Re-using Generators of Complex Test Data

Simon Poulding
Software Engineering Research Lab (SERL Sweden),
Blekinge Institute of Technology, Sweden
Email: simon.poulding@bth.se

Abstract—The efficiency of random testing can be improved
by sampling test inputs using a generating program that incor-
porates knowledge about the types of input most likely to detect
faults in the software-under-test (SUT). But when the input of the
SUT is a complex data type—such as a domain-specific string,
array, record, tree, or graph—creating such a generator may be
time-consuming and may require the tester to have substantial
prior experience of the domain.

In this paper we propose the re-use of generators created
for one SUT on other SUTs that take the same complex data
type as input. The re-use of a generator in this way would have
little overhead, and we hypothesise that the re-used generator
will typically be as least as efficient as the most straightforward
form of random testing: sampling test inputs from the uniform
distribution.

We investigate this proposal for two data types using five
generators. We assess test efficiency against seven real-world
SUTs, and in terms of both structural coverage and the detection
of seeded faults. The results support the re-use of generators for
complex data types, and suggest that if a library of generators is
to be maintained for this purpose, it is possible to extend library
generators to accommodate the specific testing requirements of
newly-encountered SUTs.

I. INTRODUCTION

The strategy of random testing is to sample test inputs
from the domain of the software-under-test (SUT) according
to a chosen probability distribution. The key advantage of this
strategy is that it is relatively cheap to derive a set of test inputs
compared to, for example, white-box generation strategies that
undertake a static or dynamic analysis of the SUT’s source
code: such an analysis can be costly especially when it is
performed manually.

When the input domain of the SUT is a primitive numeric
data type, such as an integer or floating point type, sampling
random test inputs is particularly straightforward. A default
strategy is to sample from a uniform distribution over the
interval that defines the input domain, and many programming
languages provide standard pseudo-random number generator
functions that can be used for this purpose.

However many SUTs take more complex data types that
are a composition of primitive types; examples include dates,
strings, arrays, records, trees, and graphs. A valid instance of
such a data type must typically satisfy a number of constraints.
For example, the constituent day, month, and year in a valid
date instance must satisfy not only constaints on their individ-
ual values (e.g. day must be an integer between 1 and 31), but
also constraints involving one another (e.g. day must be no
more than 30 when month is 11). Similarly, a valid instance

Robert Feldt
Software Engineering Research Lab (SERL Sweden),
Blekinge Institute of Technology, Sweden
Email: robert.feldt@bth.se

of a proper binary tree must satisfy the constraint that each
non-leaf node has 2 children.

When applying random testing to complex data types such
as these, often one cannot simply sample each constituent
primitive value independently: the constraints on a valid in-
stance are, in general, unlikely to be satisfied. Instead, more
sophisticated generation approaches are required that guarantee
validity of the instance by construction. One common approach
is to use a formal grammar to define the construction of an
instance of the type as a series of production rules [1], [2].
An extension to this approach is to use a generating program
written in a high-level language; examples include QuickCheck
[3] and UDITA [4]. Generating programs can provide more
flexibility than a formal grammar; for example, by storing state
in one part of the program and retrieving it in another. It is
use of programs for generating test data that we consider in
this paper.

In order to generate different instances each time it is run, a
generating program must incorporate some degree of choice as
the execution path it takes, or the values it assigns to variables.
By changing how these choices are made stochastically—
for example, favouring one execution path over another—the
probability distribution from which generated instances are
sampled may be controlled. We will use the term generator
to refer to the combination of the generating code and specific
settings for its stochastic choices: a particular generator will
therefore not only emit valid instances, but sample them
according to a specific probability distribution.

In the absence of any guiding information, e.g. from the
SUT’s source code or specification, a sensible initial choice
for a generator is one that emits an instance according to a
uniform distribution. But the uniform distribution—whether
over a primitive or complex data type—is unlikely to be the
most efficient probability distribution, where efficiency is the
size of the randomly-sampled test set required to detect faults
in the SUT. Since each test case adds to the cost of testing—
through executing the test case itself as well as the effort
required in checking the test output for evidence of a fault—
efficient distributions reduce the cost of testing.

For a specific SUT, it is often possible to derive a
much more efficient probability distribution than the uniform
distribution by using additional information from the SUT
itself (in a similar manner to white-box testing) or using the
expertise of the tester. In previous work we have demonstrated
automated search-based approaches that optimise generators in
this way [5], [6]. However, the need for prior expertise when
constructing a generator, and the overhead of search-based
optimisation, could negate the major advantage of random

testing as a strategy: that of straightforward, low-cost test data
generation.

We propose instead that it may be possible to re-use an
efficient generator created for one SUT on other SUTs that take
inputs of the same complex data type. The re-used generator is
unlikely to be as efficient as a generator optimised specifically
for the new SUT, but we hypothesise that it will be more
efficient than the uniform distribution in many cases, while
avoiding the cost of creating a generator specifically for the
new SUT. If so, it would be cost-effective to maintain a library
of generators for complex data types.

It is this proposal we investigate in this paper by empiri-
cally testing the underlying hypothesis: that there is sufficient
commonality in the way in which the same complex data type
is processed by different SUTs that a test data generator that
is efficient for one SUT will often be efficient when testing
other SUTs.

The paper is organised as follows. Section II introduces
GodelTest, the framework used throughout the paper to define
and optimise generators for complex data types. In Section III
we expand on the proposal for re-using generators between
SUTs and define four research questions that guide the em-
pirical investigation of Section IV. Section V discusses the
relationship of this paper to related work, and in Section VI
we summarise our conclusions and outline future work.

II. THE GODELTEST FRAMEWORK

The proposal for generator re-use made in the introduction
is independent of the method used to implement the generator.
However empirical work to assess this proposal must choose
a specific implementation, and so in this paper we implement
generators using GodelTest, a framework to faciliate writing
and optimising generator programs that we have demonstrated
in earlier work [5]. In this section we provide an overview of
GodelTest both as background to the empirical work and as a
concrete example of generators for complex data types.

