7 CL syntax.

Despite the above constrains, we believe it is instructive to compare our formal-
ism with previously defined languages in the literature. In order to make this compar-
ison we need to consider formalisms that are close in spirit (it should allow at least
for the representation of permissions, prohibitions and obligations), and make some
explicit assumptions or consider a suitable subset of the language meaningful to be
compared with.

In the rest of this section we compare contract automata with the formal lan-
guage for contracts CL [34, 35, 36], which is briefly introduced in Section 6.1. In
Section 6.2 we informally describe the relation between CL and CA , whereas in
Section 6.3 we introduce CL rest , a suitable subset of CL comparable to CA . In
Section 6.4 we give some preliminaries needed for the comparison. We then proceed
to show the translation from CL rest to CA in Section 6.5, and from CA to CL rest
in Section 6.6.

6.1 The contract language CL

In what follows we present the syntax of CL , and give a brief intuitive explanation
of its notation and terminology, following [35]. A contract in CL may be obtained
by using the syntax grammar rules shown in Fig. 7.

A CL contract consists of a conjunction of clauses representing normative ex-
pressions, where each clause may, by definition, by itself be considered a contract.
The essential concepts are obligations (CO), permissions (CP), and prohibitions (CF),
which are then combined by conjunction. They can be “guarded” or conditioned,
represented by using the dynamic logic square brackets. > and ⊥ are the trivially
satisfied and violating contracts respectively. O, P and F are deontic modalities; the
obligation to perform an action α is written as OC(α), showing the primary obliga-
tion to perform α , and the reparation contract C if α is not performed. This represents
what is usually called in the deontic community a Contrary-to-Duty (CTD), as it spec-
ifies what is to be done if the primary obligation is not fulfilled. The prohibition to
perform α is represented by the formula FC(α), which not only specifies what is
forbidden but also what is to be done in case the prohibition is violated (the contract
C); this is called Contrary-to-Prohibition (CTP). Both CTDs and CTPs are useful to
represent normal (expected) behaviour, as well as alternative (exceptional) behaviour.
P(α) represents the permission of performing a given (complex) action α . Note that

Contract Automata 27

in CL it is assumed that permissions cannot be violated, and thus they do not have
reparations.

In the description of the syntax, we have also represented what are the allowed
actions (α and β in Fig. 7). It should be noted that the usage of the Kleene star
(∗) –which is used to model repetition of actions– is not allowed inside the above
described deontic modalities, though they can be used in dynamic logic-style condi-
tions. Indeed, actions β may be used inside the dynamic logic modality (the bracket
[·]) representing a condition in which the contract C must be executed if action β

is performed. The binary constructors (&, ., and +) represent (true) concurrency,
sequence and choice over basic actions respectively. Compound actions are formed
from basic ones by using these operators. Conjunction of clauses can be expressed us-
ing the ∧ operator; the exclusive choice operator (⊕) can only be used in a restricted
manner. 0 and 1 are two special actions that represent the impossible action and the
skip action (matching any action) respectively.

The concurrency (or synchrony) action operator & should only be applied to ac-
tions that can happen simultaneously. CL offers the possibility to explicitly specify
such actions by defining the following relation between actions: a#b if and only if it
is not the case that a&b. We call such actions mutually exclusive (or contradictory).

CL has been designed to avoid deontic paradoxes, as this is a common problem
when defining a language formalising normative concepts (cf. [26]). Besides, CL
enjoys additional properties concerning the relation between the different normative
notions, as for instance that obligations implies permissions, and that prohibition may
be defined as the negation of permission. It has also been proven that some undesir-
able properties do not hold, such as that the permission of performing a simple action
does not imply the permission of performing concurrent actions containing that sim-
ple action (similarly for prohibitions). See [34, 36] for a more detailed presentation of
CL , including a proof of how deontic paradoxes are avoided as well as the properties
of the language.

6.2 Informal comparison between CL and CA

CL and CA address different types of systems — whereas the former takes a logic-
based approach to describe systems in which the parties behave autonomously, the
latter takes an operational approach for systems in which the parties interact and
actions may be synchronised. The different formalisms thus have different strengths,
even if the differences in application domains can be addressed by encoding party
synchronisation within CL , or by having no interaction in CA .

Due to different domains addressed, CL and CA are not strictly comparable.
For instance, CA has an inherent notion of parties which is not in CL , while CL
can handle exclusive disjunction over contracts, which CA cannot deal with. An-
other important point of difference is that CA assumes interactive (and synchronous)
systems, which results in inherently different semantics of the basic deontic notions.
E.g., obligation on a party to perform an action in CA automatically induces a weak
obligation on the other party to provide the handshake action, thus allowing the origi-

28 Azzopardi, Pace, Schapachnik & Schneider

C := O⊥(a) | P(a) | F⊥(a) |C∧C | [β]C | > | ⊥
β := 0 | 1 | a | a | β&β | β .β | β ∗

Fig. 8 CL rest syntax.

nal party to satisfy their obligation. Such weak obligations cannot be encoded in CL ,
and conversely the one-sided obligation of CL cannot be encoded in CA .

Due to these differences, we limit our comparison of CA to a syntactic subset of
CL with the following constraints:

– Modalities (O, P and F) are only applied to simple actions;
– No ⊕ (exclusive or) between deontic operators;
– No action complementation;
– No reparations.

