Automated Analysis of Conflicts in Software Product Lines

Gerardo Schneider
Department of Applied IT
Chalmers| University of Gothenburg, Sweden
Department of Informatics
University of Oslo, Norway
gersch@chalmers.se

Enrique Martinez
Department of Computer Science
University of Castilla - La Mancha
Albacete, Spain
emartinez@dsi.uclm.es

Abstract—In this paper we propose a framework where FEATURE DIAGRAM
the behaviour of features can be modelled using a visual
model language for contracts C-O Diagrams). We present a
partial translation from C-O Diagrams into the deontic contract
languageC L allowing to detect whether there are contradicting
features, using the tool CLAN. We aim at handling conflicts
arising from software evolution and variability. As a proof of I e ‘

concept we apply our technique to a trading system case study I -,

Keywords-contracts; software product lines; deontic logic;
conflict detection

C-O DIAGRAMS

Translation
Function

CL
SPECIFICATION

|. INTRODUCTION

The design, specification and analysis of software product
lines (SPL) is not easy, one of the main problems being that
of handlingvariability and softwaresvolution Variability is
an important aspect of SPL, one of the reasons being that orige difficulty of preserving compositional verification. In
naturally wants to have a family of software where concreteorder to check the consistency of the modified models we
products are instantiations of the family varying only on(manually) translate everything into the contract languag
some aspects. While modelling and analysing feature variC£ [9] and use the tool CLAN [6] to check for conflicts.
ability is already difficult, the real challenge comes when In the conceptual framework we have defined the follow-
feature models evolve. Such evolution implies the addition INg artefacts can be distinguished:
removal of certain features over time, eventually intradgc « A feature diagram to engineer the requirements of the

CLAN Tool
Figure 1. Workflow of the framework

constrains and hence conflicts with previous defined feature

The use of different logics for the automated analysis of
SPL is widely spread in the literature [3]. Moreover, we can
find some work based on applying deontic logic to SPL [2],
but it is focused on model-checking properties. In this pape

SPL. We consider the syntax and semantics of these
diagrams defined in [10], which formalisation includes
the management of feature model evolution.

C-O Diagrams [7] to specify the expected behaviour
of the different features composing the feature model.

we present a conceptual framework, based on an extension of ¢ A CL specificationthat can be analysed to detect any
feature models in order to represent software product.ines behavioural conflict in the feature model.
Such a framework allows to express spatial variability, as « A translation function specifying how the transforma-
well as evolution of the software family (time variability) tion from C-O Diagramsinto CL is done.
together with a check on the possible conflicts arising from « The CLAN tool that automates the process of conflict
the addition/removal of features (the kind of conflicts we detection over & £ specification.
can detect are detailed in Subsection II-C). The workflow followed by this framework is shown in
As a proof of concept we apply our technique to a caserigure 1. First, we model the feature diagram corresponding
study on a trading system, in which we expose some ofo the SPL we want to analyse and tkeO Diagrams
the difficulties mentioned above. In particular, startingnfi ~ specifying the expected behaviour of the features we are
a feature model describing a product family for the tradinginterested in. Next, we use the translation function from
system, we incrementally add two different requiremerits: (C-O Diagramsto CL in order to obtain a specification in
the first shows how in some cases adding a new feature stithis language that can be automatically analysed. Finally,
allows compositional modelling and verification, and (igw we apply the contract analyser of the CLAN tool over the
then extend the modified model with an additional featureresultingCL clauses. If the tool detects any conflict in the
that restricts previous features on other parts of the modeC L contract, the information provided by the tool is used to
The intention of this second modification is to highlight modify the models we have created to fix the problem in an

. o . agent. Thenameis useful both to describe the clause and to
v reference the box from other clauses, so it must be unique.
name The agentindicates who the performer of the action is.
Figure 2. Box structure These basic elements 6FO Diagramscan be refined by

))) using AND/OR/SEQ refinements, as shown in Figure 3. The
appropriate way, performing afterwards the translatiod an yin, of these refinements is to capture the hierarchical elaus

the conflict detection processes again. This flow of event§.,cture followed by most contracts. AND-refinement

is repeated until all the conflicts have been solved. Theneans that all the subclauses must be satisfied in order to
integration of evolution in SPL inside this framework is satisfy the parent clause. A®R-refinement means that
quite straightforward. When we add a new feature in th&; js oniy necessary to satisfy one of the subclauses in
feature model, we just have to create a févD Diagram ,qger to satisfy the parent clause, so as soon as one of its
corresponding to the expected behaviour of this feature andhcjauses is fulfilled, we conclude that the parent clasise |

follow the steps described above to see if the new featurgfijjeq as well. A SEQ-refinement means that the norm
originates any conflict and how this conflict can be solved. Inspecified in the target boxS(lbClauseh Figure 3) must be
the case of evolution of an already existing feature, we havjjeq after satisfying the norm specified in the source bo
to modify the C-O Diagram corresponding to this feature (SubClausein Figure 3). There is another structure that can
according to its evolution, so we can check again if thisyg ;564 to modelepetition. This structure is represented
evolution produces any cqnfhct an.d how it can be fixed. 45 an arrow going from a subclause to one of its ancestor