A. Generating Program

A GodelTest generator has two components: a generating
program, and a choice model. The generating program is code,
written in a general-purpose language, that defines how to
construct an instance of the data type. The choice model
(described below) controls how stochastic choices are made
in the generating program.

In this paper we use the GodelTest framework for Julia, a
high-level programming language for technical computing that
has performance comparable to native C code [7]. While it is
most straightforward to pass test data generated by GodelTest
to SUTs implemented in Julia itself (or in languages that
Julia can directly interface with, such as C/C++), the test data
can nevertheless be used to test SUTs implemented in other
languages by saving the test data to a file, or passing it over
a network connection.

Figure 1 is an example of a GodelTest generating pro-
gram that emits simple arithmetic expressions such as:
-4+(99/(2%5)).

The @generator keyword introduces a generating
program which consists of a number of methods in a

begin. . .end block. Each method can make use of the
Julia standard library. For example, this generator uses =,
string (), and join (), that are the standard library func-
tions for string concatenation, conversion of a value to a string,
and concatenation of an array of strings, respectively. Although
this particular generator uses fairly simple methods, the com-
plexity of the method code is not restricted by GodelTest and
so permits much greater flexibility and compactness than, for
example, a formal production grammar. The methods typically
call one another and may do so recursively; in this example
the mutually recursive calls between the expression and
operand methods permit the generation of expressions with
any level of nesting of parenthesised expressions. The gener-
ator includes a start method that is called to initiate the
generation of an instance of the data type.

@generator ExprGen begin
start = expression()
expression = operand() x operator() * operand ()
operand = " (" % expression() % ")"
operand = begin
number = join(plus(:digit))
if choose (Bool)
number = "-" % number
end
number
end
digit = string(choose (Int,0,9))
operator = "+"
operator m-n
operator n/m
operator Wy
end

Fig. 1. Example of a GodelTest generator for simple arithmetic expressions

In addition, the generating program will normally include
one or more GodelTest-specific constructs that identify lo-
cations, called choice points, where choices may be made
stochastically when the program is executed. There are three
classes of choice point:

1) Value Choice Points: The choose (Type, ...) con-
structs returns a random value of built-in Julia data types such
as Bool, Int, and Float64. Additional parameters to choose
may be used to restrict the sampled values to a numeric range.
Examples of this class are the construct choose (Int, 0,9)
(in the digit method) that returns an integer between 0 and
9; and choose (Bool) (in the second operand method)
that returns either true or false.

2) Sequence Choice Points: The construct
reps (:method, min,max) builds a random-length
sequence of values created by repeated calls to the specified
method; the sequence is returned as a Julia array. The
parameters specify the minimum and maximum length
of the sequence, the latter of which may be infinite.
The constructs mult (:method) and plus (:method)
are syntatic sugar for reps(:method,0,Inf) and
reps (:method, 1, Inf), and thereby specify a sequence
of length O or more, and of length 1 or more respectively.
An example of this class is the construct plus (:digit)
(in the second operand method) that returns a sequence of
digits by repeated calls to the digit method.

3) Rule Choice Points: When more than one method has
the same name, an implicit ‘rule’ choice point occurs. Each
time the method name is called elsewhere in the generator,

one of the methods (or ‘rules’) is chosen at random to be
executed. In the example generator there are four methods
named operator; when operator () is called in the
expression method, one of the four methods is chosen at
random to be executed, and a new random choice is made each
time the method is called.

B. Choice Model

GodelTest uses a choice model to specify which choice
is made each time a choice point is encountered when a
generating program is run, and thus which of the many possible
instances of the data type is emitted by the generator.

By design, the choice model is abstracted away from the
generating program itself. Each choice that can be made at
a choice point is uniquely identified by a number—an integer
when there is a countable number of choices, or a real number
for the choose (Float64) construct—that is called a Godel
number. Thus the choice model need only supply a sequence
of Godel numbers in order to define the stochastic choices
the generating program should make when it is executed. This
relationship between choice model and generating program is
illustrated in Figure 2.

Test Data
Choice Model Generating
[2,1,4,0] Program
> L
supplies generates
Godel sequence

Fig. 2. The components of the GodelTest framework.

The abstraction of the choice model from the generating
program has a number of advantages. For the same generating
program, it is easy to apply different choice models since
the interface between the two is always a Godel sequence.
Similarly, the same type of choice model may be applied to
different generating programs. In our previous work we have
shown that this separation facilitates the application of both
metaheuristic optimisation [5] and Monte-Carlo tree search [6]
algorithms to the generation of effective test data: by applying
these algorithms to the choice model rather than generating
program directly, the details of the generation process that are
not relevant to the algorithm are avoided.

C. Sampler Choice Model

In this paper we use a sampler choice model. This is a
simple stochastic choice model that defines a local probability
distribution for each choice point in the generating program,
and samples from that distribution each time a Godel number
is required for the choice point. Since the choice points control
the specific instance of the data type emitted by the generating
program, the set of local distributions in the sampler choice
model define the global probability distribution over all the
instances of the data type from which this generator samples.
GodelTest can utilize much more sophisticated models, but the
sampler choice model is a natural default that is sufficiently
flexible for the empirical investigation in this paper.

The local probability distribution assigned to each choice
point by the sampler choice model are listed in Table I. The
general distribution family assigned to each choice point is
fixed, but some distributions have one or more parameters that

TABLE 1. LOCAL PROBABILITY DISTRIBUTIONS ASSIGNED BY THE

SAMPLER CHOICE MODEL.

Choice Point Local Distribution Parameter(s) Default
choose (Bool) Bernoulli P p=20.5
choose (Int) Discrete Uniform — —
choose (Float64) Continuous Uniform — —

reps, mult, plus Geometric p p=20.5
rule choice (n methods) Categorical Wy eeey Wy w; =1/n

control the exact form of the local probability distribution.
For example, the Geometric distribution assigned to sequence
choice points has a parameter, p, that favours short sequence
when close to 1, and long sequences when close to 0. It is
through these parameters that the local distributions, and thus
the global probability distribution of the generator as a whole,
are modified. When initially defined, the sampler choice model
assigns sensible default values to each parameter. For example,
the parameter to the Bernoulli distribution that is assigned to
choose (Bool) choice points is by default set to 0.5 so that
true and false have the same chances of being sampled.

