
Smart Contracts – A Killer Application for
Deductive Source Code Verification

Wolfgang Ahrendt, Gordon J. Pace, Gerardo Schneider

Abstract Smart contracts are agreements between parties which, not only describe
the ideal behaviour expected from those parties, but also automates such ideal per-
formance. Blockchain, and similar distributed ledger technologies have enabled the
realisation of smart contracts without the need of trusted parties — typically using
computer programs which have access to digital assets to describe smart contracts,
storing and executing them in a transparent and immutable manner on a blockchain.
Many approaches have adopted fully fledged programming languages to describe
smart contract, thus inheriting from software the challenge of correctness and ver-
ification — just as in software systems, in smart contracts mistakes happen easily,
leading to unintended and undesirable behaviour. Such wrong behaviour may show
accidentally, but as the contract code is public, malicious users can seek for vul-
nerabilities to exploit, causing severe damage. This is witnessed by the increasing
number of real world incidents, many leading to huge financial losses. As in critical
software, the formal verification of smart contracts is thus paramount. In this paper
we argue for the use of deductive software verification as a way to increase confi-
dence in the correctness of smart contracts. We describe challenges and opportuni-
ties, and a concrete research program, for deductive source code level verification,
focussing on the most widely used smart contract platform and language, Ethereum
and Solidity.

Wolfgang Ahrendt
Chalmers University of Technology, Sweden, e-mail: ahrendt@chalmers.se

Gordon J. Pace
University of Malta, Malta, e-mail: gordon.pace@um.edu.mt

Gerardo Schneider
University of Gothenburg, Sweden, e-mail: gerardo@cse.gu.se

1

ahrendt@chalmers.se
gordon.pace@um.edu.mt
gerardo@cse.gu.se

1 The Blockchain and Smart Contracts

Blockchain refers to a specific data structure as well as to an architecture for
maintaining that data structure. The blockchain data structure is essentially a list
(‘chain’) of lists (‘blocks’), but augmented with a combination of hierarchical and
chained crypto hashing, in order to (i) ensure that appending blocks can only be
performed by consensus; and (ii) making changes on previous too computationally
expensive to be tractable. The blockchain architecture is an open, distributed ledger
that can record transactions between untrusted parties, in a permanent, transpar-
ent, and cryptographically secured way, without relying on any central authority.
Bitcoin [31] was the first instantiation of blockchain, and was used for what has
probably become the most widely recognised application of blockchain — that of
cryptocurrencies. However, blockchain technology has a much wider and rapidly
growing set of applications which are likely to play an important role in the future
of the digital society. On the forefront of these are smart contracts.

A smart contract is intended to digitally facilitate and enforce the negotiation
or performance of an agreement between all parties which choose to engage with
it. Effectively, many smart contract implementations are computer programs which,
using the blockchain, are stored in a manner that ensures immutability, i.e., they
cannot be changed by any of the parties (unless mutability is implemented as part of
the smart contract itself) and transparency, i.e. visible by the parties involved. The
execution of smart contracts is performed in the blockchain network, by workers
which earn some cryptocurrency in return, but in a manner which depends on no
individual point of trust.

The by far most popular smart contract platform is Ethereum1. It was created by
Vitalik Buterin and is now a community effort coordinated by the Ethereum Founda-
tion. The Ethereum blockchain features its own cryptocurrency, Ether. Smart con-
tracts are executed by the Ethereum Virtual Machine (EVM), a distributed virtual
machine interpreting a bytecode-level smart contract language, called EVM byte-
code. In order to have the code executed by workers in the blockchain network, the
workers earn ‘gas’ (which is traded with Ether). Each EVM instruction costs a fixed
amount of gas. The caller pays for the execution by paying for the gas (in fact, in ad-
dition they also choose what gas price, in Ether, they are willing to pay), to support
its execution. If a transaction runs out of gas payment, the transaction is aborted and
leaves no side effect, though still losing the money used to pay for gas.

EVM code is too low-level (for most developers) to program in it directly. Sim-
ilarly, it is too low level to allow inspection by (most) potential users of a contract.
Instead, it is the target language for compilation from higher level languages, of
which Solidity is the one which is used most widely. Ethereum smart contracts are
largely written in Solidity, and inspected in that form by users considering to engage
with a contract. The language borrows some syntactic flavour from JavaScript syn-
tax. For instance, consider the smart contract snippets written in Solidity and shown
in Listing 1. The Auction contract provides a protocol for regulating how the auc-

1 www.ethereum.org

2

1 contract Auction {
2 bool public auctionOpen = true;
3 uint public currentBid = 0;
4 address private auctionOwner;
5 address private currentBidder = address (0);
6
7 function Auction () public {
8 auctionOwner = msg.sender;
9 . . .

10 }
11
12 function placeBid () public payable {
13 // The auction must still be open
14 require (auctionOpen);
15
16 // The new bid must be higher than the current one
17 require (msg.value > currentBid , "bid too low");
18
19 // Remember the current bidder
20 address previousBidder = currentBidder;
21 uint previousBid = currentBid;
22
23 currentBidder = msg.sender;
24 currentBid = msg.value;
25
26 // If there was previous bid , return the money to that bidder
27 if (previousBidder != address (0)) {
28 previousBidder.transfer(previousBid);
29 }
30
31 }
32
33 function closeAuction () public {
34 require (msg.sender == auctionOwner);
35 auctionOpen = false;
36 . . .
37 }
38
39 . . .
40 }

Listing 1: Snippets from a smart contract regulating an auction.

tion will take place. Once the code is set up on the blockchain (in compiled form),
the participants are guaranteed that the logic of the auction process as described in
the contract will be adhered to, thus ensuring certain guarantees e.g. only the auction
creator may decide to close the auction.