The rest of the paper is organized as follows: A back-;|ases (or to itself), meaning the repetitive applicatball
ground on some of the artifacts we use is given in Section Iy subclauses of the target clause after satisfying thesou
and the translation fron€-O Diagramsto CL is described ¢ ,pclause. For example, on the right of Figure 3, we have
in Section Ill. The application of our technique to a casey, oR-refinement with an arrow going fronSubClauselo
study on a tra_ding sy;tem is depicted in Section IV. Finally,c|ause It means that after satisfyin§ubClauseve apply
we conclude in Section V. Clauseagain, but not after satisfyinubClause2

We follow an ought-to-do approach [8], that is, the
normative aspects are applied owattions performed by

As feature diagrams description can be found in manyhe participants in the contract. We only consider the spec-
places [10], in this section we focus on describing the otheffication of atomic actionsin the P field of the leaf boxes
artefacts of our framework: the visual mod2iO Diagrams of our diagrams. We denote these actions with lower case
the contract languagél and the CLAN tool. Latin letters (a”,“b”,“¢”, ...) and we use a dash (*-”) to

) denote that there is no action specified in the no leaf boxes.

A. C-O Diagrams The composition of actions can be achieved by means of

A C-O Diagram[7] is a hierarchical tree diagram that we the different kinds of refinement. In this way, an AND-
use to specify the clauses of a contract. These clauses cagfinement can be used to modsincurrency'&” between
be related to the expected behaviour of some features padittions, an OR-refinement can be used to modlcace”+”
of a feature model, so these diagrams can be used to analylsetween actions, and a SEQ-refinement can be used to model
feature models and their evolution. sequencé;” of actions. Thedeontic normghat are applied

In Figure 2 we show the basic element of oGrO over these actions can be specified in any box of D
Diagrams namely abox, which is divided into four fields. Diagrams affecting all the actions in the leaf boxes that are
On the left-hand side of the box we specify the conditionsdescendants of this box. If it is the case that the box where
and restrictions. Thguard g specifies the conditions under we specify the deontic norm is a leaf, the norm only affects
which the contract clause must be taken into account. Théhe atomic action we have in this box. We use an upper case
time restrictiontr specifies the time frame in which the “O” to denote an obligation, an upper cad®’ to denote a
contract clause must be satisfied. Tgrepositional content permission, and an upper case”‘to denote a prohibition
P, in the middle, is the main field of the box, and it is used (forbidden). These letters are written in the top left comie
to specify normative aspects (obligations, permissiorss anfield P. The composition of deontic norms is also achieved
prohibitions) that are applied over actions, and/or the@ast by means of the different refinements we have GrO
themselves. The last field of these boxes, on the right-hanBiagrams Thus, an AND-refinement corresponds to the
side, is theaeparationR. This reparation, if specified by the conjunctionoperator A" between norms, an OR-refinement
contract clause, is another contract that must be satisfied icorresponds to thehoice operator “-” between norms,
case the main norm is not satisfied (a prohibition is violatecand a SEQ-refinement corresponds to sbquenc®perator
or an obligation is not fulfilled, there is not reparation for “;” between norms. Finally, concerning the specification of
permission), considering the clause eventually satisfied iguard conditions and time restrictions, they affect notyonl
this reparation is satisfied. Each box has also a name and dme box where they are specified but also all its descendants.

Il. BACKGROUND

And-refinement Or-refinement
O O O

Seg-refinement
O

[subClauset1 | [subCiause2 | [subClause1 | [subClause2] [subCiauset ————{ subClause2 | L—— subClauset | [subCiausez]
Figure 3. AND/OR/SEQ refinements and repetitiondrO Diagrams

We have given here a condensed descriptionCe©
Diagrams A more detail description can be found in [7], Exﬂeaz xample3
including a case study showing how to specify a concrete L LOR
e-contract using our diagrams together with a qualitative . ‘
and quantitative evaluation of the visual model. We forsnall oo " -
define in what follows the syntax @@-O Diagrams so we Hz;,mh ‘ HZ:;(,”: ‘
can later be able to define the translation iGid. Figure 4. Syntax examples

We consider a finite set of real-valued varialfestanding
for clocks, a finite set of non-negative integer-valued -vari
ablesV, a finite alphabek for atomic actions, a finite set of
identifiers.A for agents, and another finite set of identifiers
N for names. The greek lettermeans that an expression is
not given, i.e., it is empty. We us€ to denote the contract
modelled by &C-O Diagram The diagrams syntax is defined
by the following EBNF grammar:

Definition 1: (C-O Diagrams Syntax)

into effect.