D. Generator Optimisation

The global probability distribution from which the gener-
ator samples instances is entirely determined by the choice
model, which—for a sampler choice model—is determined
by the parameters of the local probability distributions in the
model. Thus to optimise the global probability distribution of
the generator, the optimisation algorithm can be applied to
these distribution parameters.

As an example, consider again the generating program
of Figure 1. The choice points that have distribution pa-
rameters are those associated with plus (1 parameter);
choose (Bool) (1 parameter); the rule choice implied by
the 2 operand methods (2 parameters); and the rule choice
implied by 4 operator methods (4 parameters). The global
probability distribution of this generator is thus determined
by a vector of 8 real-valued parameters, and this vector
is the target of the metaheuristic search that optimises the
distribution.

III. GENERATOR LIBRARIES AND RE-USE

Our key hypothesis is that an optimised generator of
complex data re-used between SUTs is more efficient (in terms
of test size) than uniform random testing. We propose two sets
of research questions to investigate this hypothesis: the first set
determine the efficiency of a generator optimised to a single
SUT compared to uniform random testing; the second assess
the relative efficiency of an optimised generator when it is
re-used between SUTSs rather than optimised to a single SUT.

A. Optimised Generators Compared to Uniform Random

A generator may be optimised to a SUT in two ways.
The first method is encapsulate domain knowledge from the
SUT’s specification or implementation, or from the tester’s
own experience, in the generating program itself. For example,
the generator may include code to emit a small subset of
instances of the data type that the tester believes will be
particularly effective at detecting faults; if this code is guarded
by a choose (Bool) construct in the generating program,
then the default sampler choice model will cause the generator

to emit these instances 50% of the time. This motivates the
research question:

RQ1—How much more efficient are generators for complex
data types that incorporate domain knowledge than random
testing using the uniform distribution?

The second method is to optimise the generator’s choice
model using metaheuristic search as described in Section II.
This motivates the question:

RQ2—To what extent can the choice model be optimised to the
specific SUT in order to improve the generator’s efficiency?

The primary objective of these two research questions is
to quantify the efficiency that can be achieved by optimising a
generator fo a single SUT, rather than specifically to show that
optimised generators can improve testing efficiency compared
to uniform random testing. Instead, by measuring the improve-
ment of generator optimised for a single SUT compated to
uniform random testing, we can use this improvement as a
baseline against which to assess the efficiency of a generator
re-used between SUTs.

B. A Library of Generators Re-used Between SUTs

If our hypothesis of re-using generators holds true, it would
be possible to maintain a library of generators for commonly-
used complex data types. We propose that a convenient method
of representing a generator in such a library is as an ensemble
of sub-generators, where each sub-generator has individually
proven effective for one or more SUTs.

In GodelTest such an ensemble can be represented using a
generator of the form shown in Figure 3: the two individual
generators are passed to this ensemble generatorsas the param-
eters g1 and g2, and the rule choice point implied by the two
start methods samples one of the sub-generators each time
the ensemble is executed.

@generator Ensemble(gl, g2) begin

start = gl()
start = g2()
end
Fig. 3. An ensemble generator taking two sub-generators

The choice model for the ensemble is formed by combining
the choice models of each sub-generator and adding a local
probability distribution for the rule choice point in the top-
level generator. When maintaining a library of generators
for complex data types, this ensemble choice model may be
optimised for testing efficiency over a representative portfolio
of SUTs. This motivates the third research question:

RQ3—Can an ensemble generator, optimised for efficiency
against a portfolio of existing SUTs, also be efficient for the
testing of new SUTs that were not part of the portfolio?

Of course, an ensemble generator will not be the most
effective generator for all SUTs taking the complex data type
as an input: it will always be possible to construct a SUT
for which the ensemble is less effective than the uniform
distribution. If it is found that the ensemble generator in the
library is inefficient for a particular SUT or subclass of SUTs,
then it would always be possible to extend the ensemble using

a new sub-generator created specifically for this subclass. This
gives rise to the fourth research question:

RQ4—What is the effect, in terms of efficiency, of extending
an ensemble with additional SUT-specific sub-generators?

IV. EMPIRICAL INVESTIGATION

In this section, we describe three experiments that investi-
gate the research questions defined above.

A. Data Types and SUTs

The experiments investigate two complex data types: Geor-
gian dates and regular expressions (regexes). Testing efficiency
is evaluated using a total of seven real-world SUTs: four taking
the date type and three taking the regex type. The relevant
characteristics of the SUTs are summarized in Table II, and
for brevity we will refer to the SUTs using the abbrevations
defined in this table.

The last column in the table gives the number of condi-
tions to be covered for each SUT since, as discussed below,
condition coverage will be used as part of the measurement
of generator efficiency. Conditions in both predicates and
assignments are counted, and the total includes conditions in
any ‘helper’ functions called by the SUT and are part of the
same package or class. The number of conditions also provides
an indication of the complexity of each SUT.

We apply generators that emit dates as the triple
(year,month,day) and convert this to a SUT-specific
representation where necessary. All four SUTs taking date
input contain little or no code to check the validity of the date
input—they implicitly assume its validity has been checked
beforehand—therefore for these experiments, we restrict the
input domain to valid dates; moreover we arbitarily restrict
the domain to dates with a year between 1600 and 2099 to
create a bounded domain.

We apply generators that emit regexes as ASCII character
strings. All three SUTs parse the regex (REP additionally
performs a match-and-replace using the regex) and so contain
code to check the input’s validity. Therefore, in contrast to
the date type, we do not restrict the input domain to valid
regexes. The input domain is thus any ASCII string of length
zero or more, and since the length is unbound, the domain has
infinite cardinality. Both BBRP and GTRP use standard POSIX
regex syntax, while REP uses non-standard metacharacters;
we choose to create generators that emit POSIX regexes and
perform a simple translation of metacharacters before the test
inputs are supplied to REP.

