
 1

 The Lean Gap: A Review of Lean Approaches to
Large-Scale Software Systems Development

J.Pernstål1, T. Gorschek3, R. Feldt2

1Volvo Car Corporation,
SE-405 31 Göteborg,
Sweden

jpernsta@
volvocars.com

2Department of
Computer Science and

Engineering,
Chalmers University of

Technology,
SE-412 96 Göteborg,

Sweden
robert.feldt@
chalmers.se

3Blekinge Institute. of
Technology, Karlskrona,

SE-372 25
tony.gorschek@bth.se

*Manuscript
Click here to view linked References

mailto:jpernsta@volvocars.com
mailto:jpernsta@volvocars.com
mailto:robert.feldt@chalmers.se
mailto:robert.feldt@chalmers.se
mailto:tony.gorschek@bth.se

 2

Abstract
Lean approaches to product development (LPD) have had a strong influence on many industries
and in recent years there have been many proponents for lean in software development as it can
support the increasing industry need of scaling agile software development. With it's roots in
industrial manufacturing and, later, industrial product development, it would seem natural that
LPD would adapt well to large-scale development projects of increasingly software-intensive
products, such as in the automotive industry. However, it is not clear what kind of experience and
results have been reported on the actual use of lean principles and practices in software
development for such large-scale industrial contexts. This was the motivation for this study as the
context was an ongoing industry process improvement project at Volvo Car Corporation and
Volvo Truck Corporation.
The objectives of this study are to identify and classify state of the art in large-scale software
development influenced by LPD approaches and use this established knowledge to support
industrial partners in decisions on a software process improvement (SPI) project, and to reveal
research gaps and proposed extensions to LPD in relation to its well-known principles and
practices.
For locating relevant state of the art we conducted a systematic mapping study, and the industrial
applicability and relevance of results and said extensions to LPD were further analyzed in the
context of an actual, industrial case.
A total of 10,230 papers were found in database searches, of which 38 papers were found relevant.
Of these, only 42 percent clearly addressed large-scale development. Furthermore, a majority of
papers (76 percent) were non-empirical and many lacked information about study design, context
and/or limitations. Most of the identified results focused on eliminating waste and creating flow in
the software development process, but there was a lack of results for other LPD principles and
practices.
Overall, it can be concluded that research in the much hyped field of lean software development is
in its nascent state when it comes to large scale development. There is very little support available
for practitioners who want to apply lean approaches for improving large-scale software
development, especially when it comes to inter-departmental interactions during development.
This paper explicitly maps the area, qualifies available research, and identifies gaps, as well as
suggests extensions to lean principles relevant for large scale development of software intensive
systems.

Keywords
Systematic Mapping Study; Software Engineering; Lean Product Development; Lean Software
Development; Agile Software Development; Automotive Software Development; Software
Intensive Product Development; Process Improvement.

1 Introduction
Software is rapidly becoming a substantial component and seen as the main driver and source of
innovations in a number of traditionally hardware-focused industries, (e.g., automotive and
aerospace) (Vekantesh-Prasad et al. 2010; Broy et al. 2007). For example, the worldwide value of
automotive software-intensive systems is expected to rise from 127 billion Euros in 2002 to 316
billion Euros in 2015 (Dannenberg and Kleinhans 2004). In these organizations, but generally in
large organizations, the software-intensive systems are commonly developed in the context of