The last constraint is not necessary if we extend our view to hierarchical contract
automata, but we will limit our discussion to contract automata. In the rest of this
section we will compare CA with this restricted version of CL , which we will refer
to as CL rest .

6.3 CL rest : A subset of the contract language CL

As explained above, we will be considering not the full language CL but a subset,
which we will cal CL rest . The syntax of this new language is presented in Fig. 8. We
provide here a trace semantics for CL rest (cf. Fig. 9), which has been obtained by
constraining the deontic trace semantics of CL [9].

For a contract with action alphabet Σ , we will introduce its deontic alphabet Σd
which consists of Oa, Pa and Fa for each action a ∈ Σ , that will be used to represent
which normative behaviour is enacted at a particular moment.

Given a CL rest contract C with action alphabet Σ , the semantics will be ex-
pressed in the form σ ,σd �C, where σ is a finite trace of sets of concurrent actions
in Σ and σd is a finite trace consisting on sets of deontic information in Σd . The state-
ment σ ,σd �C is said to be well-formed if length(σ) = length(σd). In the rest of the
paper we will consider only well-formed semantic statements.

A well-formed statement σ ,σd � C will correspond to the statement that action
sequence σ is possible under (will not break) contract C, with σd being the deontic
statements enforced from the contract.

Example 6
As an example, let us consider the CL rest contract C = [a]O(b)∧ [b]F(b), and the
trace σ = 〈{a},{b}〉, then σd = 〈 /0,{Ob}〉, and we have that σ ,σd �C. The contract
C′ = F(c)∧ [1](O(a)∧F(b)), for example, stipulates that it is forbidden to perform
action c and that after the execution of any action, there is an obligation to perform an
a (while prohibiting the execution of b), so we can write σd = 〈{Fc},{Oa,Fb}〉. The
contract allows, for instance, the execution of actions a and b concurrently, and then
a concurrently with c (σ = 〈{a,b},{a,c}〉), and we have that σ ,σd �C′. On the other

Contract Automata 29

σ ,σd �C if length(σ) = length(σd) = 0 (1)

σ ,σd �> if σd(0) = /0 and σ(1..),σd(1..) �> (2)

σ ,σd �C1 ∧C2 if σ ,σ ′d �C1 and σ ,σ ′′d �C2 and σd = σ
′
d ∪σ

′′
d (3)

σ ,σd � [ε]C if σ ,σd �C (4)

σ ,σd � [α&]C if (α& 6⊆ σ(0)⇒ σ ,σd �>) and (5)

(α& ⊆ σ(0)⇒ (σd(0) = /0 and σ(1..),σd(1..) �C)) (6)

σ ,σd � [a]C if (a ∈ σ(0)⇒ σ ,σd �>) and (7)

(a 6∈ σ(0)⇒ (σd(0) = /0 and σ(1..),σd(1..) �C)) (8)

σ ,σd � [β ;β
′]C if σ ,σd � [β][β

′]C (9)

σ ,σd � [β +β
′]C if σ ,σd � [β]C∧ [β ′]C (10)

σ ,σd � [β
∗]C if σ ,σd �C∧ [β][β ∗]C (11)

σ ,σd � OC(a) if σd(0) = Oa and (12)

(a ∈ σ(0)⇒ σ(1..),σd(1..) �>) and (13)

(a 6∈ σ(0)⇒ σ(1..),σd(1..) �C) (14)

σ ,σd � FC(a) if σd(0) = Fa and (15)

(a ∈ σ(0)⇒ σ(1..),σd(1..) �C) and (16)

(a 6∈ σ(0)⇒ σ(1..),σd(1..) �>) (17)

σ ,σd � P(a) if σd(0) = Pa and σ(1..),σd(1..) �> (18)

Fig. 9 The deontic trace semantics of CL rest .

hand, any trace starting with c will be rejected. Similarly, any trace starting with any
action other than c but followed by a b or anything but an a, will also be rejected.

Given two traces σ1 and σ2, we will use σ1;σ2 to denote their concatenation, and
σ1 ∪σ2 (provided the length of σ1 is equal to that of σ2) to denote the point-wise
union of the traces: 〈σ1(0)∪σ2(0), σ1(1)∪σ2(1), . . .σ1(n)∪σ2(n)〉. Besides, we
will use the notation w′ = w++〈a〉 to denote that the last action of trace w′ is a.
Similarly, we use the same notation for the deontic trace wd = wd ++〈c〉, where c is
a (possible empty) set containing Oa,Pa, or Fa for any a.

In what follows we explain the trace semantics of CL rest (cf. Fig. 9), which is
based on that presented for the conflict detection algorithm for CL [9].6

Basic conditions: Empty traces satisfy any contract, as shown in Fig. 9-(1).
Done, Break: The simplest definitions are those of the trivially satisfiable contract
>, and the unsatisfiable contract ⊥. In the case of ⊥, only an empty sequence
will not have yet broken the contract, while in the case of >, any sequence of
actions satisfies the contract (whenever no obligation, prohibition, or permission
is present on the trace). See Fig. 9 line (2).

Conjunctions: For the conjunction of two contracts, the action trace must satisfy both
contracts, and the deontic traces are combined point-wise. See Fig. 9 line (3).

6 We do not present the trivial cases of actions 0 and 1; they are omitted in the rest of the paper.

30 Azzopardi, Pace, Schapachnik & Schneider

Conditions: Conditions are handled structurally. Note that using the normal form
defined in [19], one can push concurrent actions to the bottom level. See Fig. 9
lines (4)–(11).