To improve generalisability of the results, the data types
and SUTs have been chosen to exhibit some diversity in
their important characteristics. The date type has a fixed
structure and its domain has finite cardinality, while the regex
type can vary in size and has infinite cardinality. The SUTs
are implemented in three different languages, are from five
different libraries, and demonstrate a range of complexities.

B. Measuring Generator Efficiency

We define the efficiency of a generator as the average
number of test inputs that must be randomly sampled from it

TABLE II. RELEVANT CHARACTERISTICS OF THE SUTS USED IN THE EMPIRICAL INVESTIGATION.
Abbreviation SUT Name Provenance Language Number of Conditions
DOY day_of_year Julia Dates package Julia 10
DOWIM days_of_week_in_month Julia Dates package Julia 22
EOMD end_of_month_day Boost 1.56 Date_Time library C++ 14
WN week_number Boost 1.56 Date_Time library C++ 20
BBRP basic_regex_parser Boost 1.56 Regex library C++ 544
REP replace Software-artifact Infrastructure Repository C 168
GTRP regex_parse GbdelTest . jl package Julia 118

in order to detect a given set of faults in the SUT. We might,
therefore, measure generator efficiency in these experiments
by seeding faults in the SUTs and assessing the number of
test inputs that must be randomly sampled for the generator
to detect all the seeded faults. However seeding faults in an
objective and equivalent way across all the SUTs would be
difficult owing to their differing provenances and the variety
of languages used to implement them.

Instead we use condition coverage as a proxy for the
fault-detecting ability of a generator. While structural coverage
is not necessarily a good indicator of fault-detecting ability,
the advantage is that instrumenting the SUTs for condition
coverage is a more objective process than seeding faults.
Condition coverage is chosen because much of important
functionality of the SUTs operating on the date type is encoded
in conditions in both predicates and assignment statements, and
would not be fully exercised by, for example, branch coverage.

The Software-artifact Infrastructure Repository provides a
set of variants with seeded faults for REP. For this SUT,
we therefore measure and report testing efficiency using both
condition coverage and seeded faults. This provides a check
on our premise here that condition coverage is a suitable proxy
for fault-detecting ability.

C. Optimising Generators

In experiments that consider generators optimised to a
SUT or portfolio of SUTs, we apply metaheuristic search to
parameters of the choice model as described in Section II-D.
For this purpose, we use Differential Evolution [9] as imple-
mented in the BlackBoxOptim.j1l Julia package by one
of the authors; our earlier work [5] provides more details
of this approach. The optimisation process is limited to 50
evaluations of the fitness metric. For the SUTs used in this
work, this number of evaluations limits the resources used for
optimisation to a few minutes of processing time on a typical
CPU core, and was found to be sufficient during preliminary
experiments.

To assess the fitness of a candidate generator during the
optimisation process, a test set of size M 1is created by
sampling M test inputs from the generator. We use M = 50
for date generators, and a larger value, M = 100, for the
regex generators since the SUTs taking this data type generally
require more test cases to achieve good coverage. A version of
the SUT instrumented for condition coverage is then executed
with each test input from the set in turn. After each input,
the proportion of the conditions in the SUT that have been
exercised by test inputs so far, i.e. up to and including the
most recent test input, is calculated. This gives a prediction
of coverage that would be achieved by test sets of all sizes
between 1 and M, and may be visualised by a graph of the
form shown in Figure 4.

o

Coverage

1 Test Size M

Fig. 4. An example of a coverage plotted against test size.

A more efficient generator will achieve a high coverage
and/or will achieve its highest coverage at small test sizes.
These desirable qualities may be quantified using the following

metric:
M
far=> ¢ (1)
=1

where c¢; is the coverage as a proportion between 0 and 1,
measured for a test set consisting of the first ¢ test inputs, and
M the maximum test set size. This metric measures the area
under the curve in the graph of coverage plotted against test
size: the region bounded by the axes, curve, and the dotted
line in Figure 4.

Since the generators are stochastic, the fitness metric is
calculated by taking the mean value of f. over 20 different
tests sets sampled from the candidate generator. When the
generator is optimised for more than one SUT, f is calculated
for each SUT, and the mean value over the SUTS is used to
calculate the fitness. A more efficient generator will have a
larger area under the curve, and therefore a larger value of
fett, and so during optimisation the objective is to maximise
this fitness.

D. Data Type Generators

In the first two experiments we consider two genera-
tors for dates: UniformDate and LeapYearDate; and
four for regexes: Uniform8Regex, UniformléRegex,
Uniform32Regex and PosixRegex. The generators are
listed in appendices A and B repectively.

The UniformDate generator is uniform in terms of
months and years across the input domain—each combination
of year and month is sampled with the same frequency—and
near-uniform in terms of the full combination of year, month,
and day. We argue that achieving precise uniformity to the level
of day would require a more complex generator that would not
be realistic for an tester to create for purpose of exploratory
uniform random testing.

The LeapYearDate generator emits dates in leap years,
and the generator code identifies three classes of these dates
that domain knowledge might suggest are effective when

testing for faults: years that are a multiple of 400, the month of
February, and the date of 29 February. Each of these cases is
guarded by a choose (Bool) choice point and this has two
desirable consequences. Firstly, when the default choice model
is used for this generator the choice point returns true with
probability 0.5, and so these classes will be more frequently
sampled than they would be from a uniform distribution. Sec-
ondly, when the choice model is optimised, these choice points
have a parameter controlling the local Bernoulli distribution
(see Section II-C), and this provides a mechanism for the
optimisation process to change how frequently these classes
are sampled.

We defined the domain of the regex data type to be the
set of ASCII strings. Since there is no bound on the length
of the string, precise uniform sampling from this domain is
impractical: as length increases, the more strings there are of
that length, and so uniform sampling would return extremely
long strings that would be unrealistic for testing. We consider
instead three generators that uniformly sample ASCII strings
of length 8, 16, and 32 respectively; it is the generator for the
last of these, Uniform32Regex, that is listed in appendix B.