We useC; to define a more complex contract where we
combine different deontic norms by means of any of the
different refinements we have @-O Diagrams In the box
where we have the refinement int®, we cannot specify
an agent nor a reparation because these elements are always
related to a single deontic norm, but we still can specify a
guardg and a time restrictiorr that affect all the deontic

norms we combine. E.g.C := (¢, Ezample2,e,xz <
C = (agent,name,g,tr,0(C2),R)| 5,C"Or C” ¢) (Figure 4, on the top left) is a composed
(agent,name, g, tr, P(C2), €) | contract specifying that contract’ or contractC” must be
(agent,name, g, tr, F(C2), R) | satisfied in order to satisf¢’ within 5 time units.
(e, name, g, tr, C1, €) Once we write a deontic operator in a box of our diagram,
Ci = C(And O)7|C(Or C)7|C (Seq C)F we have two possibilities as we can see in the specification
CQ = alC;g (And Cg)Jr |Cg (OT Cg)+|03 (Seq Cg)Jr)
Cs := (e, name,g,tr,Ca,e) of Cs: we can just yvnte a simple gcnon in the same
R = Cle 0 box, being the deontic operator applied only over it, or we

can refine this box in order to apply the deontic operator
over a compound action. In this case we have that the
subboxes (3) cannot define a new deontic operator as it
has already been defined in the parent box (affecting all
the subboxes). Therefore, these subboxes cannot specify
an agent nor a reparation, but it is possible to specify a

In the abover € 3, agent € A andname € N. Guard
g is € or a conjunctive formula of atomic constraints of the
form:v ~norv—w ~ n, forv,w € V, ~e {<,<
,=,>,>} andn € IN, whereas timed restriction is ¢
or a conjunctive formula of atomic constraints of the form:

w~nore—y~mn, forz,yeC ~e{<,<,=>2>rand 434, and a time restrictionr affecting only the action in
n € IN. O, P and I are the deontic operators correspond-y,e s hhox or the action composed in its refinements. For

ing to obligation, permission and prohibition, respedtiye example,C = (Buyer, Ezample3, e, ¢, O(C' Or C"), ¢)
WhereO(C’Q_) states the obliga_tion of performir@, F(C2) \yhere we have that’ :— (¢, Optionl, e, e, pay_cash, ¢)
states prohibition of performing-, and P(C,) states the and C"" := (e, Option2, ¢, ¢, pay_card, ¢) (Figure 4, on the

permission of performing”,. And, Or and Seq are the i1 is a contract specifying for a buyer the obligatidn o
operators corresponding to the refinements we haveé-in paying by cash or by credit card.

O Diagrams AND-refinement, OR-refinement and SEQ-
refinement, respectively. B. The contract languagél

The most simple contract we can have @GtO Dia- The contract languagel [9] enables formal specification
grams is that composed of only one box including the of deontic electronic contracts. It is based on a combinatio
elementsagent and name. Optionally, we can specify a of deontic, dynamic and temporal logics, allowing the rep-
guardg and a time restrictiortr. We also have a deontic resentation of obligations, permissions and prohibitiass
operator O, P or F) applied over an atomic action, well as temporal aspects. Moreover, it also gives a means to
and in the case of obligations and prohibitions it is pos-specify exceptional behaviours arising from the violatadn
sible to specify another contra¢t as a reparation. E.g., obligations (what is to be demanded in case an obligation is
C := (Buyer, Examplel, e, e, O(pay),C") (Figure 4, on not fulfilled) and of prohibitions (what is the penalty in eas
the bottom left) is a very simple contract specifying for aa prohibition is violated). CL contracts are written usihg t
buyer the obligation of paying, otherwise contr&€tcomes syntax shown in Definition 2.

Definition 2: (CE Syntax) AND-refinement OR-refinement SEQ-refinement
(O Co|Cp|Cr|CAC|[BIC|T|L

Co = Oc(a)|Co®Co BT] Bl =T] Hel I] ———>[]
Cp = P(a)|Cp® Cp a&b a+b asb

Cr = Fc(o) Figure 5. Equivalence of compound actions

a = Oll]a|a|la&ala; a|la + «

8 = elo|tlalalB&BIB;BIA + Bl O i Eﬂ e
A contract clause&” can be either an obligatiorC), a

iaai . ; ; (=1] HHOo[JEHO=T] [HOo JEHO —H0[]
permission ('p) or a prohibition Cr) clause, a conjunction 0a) » O(b) 0(a) & O(b) 0(a) A [a]0(b)

of two clauses, the trivially satisfied contract)(the im- _ Figure 6. Equivalence of compositons of obligations
possible contractl() or a clause preceded by the dynamic