Obligations: Obligations, like conditions, are defined structurally on action expres-
sions. The base case of the action simply consisting of a conjunction of actions
that can be dealt with by ensuring that if the actions are present in the action trace,
then the contract is satisfied, otherwise the reparation is enacted. The case for the
sequential composition of two action sequences is handled simply by rewriting
into a pair of obligations. The case of choice (+) is the most complex case, in
which we have to consider the possibility of having either obligation satisfied
or neither satisfied, hence triggering the reparation. Recall that the star operator
cannot appear within obligations. See Fig. 9 lines (12)–(14).

Prohibitions: Dealing with prohibitions is similar to obligations, with the main dif-
ference being that prohibition of choice is more straightforward to express. See
Fig. 9 lines (15)–(17).

Permissions: See Fig. 9 line (18) for the semantics.

6.4 Preliminaries for the comparison between CA and CL rest

As discussed at the beginning of this section the semantics of contract automata deal
with interacting systems, where an obligation on one party to perform action a im-
plicitly includes an obligation on the other party to allow action a to take place. This
is a different semantics of obligation when compared to obligations in CL rest— the
additional weak obligation on the other party in contract automata (the obligation to
provide a viable action set which includes action a) cannot be modelled directly in
CL rest and thus strong equivalence between the two formalisms cannot be achieved.
However, we will show that if we limit ourselves to a weaker form of equivalence
which considers only which deontic clauses (obligations, permissions and prohibi-
tions) are actively enforced after a particular trace, we can indeed show that contract
automata and CL rest are, in this sense, weakly equivalent.

In order to compare CA and CL rest we need some preliminaries. Without lost
of generality we will define a system execution trace (or simply a system trace) to be
a sequence of events. We assume that each event is in fact a pair containing the event
itself and who is the actor (subject, or performer of the event), and that the set Names
contains all the possible actors included in a contract (in bilateral contracts as we are
having here, there usually be only two subjects, namely the two parties involved in
the contract). We also assume two projection functions giving the action itself and the
subject, namely actor : Events→Names, and action : Events→Actions. For example,
if the event e = p : a is “the customer sends the document by email to the provider”,
then p = actor(e) = the customer and a = action(e) = sends the document by email
to the provider.

We assume then that traces in CL rest and in CA may in fact be always syn-
tactically translated into a system trace and that the alphabet in both formalisms is
the same (meaning that we have the same set of actors, actions, and events). So,
w.l.o.g. we will use w (or other letter from the end of the alphabet or a primed version

Contract Automata 31

of such letters) to characterize system traces in both formalisms, and we simply call
them traces without distinguishing whether we are in a CL rest or in a CA setting.

Definition 18 – CA - CL rest Clause Equivalence
We define the clauses in force of a CA A = 〈Σ , Q, q0, →〉 after following w to
be ClauseInForceCA(w,A) = {Dp:a | Dp(a) ∈ contract(q0

w⇒)}. The set of formulae
in force of a CL rest formulae ψ after following w is defined to be the set of deontic
formulae c′ such that w, wd ++〈c′〉 ` ψ .

Finally, we define the function ca2cl : Clause→CL rest as follows: ca2cl(Op(a))=
O⊥(p : a), ca2cl(Fp(a)) = F⊥(p : a), ca2cl(Pp(a)) = P(p : a).

Definition 19 – CA - CL rest Weak Equivalence
We say that a contract automaton A is weakly equivalent to a CL rest formula ψ ,
written A

CA-CLr←−−−→ ψ , if and only if for any prefix of a trace w, it is always the case
that the clauses in force are the same. That is, iff ca2cl(ClauseInForceCA(w,A)) =
ClauseInForceCL rest(w,ψ).

We say that the formalisms CA and CL rest are weakly equivalent iff for any
CA automaton A we can always find a corresponding formula ψ in CL rest such
that A

CA-CLr←−−−→ ψ , and vice-versa.

6.5 Translation of CL rest into CA

We provide in what follows a translation of CL rest into CA . The translation algo-
rithm is heavily inspired by the one for CL conflict detection [9], implemented in
the tool CLAN [10]. In particular we are interested only in the automata generation
part of the algorithm (for the sublanguage given by the CL rest syntax).

In what follows α& will denote basic actions or complex actions constructed from
basic actions only using the concurrent operator & (for example a,a&b). It can be
shown that every action expression can be transformed into an equivalent represen-
tation where & appears only at the innermost level (see [36]). This representation is
referred to as the canonical form; we assume all such terms are in canonical form in
CL rest formulae.

Given a contractual formula ψ ∈ CL rest , over an action alphabet Σ and cor-
responding deontic alphabet Σd , we can construct a contract automaton A (ψ) =

〈Σ , Q, q0, →〉 with clauses contract ∈Q→ 2Clause. Before giving the precise con-
struction (cf. Algorithm 2) we need some preliminaries. The construction of the au-
tomaton uses the residual contract function residual which, given a CL rest formula
ψ and a set of actions A ∈ 2Σ , will return the subformula that needs to hold in a fol-
lowing step after actions in A are executed; note that A may in particular be a single
action. This function is defined in Fig. 10.