A Solidity contract offers typically several functions (comparable to methods
in the object-oriented setting) which can be called by anyone via the underlying
blockchain system. For instance, in the auction smart contract, there is the function
placeBid is called to make a new bid and closeAuction is used to close down the
auction. More precisely, the caller is either an external account (signing the call with
the private key of the account) or another contract. Any kind of information can be
sent as parameter of the call, but in particular, a call can send cryptocurrency to the
contract. The contract will then execute the called function, manipulating the local
book-keeping data as well as transferring value, or any other kind of information, to

3

other accounts or other contracts. For instance, the placeBid function will receive
funds (hence marked payable) when called, and its logic will then (i) ensure that
the new bid is higher than the current one; (ii) the previous bidder (if any) will
have their bid returned; (iii) the new bid and the bidder’s address are recorded. It
is worth noting that if the argument passed to require does not hold, the whole
execution fails and is reverted, thus not allowing the funds transfer. Reverting the
execution results in rolling back the state of the smart contract to its original state
to when a function was called from outside (i.e. if a function in a smart contract
calls another which fails, any execution already done by the original function is also
reverted). Contracts strongly encapsulate their local data. Even if a contract variable
is labelled as public, it is still not writable from outside the contract. It only means
that the variable is (indirectly) readable, through a getter-method that is generated
during compilation.

The whole purpose of smart contracts is to describe and automate an agreed
exchange of values and information over the internet, in a transparent way, for in-
stance, any user knows that the auction is fair in the sense that a higher bid by any
user is always accepted as the new winning bid. The smart contract, once enacted
acts in itself as an entity on the blockchain, being able to receive or dispense funds
(as regulated by its code).

The different participants are identified solely by their respective public key,
which makes it easy to securely pass around encrypted or electronically signed in-
formation wherever appropriate. Whenever a function of a contract is called, the
identity of the caller is sent along implicitly, and can be used by the contract in its
internal bookkeeping, for call-backs, or for passing the caller identity on to some
other contract.

To look further into the logic of the auction example, the code keeps track of
whether the auction is open, the current winning bid, the bidder and the person
who owns the auction, who corresponds to the one who enacted the contract (thus
triggering the constructor of the contract). As long as the auction is open, any user
may place a bid higher than the current winning one, until the owner of the auction
decides to close it. Additional logic may guarantee that, for instance, the auction can
only be closed after a certain period of inactivity. Transparency is the key attraction
here, since inspection and analysis of the code shows that, for instance: (i) once
closed, an auction may never be reopened; (ii) only the owner of the auction may
close it; (iii) the funds stored in the auction smart contract match the value stored in
the currentBid variable.

Relating the smart contract to the equivalent natural language legal contract one
could have enacted in the real world instead, we note that: (i) unlike a legal contract,
the smart contract does not only regulate behaviour, but also performs it — it guar-
antees, rather than makes illegal properties such as the fact that everyone gets to see
the real highest bid, and that indeed the highest bidder (rather than a close relative)
is selected as winner; and (ii) the execution of the contract, in a way corresponds
to a negotiation process, i.e., the final mutual obligations of the seller (the auction
owner) and the selected winner may include or excluding certain warranties for the
item sold, a warranty timeout, pre-payment before and full payment after pick-up,

4

and so on. (At the same time, smart contracts lack many concepts which important
for real legal contracts, like, for instance, prohibitions.)

Many smart contracts were created, mainly in the very recent years. The block-
chain of the most popular smart contract framework, Ethereum, contains around one
million smart contracts (970,898 as of December 26, 2017). Clearly, this still young
technology has reached a wide spread in a short time. The applications are virtually
endless, and include even integration with the Internet of Things (IoT). For instance,
the Swiss company slock.it2 offers renting of apartments, where smart contracts or-
ganise not only the agreement and payment, but also physical access through door
locks that are connected to the internet and controlled by the smart contract.

There is a growing number of sectors, private as well as public, which are heavily
investigating the future exploitation of blockchain and smart contracts, for innova-
tive ways of doing business, of sharing and tracing data, of executing advanced
transactions, of digital governance, of exploiting to the Internet of Things, and of
executing agreements between parties, to name a few. The Enterprise Ethereum Al-
liance (EEA)3 connects several hundreds of companies with Ethereum subject mat-
ter experts. (Note that this is only a fraction of the creators and users of Ethereum
smart contracts.) EEA organises organisations with a particular, mostly commercial,
interest in smart contracts, and include many prominent companies like American
Family Insurance, AMD, BP, CISCO, Credit Suisse, HP, ING, Intel, J.P.Morgan,
MasterCard, Microsoft, Rabobank, Samsung, Shell, TIBCO, and UBS, to name a
few. But there are also other groupings, like R34, a consortium of over 200 com-
panies and regulators which build their own blockchain, Corda, with an according
smart contract language, in order to, how they put it, ‘transform the way the world
does business’. Members of the R3 partner network include (notably overlapping
with the above) Amazon, HP, Intel, LG, Microsoft, and Oracle. All these devel-
opments are strong indicators that smart contracts are here to stay, and that smart
contract safety is a significant issue.

2 Faulty Smart Contracts

Just like all pieces of software, smart contracts can, and do, suffer from program-
ming errors, meaning that the code can deviate from the expected behaviour. Unlike
in many software domains, the code of smart contracts is openly readable, and can
be inspected by everyone before using it. And yet, it is well known that many errors
are difficult to spot by inspection only. Most existing smart contract programming
languages are Turing-complete5, giving expressiveness and power, but making it

2 slock.it
3 entethalliance.org
4 www.r3.com
5 As opposed to usual Turing complete languages, executions of (Ethereum) contracts always ter-
minate, because each external call specifies a ‘gas limit’, which effectively is an upper bound for
the computational effort to be spent. However, as opposed to primitive recursive functions, Ethe-

5

more difficult to always understand the code fully, or to verify its correctness. There
are many potential causes of programming errors, like numbers getting out of range,
unintuitive semantics of certain language features, or intricate mismatches between
internal bookkeeping (in the local data) and external bookkeeping (in the block-
chain), to name just a few.