 3

large-scale development (i.e. systems of systems development), where software constitutes only
one, but important, part of the whole (Nihtilä 1999; Broy et al. 2007). This context is of particular
interest in this study where one of the key challenges is to integrate the software development into
the overall and multidisciplinary development of the complete product (Nihtilä 1999). This is a
challenge at Volvo Car Corporation (VCC) and Volvo Truck Corporation (VTC), where the
advancement of software has increased the uncertainty due to its changeable nature and the
interdependences between development tasks and artifacts, elevating the complexity of their
organizational structure and leading to communication and coordination problems across
departments (inter-departmental).
To avoid, or counter, large overhead, and enabling being highly responsive to change, software
development organizations have turned to agile software development over the past years, yielding
some good results (e.g., Mannaro et al. 2004; Layman et al. 2004; Svensson and Höst 2005), but
also leaving questions unanswered (e.g., Abrahamsson et al. 2003; Boehm 2002; Conboy 2009;
Wellington et al. 2005), ranging from scalability in large organizations to actual productivity and
quality issues. Thus simply applying agile (e.g., Scrum (Schwaber and Beedle 2001)) as a stand-
alone solution to coordination and communication problems in such large and complex
organization as VCC and VTC would not work. Hibbs et al. (2009) and Petersen (2010) claim that
lean practices and principles, building on lean product development (LPD), in contrast to agile, can
be applied to any scope, and is a prerequisite for scaling agile due to the unique focus on the
whole.
 For all its benefits, LPD stems from the Toyota Product Development System (TPDS) (Morgan
and Liker 2006) for managing hardware development, and that was not originally designed for
development of software-intensive systems. Rather, it has primarily evolved, and been applied to
development of products that have traditionally been highly modular (e.g., vehicles) enabling
independent development and manufacturing (Morgan and Liker 2006). However, these products
are now becoming more large and complex, integrated systems due to the increased amount of
interacting software-intensive systems (e.g., central locking and engine control in a car) (Broy et
al. 2007). Even though Poppendieck and Poppendieck (2003) have looked into how lean principles
and practices can be used in software engineering (SE) and presented lean software development
(LSD), it is unclear what empirical evidence exists that lean principles and practices can be
successfully applied for software development in large-scale development projects of software-
intensive products. It is therefore relevant to review previous work and collect evidence of the
feasibility of applying lean to such industrial contexts from both an industrial and an academic
perspective.
The study presented in this paper was primarily motivated by an industry need of locating and
evaluating state of the art that could be contributing for solving a number of key improvement
issues identified in a previous case study (Pernstal et al. 2012). The case study is part of an SPI
project, assessing the inter-departmental interaction between Product development (PD) and
Manufacturing (Man) in the context of large-scale software-intensive systems development at two
Swedish automotive companies, namely Volvo Car Corporation (VCC) and Volvo Truck
Corporation (VTC). Since both companies have implemented lean manufacturing and are adopting
LPD, they expressed a need of identifying the state of the art in large-scale software development
building on lean principles and practices. Consequently, the main objective of the study presented
in this paper is to evaluate and summarize such state of the art for ensuring that this knowledge is
not omitted when developing solution for the identified issues in the companies. In addition we
also aim to identify needs and opportunities for future researchin essence figuring out what new

 4

challenges and inadequacies might be present given the context of the case. For this we conducted
an extensive Systematic Mapping Study (SMS) (Petersen et al. 2008) as our initial searches in
database showed that there were relative few relevant and high-quality studies on the topic of
interest. Primarily because the case companies are adopting the well-established LPD principles
originating from TPDS and described in Morgan and Liker (2006), we structure the main part of
the analysis of the results according to these principles in order to identify lean gaps in large-scale
software-intensive development. Furthermore, we could have used the principles for LSD, but we
wanted to take a broader view, as such development covers different departments and engineering
disciplines and is not limited to software development. The LPD principles constitute the core of,
and serve as comprehensive guidelines for companies in their efforts to achieve LPD where one of
the key challenges is to obtain LPD across the whole companynot only within the development
organization, but also in other surrounding organizations such as marketing, product planning,
purchasing and manufacturing. In addition, industries developing software-intensive systems have
implemented lean manufacturing principles originating from the Toyota Production System (TPS)
(Liker 2004; Ohno 1988). In order to minimize waste in their lean manufacturing processes, a
well-known trend among these industries is also to improve their development processes by
implementing related LPD principles (Morgan and Liker 2006)—but it is unclear how the
principles address the fact that software as an artifact, and software engineering as a discipline, are
becoming a central component in the products developed.
The paper maps the area, identifies relevant work and qualifies it in terms of quality, and reveals
knowledge gaps. This is then discussed and reflected upon based upon previous observation from
needs identified at the case companies VCC and VTC, with the purpose of helping the case
companies in their decisions of adopting lean principles and practices as well as showing the
challenges in doing so. In addition, based on the findings and industrial needs we propose
extensions to the lean principles in the running analysis.
The remainder of the paper is organized as follows. Section 2 gives a brief background and
summarizes the related work. Section 3 provides an outline of the research methodology used in
the SMS. The results of the study are presented together with analysis in Section 4. Finally
conclusions and future research directions are presented in Section 5.

