
Automated Analysis of Conflicts in Software Product Lines

Enrique Martı́nez
Department of Computer Science

University of Castilla - La Mancha
Albacete, Spain

emartinez@dsi.uclm.es

Gerardo Schneider
Department of Applied IT

Chalmers| University of Gothenburg, Sweden
Department of Informatics
University of Oslo, Norway

gersch@chalmers.se

Abstract—In this paper we propose a framework where
the behaviour of features can be modelled using a visual
model language for contracts (C-O Diagrams). We present a
partial translation from C-O Diagrams into the deontic contract
languageCL allowing to detect whether there are contradicting
features, using the tool CLAN. We aim at handling conflicts
arising from software evolution and variability. As a proof of
concept we apply our technique to a trading system case study.

Keywords-contracts; software product lines; deontic logic;
conflict detection

I. I NTRODUCTION

The design, specification and analysis of software product
lines (SPL) is not easy, one of the main problems being that
of handlingvariability and softwareevolution. Variability is
an important aspect of SPL, one of the reasons being that one
naturally wants to have a family of software where concrete
products are instantiations of the family varying only on
some aspects. While modelling and analysing feature vari-
ability is already difficult, the real challenge comes when
feature models evolve. Such evolution implies the additionor
removal of certain features over time, eventually introducing
constrains and hence conflicts with previous defined features.

The use of different logics for the automated analysis of
SPL is widely spread in the literature [3]. Moreover, we can
find some work based on applying deontic logic to SPL [2],
but it is focused on model-checking properties. In this paper
we present a conceptual framework, based on an extension of
feature models in order to represent software product lines.
Such a framework allows to express spatial variability, as
well as evolution of the software family (time variability),
together with a check on the possible conflicts arising from
the addition/removal of features (the kind of conflicts we
can detect are detailed in Subsection II-C).

As a proof of concept we apply our technique to a case
study on a trading system, in which we expose some of
the difficulties mentioned above. In particular, starting from
a feature model describing a product family for the trading
system, we incrementally add two different requirements: (i)
the first shows how in some cases adding a new feature still
allows compositional modelling and verification, and (ii) we
then extend the modified model with an additional feature
that restricts previous features on other parts of the model.
The intention of this second modification is to highlight

FEATURE DIAGRAM

CL
SPECIFICATION

Translation
Function

CONFLICTS

CLAN Tool

C-O DIAGRAMS

Coupon_Handling

Use_Coupon After_Coupon

-

-P
UseCoupon

Customer

Use_Coupon

O Invalidate
Coupon

System

F
UseCoupon

Customer

Discount

O

System
cond* UseUni

Figure 1. Workflow of the framework

the difficulty of preserving compositional verification. In
order to check the consistency of the modified models we
(manually) translate everything into the contract language
CL [9] and use the tool CLAN [6] to check for conflicts.

In the conceptual framework we have defined the follow-
ing artefacts can be distinguished:

• A feature diagram to engineer the requirements of the
SPL. We consider the syntax and semantics of these
diagrams defined in [10], which formalisation includes
the management of feature model evolution.

• C-O Diagrams [7] to specify the expected behaviour
of the different features composing the feature model.

• A CL specification that can be analysed to detect any
behavioural conflict in the feature model.

• A translation function specifying how the transforma-
tion from C-O Diagramsinto CL is done.

• The CLAN tool that automates the process of conflict
detection over aCL specification.

The workflow followed by this framework is shown in
Figure 1. First, we model the feature diagram corresponding
to the SPL we want to analyse and theC-O Diagrams
specifying the expected behaviour of the features we are
interested in. Next, we use the translation function from
C-O Diagramsto CL in order to obtain a specification in
this language that can be automatically analysed. Finally,
we apply the contract analyser of the CLAN tool over the
resultingCL clauses. If the tool detects any conflict in the
CL contract, the information provided by the tool is used to
modify the models we have created to fix the problem in an

name

agent

Figure 2. Box structure

appropriate way, performing afterwards the translation and
the conflict detection processes again. This flow of events
is repeated until all the conflicts have been solved. The
integration of evolution in SPL inside this framework is
quite straightforward. When we add a new feature in the
feature model, we just have to create a newC-O Diagram
corresponding to the expected behaviour of this feature and
follow the steps described above to see if the new feature
originates any conflict and how this conflict can be solved. In
the case of evolution of an already existing feature, we have
to modify the C-O Diagram corresponding to this feature
according to its evolution, so we can check again if this
evolution produces any conflict and how it can be fixed.

The rest of the paper is organized as follows: A back-
ground on some of the artifacts we use is given in Section II,
and the translation fromC-O Diagramsto CL is described
in Section III. The application of our technique to a case
study on a trading system is depicted in Section IV. Finally,
we conclude in Section V.

II. BACKGROUND

As feature diagrams description can be found in many
places [10], in this section we focus on describing the other
artefacts of our framework: the visual modelC-O Diagrams,
the contract languageCL and the CLAN tool.