As an example, let us consider the CL rest formula ψ
d f
= [a]O(b)∧ [b]F(a). Ap-

plying the residual function to all possible actions we get: residual(ψ,{a}) = O(b),
residual(ψ,{b}) = F(a), residual(ψ,{a,b}) = O(b)∧F(a).

32 Azzopardi, Pace, Schapachnik & Schneider

residual : CL rest ×2Σ → CL rest
residual(>,ϕ) = >
residual(⊥,ϕ) = ⊥

residual(C1 ∧C2,ϕ) = residual(C1,ϕ)∧ residual(C2,ϕ)

residual([α&]C,ϕ) =

{
C if α& ⊆ ϕ

> otherwise
residual([a]C,ϕ) = C if a 6∈ ϕ

residual([β ;β ′]C,ϕ) = residual([β][β ′]C,ϕ)
residual([β +β ′]C,ϕ) = residual([β]C∧ [β ′]C,ϕ)

residual([β ∗]C,ϕ) = residual(C∧ [β][β ∗]C,ϕ)

residual(OC(a),ϕ) =

{
> if a ∈ ϕ

C otherwise

residual(FC(a),ϕ) =

{
C if a ∈ ϕ

> otherwise
residual(P(a),ϕ) = >

Fig. 10 The residual function.

deontic(C1 ∧C2) = deontic(C1)∪deontic(C2)
deontic(O(a)) = {Oa}
deontic(F(a)) = {Fa}
deontic(P(a)) = {Pa}
deontic(otherwise) = /0

Fig. 11 The labelling function deontic.

Our translation algorithm needs to consider the sequence of subformulae reach-
able from a given formula, that is, all the subformulae that are to be enforced when a
given action is performed starting with the original formula.

Definition 20 Given a CL rest formula ψ , we define the set of formulae transitively
reachable from ψ , written Rψ , to be all formulae ψ ′ such that there exist (i) a se-
quence of formulae ψ0,ψ1 . . .ψn with ψ0 = ψ and ψn = ψ ′); and (ii) a sequence of
action sets A0,A2 . . .An−1, such that for all i, residual(ψi,Ai) = ψi+1.

It can be proved that Rψ is finite for any ψ ∈ CL rest . We also need to define
a labelling function deontic taking a CL rest formula and giving the corresponding
deontic statements corresponding to the deontic modality to be enforced at a given
moment. The definition of this function is shown in Fig. 11. We can now present
the translation algorithm taking a CL rest formula and giving a contract automaton
(cf. Algorithm 2).

Algorithm 2 Given a CL rest formula ψ we define the contract automaton A (ψ) =

〈Σ ,Q, q0, →〉 with clauses contract ∈ Q→ 2Clause, as follows:
– The alphabet Σ is the same as for CL rest ;
– The set of states Q is given by all the formulae Rψ reachable from ψ;
– q0 is defined to be ψ;
– The transition relationship is defined as follows: (q,A,q′) ∈→ if residual(q,A) =

q′;
– The clauses given by the function contract on each state are given by the labelling

function deontic.

Contract Automata 33

The automaton thus constructed is an instance of the one provided for conflict
analysis for CL [9]. One can easily show that such an automaton is total and de-
terministic, and is thus a correct contract automaton. Furthermore, A (ψ) is weakly
equivalent to ψ .

Lemma 1 A CL rest formula ψ is weakly equivalent to the contract automaton con-
structed from ψ following Algorithm 2: A (ψ)

CA-CL←−−→ ψ .

The proof is an instance of the proof given for CL for the conflict detection
algorithm given in [9]. From Algorithm 2 and the above lemma we get the following
theorem.

Theorem 5 Given a CL rest contract ψ , there exists a contract automaton A such
that A

CA-CL←−−→ ψ .

By recursively applying the residual function (that is by taking the closure of the
continuation relation starting with the original formula) we will get all the subformu-
lae given the states of the automaton. The transition relationship Rψ will “connect”
all the above produced subformulae thus giving the automaton as expected. Again,
the proof of the theorem is an instance of the corresponding proof given in [9].

6.6 Transforming CA into an equivalent CL rest specification

We will approach the problem of transforming a contract automaton into a CL for-
mula by noting that (i) it is possible to obtain a regular expression representing all
finite strings which lead to a particular state in a contract automaton; (ii) a contract
automaton with a single clause in a single state is equivalent to the CL rest formula
[e]c (where e is the regular expression over events which lead to the only non-empty
state which contains the clause c); (iii) any contract automaton can be decomposed
into the synchronous composition of a number of contract automata each containing a
single clause; and (iv) synchronous composition over contract automata corresponds
to conjunction over formulae in CL rest .

We will define these terms and formally show the consistency of the argument.

Definition 21 A contract automaton 〈Σ ,Q, q0, →〉 with clauses contract ∈ Q →
2Clause is said to be singularly claused if it contains exactly one clause in exactly
one state (the rest of the states have no clauses): ∑q∈Q #(contract(q)) = 1. We call
the class of such automata CA1.

We start by showing how a contract automaton can be decomposed into the syn-
chronous composition of a number of singularly claused contract automata.

Lemma 2 Given a contract automaton A = 〈S,contract〉 (with S = 〈Σ ,Q, q0, →〉
and clauses contract∈Q→ 2Clause), there exists a set of singularly claused contract
automata {A1, . . . ,An} ∈ 2CA1 such that A = ‖i∈{1,...,n}Ai synchronising over the
whole alphabet.