Erroneous behaviour may not be intended by the creator nor by the user of a
contract. It is also possible that a malicious contract creator writes code to build ex-
pectations with obfuscated means to ensure that they will not be fulfilled. However,
most errors are probably not intended by the creator of the contract, but discovered
by a malicious user who then exploits them. In all of these scenarios, what is spe-
cial in this application domain is that the parties using an erroneous smart contract
can loose substantial value (typically cryptocurrency) at once, in big volumes, and
that in an irreversible way (as blockchain transactions are permanent, and no au-
thority has the power to undo them). Errors in smart contracts have already caused
substantial financial damage, in some cases millions of dollars. Some famous bugs
that have made the news include the DAO [28] and the Parity Wallet [9], and the
two recent multi-million Ethereum bugs have led to losses equivalent to millions of
dollars [18, 34]. Many more bugs have been detected and reported elsewhere [4],
and some analysts claim that there are more than 30,000 buggy smart contracts on
the Ethereum network [27]. All these reports just witness what many where afraid
of: that it is easy to get smart contracts wrong, and that the consequences of errors
can be severe.

The research community and practitioners, have already started to react to
this problem by proposing different solutions. Some solutions go into the direc-
tion of creating new programming languages which are less expressive and more
verification-friendly (see for instance [26] and references therein), while others pro-
pose to adapt existing or develop new verification techniques for existing program-
ming languages. We give an overview of the latter in the next section.

3 Approaches to Smart Contract Verification: The Landscape

As argued in the previous section, given the finance-critical nature of many smart
contracts, the need for verification of smart contracts is crucial, and interestingly
although there is still limited foundational work and academic results addressing
the challenge (perhaps because smart contracts are perceived to be no different than
normal software), tool-development in the field to support smart contract developers
is surprisingly active. In this section we look at the spectrum of verification tech-
niques and tools developed for smart contract analysis and verification going beyond
traditional testing and debugging support.

Dynamic analysis or runtime verification [24] have now long been touted as prac-
tical verification techniques which scale up to be used on real-world systems. There

reum contracts do not themselves imply any limit on the computation. It is only the caller of the
contract who provides the limit.

6

is limited research and tools applying these techniques for smart contracts, perhaps
due to the overheads which runtime verification introduces on the system at run-
time. On smart contract platforms such as Ethereum, these overheads translate to
additional gas consumption, and hence the cost of executing the smart contract.
Ellul et al. [13] have developed CONTRACTLARVA6, a tool which allows for auto-
mated injection of runtime monitors into an existing smart contract written in So-
lidity to verify correctness at runtime. Related techniques have been developed by
Idelberger et al. [22, 37, 16, 22], where the monitors are synthesised from declara-
tive descriptions to regulate events typically coming from real-world systems rather
than regulate smart contracts themselves. Similarly, Garcia et al. [15] have devel-
oped techniques using BPMN-based specifications on Ethereum, while Prybila et
al. [33] have a similar solution for Bitcoin. Both approaches allow the regulation of
business process models using smart contracts. Technically, although this and the
previous approaches can be used to monitor events resulting from other smart con-
tracts, they provide no automated means of instrumenting synchronisation between
their monitors and the monitored contracts.

In the context of smart contracts, runtime overheads do not only cost time, but,
more importantly, gas, i.e., money. In order to avoid the overheads induced by
runtime monitoring, compile-time techniques may be more attractive. Moreover,
compile-time techniques analyse all possible executions, rather than only the ones
which where observed. Many of the tools available out there fall under the class
of syntactic analysis, analysing the structure of the code with little or no seman-
tic information to identify features which may indicate vulnerabilities in a Lint-like
manner. There are various such tools out there for smart contracts written in Solidity,
including Solcheck7, Solint8, Solium9 and Solhint10, but many of these tools appear
to simply replicate known syntactic analysis techniques from imperative languages
in the context of smart contracts.

Static analysis techniques, which enrich this analysis using semantic information
can be more effective in identifying potential problems with a system but require
more effort to scale up for the verification of large systems. One major challenge
here is that the semantics of smart contract languages are, at best, informally ex-
plained, and typically by resorting to explaining how they work at the level of the
virtual machine on which they are executed. A formal semantics for the Ethereum
platform is the KEVM formal semantics [19], which formalises the bytecode assem-
bly on the Ethereum Virtual Machine (EVM). Another formalisation was recently
developed by Grishchenko et al. [17], also at the bytecode level, giving a small-
step semantics in F*. Another semantics at the virtual machine level was given in
[20], allowing reasoning about smart contracts to be performed using the interactive
theorem prover Isabelle/HOL.

6 See https://github.com/gordonpace/contractLarva.
7 See https://github.com/federicobond/solcheck.
8 See https://github.com/SilentCicero/solint.
9 See https://github.com/duaraghav8/Solium.
10 See https://github.com/protofire/solhint.

7

https://github.com/gordonpace/contractLarva
https://github.com/federicobond/solcheck
https://github.com/SilentCicero/solint
https://github.com/duaraghav8/Solium
https://github.com/protofire/solhint

One can categorise these static techniques into two: (i) approaches which use
static analysis to identify a particular class of typical vulnerabilities (e.g. gas leaks,
reentrancy problems); and (ii) specification-specific static analysis, particularly use-
ful for the verification of smart contracts against a business-logic specification.

The former, typically addressing non-functional properties have been success-
fully deployed in many domains since they have been shown to scale up more read-
ily — and this shows in the domain of smart contracts, where one finds a plethora of
such tools. Different approaches have been taken to try to identify different types of
vulnerabilities. For instance Fröwis et al. [14] try to identify cases where the control-
flow of a smart contract is matable, which is typically not desirable. Luu et al. [25]
have developed a tool OYENTE which uses symbolic execution to identify a whole
class of possible issues, including reentrancy detection. Similarly, Mythril11 [30]
uses concolic analysis, taint analysis and control-flow analysis for security vulner-
ability detection. SmartCheck12 uses a combination of lint-like and static analysis
techniques to find common vulnerabilities. Many of these approaches work at the
bytecode level, thus also allowing the verification of compiled contracts. In contrast,
Bhargavan et al. [8] start at the source (Solidity) level and translate into F*, although
they also use decompilation techniques to go from bytecode to F*. The motivation
is to allow verification within F*. However, in contrast to what the title of the paper
suggests, no actual verification of resulting F* is reported in the paper. The authors
label their work as preliminary.