The PosixRegex generator emits regexes that comply
with the extended POSIX syntax for regular expressions. Using
knowledge of this domain, the generator was written so as to
explicitly construct many of the most common features of this
syntax. In a similar manner to the LeapYearDate generator,
the choice points may be used to control how often each of
these features appear in regexes sampled from the domain.

E. Experiment I

This experiment addresses research questions RQ1 and
RQ2 by evaluating the efficiency of a uniform generator, an
ensemble generator using a default choice model, and the same
ensemble generator using a choice model optimised to the
SUT.

The ensemble generator for dates is formed from the
UniformDate and LeapYearDate generators. Since the
LeapYearDate generator emits only dates in leap years,
the UniformDate generator can be used by the ensemble
to sample dates in the rest of the input domain.

As discussed in Section IV-A, all three SUTs that
take regex inputs check the validity of the regular expres-
sions. Therefore the ensemble generator is formed from
both the Uniform32Regex generator—in order to sample
some strings that are not valid regular expressions—and the
PosixRegex generator to sample valid regexes that will
exercise particular features of the POSIX syntax.

Thus for each data type, the efficiency of the following
three generators are evaluated individually on each SUT:

e the uniform generator;

e the ensemble generator using the default parameters
to the sampler choice model; and,

e the ensemble generator using a sample choice model
optimised to the SUT according to the process de-
scribed in Section IV-C.

We present the results using graphs of condition coverage
against test set size of the type shown in Figure 4. To account
for stochasticity in the generation process, the coverage value
plotted is the mean over the 50 test sets sampled from the
generator. To account for stochasticity in the optimisation
process applied to the third generator, these 50 test sets are
the accummulation of 10 test sets sampled from each of the
generators derived by 5 separate runs of the optimisation
process.

The results for the four SUTs taking date inputs are shown
in Figure 5, and for the three SUTs taking regex inputs in
Figure 6.

As discussed in Section IV-B, we additionally report cov-
erage for REP using the 32 variants of the SUT containing
seeded faults that are provided by the Software-artifact Infras-
tucture Repository. In this case the coverage is the proportion
of variants that return outputs that differ from the original
version of the SUT.

The difference between the ensemble using the default
sampler choice model (blue dashed line) and the uniform
generator (red full line) is the quantity considered in RQ1. For
all SUTs apart from WN, the graphs show that the ensemble
is more efficient than the uniform generator: higher coverage
is achieved more quickly'.

For clarity, we omit error bars from the graphs, but can
assess whether the observed differences are statistically signif-
icant using the sets of f.i values calculated for the 50 test sets
sampled from the uniform generator, and for the 50 test sets
for the default ensemble generator. When the Wilcoxon rank-
sum test is applied to this data, the differences are significant
between the uniform generator—for regexes, specifically the
best performing uniform generator, Uniform32Regex—and
the default ensemble generator for all SUTs apart from WN:
all the p-values are (much) less than 1%.

We note that the larger the length of the uniform strings
generated for the regex SUTs, the better the coverage. This is
to be expected because a longer string can contain a greater
number of regex features; indeed, it is possible that a very long
string could achieve near total coverage. However it would
much more difficult for the tester to manually check the output
of the SUT for correctness when the test inputs are long.
We argue on this basis that Uniform32Regex is a realistic
uniform generator against which to compare the ensemble.
Moreover, in this and subsequent experiments, the average
length of regexes generated by the ensemble generator is
always less than 32 characters, and so the improved efficiency
of the ensemble generator compared to the uniform generator
is not because it produces longer regexes.

In these graphs, the difference between the ensemble and
the uniform generator can appear quite small. However, this
belies the practical significance of the difference. For example,
the gap between the ensemble and the uniform generator is
relatively small for BBRP? in Figure 6a. However, the graph

'Note that in graph of Figure 6a, the results for the ensemble (default)
and ensemble (BBRP) are almost identical and therefore the lines overlay one
another.

2We believe that the coverage of BBRP is lower than that of GTRP and
REP because it implements more of the POSIX extended syntax, not all of
which is emitted by the PosixRegex generator.

1.00 1.00 4 1.00 4 1.00 A
2 N 2 emmm T N
c c < T c
2075 20751 2075+ pRat 2075 Generator
2 2 g 2 -+ ensemble WN
3 3 3 3
&) o o o - - ensemble (default)
$0.50 1 &0.50 80501 ‘ $0.50 — uniform
o o ! o ! o
g Generator g ! Generator g (‘ g
8 h -+ ensemble DOY 8 -+ ensemble DOWIM 8 Generator 8
S0.254 - - ensemble default 5025 - - ensemble (default) S 0.254 - [ensemble EOMD §0.254
= — uniform 2 — | uniform 2 - - ensemble (default)]
— uniform
0.00 4 0.00 0.00 4 0.00 4
T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Test Set Size Test Set Size Test Set Size Test Set Size
(a) DOY (b) DOWIM (c) EOMD (d) WN
Fig. 5. Results of Experiment 1, date type: coverage against test set size. (The legend ‘ensemble X’ indicates that the generator has been optimised for SUT
X.)
1.00 1.00 1.00 4 1.00
Generator Generator
— -+ ensemble BBRP — -+ ensemble REP —
§2) [2} [2]
_5 0.75 = - ensemble (default) _5 0.75 ?_n\o 754 ~- - ensemble (default) 5 0.75
B uniform (length 32) B 3 uniform (length 32) B
8 uniform (length 16) 8 R ;’ uniform (length 16) 8
IS4 § IS4 . 23 i £ :
@050 uniform (length 8) Los0d ® 0,50 uniform (length 8) 2050 :
o o N g o G t
o 5 i Generator 3 5 enerator
3 3 .. ensemble REP o 3 -+ ensemble GTRP
b= 2 ble (defaul g .1 2 ble (defaull
(%025_ e %025- ensemble (default) %’0.25- __ ______ %0.25- ensemble (default)
2 A 2 — uniform (length 32) JECEARIRSEE 2 — uniform (length 32)
s . s e s
) uniform (length 16) T I uniform (length 16)
jform (length 8 — . jform (length 8
0004 0004 uniform (length 8) 0.004 0004 uniform (length 8)
T T T T T T T T T T T T T T T T T
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 25 50 75 100
Test Set Size Test Set Size Test Set Size Test Set Size
(a) BBRP (b) REP (c) REP (seeded faults) (d) GTRP

Fig. 6. Results of Experiment 1, regex type: coverage against test set size. (The legend ‘ensemble X’ indicates that the generator has been optimised for SUT

X)

demonstrates to achieve a coverage of 25% would require a test
set of 77 inputs using the uniform generator (red full line), but
a much smaller test set size of 31 using the ensemble generator
(blue dashed line).