A. C-O Diagrams

A C-O Diagram[7] is a hierarchical tree diagram that we
use to specify the clauses of a contract. These clauses can
be related to the expected behaviour of some features part
of a feature model, so these diagrams can be used to analyse
feature models and their evolution.

In Figure 2 we show the basic element of ourC-O
Diagrams, namely abox, which is divided into four fields.
On the left-hand side of the box we specify the conditions
and restrictions. Theguard g specifies the conditions under
which the contract clause must be taken into account. The
time restriction tr specifies the time frame in which the
contract clause must be satisfied. Thepropositional content
P, in the middle, is the main field of the box, and it is used
to specify normative aspects (obligations, permissions and
prohibitions) that are applied over actions, and/or the actions
themselves. The last field of these boxes, on the right-hand
side, is thereparationR. This reparation, if specified by the
contract clause, is another contract that must be satisfied in
case the main norm is not satisfied (a prohibition is violated
or an obligation is not fulfilled, there is not reparation for
permission), considering the clause eventually satisfied if
this reparation is satisfied. Each box has also a name and an

agent. Thenameis useful both to describe the clause and to
reference the box from other clauses, so it must be unique.
The agent indicates who the performer of the action is.

These basic elements ofC-O Diagramscan be refined by
using AND/OR/SEQ refinements, as shown in Figure 3. The
aim of these refinements is to capture the hierarchical clause
structure followed by most contracts. AnAND-refinement
means that all the subclauses must be satisfied in order to
satisfy the parent clause. AnOR-refinement means that
it is only necessary to satisfy one of the subclauses in
order to satisfy the parent clause, so as soon as one of its
subclauses is fulfilled, we conclude that the parent clause is
fulfilled as well. A SEQ-refinement means that the norm
specified in the target box (SubClause2in Figure 3) must be
fulfilled after satisfying the norm specified in the source box
(SubClause1in Figure 3). There is another structure that can
be used to modelrepetition. This structure is represented
as an arrow going from a subclause to one of its ancestor
clauses (or to itself), meaning the repetitive applicationof all
the subclauses of the target clause after satisfying the source
subclause. For example, on the right of Figure 3, we have
anOR-refinement with an arrow going fromSubClause1to
Clause. It means that after satisfyingSubClause1we apply
Clauseagain, but not after satisfyingSubClause2.

We follow an ought-to-do approach [8], that is, the
normative aspects are applied overactions performed by
the participants in the contract. We only consider the spec-
ification of atomic actionsin the P field of the leaf boxes
of our diagrams. We denote these actions with lower case
Latin letters (“a”,“ b”,“ c”, . . .) and we use a dash (“-”) to
denote that there is no action specified in the no leaf boxes.
The composition of actions can be achieved by means of
the different kinds of refinement. In this way, an AND-
refinement can be used to modelconcurrency“&” between
actions, an OR-refinement can be used to model achoice“+”
between actions, and a SEQ-refinement can be used to model
sequence“;” of actions. Thedeontic normsthat are applied
over these actions can be specified in any box of ourC-O
Diagrams, affecting all the actions in the leaf boxes that are
descendants of this box. If it is the case that the box where
we specify the deontic norm is a leaf, the norm only affects
the atomic action we have in this box. We use an upper case
“O” to denote an obligation, an upper case “P” to denote a
permission, and an upper case “F” to denote a prohibition
(forbidden). These letters are written in the top left corner of
field P. The composition of deontic norms is also achieved
by means of the different refinements we have inC-O
Diagrams. Thus, an AND-refinement corresponds to the
conjunctionoperator “∧” between norms, an OR-refinement
corresponds to thechoice operator “+” between norms,
and a SEQ-refinement corresponds to thesequenceoperator
“ ;” between norms. Finally, concerning the specification of
guard conditions and time restrictions, they affect not only
the box where they are specified but also all its descendants.

Clause Clause

SubClause1 SubClause1SubClause2 SubClause2

Clause

SubClause1 SubClause2

And-refinement

Clause

SubClause1 SubClause2

Or-refinement Seq-refinement

Figure 3. AND/OR/SEQ refinements and repetition inC-O Diagrams

We have given here a condensed description ofC-O
Diagrams. A more detail description can be found in [7],
including a case study showing how to specify a concrete
e-contract using our diagrams together with a qualitative
and quantitative evaluation of the visual model. We formally
define in what follows the syntax ofC-O Diagrams, so we
can later be able to define the translation intoCL.