logic square bracket€)(«) is interpreted as the obligation thus the translation necessarily will have to abstract away
gic 54 c P 9 some of the features of the diagrams. We comment on that

to performa in which case, if violated, then the reparation L .
. later in this section.
contractC' must be executed. An obligation clause may be an
The translation of atomic and compound actions is

exclusive disjunction of two other obligation clauses.sTisi . - .
straightforward, as we can see in Figure 5. In that figure

interpreted as being obliged to satisfy one of the obligetio ' :
b g 9 v gt e show the different ways we can compound two atomic

but not both. In the same way, a permission clause may b& -,) : X
. ap y actionsa andb in C-O Diagramsand the equivalent formulas

an exclusive disjunction of two other permission clauses. or: AND-refi i ds to th
This is interpreted as being permitted to perform one ofh ©4- an “refinement corresponds o the concurrency

the permissions but not bott?(«) is interpreted as the operator &, an OR-refineme_nt corresponds to the choice
permission to perfornv. F(«) is interpreted as forbidden operator %, antd a SEQ-refinement corresponds to the
to performa and if o is performed then the reparation sequence operator.
C' must be executed3]C is interpreted as if actiors

Concerning to the application of deontic norms (obliga-
is performed then the contract C must be executed. Thions. permissions and prohibitions) over the action;40
conjunction of two clauses is interpreted as both clause

g)iagramswe have that when we write one of these norms
have to be satisfiec: is an empty action] is the action in a box, it is applied over all the actions in the descendant
that matches any action, whilé is the impossible action.

boxes (or in the same box). Therefore, the translation into
Action expressionsc(and 8) can be constructed from basic CL just consists of writing the composition of these actions
ones using the operatogs, ;, + and* where& stands for

and apply the corresponding deontic norm over it.
the actions occurring concurrentlystands for the actions | ne translation of the different ways of composing deontic
to occur in sequence; stands for a choice between actions,

norms in C-O Diagramsinto CL is a bit more complex,
and* is the Kleene star: is the complement, sa means specially because there is not sequence operator to compose
“any action except”.

clauses inCL that can correspond to the SEQ-refinement
in C-O Diagrams The other refinements are easier to
C. CLAN tool translate: an AND-refinement composing two deontic norms

CLAN [6] is a tool forC£ contract analysis. It implements corresponds to the conjunction operator” ‘between these
the algorithm for conflict analysis presented in [5]. Baijga norms, while an OR-refinement corresponds to the exclusive
conflicts in contracts arise from four different reasonse Th choice operator®”. For the SEQ-refinement between two
first two reasons are being obliged and forbidden to perfornflorms we write inCL a conjunction between both norms,
the same action, and being permitted and forbidden t&ut adding the expressign] before the second norm, where
perform the same action. In the first conflict we would end? i the action under the first norm, so the second norm is
up in a situation where whatever is performed will violate ©nly applied after performing this action. For example, in
the contract. The second conflict would not result in havingmigure 6 we show the translations infe of the different
a trace that violates the contract since in the trace seasanti 'efinements irC-O Diagramsapplied over the obligation of
permissions cannot be broken, however, we can still idenPerforming an actiora and the obligation of performing an
tify these situations. The remaining two kinds of conflicts actionb.
correspond to obligations of mutually exclusive actionsja EXxpressing conditions i@ £ also differs from the way we

permissions and obligations of mutually exclusive actions do itin C-O DiagramsIn the diagrams we have a field in the
boxes allowing us to specify the conditions, butig this is

Ill. FrROm C-O Diagramsto CL not possible, so we use again the expresgiynnow before
As we want to detect any conflict in tHe-O Diagrams the conditional part of the contract, beigthe condition
we model, we have to define a syntactic translation from théhat must be fulfilled to take this part of the contract into
diagrams toCL in order to be able to use the CLAN tool account.
to detect these conflicts. However, note ta© Diagrams In C-O Diagramswe have a field in the boxes allowing
are richer thar€ £ (for instance, there is no time i) and us to specify real-time restrictions in the contract. Unfor

tunately, the specification of timing constraints is not yetclause between square brackets, whereas the name of the
supported byCL, so what we do in this case for the box is not taken into account.

translation is encoding these constraints in the definitibn Lines (4)—(5) correspond to the translation ird@ of

the actions they affect. E.g., ©O Diagramswe can have a a box where we do not specify any obligation, permis-
box specifying the obligation of the action “send an e-mail”sion or prohibition. Again, agents and time restrictions ar
and the restriction “before 2 hours” in its specific field ieth propagated into the translation @f, and the conditions
box. In the correspondin@L translation we have to specify are encoded at the beginning of the clause between square
directly the obligation of the action “send an e-mail beforebrackets. The difference between these two equationstis tha
two hours”. We have the same situation for the agents-in in the formeragent has not been specified yet, whereas in
O Diagrams i.e., they have to be encoded in the definitionthe latteragent has been already specified, so we have to
of the actions inCL. propagate it.