2 Background and Related Work
This section describes large-scale software development, presents related work on LPD and
summarizes previous most relevant reviews of studies reporting experiences, and best practices
within, or close to, the scope of this SMS. Finally, motivations and objectives are given.

2.1 Large-Scale Software-Intensive Systems development
Challenges in software development are often related to scaling-up software-intensive systems as
the complexity increases more than linear with the size (Brooks 1988; Curtis et al. 1988; Kraut and
Streeter 1995). Many industries develop large software systems that are embedded in their
products (e.g., vehicles and avionics) where the complexity becomes even more manifested
(Vekantesh-Prasad et al. 2010; Broy et al. 2007). This because such products are typically built of
functions, systems, and sub-systems including various hardware components and running on a
large amount of interacting software, requiring precise coordination and integration of
development tasks across multiple departments and engineering disciplines (Broy et al. 2007). For
example, the logics of the central locking system (CLS) is controlled by software distributed over
different sub-systems of the complete vehicle (e.g., door modules and alarm system), involving

 5

mechanical engineering (e.g., door locks), electrical engineering (e.g., lock motors. sensors and
cable harnesses) and SE (e.g., controlling of the locking function logics). In addition,
manufacturing engineering must be involved in order to secure that the system fit the
manufacturing processes—how shall, for example, the CLS be configured and quality assured in
manufacturing? Moreover, in these industries, many of the systems are safety critical (e.g., airbag
and anti-locking braking systems in a vehicle) where the development is governed by safety
standards (e.g., ISO 26262), incorporating such as the V-model (ABG 1997) and including, for
example, hazard analysis, safety analysis and verification). For managing the rapidly increasing
share of software in these products, it has been acknowledged in research that the role of SE needs
to be better integrated into the PD as a whole (Nihtilä 1999).

2.2 Lean Product Development
Based on several studies on the automobile industry by researchers at the International Motor
Vehicle Program (IMVP) at the Massachusetts Institute of Technology (MIT), Womack et al.
(1990) introduced the LPD concept. This concept is building on TPDS under the heading of the
broader concept of lean production. They concluded that there were differences between mass and
Japanese lean producers not only in the manufacturing processes, but also in the PD processes in
terms of practices regarding strong leadership, teamwork, early communication and coordination
across departments, and concurrent development.
Many companies developing large software-intensive systems have implemented lean
manufacturing, but to make full use of this competitive weaponsqueezing out more waste of lean
manufacturing processeslean needs also to be extended to the PD processes (Morgan and Liker
2006). To increase the effectiveness in the PD processes, several companies have started to
implement some inherent principles and practices of LPD. Continuous improvement (Kaizen),
Kanban, concurrent engineering, customers and suppliers’ involvement, visual management, group
work and cross-functional teams emerge as some of the practices used to reach the purpose of LPD
(Karlsson and Åhlström 1996; Morgan and Liker 2006;Sobek et al, 1999; Wang et al. 2012).
However, deploying only a few of the practices is not enough for achieving LPD. Womack and
Jones (2003) claim that lean is a way of thinking that must be adopted throughout the whole
enterprise. They conceptualize lean thinking into five categories: value, value stream, flow, pull,
and perfection. Value defines the use that a product offers a customer, and works backward to
build business processes. A value stream describes each step in processes and categorizes them
with regard to the value added (e.g., value adding, necessary non-value adding and non-value
adding steps). Flow organizes processes so products move smoothly through the value-creating
steps. Pull involves each customer calling output from the previous step, on demand. Finally,
perfection entails continuous improvement of processes for meeting customer needs and with zero
defects.
Literature specifically addressing LPD, are typically referring to studies on TPDS (Karlsson and
Åhlström 1996; Morgan and Liker 2006; Kennedy et al. 2008). Morgan and Liker (2006) present a
comprehensive work on LPD. Using the Sociotechnical Systems Theory (STS) (e.g., Miller and
Rice 1967) and the principles and practices of TPDS, they describe the core and essence of LPD in
a model called Lean Product Development System (LPDS). LPDS is based on the idea that LPD is
a philosophy being adopted throughout the whole enterprise rather than superficial applications of
a few lean principles and practices to parts of an organization. The LPDS model contains three
primary sub-systems: (1) process, (2) skilled people and (3) tools and technology. These are
described by means of 13 principles, see Fig. 1.