We consider a finite set of real-valued variablesC standing
for clocks, a finite set of non-negative integer-valued vari-
ablesV , a finite alphabetΣ for atomic actions, a finite set of
identifiersA for agents, and another finite set of identifiers
N for names. The greek letterǫ means that an expression is
not given, i.e., it is empty. We useC to denote the contract
modelled by aC-O Diagram. The diagrams syntax is defined
by the following EBNF grammar:

Definition 1: (C-O Diagrams Syntax)

C := (agent, name, g, tr,O(C2), R) |
(agent, name, g, tr, P (C2), ǫ) |
(agent, name, g, tr, F (C2), R) |
(ǫ, name, g, tr,C1, ǫ)

C1 := C (And C)+ |C (Or C)+ |C (Seq C)+

C2 := a |C3 (And C3)
+ |C3 (Or C3)

+ |C3 (Seq C3)
+

C3 := (ǫ, name, g, tr,C2, ǫ)
R := C | ǫ �

In the abovea ∈ Σ, agent ∈ A andname ∈ N . Guard
g is ǫ or a conjunctive formula of atomic constraints of the
form: v ∼ n or v − w ∼ n, for v, w ∈ V , ∼∈ {≤, <

,=, >,≥} and n ∈ IN, whereas timed restrictiontr is ǫ

or a conjunctive formula of atomic constraints of the form:
x ∼ n or x−y ∼ n, for x, y ∈ C, ∼∈ {≤, <,=, >,≥} and
n ∈ IN. O, P andF are the deontic operators correspond-
ing to obligation, permission and prohibition, respectively,
whereO(C2) states the obligation of performingC2, F (C2)
states prohibition of performingC2, andP (C2) states the
permission of performingC2. And, Or and Seq are the
operators corresponding to the refinements we have inC-
O Diagrams, AND-refinement, OR-refinement and SEQ-
refinement, respectively.

The most simple contract we can have inC-O Dia-
grams is that composed of only one box including the
elementsagent and name. Optionally, we can specify a
guardg and a time restrictiontr. We also have a deontic
operator (O, P or F) applied over an atomic actiona,
and in the case of obligations and prohibitions it is pos-
sible to specify another contractC as a reparation. E.g.,
C := (Buyer, Example1, ǫ, ǫ, O(pay), C′) (Figure 4, on
the bottom left) is a very simple contract specifying for a
buyer the obligation of paying, otherwise contractC′ comes

OR

pay

C'

Buyer

Example1

Example2

C''

x<5

OR

Example3

O

O

C'

Buyer

Option1 Option2

pay_cash pay_card

Figure 4. Syntax examples

into effect.
We useC1 to define a more complex contract where we

combine different deontic norms by means of any of the
different refinements we have inC-O Diagrams. In the box
where we have the refinement intoC1 we cannot specify
an agent nor a reparation because these elements are always
related to a single deontic norm, but we still can specify a
guardg and a time restrictiontr that affect all the deontic
norms we combine. E.g.,C := (ǫ, Example2, ǫ, x <

5, C′ Or C′′, ǫ) (Figure 4, on the top left) is a composed
contract specifying that contractC′ or contractC′′ must be
satisfied in order to satisfyC within 5 time units.

Once we write a deontic operator in a box of our diagram,
we have two possibilities as we can see in the specification
of C2: we can just write a simple actiona in the same
box, being the deontic operator applied only over it, or we
can refine this box in order to apply the deontic operator
over a compound action. In this case we have that the
subboxes (C3) cannot define a new deontic operator as it
has already been defined in the parent box (affecting all
the subboxes). Therefore, these subboxes cannot specify
an agent nor a reparation, but it is possible to specify a
guardg and a time restrictiontr affecting only the action in
the subbox or the action composed in its refinements. For
example,C := (Buyer, Example3, ǫ, ǫ, O(C′Or C′′), ǫ),
where we have thatC′ := (ǫ, Option1, ǫ, ǫ, pay cash, ǫ)
andC′′ := (ǫ, Option2, ǫ, ǫ, pay card, ǫ) (Figure 4, on the
right), is a contract specifying for a buyer the obligation of
paying by cash or by credit card.

B. The contract languageCL

The contract languageCL [9] enables formal specification
of deontic electronic contracts. It is based on a combination
of deontic, dynamic and temporal logics, allowing the rep-
resentation of obligations, permissions and prohibitions, as
well as temporal aspects. Moreover, it also gives a means to
specify exceptional behaviours arising from the violationof
obligations (what is to be demanded in case an obligation is
not fulfilled) and of prohibitions (what is the penalty in case
a prohibition is violated). CL contracts are written using the
syntax shown in Definition 2.