We speculate that the poor efficiency of the ensemble for
WN is because the domain knowledge it incorporates is not
appropriate for its functionality. This SUT calculates the week
number of a given date, and although the calculation does
depend on whether the year is a leap year or not, this check is
only made under very rare circumstances: when the date is the
sixth day of the last week of the year. For this reason, there is
little to gain in terms of test efficiency by generating leap year
dates more frequently. We revisit this issue in Experiment 3
below.

The difference between the optimised ensemble (black
dotted line) and the ensemble using the default sampler choice
model (blue dashed line) is the quantity considered in RQ?2.
The effect differs between the two data types. For the SUTs
taking a date type, there is little, if any, improvement in the
efficiency compared to the ensemble using a default choice
model; none of the differences are statistically significant at the
1% level. We speculate that the default choice model is already,
by chance, near-optimal for this ensemble in the context of
these SUTs. Of the SUTs taking a regex type, the improvement
in efficiency is statistically significant at the 1% level for REP
and GTRP, while there is no statistically significant difference
for BBRP (indeed, the lines overlay one another on the graph).

For REP, the ordering of generator efficiencies are consis-
tent between the two different measures of coverage: condition
coverage and the detection of seeded faults. This gives some
confidence that the differences in efficiency observed for the
other SUTs assessed using only condition coverage are indica-
tive of practical differences in the ability to detect faults. We
note that the proportion of faults detected is much lower than
the proportion of conditions covered, and that the efficiencies
of uniform generators for REP are particularly poor by this
measure compared to the ensemble.

We re-iterate that the objective of this paper is to demon-
strate the re-use of generators of complex test data types,
rather than to argue as to the potential efficacy of test data
generation using stochastic generating programs or grammars:
we have investigated the latter in previous work [6], [8],
[11]. Nevertheless we comment briefly on the relatively poor
coverage of the regex ensemble on all SUTs, and BBRP
in particular. We believe this is because the regex ensemble
generator covers only core regex syntax and that a more
comprehensive generator of both the regex and the replacement
string would be required to achieve near complete coverage.

F. Experiment 2

This experiment addresses RQ3. We consider the case of a
library of generators (as proposed in Section III) which con-
tains one generator for each complex data type. The objective
is to assess how efficient generators in the library would be
for new, previously unseen, SUTs. For the purpose of this

experiment, we assume that generators provided by the library
for the date and regex types are simply the ensembles used in
Experiment 1.

For each SUT in turn, the library generator is optimised
using only the other SUTs taking the same data type. For
example, for REP, the regex ensemble is optimised using a
portfolio consisting of BBRP and GTRP. The corresponds to
the scenario in which the library generator was derived and
optimised using BBRP and GTRP, and that REP is the new,
previously unseen, SUT which we would like to test using the
library ensemble. We therefore measure the efficiency of the
library generator (i.e. the ensemble optimised using BBRP and
GTRP) for testing REP. (For the reasons discussed above, we
exclude WN for this experiment and revisit it in Experiment 3.)

The results for the SUTs taking date inputs are shown in
Figure 7, and for the SUTs taking regex inputs in Figure 8. The
results from Experiment 1 for the uniform generator (red full
line) and ensemble optimised specifically for the SUT (black
dotted line) are also plotted on the graphs for comparison.

In all cases, the library ensemble (green dot-dashed line) is
more efficient than the uniform generator, and these differences
are all statistically significant at the 1% level. In general the
library ensemble (i.e. the generator optimised against the other
SUTs) is less efficient than the ensemble optimised specifically
for the SUT, as might be expected, although for DOWIM and
EOMD the two are stastically indistinguishable.

These results provide evidence in support of RQ3: gener-
ators that have proven effective for existing SUTs can form a
library of generators suitable for previously-unseen SUTs that
use the sample complex data type: a library generator can be
more efficient than the uniform distribution for random testing.
This support the key premise of this paper: that generators for
complex data types can be shared between SUTs, and are likely
to be a more efficient ‘first guess’ than the uniform distribution.

G. Experiment 3

This experiment addresses RQ4 by revisiting WN, the
SUT for which the ensemble generator was no better than the
uniform distribution in Experiment 1. We envision a scenario
in which the tester extends the ensemble with an additional
generator, FirstLastWeekDate (listed in appendix A) in
order to more frequently sample dates in the first and last
weeks of the year: a simple analysis of the SUT’s code or its
specification suggests that special handling is performed by the
SUT for these dates. We check whether this extended ensemble
has improved efficiency for WN by optimising against all four
SUTs, and then analysing its efficiency for WN.

However, a concern is that if this extended ensemble were
to become the new generator for dates supplied by the library,
to what extent would its efficency for other SUTs be reduced?
To assess this, we repeat the procedure of Experiment 2
using the extended ensemble as the library generator, and
additionally include WN in the portfolio of SUTs against
which the extended library generator is optimised.

The results for the SUTs taking date inputs are shown in
Figure 9. The results from Experiment 1 for the uniform gener-
ator (red full line) and optimised ensemble (black dotted line),

and from Experiment 2 for the optimised library ensemble
(green dot-dashed line), are included for comparison.

Figure 9a shows that the extended ensemble (cyan dashed
line) has much better efficiency than the unextended ensemble.
The other three graphs show that as of result of extending the
library generator with FirstLastWeekDate, the efficiency
is reduced (although the difference is not statistically signif-
icant at the 1% level for DOY). We therefore conclude that
refining generators in the library as new SUTs are encountered
may be beneficial for the new SUTS, but can lead to a reduction
in efficiency for other SUTs. Nevertheless, the extended en-
semble in this experiment remains significantly more efficient
than the uniform distribution for random testing for all SUTs.