Finally, the translation of reparations fro@xO Diagrams Lines (6)—(8) correspond to the translation of a refinement
into CL is done directly, since in both cases we just havewhen the deontic operator has been already specified and
a reference to the secondary contract that comes into effete refinement is used to compose actions, while lines (9)—
when the violation occurs. For that purpose,GrO Dia- (11) correspond to the translation of a refinement when the
gramswe use a field in the boxes containing an obligationdeontic operator has not been specified yet and the refine-
or a prohibition where we can specify a reparation, whereament is used to compose deontic norms. The translation
in CL a reference to a reparation must be a subindex of ais quite straightforward in all the cases except in the case
obligation or a prohibition expression. of (11). As we do not have a sequence operator between

Formally, we consider a parameterized translation funcdeontic norms irCL, we use the conjunction operator™
tion Fagent,7r) from C-O Diagramsnto expressions af L. between both contracts and we writé-,] before Cy to
The parametetgent is used to propagate the entity affected denote that it is only applied after performing the actiams i
by a norm, being empty if it has not been specified yet (weC;. These translations are given for refinements composing
will write only F|rp) in that case), and the paramefeR only two element(; andCs) for the sake of simplicity, but
is used to propagate any time restriction we have specifiedhey can be easily generalized for any number of elements
being initially empty. The result of applying this transtet ~ (C1,Cs,....Ch).

function over the diagrams is shown in Definition 3. Finally, line (12) is the translation of a simple action
Definition 3: (Translation function fromC-O Diagrams into CL£. In this case we just have to write the action in
to CL) CL including in its codification any time restriction and the

agent we have propagated from its ancestor boxes (denoted

Firg)((agent, name, g, tr, O(C), R)) = [9]OR(Flagent, T RU () @ aSG[agem’TR]).
Frrg)lagent, name, g, . P(C),) = 91 (Flagent, T RO (C) @ There are some limitations in the translation frada
Frrg)((agent, name, g, tr, F(C), B)) = [91Fp (Flagent, RO (C) @ O Diagramsinto CL, so the syntax of the diagram must
Firgr)(e: name, g, tr, C, &) = 6] Fp putr] (C) @ be restricted when we want to do it: (i) The recursion we
Flagent, TR] (€ name. 9.7, C,) = 0 F(agent, 7 RUEr] (©) ®) can have over boxes i@-O Diagramscannot be translated
Flagent. 7 R) (€1 ANAC) = Flagene w1 (€D & Flagentrry(©2) © MO CE SO we can o_nly have recursion in guards_, and (i)
Flagent R (1 07 C2) = Flagems RI(CD) + Flagoms.rm(©) @ the d|Sjun<_:t|0_n inCL is only allowed k_Jetween 0b||g§1t|ons
i 1 sy P o and permissions, so we cannot write an OR-r_eflnement
fagent, TIITL TR0 Hegent MRS T lagent T combining prohibitions nor different kinds of deontic narm
FirR)(C1And 02) = F(rR (C1) A FrR)(C2) ® if we intend to do the translation.
FirRr)(C1 Or C2) = FirR)(C1) & FrR)(C2) (10)
Firmy(C1 8eaC) = Frmy(€1) A (Boy 1 Firm (C2) a IV. TRADING SYSTEM CASE STUDY
Flagent, TR = a[agent TF] (12) We consider the Trading System Case Study described

in [1]. It includes the processes at a single cash desk like
. scanning products using a bar code scanner, as well as
Lines (1)—(3) correspond to the translation ird@ of administrative tasks like generating reports. Severdlufea
a box where we specify an obligation, a permission or eof this case study have already been analysed@tf4], so
prohibition, considering also any possible reparation. Ashere we focus on analysing the case of adding a new feature
agents and time restrictions are not yet supported nativelfor coupon handling in the cash desk and its evolution to a
by CL, these two things are encoded as part of the actiondull loyalty system. In the corresponding feature diagram
so we propagate them into the translation(dfunder the we just have to add two new subfeatures to the cash desk
deontic norm, joining the time restriction in the bax)with feature, coupons and loyalty cards, but our purpose is to
any other time restriction we could have specified beforeprovide a mechanism to ensure the absence of behavioural
(T'R). The conditions are encoded at the beginning of theconflicts due to the addition of these new subfeatures.