Definition 2: (CL Syntax)
C := CO |CP |CF |C ∧ C | [β]C | ⊤ |⊥

CO := OC (α) |CO ⊕CO

CP := P (α) |CP ⊕ CP

CF := FC(α)
α := 0 | 1 | a | a |α&α |α ; α |α + α
β := ǫ | 0 | 1 | a | a |β& β |β ; β |β + β |β∗

�

A contract clauseC can be either an obligation (CO), a
permission (CP) or a prohibition (CF) clause, a conjunction
of two clauses, the trivially satisfied contract (⊤), the im-
possible contract (⊥) or a clause preceded by the dynamic
logic square brackets.OC(α) is interpreted as the obligation
to performα in which case, if violated, then the reparation
contractC must be executed. An obligation clause may be an
exclusive disjunction of two other obligation clauses. This is
interpreted as being obliged to satisfy one of the obligations
but not both. In the same way, a permission clause may be
an exclusive disjunction of two other permission clauses.
This is interpreted as being permitted to perform one of
the permissions but not both.P (α) is interpreted as the
permission to performα. FC(α) is interpreted as forbidden
to perform α and if α is performed then the reparation
C must be executed.[β]C is interpreted as if actionβ
is performed then the contract C must be executed. The
conjunction of two clauses is interpreted as both clauses
have to be satisfied.ǫ is an empty action,1 is the action
that matches any action, while0 is the impossible action.
Action expressions (α andβ) can be constructed from basic
ones using the operators&, ;, + and∗ where& stands for
the actions occurring concurrently,; stands for the actions
to occur in sequence,+ stands for a choice between actions,
and ∗ is the Kleene star.· is the complement, soa means
“any action excepta”.

C. CLAN tool

CLAN [6] is a tool forCL contract analysis. It implements
the algorithm for conflict analysis presented in [5]. Basically,
conflicts in contracts arise from four different reasons. The
first two reasons are being obliged and forbidden to perform
the same action, and being permitted and forbidden to
perform the same action. In the first conflict we would end
up in a situation where whatever is performed will violate
the contract. The second conflict would not result in having
a trace that violates the contract since in the trace semantics
permissions cannot be broken, however, we can still iden-
tify these situations. The remaining two kinds of conflicts
correspond to obligations of mutually exclusive actions, and
permissions and obligations of mutually exclusive actions.

III. F ROM C-O DiagramsTO CL

As we want to detect any conflict in theC-O Diagrams
we model, we have to define a syntactic translation from the
diagrams toCL in order to be able to use the CLAN tool
to detect these conflicts. However, note thatC-O Diagrams
are richer thanCL (for instance, there is no time inCL) and

-

a ab b a b

- -

a & b a + b a ; b

AND-refinement SEQ-refinementOR-refinement

Figure 5. Equivalence of compound actions

-

a ab b a b

- -

O O(a) (b)Ù O O(a) (b)Å O O(a) [a] (b)Ù

O O O O O O

AND-refinement SEQ-refinementOR-refinement

Figure 6. Equivalence of compositons of obligations

thus the translation necessarily will have to abstract away
some of the features of the diagrams. We comment on that
later in this section.

The translation of atomic and compound actions is
straightforward, as we can see in Figure 5. In that figure
we show the different ways we can compound two atomic
actionsa andb in C-O Diagramsand the equivalent formulas
in CL: an AND-refinement corresponds to the concurrency
operator “&”, an OR-refinement corresponds to the choice
operator “+”, and a SEQ-refinement corresponds to the
sequence operator “;”.

Concerning to the application of deontic norms (obliga-
tions, permissions and prohibitions) over the actions, inC-O
Diagramswe have that when we write one of these norms
in a box, it is applied over all the actions in the descendant
boxes (or in the same box). Therefore, the translation into
CL just consists of writing the composition of these actions
and apply the corresponding deontic norm over it.

The translation of the different ways of composing deontic
norms in C-O Diagramsinto CL is a bit more complex,
specially because there is not sequence operator to compose
clauses inCL that can correspond to the SEQ-refinement
in C-O Diagrams. The other refinements are easier to
translate: an AND-refinement composing two deontic norms
corresponds to the conjunction operator “∧” between these
norms, while an OR-refinement corresponds to the exclusive
choice operator “⊕”. For the SEQ-refinement between two
norms we write inCL a conjunction between both norms,
but adding the expression[β] before the second norm, where
β is the action under the first norm, so the second norm is
only applied after performing this action. For example, in
Figure 6 we show the translations intoCL of the different
refinements inC-O Diagramsapplied over the obligation of
performing an actiona and the obligation of performing an
actionb.

Expressing conditions inCL also differs from the way we
do it in C-O Diagrams. In the diagrams we have a field in the
boxes allowing us to specify the conditions, but inCL this is
not possible, so we use again the expression[β], now before
the conditional part of the contract, beingβ the condition
that must be fulfilled to take this part of the contract into
account.

In C-O Diagramswe have a field in the boxes allowing
us to specify real-time restrictions in the contract. Unfor-

tunately, the specification of timing constraints is not yet
supported byCL, so what we do in this case for the
translation is encoding these constraints in the definitionof
the actions they affect. E.g., inC-O Diagramswe can have a
box specifying the obligation of the action “send an e-mail”
and the restriction “before 2 hours” in its specific field in the
box. In the correspondingCL translation we have to specify
directly the obligation of the action “send an e-mail before
two hours”. We have the same situation for the agents inC-
O Diagrams, i.e., they have to be encoded in the definition
of the actions inCL.