V. RELATED WORK

Automated techniques for generating structured test inputs
typically use either grammars or non-deterministic generating
programs. The algorithms of Beyene and Andrews [10], and
of Poulding et al. [11] are examples of the grammar-based
approach and similar to our approach [5], [6]: they all use
optimisation to generate test cases with desirable properties.

However, grammar-based approaches can only express a
subset of the generators expressible with non-deterministic
generating programs of the type used by GodelTest. UDITA [4]
is a Java-based framework that generates test sets by ex-
haustively enumerating all points of non-determinism in the
generating program up to a chosen bound. QuickCheck [3] also
promotes the use of a full programming language in defining
random data generators and then use them to check that de-
sirable properties are fulfilled. However, while GodelTest can
automatically optimize the generators for desirable properties a
tester must manually do this in Quickcheck and has no explicit
support for how to do so.

There has been little previous work on reuseable libraries
of test data generators even though re-use of testing artefacts
has been a long-term goal. Von Mayrhauser et al. used domain
analysis to create models that was claimed to support test
reuse [12]. Their interactive and automated testing tool Sleuth
allowed testers to reuse different elements of the test scripts,
test commands as well as test cases themselves when testing
within related domains. The tool was used in an industrial case
study but no quantitative evidence of re-use or its benefits were
reported. Similarly, Cai et al. [13] proposed that test reuse can
be helped by a library based on Z specifications but provide
no tangible evidence of actual re-use or test re-use benefits.

VI. CONCLUSIONS

We proposed that the generators of complex data types
may be re-used between SUTs when sampling test inputs.
The hypothesis underlying this proposal is that there exists
sufficient commonality between SUTs in the way that the data
type is processed for generators optimised against one SUT to
demonstrate good efficiency when used to test another SUT.
We performed an empirical investigation of this hypothesis
for two data types and assessed generator efficiency using
seven real-world SUTs. The results are consistent with the
hypothesis: generators optimised against portfolios of SUTs
generally demonstrate test efficiency for new SUTs that is
significantly better than would be achieved using a uniform

1.00

-20.75 1

Mean Coverage (Conditions)
=Y
P
3

Generator
-+ ensemble DOY

1.004

0.75

Mean Coverage (Conditions)
)
o
8

Generator
-+ ensemble DOWIM

1.00

o

.75

Mean Coverage (Conditions)
°
o
8

Generator
-+ ensemble EOMD

0.25 -~ ensemble DOWIM,EOMD 0.25 -~ ensemble DOY,EOMD 0.254 _" - = ensemble DOY,DOWIM
— uniform — uniform 3 — uniform
0.00 4 0.00 0.00 4
T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Test Set Size Test Set Size Test Set Size
(a) DOY (b) DOWIM (c) EOMD

Fig. 7. Results of Experiment 2, date type: coverage against test set size. (The legend ‘ensemble X,Y’ indicates that the generator has been optimised for the

porfolio of SUTs X and Y.)

1.00 1.00 4 1.00 4 1.00 A
»g Generator »g Generator »@
S$0.754 -+ ensemble BBRP -f—j 0.75 1 2075 -+ ensemble REP -f—3 0.75
k<] -~ ensemble REPR.GTRP k<] E] - - ensemble BBRP.GTRP °©
c c i c
8 — uniform (length 32) 8 by — uniform (length 32) IS)
=2 =2 K I3 =2
30501 o504 0,50 &0.50 1
o < 2 <)
% % 5 Generator 8 % b/ Generator
[o 7 -+ ensemble REP IS o -+ ensemble GTRP
S0.254 5025 -~ ensemble BBRPGTRP L0254 50.25 -~ ensemble BBRP.REP
o o} o}
S =3 — uniform (length 32) 3 — uniform (length 32)

;/a—d—
0.00 0.00 0004 0.00 4
T T T T T T T T T T T T T T T T T
0 25 50 75 100 0 50 75 100 0 5 50 75 100 0 50 75 100
Test Set Size Test Set Size Test Set Size Test Set Size
(a) BBRP (b) REP (c) REP (seeded faults) (d) GTRP

Fig. 8.
porfolio of SUTs X and Y.)

1.00

1.00

1.00

1.004

Results of Experiment 2, regex type: coverage against test set size. (The legend ‘ensemble X,Y’ indicates that the generator has been optimised for the

Generator
’g - - extended ensemble DOY,DOWIM,EOMD,WN ’g ’g ’Z)
20754 |-~ ensemble DOY,DOWIM,EOMD 20754 20.75 . 2075
2 — uniform 2 S B 3
Q Q Q N Q
Qe e QS : e
$0.50 $0.50 Sos04 S0.50
s - o o B o ;
%’ e % Generator g 2/ | Generator g N
o Rl o I'|-- ensemble DOY o - ensemble DOWIM o ¢/ /| Generator
< 0.5 -- < 0.5 < 0.25 So254 17 -+ ensemble EOMD
g 0.25 - g 0.25 - - extended ensemble DOWIM,EOMDWN | § 0.25 - - extended ensemble DOY,EOMDWN [§ 0251 ¢
= = -~ ensemble DOWIM,EOMD = -~ ensemble DOY,EOMD = y - - extended ensemble DOY,DOWIM,WN

- = ensemble, DOY,DOWIM

— uniform — uniform
0.001 0.00 0.00 0.00 —]uniform
o 10 2 30 40 50 o 10 2 30 40 50 o 10 20 30 40 50 o 10 2 30 40 50
Test Set Size Test Set Size Test Set Size Test Set Size
(a) WN (b) DOY (c) DOWIM (d) EOMD

Fig. 9. Experiment 3, date type: coverage against test set size. (The legend ‘ensemble X,Y’ indicates that the generator has been optimised for the porfolio of
SUTs X and Y.)

APPENDIX A
DATE GENERATORS

distribution, and suggest that it would be beneficial to maintain
libraries of generators for common data types.