In contrast, static analysis of smart contracts at a business-logic level is still a
largely neglected field of study, whether it is analysis at a code structure level (e.g.
checking pre-/post-conditions or invariants of a system) or at a system-level (e.g.
checking temporal logic properties which should hold along all execution paths of
the system). Bai et al. [5] take a model checking approach, building a model of a
particular smart contract and verifying it using the model checker SPIN. Although
using this approach one can prove general temporal properties of the system, there
is a huge gap between the level of abstraction of the smart contracts and the manu-
ally constructed model used for verification. Abdellatif et al. [1] model smart con-
tracts using timed automata and verify their correctness, but take an ambitious ap-
proach of also modelling the underlying blockchain, including the mining process.
Using probabilistic model checking, they verify properties such as the likelihood
of a hacker using transaction ordering attacks. In this manner, this approach goes
one step further in that they do not assume immediate writing of the information to
the underlying blockchain. On the other hand, just as in the previous work, there is
a gap between the smart contract model used for verification and the actual smart
contract code.

While system-level temporal properties are ideal to reason at a system-wide level
from an external perspective, most analysis is done post-development, with the sys-
tem organisation and logic already in place. The system’s architect and developers
would have an understanding of how the individual parts fit together to guarantee

11 See https://github.com/ConsenSys/mythril.
12 See https://tool.smartdec.net.

8

https://github.com/ConsenSys/mythril
https://tool.smartdec.net

the overall (integrated) logic of the system. Thus, finer-grained implementation-
specific specifications at the code structure level, such as pre- and post-conditions
and system invariants, are typically also desirable to allow developers to understand
whether the parts are working as expected, and if not which parts are, in some way,
broken and leading to failures. The relationship between the internal data and the
transaction history is particularly desirable in the context of smart contracts, espe-
cially since smart contracts act like API calls which may be invoked independently
of each other. Contrast this with monolithic systems which have a predetermined
control-flow (the main function) and where user interaction affects which branches
of the structure to follow. Despite this, to date we are not aware of any work done
in functional verification of smart contracts at this code structure level, and this is
where we position our work in this paper.

4 Towards a Deductive Source Code Verifier for Smart Contracts

Deductive program verification has been around for nearly 50 years, although a
number of developments during the past 15 years have brought dramatic changes
to what can be achieved. Contemporary verification tools support main-stream pro-
gramming languages such as C [23], Java [3], or C# [6]. They reason directly on the
source code level, support source code level specification languages (with pre/post-
conditions and invariants), feature high automation (in contrast to verifiers based on
higher-order logics), and provide rich graphical user interfaces.

In this section, we propose a research agenda which will provide the artefacts and
tools for specification and deductive verification of smart contracts on the source
code level. At this point, we aim at the by far most widely used smart contract
framework, Ethereum, and at the most widely used programming language, Solidity.
Clearly, these choices will have to be re-evaluated as we move forward, in the light
of the very dynamic developments in this domain. Generally, targeting a wide spread
platform and language is likely to boost the impact of this agenda on future smart
contract practice, even more so as the Ethereum/Solidity community outspokenly
asks for the involvement and contribution of formal methods.

In summary, we aim at a new specification language, a new program logic, and
a new verification system for a concept (smart contract) and language (Solidity) for
which comparable artefacts do not yet exist.

4.1 Challenges

Smart (Ethereum) contracts in general and Solidity in particular present various
challenges to verification. We discuss these challenges in the following. Note that
many of the Solidity features discussed here are also features of the underlying

9

EVM bytecode, and partly also (at least in similar form) of other smart contract
frameworks.

The Ethereum blockchain has its own built-in cryptocurrency, called Ether, cur-
rently the world’s second biggest cryptocurrency after Bitcoin. Solidity (and the
underlying EVM) supports the transfer of cryptocurrency between users and con-
tracts, as well as among contracts. This is different from passing around other pieces
of information. The attempt to transfer Ether is only accepted if the (block solving)
worker can validate that the sender has a non-negative Ether balance in the block-
chain after the transfer. If the validation fails, the transfer will not take place, and the
entire surrounding transaction (see below) is aborted. Another difference is that the
currency balance of accounts and contracts is stored as global sate, whereas other
data is encapsulated in the contracts.

Solidity features a transaction mechanism. Each external call of a contract func-
tion starts a transaction. If during the execution of the transaction (which may in-
clude local computations, contract-triggered calls, and successful Ether transfers)
some Ether transfer fails, this aborts the entire transaction. Also running out of gas,
or the failure of an assertion (see assert in Listing 1), cause abortion of the on-
going transaction. All local and global effects of that transaction will be undone.
Modelling the reverting of arbitrary computations poses a particular challenge to
the proof system.

Gas analysis is an interesting challenge in smart contract verification. The limited
gas budget which a smart contract user sends along with each call means that, in
this domain, the resource consumption very directly affects the functionality of the
contract. However, the precise consumption is defined on the level of EVM code
instructions, not on the level of higher level languages translating to EVM, like
Solidity. Therefore, for a quantitative gas analysis, the exact compiler version has
to be considered, and analysed, to predict gas consumption of any higher-level (also
Solidity) code. At the same time, out-of-gas exceptions do not generally indicate
errors in the smart contract itself13, but rather they are caused by an insufficient gas
budget provided by the caller. As the gas budget is given from outside the smart
contracts, it cannot be used in static analysis.

Cryptographic features are available as primitives in Solidity (and EVM). The
Solidity programmer can heavily use (implicitly and explicitly) cryptographic prim-
itives without mastering underlying cryptography. Our agenda does not address the
verification of the underlying cryptographic algorithms. (That would belong to a dif-
ferent agenda, namely the verification of the underlying blockchain mechanisms).
Nevertheless, we have to formalise the guarantees cryptographic primitives make to
the application level, and use them in the verification. Examples of such guarantees
are the deterministic behaviour of a hash function, uniqueness of hash values, the
accuracy of (the authentication with) cryptographic signatures, and so on14.