Finally, the translation of reparations fromC-O Diagrams
into CL is done directly, since in both cases we just have
a reference to the secondary contract that comes into effect
when the violation occurs. For that purpose, inC-O Dia-
gramswe use a field in the boxes containing an obligation
or a prohibition where we can specify a reparation, whereas
in CL a reference to a reparation must be a subindex of an
obligation or a prohibition expression.

Formally, we consider a parameterized translation func-
tionF [agent,TR] from C-O Diagramsinto expressions ofCL.
The parameteragent is used to propagate the entity affected
by a norm, being empty if it has not been specified yet (we
will write only F [TR] in that case), and the parameterTR

is used to propagate any time restriction we have specified,
being initially empty. The result of applying this translation
function over the diagrams is shown in Definition 3.

Definition 3: (Translation function fromC-O Diagrams
to CL)

F[TR]((agent, name, g, tr, O(C), R)) = [g]OR(F[agent,TR∪tr](C)) (1)

F[TR]((agent, name, g, tr, P(C), ǫ)) = [g]P(F[agent,TR∪tr](C)) (2)

F[TR]((agent, name, g, tr, F (C), R)) = [g]FR(F[agent,TR∪tr](C)) (3)

F[TR](ǫ, name, g, tr, C, ǫ) = [g]F[TR∪tr](C) (4)

F[agent,TR](ǫ, name, g, tr, C, ǫ) = [g]F[agent,TR∪tr](C) (5)

F[agent,TR](C1 AndC2) = F[agent,TR](C1) &F[agent,TR](C2) (6)

F[agent,TR](C1 Or C2) = F[agent,TR](C1) + F[agent,TR](C2) (7)

F[agent,TR](C1 Seq C2) = F[agent,TR](C1) ; F[agent,TR](C2) (8)

F[TR](C1 AndC2) = F[TR](C1) ∧ F[TR](C2) (9)

F[TR](C1 Or C2) = F[TR](C1) ⊕ F[TR](C2) (10)

F[TR](C1 Seq C2) = F[TR](C1) ∧ [βC1
]F[TR](C2) (11)

F[agent,TR](a) = a[agent,TR] (12)

�

Lines (1)–(3) correspond to the translation intoCL of
a box where we specify an obligation, a permission or a
prohibition, considering also any possible reparation. As
agents and time restrictions are not yet supported natively
by CL, these two things are encoded as part of the actions,
so we propagate them into the translation ofC under the
deontic norm, joining the time restriction in the box (tr) with
any other time restriction we could have specified before
(TR). The conditions are encoded at the beginning of the

clause between square brackets, whereas the name of the
box is not taken into account.

Lines (4)–(5) correspond to the translation intoCL of
a box where we do not specify any obligation, permis-
sion or prohibition. Again, agents and time restrictions are
propagated into the translation ofC, and the conditions
are encoded at the beginning of the clause between square
brackets. The difference between these two equations is that
in the formeragent has not been specified yet, whereas in
the latteragent has been already specified, so we have to
propagate it.

Lines (6)–(8) correspond to the translation of a refinement
when the deontic operator has been already specified and
the refinement is used to compose actions, while lines (9)–
(11) correspond to the translation of a refinement when the
deontic operator has not been specified yet and the refine-
ment is used to compose deontic norms. The translation
is quite straightforward in all the cases except in the case
of (11). As we do not have a sequence operator between
deontic norms inCL, we use the conjunction operator “∧”
between both contracts and we write[βC1] beforeC2 to
denote that it is only applied after performing the actions in
C1. These translations are given for refinements composing
only two element (C1 andC2) for the sake of simplicity, but
they can be easily generalized for any number of elements
(C1,C2,. . . ,Cn).

Finally, line (12) is the translation of a simple action
into CL. In this case we just have to write the action in
CL including in its codification any time restriction and the
agent we have propagated from its ancestor boxes (denoted
asa[agent,TR]).

There are some limitations in the translation fromC-
O Diagrams into CL, so the syntax of the diagram must
be restricted when we want to do it: (i) The recursion we
can have over boxes inC-O Diagramscannot be translated
into CL, so we can only have recursion in guards, and (ii)
the disjunction inCL is only allowed between obligations
and permissions, so we cannot write an OR-refinement
combining prohibitions nor different kinds of deontic norms
if we intend to do the translation.

IV. T RADING SYSTEM CASE STUDY

We consider the Trading System Case Study described
in [1]. It includes the processes at a single cash desk like
scanning products using a bar code scanner, as well as
administrative tasks like generating reports. Several features
of this case study have already been analysed withCL [4], so
here we focus on analysing the case of adding a new feature
for coupon handling in the cash desk and its evolution to a
full loyalty system. In the corresponding feature diagram
we just have to add two new subfeatures to the cash desk
feature, coupons and loyalty cards, but our purpose is to
provide a mechanism to ensure the absence of behavioural
conflicts due to the addition of these new subfeatures.