34 Azzopardi, Pace, Schapachnik & Schneider

Proof The proof is by induction over the total number of clauses in A . We can
show that given a clause c1 in state q1, we can construct the two automata Ak =
〈S,contractk〉 and C1 = 〈S,contract1〉 where:

contractk(q)
d f
=

{
contract(q)\{c1} if q = q1
contract(q) otherwise

contract1(q)
d f
=

{
{c1} if q = q1
/0 otherwise

Note that:

1. A1 is singularly claused: A1 ∈ CA1.
2. Ak has one less clause than the original contract automaton A .
3. It can be shown that the reachable state space of Ak‖Σ A1 is identical to A .

By induction we can thus reduce A into the synchronous composition of singu-
larly claused contract automata. ut

Example 7
Let us consider the contract automaton A = 〈S,contract〉 (where S = 〈Σ ,Q, q0, →〉,
with clauses contract∈Q→ 2Clause), where: Σ = {a,b,c}, Q= {q,q′}, q0= q,→=
{(q,{a},q′),(q′,{c},q)}, and contract = {(q,{Pp(a)}),(q′,{Op(b)})}. The above
construction will give the following two singularly claused automata:
A1 = 〈S1,contract1〉, where Σ = {a,b,c}, Q1 = {q,q′}, q01 = q,→= {(q,{a},q′),(q′,{c},q)},
and contract = {(q,{Pp(a)}),(q′, /0)}; and
A2 = 〈S2,contract2〉, where Σ = {a,b,c}, Q2 = {q,q′}, q02 = q,→= {(q,{a},q′),(q′,{c},q)},
and contract = {(q, /0),(q′,{Op(b)})}.

It is easy to see that the synchronous composition of A1 and A2 is equivalent to
the original contract A .

We now show how to obtain a CL rest formula from a singularly claused CA .

Lemma 3 For any singularly claused contract automaton A one can find a CL

formula ψC such that the two are equivalent: A
CA-CL←−−→ ψ .

Proof Let c be the only clause appearing in A , to be found in state q. Using standard
automata results, we can identify a regular expression e over sets of actions which
represents the set of traces taking us from the initial state of A to state q. Now,
consider the CL rest formula [e]c. It is easy to show that: (i) after any trace matching
e, the clause in force is the single clause c for both the CL rest formula and A ; and
(ii) after any other trace, neither contract A nor the CL rest formula [e]c will enforce
any clause. ut

Example 8
Let us consider again the above example with contract automaton A = 〈S,contract〉
(where S = 〈Σ ,Q, q0, →〉, with clauses contract∈Q→ 2Clause), where: Σ = {a,b,c},
Q= {q,q′}, q0= q,→= {(q,{a},q′),(q′,{c},q)}, and contract= {(q,{Pp(a)}),(q′,{Op(b)})},
and with singularly claused automata A1 and A2 as above. The CL formulae ob-
tained by following the procedure described in the proof of Lemma 3 are [(a.c)∗]P(a)
(obtained from A1) and [a.(c.a)∗]O(b) (obtained from A2).

Contract Automata 35

In order to get our final result, we need the following auxiliary lemma relating
conjunction in CL rest and synchronous composition in contract automata.

Lemma 4 Conjunction in CL rest is semantically equivalent to synchronous compo-
sition over contract automata: if A1

CA-CL←−−→ψ1 and A2
CA-CL←−−→ψ2, then A1‖GA2

CA-CL←−−→
ψ1∧ψ2.

Proof The proof follows from the fact that the active clauses deriving from formula
ψ1∧ψ2 after a trace w are equivalent to the union of the clauses deriving from ψ1 and
ψ2 separately, with trace w. Similarly, based on the definition of synchronous compo-
sition it can be shown that contract((q01,q02)

w⇒) = contract(q01)∪ contract(q02).
ut

Based on these last two lemma, the following theorem follows immediately.

Theorem 6 Given contract automaton A , there always exists an equivalent CL rest

formula ψ: A
CA-CL←−−→ ψ .

7 Related Work

Despite the fact that contracts are by definition an agreement between two or more
parties, most formal studies regulate the parties independently and do not analyse
how permissions, obligations or prohibitions for one party affect the other, or do so
in limited ways. Here we summarise the most closely related work.

Xu [43] presents a multi-party contract model where a contract is represented by
a set of actions, graph describing possible interaction among the parties, and set of
commitments, which is the name the article gives to obligations. In contrast with our
approach, the model does not allow to describe permissions nor prohibitions.

Marjanovic et al. [23] aims at formalisations of contracts for e-commerce but
focuses only on analysing temporal consistency. Governatori et al. [13] deals with
obligation violations in contracts using the domain specific BCL language [12], in-
troducing contrary-to-duty clauses and directed obligations. Neither of them analyses
the reciprocity of deontic clauses in a contract. That is, how the clauses imposed on
one of the parties also put restrictions on the behaviour of the other, an aspect that is
central to our approach.