Solidity has richer built-in data types than other languages with comparable
source code verification support, like Java or C. One example is mappings. (In C

13 Although they may be the result of a gas leak in the code.
14 To be precise, some of these properties do are not strictly guaranteed, but hold with sufficiently
high probability to justify relying on them.

10

and Java, such data types are available only as libraries.) These data types require
special reasoning support.

Solidity features many more numeric types than most languages. For instance, the
programmer can use unsigned integers, the range of which can be freely configured,
all the way from 28 to 2256 (in steps of 8 in the exponent). Overflow and underflow is
silent, such that, for instance, 35−42 results not in−7, nor is any exception thrown,
but it results in 2256− 7. Both the flexible size and the silent under- and overflow
pose challenges to the verification. Admittedly, silent under- and overflow are also
an issue in Java or C verification. However, underflow due to a lower bound of
zero (as in Solidity) happens more easily in practice than underflow with respect to
MININT (as in Java or C). Moreover, under- and overflows are particularly critical in
smart contracts, where most numbers subject to arithmetic operations represent real
value, like for instance amounts of cryptocurrency which one party owes another
party. It makes a big difference whether A owes B a total of −7 Ether, as opposed to
2256−7.

Solidity features a mixture of different call mechanisms. In addition to usual calls
(building a context stack), Solidity offers some low-(EVM)-level call mechanisms.
The first, call, is a generic function where the name of the called function is sent
as an argument, together with the proper function arguments. This mechanism is
not type safe. Another variant is delegatecall, which is similar to call, but ef-
fectively imports code from the called contract syntactically, thus executing it in the
local, calling context. This way, some contracts act as libraries for other contracts,
compensating for the lack of real libraries in the blockchain infrastructure. Further-
more, delegatecall is effectively a macro expansion mechanism — not type-safe,
and prone to name capture. Solidity also features two different function return mech-
anisms, value return and call-by-reference (and writing to that reference instead of
returning). This mixture of different call and return mechanisms poses interesting
challenges to an according program logic and calculus.

As mentioned before, a smart contract strongly encapsulates its state. The con-
tract variables can only ever be changed by other contracts or external accounts
through calls to local functions. At the same time, there is also contract external,
global state, notably the current cryptocurrency balance of all (external and contract)
accounts. Therefor, the verification needs to reason about a combined message pass-
ing and shared memory paradigm. At the same time, the stronger data encapsulation
as compared to, say, Java or C++, is an advantage when developing compositional
verification techniques.

On the other hand, it is a challenge for compositional verification that it is not
possible to pass Ether to another contract without calling it. For instance, in List-
ing 1, if the address stored in currentBidder happens to be another contract (we
cannot control whether that is the case), then currentBidder.transfer(..) exe-
cutes the code of that contract15. This passing of control via seemingly elementary
Ether transfer makes it more difficult to control effects locally. For instance, the exe-

15 In general, if c is a contract programmed in Solidity, c.transfer(..) behaviour can be over-
ridden by using a fallback function which handles any function calls not defined in that contract.

11

cution of the Ether receiving contract may call back into the Ether sending contract.
A verification methodology has to take this into account.

4.2 Approach

As argued above, the agenda we propose builds—and expands—on the state-of-
the-art of deductive software verification. Concretely, we choose the KeY approach
and system [3, 2] as a starting point and blueprint for a verification approach and
system for Ethereum smart contracts written in Solidity. The most elaborate KeY
version, KeY-Java, allows precise reasoning about practically all language features
of (sequential) Java. Recently, a bug in the main sorting routine of the OpenJDK
distribution of Java, Collection.sort(), was identified using KeY [10]. The same
bug was then found to be present also in Oracle’s Java and in Android. Another KeY
version in the picture is KeY-ABS [12], a verification system for the distributed
object language ABS. The choice of KeY is attractive because (a) KeY is among
the approaches which have proven to master verification of feature-rich mainstream
languages (like Java), (b) the KeY approach targets the object-oriented paradigm
(Java, ABS) which the contract-oriented paradigm is building on, and (c) KeY has
been used for compositional verification of distributed objects (ABS), which have
similarities to communicating contracts with their strong data encapsulation. Note,
however, that the agenda we present in this paper does not include the translation
of smart contracts to another language for which a KeY version already exists. (Ac-
tually, such a work is also under the way, but will be reported elsewhere.) Rather,
we describe here the version of a new KeY approach and system, for Ethereum,
probably targeting Solidity, performing source code level verification. We give it
the working title SolidiKeY. At the core, we aim at a new specification language,
program logic, calculus, and proof system for Solidity.

Such an endeavour has to take the examination of real smart contracts as a point
of departure. Luckily, smart contracts are openly available. (The EVM code is al-
ways stored in the blockchain. Moreover, often the corresponding source code is
also publicly available, and via hash codes linked with the code in the blockchain.)
One can start with those contracts which have known errors (e.g., [32]). Also, it is
important to engage in discussions with the smart contract community. In the end,
we want to offer to smart contract developers a method and tool which can be used
prior to deploying a contract (irreversibly) in the blockchain.

We need to provide a new, business-logic level specification language for the tar-
geted smart contract language, here Solidity. Its purpose is to formalise the desired
functionality of the code units (functions and transactions), the integrity conditions
on the stored data, and the relation between internal data and external communi-
cation. The specification language will share some design principles with the Java
Modeling Language [21]: close integration of (non-destructive) Solidity language
features into property descriptions, first-order quantification over data types, pre-
and post-conditions of functions, state invariants over data stored in the contract,

12

among others. In addition, the smart contract domain requires that the data stored
in a contract reflects accurately, at each point in time, the communication between
the contract and users (or other contracts). Formally, this boils down to a contract
invariant, constraining the relation of the internal data to the communication his-
tory. For instance, currentBidder and currentBid (in Listing 1) must invariantly
correspond to the sender and value of the highest bid in the call history of the con-
tract. More precisely, these are the sender and value of the earliest of the calls to
placeBid() which carries an Ether value greater or equal to the values of other
calls to placeBid(). Such contract invariants are a cornerstone for compositional
verification of a network of contracts. It must be possible to define them in the lan-
guage, and the proof strategies need to support them.