Coupon_Handling

Use_Coupon After_Coupon

-

-P
UseCoupon

Customer

Invalidate_Coupon

O Invalidate
Coupon

System

Coupon_Prohibition

F
UseCoupon

Customer

Discount

O

System
cond*

*where cond = (UseUni OR UseCom) AND (ValidCoupon)

%DiscountFixDiscount

UseUni

Fix_Discount %_Discount

SEQ

OR

AND

Figure 7. C-O Diagramcorresponding to the coupon handling feature

A. Coupon Handling Feature

The addition of coupon handling is described as follows:
“Coupons allow customers to get a discount on

a purchase. The discount may either be fixed to a
certain amount of money, e.g., 5 Euro, or relative to the
actual amount of a purchase, e.g., 5%. At each purchase
at most one coupon can be redeemed, i.e., multiple
coupons cannot be combined. Coupons arecustomer
agnostic, which means that they are not bound to a
certain customer.

Coupons have avalidity period, which defines the
days when a coupon can be redeemed by the customer.
This includes a start date and an end date.

Coupons can either beuniqueor common. Former
can only be redeemed once, which is ensured by the
system. Latter can be redeemed multiple times, the
system only has to ensure the validity period.”

As we can see, this description can be considered as a
specification of the expected behaviour of the new feature.
What follows we model these behavioural requirements
using C-O Diagramsand we translate these diagrams into
the contract languageCL in order to analyse them.

The actions we define for our contract are the following:
UseCoupon= Customer redeems a coupon
UseUni = Customer has redeemed a unique coupon
UseCom= Customer has redeemed a common coupon
ValidCoupon = System checks the coupon validity period is correct
FixDiscount = System applies a fixed discount on the purchase
%Discount = System applies a relative discount on the purchase
InvalidateCoupon = System invalidates a coupon

Therefore, from the given description of the coupon han-
dling feature we create theC-O Diagramshown in Figure
7. This diagram is translated into the following clauses in
CL (considering an implicit∧ operator between them):

1. [1∗]P(UseCoupon)
2. [1∗][UseCoupon][UseUni + UseCom]

[V alidCoupon]O(FixDiscount + %Discount)
3. [1∗][UseCoupon]F(UseCoupon)
4. [1∗][UseCoupon][UseUni]O(InvalidateCoupon)

In all these clauses the expression[1∗] should be in-
terpreted as‘At any time’. The first clause says that the
customer is allowed to redeem a coupon. The second
clause states that after redeeming a coupon, either unique
or common, if the validity period is correct the system
is obliged to applied a discount either fixed or relative

Use_Coupon

P
UseCoupon

Customer
UseCoupon

*

Figure 8. New specification of theUse Coupon clause

Coupon_Handling

Use_Coupon After_Coupon

-

-P
UseCoupon

Customer

Finish_Sale

P
FinishSale

Customer

SEQ

Figure 9. Coupon handling featureC-O Diagrammodified

to the actual amount of the purchase. The third clause
specifies that multiple coupons cannot be combined, that
is, after redeeming a coupon it is forbidden to redeem
another coupon. The last clause states that the system has
to invalidate a unique coupon after redeeming it. In the
analysis we also include in the specification thatFixDiscount
and%Discountare mutually exclusive actions, because they
cannot be performed at the same instant of time.

Analysing this contract in CLAN we obtain that it is not
conflict-free. The problem is the concurrent permission and
prohibition of performing actionUseCoupon. It can be fixed
by modifying the clauseUse Coupon in the way we can see
in Figure 8, so now the correspondingCL clause is:
1′. [UseCoupon

∗
]P(UseCoupon)

It was a problem ofunderspecificationin the description,
because it says that‘coupons allow customers to get a
discount on a purchase’but says nothing about the only
coupon restriction in this sentence. The new clause can be
interpreted as‘coupons allow customers to get a discount
on a purchase if no coupon has been used before’.

Another problematic point is that in the current specifica-
tion we are allowing to redeem a coupon at any time except
after redeeming another coupon, and this is not what we
desire. For example, if we consider an actionEnterItem(the
customer enters a new item in the cash desk), it will be
permitted to use the coupon before that, but we want the
customer to use the coupon only after entering all the items
in the cash desk to apply the discount on the final price.
Once again we are facing a problem ofunderspecification,
because the description of the new feature must include
the specification of the moment at which coupons can be
redeemed in the purchase process.