Coupon_Handling
SEQ

] - []

After_Coupon

Customer

P
UseCoupon|

Use_Coupon

lAND

\ \
System Customer
cond*|O ‘ ‘ F

Discount

i LOR
‘ H %Discount

%_Discount

System
[UseUni| O Invalidate

UseCoupon| Coupon
Coupon_Prohibition Invalidate_Coupon

*where cond = (UseUni OR UseCom) AND (ValidCoupon)

H FixDiscount

Fix_Discount

Customer

UseCoupon‘

UseCoupon

Use_Coupon

Figure 8. New specification of these Coupon clause

Coupon_Handling
SEQ

— - 1]

After_Coupon

Customer Customer

P
UseCoupon|

Use_Coupon

P
FinishSale
Finish_Sale

Figure 9. Coupon handling featuf@O Diagrammaodified

Figure 7. C-O Diagramcorresponding to the coupon handling feature O the actual amount of the purchase. The third clause

A. Coupon Handling Feature

specifies that multiple coupons cannot be combined, that
is, after redeeming a coupon it is forbidden to redeem

The addition of coupon handling is described as follows:another coupon. The last clause states that the system has

“Coupons allow customers to get a discount on
a purchase. The discount may either be fixed to a
certain amount of money, e.g., 5 Euro, or relative to the
actual amount of a purchase, e.g., 5%. At each purchase
at most one coupon can be redeemed, i.e., multiple
coupons cannot be combined. Coupons ewstomer
agnostic which means that they are not bound to a
certain customer.

Coupons have aalidity period which defines the

days when a coupon can be redeemed by the customer.

This includes a start date and an end date.

Coupons can either benique or common Former
can only be redeemed once, which is ensured by the
system. Latter can be redeemed multiple times, the
system only has to ensure the validity period.”

to invalidate a unique coupon after redeeming it. In the
analysis we also include in the specification thiaDiscount
and%Discountare mutually exclusive actions, because they
cannot be performed at the same instant of time.

Analysing this contract in CLAN we obtain that it is not
conflict-free. The problem is the concurrent permission and
prohibition of performing actiotJseCouponlt can be fixed
by modifying the claus&Jse Couponin the way we can see
in Figure 8, so now the correspondidd clause is:

1. [UseCoupon™]P(UseCoupon)

It was a problem ofinderspecificatiofn the description,
because it says thdtoupons allow customers to get a
discount on a purchasebut says nothing about the only

As we can see, this description can be considered as &upon restriction in this sentence. The new clause can be
specification of the expected behaviour of the new featureinterpreted ascoupons allow customers to get a discount
What follows we model these behavioural requirementsy a purchase if no coupon has been used before’
using C-O Diagramsand we translate these diagrams into Another problematic point is that in the current specifica-
the contract language. in order to analyse them. ~ tion we are allowing to redeem a coupon at any time except

The actions we define for our contract are the following:after redeeming another coupon, and this is not what we

UseCoupon= Customer redeems a coupon . . :

UseUni= Customer has redeemed a unique coupon desire. For example, if we con§|der an actEmterItem(th_e
UsledCom: Customer hashredkeen;ed acommolndcoupond customer enters a new item in the cash desk), it will be
ValidCoupon = System checks the coupon validity period is correct .

FixDiscount = System applies a fixed discount on the purchase permltted to use the coupon before that, b_Ut we War!t the
%Dils_gount = System applies a rle_:(yative discount on the purchase customer to use the coupon only after entering all the items
InvalidateCoupon = System Invalidates a coupon in the cash desk to apply the discount on the final price.

_Therefore, from the given desgnptmn of the coupon hangnce again we are facing a problem widerspecification
dling feature we create th€-O Diagramshown in Figure pecayse the description of the new feature must include
7. This diagram is translated into the following clauses inye specification of the moment at which coupons can be
CL (considering an implicith operator between them): redeemed in the purchase process.

1. [1*]P(UseCoupon) . .
9. [1*][UseCoupon| [UseUni + UseCom] Hence we consider one more action that customer exe-
[ValidCoupon]O(Fiz Discount + % Discount) cutes just before being allowed to redeem the coupon:
Z' H*”gzzgzzgﬂ F[ngggaziizialidateCoupon) FinishSale= Customer stops entering items and starts payment progedur
In all these clauses the expressifit] should be in- Now the specification of the behaviour of the coupon
terpreted asAt any time’ The first clause says that the handling feature irC-O Diagramsis modified as shown in
customer is allowed to redeem a coupon. The seconfigure 9 and the translat|0r_1 intoC is the following (where
clause states that after redeeming a coupon, either uniqfé2uses 2., 3. and 4. remain the same as before):
. Ly . . 1. [1*][FinishSale][UseCoupon|P(UseCoupon)
or common, if the validity period is correct the system

is obliged to applied a discount either fixed or relative 5. [1"]P(FinishSale)