From the contract and its specification, proof obligations must be generated, au-
tomatically. The logic may be a version of dynamic logic (DL), a modal logic for
reasoning about programs on the source code level. DL extends first-order logic
with two modalities, 〈p〉φ and [p]φ , where p is a program (in source code) and φ

is another DL formula. The formula 〈p〉φ is true in a state s if there exists a termi-
nating run of p, starting in s, resulting in a state where φ holds. The formula [p]φ
holds in a state s if all terminating runs of p, starting in s, result in a state in which
φ holds. For deterministic programs p (like smart contract functions and transac-
tions), the only difference between the two modalities is that termination is stated
in 〈p〉φ , and assumed in [p]φ , such that the two modalities correspond to total and
partial correctness, respectively. In the (Ethereum) smart contract world, a trans-
action will always terminate because of gas restriction. However, it is relevant to
distinguish ‘voluntary’ termination by the business-logic and termination enforced
by externally given gas limits. Also, one can redefine partial correctness to mean
correctness in the absence of gas exceptions, and total correctness to mean correct-
ness in the presence of gas exceptions. DL is the base logic for the KeY approach
[7]. Hoare logic can be seen as a fragment of DL, because {φ}foo{ψ} can be ex-
pressed in DL as φ → [foo]ψ . DL and Hoare logic have in common that the logic
and calculus is specific for the target language. We propose the development of a
DL for Solidity, called Solidity DL.

For reasoning about this logic, we propose to develop a sequent calculus, cov-
ering all features of Solidity16. Given a set of formulae Γ , a program π and
(post)condition φ the sequent Γ ` 〈π〉φ holds if π , when starting in a state ful-
filling all formulae in Γ , terminates in a state fulfilling φ . The calculus uses the
symbolic execution paradigm (by adding explicit substitutions to the logic, captur-
ing the effects of a computation, see [7]). One advantages of this paradigm is that
proofs advance through the source code (as opposed to flow backwards as in the
weakest precondition calculus), making the proofs more intuitive. For real world
languages, calculi capturing all language features tend to be large, with several hun-
dreds of rules (including the axiomatisation of all data types). On the other hand, the
full Java DL calculus realised as taclets in the KeY system provides a good starting
point for axiomatising a language like Solidity. Several challenges of Ethereum/So-

16 Some deprecated and discouraged features of the language may not be supported. However, one
should not exclude features simply because they are challenging for verification.

13

lidity verification (see Sect. 4.1) need to be addressed in the development of such a
calculus. For instance, the aforementioned transaction mechanism needs to be han-
dled, to correctly model the roll back of all effects of a transaction once it is aborted.
Here one can build on the fact that KeY-Java actually supports also JavaCard, a Java
dialect featuring an abortable-transaction mechanism. Even if the transaction sup-
port of KeY-Java [29] is limited to method local transactions (whereas we need to
support call-stack global transaction abortion), it provides a good starting point for
smart contract transaction verification. A related issue is that the calculus must be
able to verify robustness against gas-used-up exceptions. Another important aspect
is that the calculus shall support compositional contract verification, by employing
the assume-guarantee paradigm [11]. In our context, it means that a contract’s com-
pliance with its own specification is verified while assuming the other contracts’
specification17. Here, one can build on concepts in KeY-ABS [12].

Finally, we aim for a verification system, able to perform practical source code
level verification of smart contracts. Let us call that system SolidiKeY. For once,
this requires the mechanisation of the aforementioned calculus. Here, one can take
advantage of taclets [35], a domain specific language for writing and executing se-
quent calculus rules. In addition, what needs to be developed is the generation of
proof obligations in Solidity DL from specifications, and strategies for high automa-
tion of the proof search. Such strategies are not only specific for the target language,
but also for community specific programming pragmatics.

5 Discussion

In this paper, we have presented the opportunities brought forward by deductive
analysis for smart contract verification. The case for the necessity of verification is
increasingly being accepted in the software community, but in the case of smart con-
tracts, the case becomes substantially stronger. Despite the typically small size of
such programs (as compared to many software systems orders of magnitude larger),
the fact that these contracts manipulate ownership of digital assets (typically in the
form of cryptocurrency or tokens) and their immutability mean that bugs can be very
costly. Ironically, unlike large systems which are typically built by teams of devel-
opers using mature software engineering practice, the small size of such contracts
means that single, and not necessarily highly experienced developers, are sometimes
responsible for their development.

We have argued for the need for verification at a business-logic level — ensuring
that the software does what it is expected to do, and in particular, the desirability of
code-structure level verification i.e. pre-/post-conditions and invariants. This is the
level of abstraction at which deductive analysis gives added value. Let us contrast
this with alternative means of approaching such verification.

17 But not without a small ‘delay’ of the considered communication, to prevent circular reasoning.

14

Translate and Verify: Firstly, one may ask whether building verification tech-
niques specific to a high level language such as Solidity is necessary. Why not
translate to another high level language already supported by deductive analysis
tools and perform the verification on the translation? Such an approach is eas-
ier to achieve, and would still allow for verification of the types of properties
we discuss in this paper — over these past months, in fact, we have been ex-
ploring the use of a Solidity-to-Java translation to verify smart contracts using
the KeY verification tool for Java source code. (This will be reported elsewhere.)
However, this approach comes with a number of disadvantages: (i) Verifying the
translation is a major undertaking, even more so when no complete formal se-
mantics of the source language exists. It is easy to make errors in the translation
due to assumptions which may or may not hold, e.g., are the semantics of as-
signments in Solidity and Java equivalent?; (ii) Solidity has a number of native
domain-specific features, including failure and checkpointing (allowing a pro-
gram to revert a transaction) and implicit resource management (like payable
function calls and transfer of funds). Such domain specific features can be cap-
tured better by axiomatising them directly rather than coding them in syntactic
sugar via another language.