A related line of research was started by Herrestad et al. [15], later followed
upon by various others ([41, 8], etc.) — although not explicitly about contracts, they
look at a flavour of axiomatic deontic logic with obligations being directed from one
individual towards another, termed directed obligations. Their main concern is the
relation of general operators with directed ones (i.e., the question of whether a general
obligation is equivalent to a directed obligation imposed on every agent), and similar
issues. Directed permissions have also been studied, but were termed to be conflicting
because of lack of a clear counterparty, following both the claimant theory (were the
stress is placed on who can claim in a Court of Law when a violation occurs) or
the benefit theory (that places the emphasized on who a given norm is intended to
benefit). A salient different with our approach is that the idea of synchronicity of

36 Azzopardi, Pace, Schapachnik & Schneider

actions and parties having to explicitly collaborate so, e.g., one of them can fulfill her
obligations, is not present. Also, once one considers actions that are only realisable
by the two parties in synchrony, as our approach does, the concept of permission
appears more clearly.

Ryu [37] also analyses directed obligations and permissions but in a defeasible
axiomatic model where the responsibilities are not mutual. The motivation for his
approach can be seen in the following quote:

A contractual obligation is an obligation that is relativized to two persons,
an obligor and a benefactor, i.e., ’the obligor α1 has an obligation to the
benefactor α2 that ϕ , given that ψ’. For α1, some situation in which both ϕ

and ψ are true is legally better than any situation in which ψ is true but ϕ is
not, because in a situation in which ψ is true but ϕ is not, the obligor α1 is
legally responsible and the law prescribes sanctions against α1. However, the
benefactor α2 does not have any legal responsibility for situations in which
ψ is true but ϕ is not. Instead, if α1 fails to bring about it that ϕ or see to it
that ϕ when ψ , α2 has recourse to certain legal actions against α1, which are
ratified by the law.

As can be seen Ryu’s approach also does not consider that some actions might require
collaboration and thus is explicit about placing the onus of compliance solely on one
of the parties.

Kanger [17] also introduces the notion of directionality of modalities, stating that,
e.g., party p has versus party p′ a claim right that S(p, p′). However, as noted by many
(e.g., [22, 15]), the notion of the counterparty is weekly present in Kanger’s theory,
and there is not a notion of the ‘weak’ obligations that the permission on one party
impose on the other. Indeed, that difference is very clear when contract automata is
used to formalise Kanger’s types of rights: some deontic combinations that are valid
in Kanger’s approach become conflicting because of the onuses imposed into the
other party. See [31] for a full analysis.

Although our model deals with interaction, it does not provide explicitly for the
notion of interference that has been analysed by many, notably Hohfeld [16] and Lin-
dahl [21], It is important to understand, however, that the difference between vested
and naked liberties (i.e., warranty of immunity from interference) relates to a real
concern in the context of general law but blurs in the context of a contract where one
party allowing the other to perform a shared action, but reserving itself the right to in-
terfere, does not have practical sense. More specifically, in our formal model Pp(a)
means not only that p may attempt to perform a — it means that p would succeed
in doing a should she try. If the notion of attempting to do an action a that can be
interfered by others needs to be modeled, then another action attempt a should be
added and the permission placed onto the latter. Another alternative is to introduce
modalities for trying, as in Santos et al. [39].

Surden [40] describes the advantages of computable contracts so that their rules
can be monitored. More recently Flood et al. [11] proposed representing financial
agreements as automata. Their informal article describes advantages of using directed
finite automata as a graphical representation for contracts where happy and unhappy
paths can be described.

Contract Automata 37

Lindahl [21] studies liberty spaces to present the concept of less free than, a rela-
tionship between maximally consistent sets of deontic positions. The general idea is
somewhat similar to our definition of strictness (see Section 2.2); however, as Lindahl
notes, most of the maximally consistent sets are incomparable using this relationship,
whereas our notion of strictness provides interesting theorems.

Many of the above mentioned authors, and also others, deal with some definition
of conflicts but they usually leave out the inconsistencies that arise because of the
onuses imposed to the other party (see our example of Pp(!a) conflicting with Op(a)
in Section 3).

Another automata approach to normative systems is explored by Martı́nez et
al. [25, 6, 24, 7] in C-O Diagrams. Unlike our approach, such diagrams do not con-
sider synchronous actions as we are doing here. On the other hand, C-O Diagrams
allow for the representation of real-time constraints, something not covered by our
formalism.

With a coincidentally similar name, Basile et al. [4] presents a formalism also
called contract automata that splits actions in requests and matching offers. Unlike
our approach, parties are not separately represented but implicit in the requesting and
offering of the actions in the contract graph. Also, the contracts are not tagged with
deontic operators. Leaned towards service-oriented computing, the underlying idea
is that the contract either accept or reject a stream of actions (a word in automata
parlance) that comes from the interaction of the parties.

Recently, Bench-Capon [5] has studied how transitions systems have been used to
model and analyse norms, in the context of multi-agent systems. He identifies three
approaches to dealing with undesirable actions: enforcement, which simply means
removing the offending transitions; sanctions, which may result in additional agents,
states and transitions to be added to the transition system; and by creating desirable
and undesirable transitions, with the agents hopefully coordinating on the most de-
sirable transition (done by labelling a transition with values such as Compliance and
Safety). Our approach only limits itself to contracts, rather than the wide of view
of norms explored by Bench-Capon. However, our approach extending contract au-
tomata with reparations is similar to the sanctions approach detailed in his article.