After_Coupon

LoyaltySystem AND

lSEQ | | C t
\] \ ustomer
S S AR B e = R 210 s ||
Finish_Sale Ask_Customer Use_Card Scan_Card After_Scan ShowCard
[LAND | Individual_Coupon
System System Figure 11. Individual coupon management in coupon handiagure
= Once we have defined the actions, from the above descrip-
H/W;Dfm‘t \ H“” \ tion of the full loyalty system we infer th€-O Diagram
%_Discount rint_Coupon
Figure 10. C-O Diagramcorresponding to the loyalty card feature shown in Figure 10, which is translated into the following

CL clauses:
We add one more clause to allow the customer to stop | [1*][FinishSale]o(AskCustomer)

entering items and start payment procedure at any momentz. [1*][AskCustomer]P(UseCard)
. i ian i i 3. [1%][UseCard|O(ScanCard)
(Finish_Salg. Only gfter performing the action in _th|s v [1*][Scssngzrd]P(g;eg’;m)
clause the customer is allowed to use a coupon. In this case,s. [1*][ScanCard]O(% Discount + PrintCoupon)
1%]

when we analyse the new specification with the CLAN tool, 6 [17[P(FinishSale)

we obtain that the contract is conflict-free. The first clause says that the system has to ask the
customer for the loyalty card when he stops entering items.
B. Loyalty System The second clause states that the customer is allowed to use

the loyalty card after being asked by the system. The third
ause says that when the customer uses the loyalty card,
e system has to scan the card. After scanning the card, the
urth clause states that the system is allowed to store data
bout the client purchase and the fifth clause states that the

system is obliged to apply a relative discount on the purehas

h _ or to print out an individual coupon for the customer. Fipall
loy allt?/ i;?éawhﬁ:rﬁgtﬁg’ ggrs]toun;:r?;ag ai?nvisrzﬁzgﬁl the last clause is used again to allow the customer to stop

Customers can then get discounts, which can be based entering items and start the payment procedure.

In this subsection we focus on how the loyalty system
is integrated in the cash desk, so we do not care abo
how loyalty cards are created, we just analyse how they ar
processed and the impact they have in the coupon handlin

The evolution of the coupon handling feature into a full
loyalty system is described as follows:

on their individual shopping behaviour. We only have obligations and permissions in this spec-
Whenever the customer does a purchase, he is asked ification, so we cannot find out conflicts of the form of
for the loyalty card, which is then scanned by the having obligation (or permission) and prohibition on the

system. After the payment of the purchase has finished,
the corresponding information is stored in the system.
The discount provided to the customer can be given

same action. HowevedoDiscount and PrintCoupon are
mutually exclusive actions, so we check with CLAN that we

in various different ways. There could be a relative do not have the permission or obligation to perform these
discount of 1% for every purchase, which is directly actions at the same time. We obtain that this contract is
applied to the current purchase. Another possibility is conflict-free.

to print out anindividual coupon for the customer,
which he can redeem on the next purchase. This coupon
is bound to the customer and can only be redeemed

Nevertheless, the inclusion of the full loyalty system also
implies an evolution of the coupon handling feature. It is ex

together with the corresponding loyalty card. Like cus- tended with individual coupons bound to a certain customer,
tomer agnostic coupons, these coupons also have a which must be handled without affecting the already exgstin
validity period” customer agnostic coupons. For that purpose, we define first

First of all, we want to analyse independently the descriptwo new actions associated to the coupon handling feature:
tion of this new feature, so we model again the behavioural Uselnd = Customer has redeemed an individual coupon
requirements usingc-O Diagrams Like in the previous ShowCard = Customer shows his loyalty card
case, the description does not include the specificationeoft ~ Then, in order to analyse the impact of the new individual
moment at which loyalty cards can be used in the purchasgoupons on the behaviour of coupon handling feature, we
process, but in this case we include the action custome®dd to theC-O Diagram we consider at the end of the
executes just before being allowed to use the loyalty cargubsection before a new clause calledividual _Coupon
from the beginning. Therefore, the actions we consider ar6aying that the customer has the obligation to show his

the following: loyalty card after redeeming an individual coupon (Figure
FinishSale = Customer stops entering items and starts payment progedur 11)1 which correspondlngﬁ clause is the foIIowmg:
AskCustomer = System asks customer for the loyalty card 6. [1*][UseCoupon][Uselnd|O(ShowCard)
UseCard = Customer uses the loyalty card L. .
ScanCard = System scans loyalty card This is the only extension we must add to the contract
Storelnfo = System stores information about the customer purchase as the other characteristics of the coupon handling feature

%Discount = System applies a relative discount on the purchase oo . X
PrintCoupon = System prints out an individual coupon for the customer remain invariable. When we analyse the contract again

Customer

feature may indeed be in conflict with a previous feature,
System_Restriction needing a global conflict analysis. Compaositional (modular
SEQ verification of SPL is an interesting and challenging resiear
area.
}—U{sfecc";f]‘:on }_’}—{U::ecg:rd | As future work, it remains a study of the scalability of
Figure 12. C-O Diagrammodelling the new restriction the framewor_k to see how complex can be the cases that we
Customer can tackle with our approach.
Usecoupon, P ACKNOWLEDGMENT
UseCard Partially supported by the Spanish government (cofi-
_ Use_Card nanced by FEDER founds) with the project TIN2009-14312-
Figure 13. New specification of thase Card clause C02-02, the JCCLM regional project PEII09-0232-7745,
including the new clause we obtain that it is still conflict- 3nd the Nordunet3 project “COSoDIS”. The first author is
free. supported by the European Social Fund and the JCCLM.