Verification at a lower-level of abstraction: Given that high-level languages such
as Solidity are compiled down to assembly code working on the underlying vir-
tual machine, axiomatising the semantics of the EVM assembly and verifying
at that level of abstraction comes with a number of benefits: (i) the verification
is language-agnostic and can be performed on code compiled from any other
high-level language; and (ii) most of the smart contracts available on Ethereum
are not accompanied by their source code, but would still be amenable to veri-
fication. Despite these advantages, VM-level code loses the structure which the
developers used and which typically carries correspondence with the program’s
correctness logic. For instance, the condition of a while loop typically carries
information which can be used to derive loop invariants, while conditional state-
ments encode correctness corresponding to the dilemma rule. Also, this approach
widens the gap between developers and the verification activity, as the verifica-
tion is not performed on the source code developers write and understand. For
instance, using the verification facility of KEVM, assertions must be formulated
on the EVM level (see [19], Sect. 5.2), which is very difficult, and hardly possi-
ble for source code developers. Another aspect often neglected in the literature
is the need of specification languages which have at least the abstraction level of
source code, ideally higher, but certainly not lower.

Despite the fact that our proposed approach will use the semantics of the lan-
guage from a functional perspective, there are a number of limitations to correct-
ness criteria which are covered by our approach. A certain class of smart contract
attacks arise from transaction reordering, which may benefit a subset of the parties
involved. There is little formal work addressing this issue [36, 1], but we note that it
is difficult to encode within our proposed approach a formal model able to compare
outcomes under malicious transaction reordering. (This would require analysis of
quantitative hyper-properties, comparing the respective profit of different schedul-

15

ings.) Similarly difficult to reason about (compositionally) are malicious attacks
using non-functional aspects, particularly when accessing external contracts (e.g.,
reentrancy attacks which use gas consumption).

Despite these constraints, we believe that the correctness of smart contracts is a
challenge for which no silver bullet exists. The functional correctness at the source
code level is, however, an standing duck target for deductive reasoning. We be-
lieve that the limited degree of structural complexity of smart contracts, combined
with the complex nature of correctness inherent to the interaction between different
functions means that deductive verification can prove to be very effective in proving
correctness of non-trivial intricate properties.

The outcome of the agenda we described here will contribute to the safety of the
arising digital market places. By offering languages and methods for smart contract
specification, users can understand better what a smart contract should do for them,
and what it should not do, prior to using the contract. More importantly, the devel-
oped verification facilities provide strong guarantees to (potential) smart contract
users that the specified properties are actually met, at the same time as they can
warn users about incorrect contracts.

Acknowledgements The authors would like to thank Richard Bubel, Joshua Ellul, Raúl Pardo,
and Vincent Rebiscoul for fruitful discussions about Solidity contracts and their verification.

References

1. T. Abdellatif and K. L. Brousmiche. Formal verification of smart contracts based on users and
blockchain behaviors models. In 2018 9th IFIP International Conference on New Technolo-
gies, Mobility and Security (NTMS), pages 1–5, Feb 2018.

2. W. Ahrendt, B. Beckert, D. Bruns, R. Bubel, C. Gladisch, S. Grebing, R. Hähnle,
M. Hentschel, M. Herda, V. Klebanov, W. Mostowski, C. Scheben, P. H. Schmitt, and M. Ul-
brich. The KeY platform for verification and analysis of Java programs. In STTE’14, volume
8471 of LNCS, pages 55–71. Springer, 2014.

3. W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and M. Ulbrich, editors. Deduc-
tive Software Verification—The KeY Book, volume 10001 of LNCS. Springer, 2016.

4. N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on Ethereum smart contracts
(sok). In Proceedings of the 6th International Conference on Principles of Security and Trust,
volume 10204 of LNCS. Springer, 2017.

5. X. Bai, Z. Cheng, Z. Duan, and K. Hu. Formal modeling and verification of smart contracts.
In Proceedings of the 2018 7th International Conference on Software and Computer Applica-
tions, ICSCA 2018, pages 322–326, New York, NY, USA, 2018. ACM.

6. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular
reusable verifier for object-oriented programs. In F. S. de Boer, M. M. Bonsangue, S. Graf,
and W. P. de Roever, editors, Formal Methods for Components and Objects, 4th International
Symposium, FMCO 2005, Amsterdam, The Netherlands, 2005, Revised Lectures, volume 4111
of LNCS. Springer, 2006.

7. B. Beckert, V. Klebanov, and B. Weiß. Dynamic logic for Java. In Deductive Software
Verification—The KeY Book, volume 10001 of LNCS. Springer, 2016.

8. K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier, N. Kobeissi,
N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy, and S. Zanella-Béguelin. Formal veri-

16

fication of smart contracts: Short paper. In Proceedings of the 2016 ACM Workshop on Pro-
gramming Languages and Analysis for Security, PLAS ’16, New York, NY, USA, 2016. ACM.

9. L. Breidenbach, P. Daian, A. Juels, and E. G. Sirer. An in-depth look at the parity multisig
bug. Appeared at “Hacking, Distributed” http://hackingdistributed.com/2017/07/22/
deep-dive-parity-bug, Jun 2016.

10. S. de Gouw, J. Rot, F. S. de Boer, R. Bubel, and R. Hähnle. OpenJDK’s
Java.utils.Collection.sort() Is Broken: The Good, the Bad and the Worst Case. In Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, USA, July 2015,
2015.

11. W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel, and J. Zwiers.
Concurrency Verification: Introduction to Compositional and Noncompositional Methods.
Cambridge University Press, 2001.

12. C. C. Din, R. Bubel, and R. Hähnle. KeY-ABS: A deductive verification tool for the concurrent
modelling language ABS. In Automated Deduction - CADE-25. Springer, 2015.

13. J. Ellul and G. J. Pace. CONTRACTLARVA: Runtime verification of ethereum smart contracts.
In submitted for review, 2018.