8 Conclusions

In this paper we have presented contract automata as a low-level formalism to enable
the analysis of contracts. We show how such a formalism can be effectively used for
analysis in a variety of settings — from the algebraic approach to contract conflict
analysis to the compositional analysis of contract synthesis and combinational analy-
sis and its relation to other deontic formalisms. Apart from the previously published
results, we have presented more complete results about dealing with reparations in
contract automata, and presented a new means of reparation handling through the
use of hierarchical contract automata. Furthermore, we formally compare CL and
contract automata in terms of expressivity and translation between the formalisms.
Finally, we have presented a tool for the automated analysis of conflicts.

38 Azzopardi, Pace, Schapachnik & Schneider

One of the things shown in this paper is how the formalism is both tractable for
pencil-and-paper proofs, although still being low-level to be targeted effectively by
automated static and dynamic analysis tools. Although in this paper we only present
one such automated analysis technique for conflict analysis, we are currently looking
into the building of a toolset for the generation and analysis of contract automata.

There are various other directions we are currently exploring — on one hand, we
are looking at the use of contract automata to characterise different deontic concepts
such as conditional permissions, and analysis of contracts with unknown sub-parts
which is essential for natural language text contract analysis. The building of effective
tools for the analysis of contract automata is crucial for the practical impact of this
work, but at the other end, we also techniques for the generation of contract automata
from more abstract formalisms. Building upon the translation from CL in this paper,
we are currently looking at other deontic notations, including natural language texts.

Acknowledgements This research has been partially supported by: UBACyT 20020130200032BA, the
European ICT COST Action IC1402 (ARVI: Runtime Verification beyond Monitoring), and the Swedish
Research Council under grants Nr. 2012-5746 (ReMU: Reliable Multilingual Digital Communication:
Methods and Applications) and Nr. 2015-04154 (PolUser: Rich User-Controlled Privacy Policies).

References

1. Arnold, A.: Nivat’s processes and their synchronization. Theor. Comput. Sci.
281, 31–36 (2002)

2. Azzopardi, S.: Extending contract automata with reparation, hypothetical and
conditional clauses. Tech. rep., University of Malta (2014)

3. Azzopardi, S., Pace, G.J., Schapachnik, F.: Contract automata with reparations.
In: Legal Knowledge and Information Systems - JURIX 2014: The Twenty-
Seventh Annual Conference, Jagiellonian University, Krakow, Poland, 10-12 De-
cember 2014, Frontiers in Artificial Intelligence and Applications, vol. 271, pp.
49–54. IOS Press (2014)

4. Basile, D., Degano, P., Ferrari, G.L.: Automata for analysing service contracts.
In: Trustworthy Global Computing - 9th International Symposium, TGC 2014,
Rome, Italy, September 5-6, 2014. Revised Selected Papers, Lecture Notes in
Computer Science, vol. 8902, pp. 34–50. Springer (2014)

5. Bench-Capon, T.J.M.: Analysing norms with transition systems. In: Legal
Knowledge and Information Systems - JURIX 2014: The Twenty-Seventh An-
nual Conference, Jagiellonian University, Krakow, Poland, 10-12 December
2014, Frontiers in Artificial Intelligence and Applications, vol. 271, pp. 29–38.
IOS Press (2014)

6. Dı́az, G., Cambronero, M.E., Martı́nez, E., Schneider, G.: Timed Automata Se-
mantics for Visual e-Contracts. In: 5th International Workshop on Formal Lan-
guages and Analysis of Contract-Oriented Software (FLACOS’11), Electronic
Proceedings in Theoretical Computer Science, vol. 68, pp. 7–21. Málaga, Spain
(2011)

Contract Automata 39

7. Dı́az, G., Cambronero, M.E., Martı́nez, E., Schneider, G.: Specification and ver-
ification of normative texts using c-o diagrams. IEEE Transactions on Software
Engineering 99, 1 (2013)

8. Fasli, M.: On commitments, roles, and obligations. In: Revised Papers from the
Second International Workshop of Central and Eastern Europe on Multi-Agent
Systems: From Theory to Practice in Multi-Agent Systems, CEEMAS ’01, pp.
93–102. Springer-Verlag (2002)

9. Fenech, S., Pace, G.J., Schneider, G.: Automatic Conflict Detection on Contracts.
In: ICTAC’09, LNCS, vol. 5684, pp. 200–214. Springer (2009)

10. Fenech, S., Pace, G.J., Schneider, G.: CLAN: A tool for contract analysis and
conflict discovery. In: ATVA’09, LNCS, vol. 5799, pp. 90–96. Springer (2009)

11. Flood, M.D., Goodenough, O.R.: Contract as automaton: The computational rep-
resentation of financial agreements. Available at SSRN 2538224 (2014)

12. Governatori, G.: Representing business contracts in RuleML. Int. J. Cooperative
Inf. Syst. 14(2-3), 181–216 (2005)

13. Governatori, G., Milosevic, Z.: Dealing with contract violations: formalism and
domain specific language. In: EDOC Enterprise Computing Conference, 2005
Ninth IEEE International, pp. 46–57. IEEE (2005)

14. Hage, J.: Contrary to Duty Obligations — A Study in Legal Ontology. In: Legal
Knowledge and Information Systems (JURIX 2001) (2001)

15. Herrestad, H., Krogh, C.: Deontic logic relativised to bearers and counterparties.
Anniversary Anthology in Computers and Law pp. 453–522 (1995)