Hence we consider one more action that customer exe-
cutes just before being allowed to redeem the coupon:

FinishSale = Customer stops entering items and starts payment procedure

Now the specification of the behaviour of the coupon
handling feature inC-O Diagramsis modified as shown in
Figure 9 and the translation intoCL is the following (where
clauses 2., 3. and 4. remain the same as before):
1′′. [1∗][FinishSale][UseCoupon]P(UseCoupon)

. . .
5. [1∗]P(FinishSale)

LoyaltySystem

Use_Card Scan_Card

-

P
UseCard

Customer

Store_Data

P
StoreData

System

Discount

O

System

%Discount PrintCoupon

Ask_Customer

O Ask
Customer

System

Finish_Sale

P
FinishSale

Customer System
O

ScanCard

After_Scan

-

%_Discount Print_Coupon

AND

SEQ

OR

Figure 10. C-O Diagramcorresponding to the loyalty card feature

We add one more clause to allow the customer to stop
entering items and start payment procedure at any moment
(Finish Sale). Only after performing the action in this
clause the customer is allowed to use a coupon. In this case,
when we analyse the new specification with the CLAN tool,
we obtain that the contract is conflict-free.

B. Loyalty System

In this subsection we focus on how the loyalty system
is integrated in the cash desk, so we do not care about
how loyalty cards are created, we just analyse how they are
processed and the impact they have in the coupon handling.

The evolution of the coupon handling feature into a full
loyalty system is described as follows:

“In a loyalty program, customers can have a special
loyalty card, which they can use for each purchase.
Customers can then get discounts, which can be based
on their individual shopping behaviour.

Whenever the customer does a purchase, he is asked
for the loyalty card, which is then scanned by the
system. After the payment of the purchase has finished,
the corresponding information is stored in the system.

The discount provided to the customer can be given
in various different ways. There could be a relative
discount of 1% for every purchase, which is directly
applied to the current purchase. Another possibility is
to print out an individual coupon for the customer,
which he can redeem on the next purchase. This coupon
is bound to the customer and can only be redeemed
together with the corresponding loyalty card. Like cus-
tomer agnostic coupons, these coupons also have a
validity period”

First of all, we want to analyse independently the descrip-
tion of this new feature, so we model again the behavioural
requirements usingC-O Diagrams. Like in the previous
case, the description does not include the specification of the
moment at which loyalty cards can be used in the purchase
process, but in this case we include the action customer
executes just before being allowed to use the loyalty card
from the beginning. Therefore, the actions we consider are
the following:

FinishSale = Customer stops entering items and starts payment procedure
AskCustomer = System asks customer for the loyalty card
UseCard = Customer uses the loyalty card
ScanCard = System scans loyalty card
StoreInfo = System stores information about the customer purchase
%Discount = System applies a relative discount on the purchase
PrintCoupon = System prints out an individual coupon for the customer

Individual_Coupon

O
ShowCard

Customer
UseInd

After_Coupon

AND

Figure 11. Individual coupon management in coupon handlingfeature

Once we have defined the actions, from the above descrip-
tion of the full loyalty system we infer theC-O Diagram
shown in Figure 10, which is translated into the following
CL clauses:

1. [1∗][FinishSale]O(AskCustomer)
2. [1∗][AskCustomer]P(UseCard)
3. [1∗][UseCard]O(ScanCard)
4. [1∗][ScanCard]P(StoreData)
5. [1∗][ScanCard]O(%Discount + PrintCoupon)
6. [1∗]P(FinishSale)

The first clause says that the system has to ask the
customer for the loyalty card when he stops entering items.
The second clause states that the customer is allowed to use
the loyalty card after being asked by the system. The third
clause says that when the customer uses the loyalty card,
the system has to scan the card. After scanning the card, the
fourth clause states that the system is allowed to store data
about the client purchase and the fifth clause states that the
system is obliged to apply a relative discount on the purchase
or to print out an individual coupon for the customer. Finally,
the last clause is used again to allow the customer to stop
entering items and start the payment procedure.

We only have obligations and permissions in this spec-
ification, so we cannot find out conflicts of the form of
having obligation (or permission) and prohibition on the
same action. However,%Discount and PrintCoupon are
mutually exclusive actions, so we check with CLAN that we
do not have the permission or obligation to perform these
actions at the same time. We obtain that this contract is
conflict-free.

Nevertheless, the inclusion of the full loyalty system also
implies an evolution of the coupon handling feature. It is ex-
tended with individual coupons bound to a certain customer,
which must be handled without affecting the already existing
customer agnostic coupons. For that purpose, we define first
two new actions associated to the coupon handling feature:

UseInd = Customer has redeemed an individual coupon
ShowCard = Customer shows his loyalty card

Then, in order to analyse the impact of the new individual
coupons on the behaviour of coupon handling feature, we
add to theC-O Diagram we consider at the end of the
subsection before a new clause calledIndividual Coupon
saying that the customer has the obligation to show his
loyalty card after redeeming an individual coupon (Figure
11), which correspondingCL clause is the following:

6. [1∗][UseCoupon][UseInd]O(ShowCard)

This is the only extension we must add to the contract
as the other characteristics of the coupon handling feature
remain invariable. When we analyse the contract again

System_Restriction

Use_Coupon Use_Card

-F

UseCoupon

Customer

UseCard

SEQ

Figure 12. C-O Diagrammodelling the new restriction

Use_Card

P
UseCard

Customer
UseCoupon

Figure 13. New specification of theUse Card clause

including the new clause we obtain that it is still conflict-
free.