14. M. Fröwis and R. Böhme. In code we trust? In J. Garcia-Alfaro, G. Navarro-Arribas,
H. Hartenstein, and J. Herrera-Joancomartı́, editors, Data Privacy Management, Cryptocur-
rencies and Blockchain Technology, volume 10436 of LNCS, 2017.

15. L. Garcı́a-Bañuelos, A. Ponomarev, M. Dumas, and I. Weber. Optimized execution of business
processes on blockchain. In J. Carmona, G. Engels, and A. Kumar, editors, Business Process
Management, volume 10445 of LNCS, 2017.

16. G. Governatori, F. Idelberger, Z. Milosevic, R. Riveret, G. Sartor, and X. Xu. On legal con-
tracts, imperative and declarative smart contracts, and blockchain systems. Artificial Intelli-
gence and Law, pages 1–33, Mar. 2018.

17. I. Grishchenko, M. Maffei, and C. Schneidewind. A semantic framework for the security
analysis of ethereum smart contracts. In POST, volume 10804 of Lecture Notes in Computer
Science, pages 243–269. Springer, 2018.

18. A. Hern. $300m in cryptocurrency accidentally lost forever due to bug. Ap-
peared at The Guardian https://www.theguardian.com/technology/2017/nov/08/
cryptocurrency-300m-dollars-stolen-bug-ether, Nov 2017.

19. E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth, and G. Rosu. KEVM:
A complete semantics of the Ethereum Virtual Machine, 2017. White paper.

20. Y. Hirai. Defining the ethereum virtual machine for interactive theorem provers. In Financial
Cryptography Workshops, volume 10323 of Lecture Notes in Computer Science, pages 520–
535. Springer, 2017.

21. M. Huisman, W. Ahrendt, D. Grahl, and M. Hentschel. Formal specification with the Java
Modeling Language. In Deductive Software Verification—The KeY Book, volume 10001 of
LNCS. Springer, 2016.

22. F. Idelberger, G. Governatori, R. Riveret, and G. Sartor. Evaluation of logic-based smart
contracts for blockchain systems. In J. J. Alferes, L. Bertossi, G. Governatori, P. Fodor, and
D. Roman, editors, Rule Technologies. Research, Tools, and Applications, volume 9718 of
LNCS. Springer, 2016.

23. N. Kosmatov, V. Prevosto, and J. Signoles. A lesson on proof of programs with Frama-C.
Invited tutorial paper. In M. Veanes and L. Viganò, editors, Tests and Proofs. Springer, 2013.

24. M. Leucker and C. Schallhart. A brief account of runtime verification. The Jour. of Logic
and Algebraic Progr., 78(5):293 – 303, 2009. The 1st Workshop on Formal Languages and
Analysis of Contract-Oriented Software (FLACOS?07).

25. L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart contracts smarter.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 254–269, New York, NY, USA, 2016. ACM.

26. A. Miller, Z. Cai, and S. Jha. Smart contracts and opportunities for formal methods. In
ISoLA’18, LNCS. Springer, 2018. To appear.

17

http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug
https://www.theguardian.com/technology/2017/nov/08/cryptocurrency-300m-dollars-stolen-bug-ether
https://www.theguardian.com/technology/2017/nov/08/cryptocurrency-300m-dollars-stolen-bug-ether

27. Mix. Ethereum bug causes integer overflow in numerous erc20 smart contracts
(update). Appeared at HardFork https://thenextweb.com/hardfork/2018/04/25/
ethereum-smart-contract-integer-overflow/, Apr 2018.

28. D. Z. Morris. Blockchain-based venture capital fund hacked for $60 million. Appeared at
Fortune.com http://fortune.com/2016/06/18/blockchain-vc-fund-hacked, Jun 2016.

29. W. Mostowski. Verifying java card programs. In Deductive Software Verification—The KeY
Book, volume 10001 of LNCS. Springer, 2016.

30. B. Mueller. Smashing ethereum smart contracts for fun and real profit. In HITB SECCONF
Amsterdam, 2018.

31. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.
32. I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor. Finding the greedy, prodigal, and

suicidal contracts at scale, 2018. Unpublished, submitted, avaliable at arXiv:1802.06038.
33. C. Prybila, S. Schulte, C. Hochreiner, and I. Weber. Runtime verification for business pro-

cesses utilizing the bitcoin blockchain. CoRR, abs/1706.04404, 2017.
34. H. Qureshi. A hacker stole $31M of Ether - how it happened,

and what it means for Ethereum. Appeared at FreeCodeCamp
https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-
happened-and-what-it-means-for-ethereum-9e5dc29e33ce, Jul 2017.

35. P. Rümmer and M. Ulbrich. Proof search with taclets. In Deductive Software Verification—The
KeY Book, volume 10001 of LNCS. Springer, 2016.

36. I. Sergey and A. Hobor. A concurrent perspective on smart contracts. In M. Brenner,
K. Rohloff, J. Bonneau, A. Miller, P. Y. Ryan, V. Teague, A. Bracciali, M. Sala, F. Pintore, and
M. Jakobsson, editors, Financial Cryptography and Data Security, volume 10395 of LNCS.
Springer, 2017.

37. I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and J. Mendling. Untrusted
Business Process Monitoring and Execution Using Blockchain. In Formal Techniques for
Distributed Systems, volume 9850 of LNCS. Springer, 2016.

18

https://thenextweb.com/hardfork/2018/04/25/ethereum-smart-contract-integer-overflow/
https://thenextweb.com/hardfork/2018/04/25/ethereum-smart-contract-integer-overflow/
http://fortune.com/2016/06/18/blockchain-vc-fund-hacked

	Smart Contracts – A Killer Application for Deductive Source Code Verification
	Wolfgang Ahrendt, Gordon J. Pace, Gerardo Schneider
	The Blockchain and Smart Contracts
	Faulty Smart Contracts
	Approaches to Smart Contract Verification: The Landscape
	Towards a Deductive Source Code Verifier for Smart Contracts
	Challenges
	Approach

	Discussion
	References