16. Hohfeld, W.: Some fundamental legal conceptions as applied in judicial reason-
ing. Yale Lj 23, 16 (1913)

17. Kanger, S., Kanger, H.: Rights and parliamentarism. Theoria 32(2), 85–115
(1966)

18. Kripke, S.: Semantical considerations on modal logic. Acta Philosophica Fennica
16, 83–94 (1963)

19. Kyas, M., Prisacariu, C., Schneider, G.: Run-time monitoring of electronic con-
tracts. In: 6th International Symposium on Automated Technology for Verifica-
tion and Analysis (ATVA’08), LNCS, vol. 5311, pp. 397–407. Springer-Verlag,
Seoul, South Korea (2008)

20. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log.
Algebr. Program. 78(5), 293–303 (2009)

21. Lindahl, L.: Position and change: A study in law and logic, vol. 112. Springer
(1977)

22. Makinson, D.: On the formal representation of rights relations. Journal of philo-
sophical Logic 15(4), 403–425 (1986)

23. Marjanovic, O., Milosevic, Z.: Towards formal modeling of e-contracts. In: Pro-
ceedings of the 5th IEEE International Conference on Enterprise Distributed Ob-
ject Computing, EDOC ’01, pp. 59–. IEEE Computer Society, Washington, DC,
USA (2001)

24. Martı́nez, E., Dı́az, G., Cambronero, M.: Contractually compliant service compo-
sitions. In: Proceedings of the 9th international conference on Service-Oriented
Computing (ICSOC’11), Lecture Notes in Computer Science, vol. 7084, pp. 636–
644. Springer-Verlag Berlin, Paphos, Cyprus (2011)

40 Azzopardi, Pace, Schapachnik & Schneider

25. Martı́nez, E., Dı́az, G., Cambronero, M.E., Schneider, G.: A model for visual
specification of e-contracts. In: The 7th IEEE International Conference on Ser-
vices Computing (IEEE SCC’10), pp. 1–8. IEEE Computer Society, Miami, USA
(2010)

26. McNamara, P.: Deontic Logic. In: Gabbay, D.M., Woods, J., eds.: Handbook of
the History of Logic, vol. 7, pp. 197–289. North-Holland Publishing (2006)

27. Mikk, E., Lakhnech, Y., Siegel, M.: Hierarchical automata as model for state-
charts. In: Third Asian Computing Science Conference. Advances in Computing
Science – ASIAN’97, Lecture Notes in Computer Science, vol. 1345. Springer
Verlag (1997)

28. Pace, G.J., Schapachnik, F.: Permissions in Contracts, a Logical Insight. In: The
24th International Conference on Legal Knowledge and Information Systems
(JURIX’11), Frontiers in Artificial Intelligence and Applications, vol. 235. IOS
Press, University of Vienna, Austria (2011)

29. Pace, G.J., Schapachnik, F.: Permissions in contracts, a logical insight. In: JU-
RIX, pp. 140–144 (2011)

30. Pace, G.J., Schapachnik, F.: Contracts for interacting two-party systems. In:
FLACOS’12, ENTCS, vol. 94 (2012)

31. Pace, G.J., Schapachnik, F.: Types of rights in two-party systems: A formal anal-
ysis. In: Legal Knowledge and Information Systems - JURIX 2012: The Twenty-
Fifth Annual Conference, University of Amsterdam, The Netherlands, 17-19 De-
cember 2012, Frontiers in Artificial Intelligence and Applications, vol. 250, pp.
105–114. IOS Press (2012)

32. Pace, G.J., Schapachnik, F.: Synthesising implicit contracts. In: ICAIL’13, pp.
217–221. ACM, New York, NY, USA (2013)

33. Pardo, R., Colombo, C., Pace, G., Schneider, G.: An automata-based approach to
evolving privacy policies for social networks. In: 16th International Conference
on Runtime Verification (RV) (Madrid, Spain. 2016), LNCS (2016)

34. Prisacariu, C., Schneider, G.: A Formal Language for Electronic Contracts. In:
FMOODS, LNCS, vol. 4468, pp. 174–189. Springer (2007)

35. Prisacariu, C., Schneider, G.: CL: An Action-based Logic for Reasoning about
Contracts. In: WOLLIC’09, LNCS, vol. 5514, pp. 335–349. Springer (2009)

36. Prisacariu, C., Schneider, G.: A dynamic deontic logic for complex contracts.
Journal of Logic and Algebraic Programming 81(4), 458–490 (2012)

37. Ryu, Y.: Specification of contractual obligations in formal business communica-
tion. Data & knowledge engineering 26(3), 309–326 (1998)

38. Salcianu, A., Rinard, M.: Pointer and escape analysis for multithreaded pro-
grams. In: ACM SIGPLAN Notices, vol. 36, pp. 12–23. ACM (2001)

39. Santos, F., Jones, A., Carmo, J.: Action concepts for describing organised inter-
action. In: System Sciences, 1997, Proceedings of the Thirtieth Hawaii Interna-
tional Conference on, vol. 5, pp. 373–382. IEEE (1997)

40. Surdan, H.: Computable contracts. UCDL Rev. 46, 629 (2012)
41. Tan, Y.H., Thoen, W.: A logical model of directed obligations and permissions

to support electronic contracting. Int. J. Electron. Commerce 3, 87–104 (1998)
42. Von Wright, G.: Deontic logic: A personal view. Ratio Juris 12, 26–38 (1999)
43. Xu, L.: A multi-party contract model. SIGecom Exchanges 5(1), 13–23 (2004)