To conclude, we must analyse that the composition of
both features, coupon handling and loyalty cards, is free
of conflicts. We consider an additional restriction stating
that the customer is not allowed to use a loyalty card after
redeeming a coupon, in order to avoid cumulative discounts.
This new restriction is modelled with theC-O Diagramof
Figure 12, which corresponding clause inCL is as follows:

-. [1∗]F(UseCoupon.UseCard)

Therefore, we analyse the composition by putting all
the clauses together: the six clauses corresponding to the
coupon handling feature (including individual coupons), the
five first clauses corresponding to the loyalty card feature
(the sixth clause is already included), and the new clause
corresponding to the restriction we have just defined. Using
the CLAN tool we obtain that the contract has a conflict
due to the permission of performing actionsUseCoupon
andUseCardin sequence, which is in conflict with the new
added restriction. This conflict can be solved by changing
clause Use Card as we can see in Figure 13, so the
correspondingCL clause is now the following:
2′. [1∗][AskCustomer][UseCoupon]P(UseCard)

In this new specification we say that, after being asked
by the system, the client can use his loyalty card only if he
has not redeemed a coupon before. Now we obtain that the
contract is conflict-free.

V. CONCLUSIONS

We have presented here a framework to handle variability
and evolution in SPL, and we have used a case study to
show how adding new features may introduce conflicts and
how these conflicts may be detected. While the use ofC-O
Diagramsseems interesting due to its modularity, analysing
conflicts is not easy. On the other hand, the use of logic
(CL) allows us to automatically detect conflicts, but its use
as a modelling language is not advisable as it is not easy in
general to add a feature in a local manner, as done with the
diagrams. This drawback is partially overcome by modelling
features behaviour inC-O Diagramsand then translating
them intoCL to detect potential conflicts.

As shown in the case study it is not easy to prove
conflict-freedom in a modular manner, as adding a new

feature may indeed be in conflict with a previous feature,
needing a global conflict analysis. Compositional (modular)
verification of SPL is an interesting and challenging research
area.

As future work, it remains a study of the scalability of
the framework to see how complex can be the cases that we
can tackle with our approach.

ACKNOWLEDGMENT

Partially supported by the Spanish government (cofi-
nanced by FEDER founds) with the project TIN2009-14312-
C02-02, the JCCLM regional project PEII09-0232-7745,
and the Nordunet3 project “COSoDIS”. The first author is
supported by the European Social Fund and the JCCLM.
We would also like to thank Ina Schaefer for suggesting the
case study that appears in Section IV.

REFERENCES

[1] Highly Adaptable and Trustworthy Software using Formal
Methods Project (HATS). Deliverable D5.1. Requirements
Elicitation.

[2] P. Asirelli, M.H. ter Beek, S. Gnesi, and A. Fantechi. A
deontic logical framework for modelling product families.
Proceedings of 4th International Workshop on Variability
Modelling of Software-intensive Systems, pages 37–44, 2010.

[3] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated
Analysis of Feature Models 20 Years Later: A Literature
Review. Information Systems, 35(6):615–636, 2010.

[4] S. Fenech, G.J. Pace, J.C. Okika, A.P. Ravn, and G. Schneider.
On the Specification of Full Contracts. InProceedings of
the Sixth International Workshop on Formal Engineering ap-
proches to Software Components and Architectures (FESCA
2009), pages 39–55, 2009.

[5] S. Fenech, G.J. Pace, and G. Schneider. Automatic Conflict
Detection on Contracts. InICTAC09, LNCS. Springer, 2009.

[6] S. Fenech, G.J. Pace, and G. Schneider. Clan: A tool for
contract analysis and conflict discovery. In7th International
Symposium on Automated Technology for Verification and
Analysis (ATVA’09), volume 5799 ofLNCS, pages 90–96,
Macao, China, October 2009. Springer. CLAN is available
from http://www.cs.um.edu.mt/svrg/.

[7] E. Martı́nez, G. Dı́az, M. E. Cambronero, and G. Schneider.
A Formal Model for Visual Specification of e-Contracts.
Proceedings of 7th IEEE 2010 International Conference on
Services Computing (SCC 2010), pages 1–8, 2010.

[8] G.J. Pace and G. Schneider. Challenges in the specification
of full contracts.Proceedings of 7th International Conference
on integrated Formal Methods, pages 292–306, 2009.

[9] C. Prisacariu and G. Schneider. A Formal Language for
Electronic Contracts. InFMOODS, volume 4468 of LNCS,
pages 174–189. Springer, 2007.

[10] P.Y. Schobbens, P. Heymans, J.C. Trigaux, and Y. Bontemps.
Feature Diagrams: A Survey and A Formal Semantics. In
Proceedings of the 14th IEEE International Requirements
Engineering Conference, 2006.