To conclude, we must analyse that the composition ofye would also like to thank Ina Schaefer for suggesting the

both features, coupon handling and loyalty cards, is fregase study that appears in Section IV.
of conflicts. We consider an additional restriction stating

that the customer is not allowed to use a loyalty card after _ _
redeeming a coupon, in order to avoid cumulative discounts.[1] Highly Adaptable and Trustworthy Software using Formal
This new restriction is modelled with th@-O Diagram of Methods Project (HATS). Deliverable DS.1. Requirements

REFERENCES

i [- ; Elicitation.

Figure 12, which corresponding clausedd is as follows: cttation
- [IF(UseCoupon.UseCard) [2] P. Asirelli, M.H. ter Beek, S. Gnesi, and A. Fantechi. A
Therefore, we analyse the composition by putting all deontic logical framework for modelling product families.

. ; ; Proceedings of 4th International Workshop on Variability
the clauses tpgether. the, s C.Iaus.es. qorreSpondlng to the Modelling of Software-intensive Systemages 37—-44, 2010.
coupon handling feature (including individual couponkg t
five first clauses corresponding to the loyalty card feature[3] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated
(the sixth clause is already included), and the new clause Analysis of Feature Models 20 Years Later: A Literature
corresponding to the restriction we have just defined. Using ~ R€View. Information Systems35(6):615-636, 2010.
the CLAN tool we obtain that the contract has a conflict [4] S. Fenech, G.J. Pace, J.C. Okika, A.P. Ravn, and G. Stémei
due to the permission of performing actiollseCoupon On the Specification of Full Contracts. Iroceedings of
andUseCardin sequence, which is in conflict with the new the Sixth International Workshop on Formal Engineering ap-
added restriction. This conflict can be solved by changing proches to Software Components and Architectures (FESCA

. . 2009) pages 39-55, 2009.

clause Use Card as we can see in Figure 13, so the

corresponding@’ L clause is now the following: [5] S. Fenech, G.J. Pace, and G. Schneider. Automatic Conflic
2. [1*][AskCustomer][UseCoupon|P(UseCard) Detection on Contracts. ICTAC09, LNCSSpringer, 2009.

In this new specification we say that, after being asked [6] s. Fenech, G.J. Pace, and G. Schneider. Clan: A tool for
by the system, the client can use his loyalty card only if he contract analysis and conflict discovery. Tth International

has not redeemed a coupon before. Now we obtain that the =~ Symposium on Automated Technology for Verification and

; .y Analysis (ATVA'09) volume 5799 ofLNCS pages 90-96,
contract is conflict-free. Macao, China, October 2009. Springer. CLAN is available
V. CONCLUSIONS from http://www.cs.um.edu.mt/svrg/.

We have presented here a framework to handle variability[7] E. Martinez, G. Diaz, M. E. Cambronero, and G. Schneide
and evolution in SPL, and we have used a case study to A Formal Model for Visual Specification of e-Contracts.
show how addina new features mayv introduce conflicts and Proceedings of 7th IEEE 2010 International Conference on
h _g y . Services Computing (SCC 201@gages 1-8, 2010.

ow these conflicts may be detected. While the us€-@
Diagramsseems interesting due to its modularity, analysing [8] G.J. Pace and G. Schneider. Challenges in the speaificati
conflicts is not easy. On the other hand, the use of logic of full contracts.Proceedings of 7th International Conference
(CL) allows us to automatically detect conflicts, but its use ~ ©n integrated Formal Methodgpages 292-306, 2009.
as a modelling language is not advisable as it is not easy in9] C. Prisacariu and G. Schneider. A Formal Language for
general to add a feature in a local manner, as done with the Electronic Contracts. ItFMOODS volume 4468 of LNCS,
diagrams. This drawback is partially overcome by modelling ~ Pages 174-189. Springer, 2007.
features behaviour itC-O Diagramsand then translating [10] p.y. Schobbens, P. Heymans, J.C. Trigaux, and Y. Bopgem

them intoCL to detect potential conflicts. Feature Diagrams: A Survey and A Formal Semantics. In
As shown in the case study it is not easy to prove Proceedings of the 14th IEEE International Requirements

conflict-freedom in a modular manner, as adding a new Engineering Conference2006.