The final experiment hinted at an issue that we intend ~ ©generator Uniformbate begin

. .- . . start = begin
to address in future wor.k: it is possible to reﬁn.e a library v - Chooie(mt, 1600, 2099)
generator when a SUT is encountered that requires a very m = choose (Int, 1, 12)
different distribution of test inputs, but this is likely to reduce T eaiai e 80
the efficiency of the generator in general. The challenge will be elseif m in (4,6,9,11)
to identify when it is appropriate to establish a new generator 1d =fcl(wose (Int, 1,) 30)
. o g elsei Yy % 400 ==
specific to a subclass of SUTs rather than refine the existing 1 ((y 54 —= 0) & (v % 100 1= 0))
generator. d = choose(Int, 1, 29)
else
d = choose(Int, 1, 28)

end

y,m,d
end
end

@generator LeapYearDate begin
start = begin
if choose (Bool)
y = 1600 + 400choose(Int, 0, 1)

else
¢ = choose(Int,16,20)
y = 100c + 4choose (Int,1,24)
end
if choose (Bool)
m = 2
if choose (Bool)
d = 29
else
d = choose(Int,1,28)
end
else

if choose (Bool)
midx = choose(Int,1,7)
m= [1,3,5,7,8,10,12] [midx]
d = choose(Int,1,31)
else
midx = choose (Int,1,4)
m= [4,6,9,11] [midx]
d = choose(Int,1,30
end
end
yv.m,d
end
end

@generator FirstLastWeekDate begin
start = begin
y = choose (Int, 1600, 2099)
if choose (Bool)

m =1

d = choose(Int,1,7)
else

m = 12

d = choose (Int,25,31)
end
v.,m,d

end

APPENDIX B
REGEX GENERATORS

@generator Uniform32Regex begin
start = join(reps(:asciichar,32,32))
asciichar = char(choose (Int,32,126))
end

@generator PosixGen begin
start = (choose(Bool) ? """ . nm)
*» subexp() x (choose(Bool) ? "\$"
subexp = begin
se = join(reps(:elementrep,0,4),
choose (Bool) 2 "|" : nn)
if choose (Bool)
se = "(" x se x ")"
end
se
end

elementrep = element () x (choose(Bool) ? repeats()

element = literal (
element = "."
element =

literal = begin
lit = string(char (choose (Int,32,126)))

"[" % (choose(Bool) 2 "7 . nm)
+ join(reps (:bracketsubexp,1,4))

ny

x "]

lf llt ln (!I [||,V|] HI H*ll, II+II’|I’\||,V|\$II’||\\II
Iu{nlu}nl||(ll,u)||Iu.uln?nlnl||)
1it = "\\" % lit
end
lit
end
bracketsubexp literal ()

bracketsubexp

literal() * "-" % literal()

element = charclass()

charclass = "[[:alpha:]]"

charclass = "[[:digit:]]"

charclass = "[[:upper:]]"

charclass = "[[:lower:]]"

charclass = "[[:space:]]"

charclass = "\\w"

charclass = "\\W"

repeats = "x"

repeats = "+"

repeats = "?"

repeats = "{" % string(choose (Int,0,16)) % "}"
repeats = "{" % string(choose(Int,0,16)) % ",6}"
repeats = begin

m = choose (Int,0,16)
n = m + choose(Int,0,16)
"{" % string(m) = "," % string(n) x "}"

end

end

ACKNOWLEDGMENTS

This work was funded by The Knowledge Foundation

(KKS) through the project 20130085, Testing of Critical Sys-
tem Characteristics (TOCSYC).

(1]

(21

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

P. Maurer, “Generating test data with enhanced context-free grammars,”
IEEE Software, vol. 7, no. 4, pp. 50-55, July 1990.

E. G. Sirer and B. N. Bershad, “Using production grammars in software
testing,” SIGPLAN Not., vol. 35, no. 1, pp. 1-13, 1999.

K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random
testing of haskell programs,” in Proc. 5th ACM SIGPLAN Int’l Conf.
Functional Programming (ICFP), 2000, pp. 268-279.

M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and
D. Marinov, “Test generation through programming in UDITA,” in Proc.
32nd ACM/IEEE Int’l Conf. on Software Engineering (ICSE), 2010, pp.
225-234.

R. Feldt and S. Poulding, “Finding test data with specific properties
via metaheuristic search,” in Proc. of 24th IEEE Int’l Symposium on
Software Reliability Engineering (ISSRE), 2013, pp. 350-359.

S. Poulding and R. Feldt, “Generating structured test data with specific
properties using Nested Monte-Carlo Search,” in Proc. Genetic and
Evolutionary Computation Conference (GECCO), 2014, pp. 1279-1286.

J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia:
A fast dynamic language for technical computing,” arXiv preprint
arXiv:1209.5145, 2012.

S. Poulding and H. Waeselynck, “Adding contextual guidance to the
automated search for probabilistic test profiles,” in Proc. IEEE Int’l
Conf on Software Testing, Verification and Validation (ICST), 2014, pp.
293-302.

K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: a
practical approach to global optimization. Springer, 2006.

M. Beyene and J. Andrews, “Generating string test data for code
coverage,” in Proc. IEEE Int’l Conf. Software Testing, Verification and
Validation (ICST), 2012, pp. 270-279.

S. Poulding, R. Alexander, J. A. Clark, and M. J. Hadley, “The opti-
misation of stochastic grammars to enable cost-effective probabilistic
structural testing,” in Proc. Genetic and Evolutionary Computation
Conference (GECCO), 2013, pp. 1477-1484.

A. Von Mayrhauser, R. Mraz, J. Walls, and P. Ocken, “Domain based
testing: increasing test case reuse,” in Proc. IEEE Int’l Conf. Computer
Design: VLSI in Computers and Processors (ICCD), 1994, pp. 484-491.
L. Cai, W. Tong, G. Yang, and Z. Liu, “Reusable test models and
application based on z specification,” in Proc. 2nd Int’l Conf. Pervasive
Computing and Applications (ICPCA), 2007, pp. 562-567.