 6

Lean Product
Development System

(LPDS)

Sk
ille

d
Pe

op
le

1. Establish Customer-Defined Value to Separate Value-Added Activity from Waste
2. Front-Load the Product Development Process While There Is Maximum Design Space to Explore
Alternative Solutions Thoroughly
3. Create a Leveled Product Development Process Flow
4. Utilize Rigorous Standardization to Reduce Variation, and Create Flexibility and Predictable
Outcomes

11. Adapt Technology to Fit Your People and Processes
12. Align your Organization through Simple, Visual Communication
13. Use Powerful Tools for Standardization and Organizational Learning

5. Develop a Chief Engineer System to Integrate
Development from Start to Finish
6. Organize to Balance Functional Expertise and Cross-
Functional Integration
7. Develop Towering Technical Competence in All
Engineers
8. Fully Integrate Suppliers into the Product Development
System
9. Build in Learning and Continuous Improvement
10. Build a Culture to Support Excellence and Relentless
Improvement

Process

Tools & Technology

Fig. 1. LPDS model adapted from Morgan and Liker (2006).

Whereas LPD principles are viewed as a platform for implementing lean approaches to PD on an
enterprise-level, LSD is commonly seen as a method for applying lean in the software
development discipline and referred to the work presented by Poppendieck and Poppendieck
(2003). Their adaptation of lean principles into seven software development principles is the main
source for interpreting lean principles in the context of SE. These principles are:(1) eliminate
wastedoing only what adds customer value without delays, (2) amplify learningusing frequent
feedback loops, (3) delay commitmentdeciding as late as possible, (4) deliver as fast as
possibleminimizing the time from receiving customers’ needs to delivery, (5) empower the
teamfostering respect for people among leaders and staff and building expert technical
workforce, (6) build integrity inestablishing product quality as early as possible for avoiding
defects in late phases, and (7) see the wholefor avoiding sub-optimizations, the whole software
development process is considered.
LSD has been associated with agile methods, such as XP (Beck, 2004) and Scrum (Schwaber and
Beedle 2001), and is often seen as just another agile method (Dybå and Dingsøyr, 2008; Higsmith,
2002). However, the definitions of the terms agile and lean are often ambiguous and inconsistent in
the software development literature (Conboy, 2009). This makes it difficult to identify differences
and overlaps between them, but in recent literature LSD is acknowledge as being a method
category with its own identity and even claimed to be the next evolutionary step from agile
towards lean approaches in software development (Hirnabe, 2008; Wang et al., 2012).
Poppendieck and Poppendieck (2003) advocate that lean is a platform upon which to build agile
software development practices, and view lean principles as the theoretical foundation behind agile
software development. Furthermore, Hibbs et al. (2009) claims that lean principles can be applied
to the whole enterprise where software development constitute one part of large-scale PD
processes, while agile methods mainly focus on team levels activities and specific practices for
developing software and usually do not concern the surrounding business context in which
software development take place. Others argue that even though there are differences, but also
overlaps, between agile and lean principles, they complement each other, and in particular, the

 7

unique focus on the whole in LSD supports the expanding industry need of scaling agile software
development (Coplien and Bjornwig, 2010; Petersen, 2010; Wang et al., 2012). Similarly, it is
commonly claimed that agile methods have their shortcomings in large-scale development, where
it is recommended to mix the best features of traditional plan-driven and agile methods (e.g.,
Boehm, 2002; Conboy, 2009; Karlström and Runesson, 2005; Sommerville, 2007).
In summary, earlier work on lean and agile in SE indicates that adoption of lean principles in
software development is beneficial especially when it comes to large software systems
development. Even though lean and agile methods are influencing also more traditional industries,
such as the automotive one, the transition to lean and agile methods have only started and is not yet
widespread in the context of large-scale software development (Dybå and Dingsøyr, 2008; Wang
et al., 2012).

2.3 Summary of Related Reviews
For locating related literature reviews, we searched the scientific databases ACM Digital Library,
IEEE Xplore, Inspec, ISI Web of Science, Scopus, and Google Scholar. The search string was
based on the synonyms for systematic review defined by Biolchini et al. (2007). Reviews covering
the area focused on in this paper could not be found. However, studies reviewing literature on lean
and agile methods focusing on the SE field were found. The following presents the most relevant
ones.
Dybå and Dingsøyr (2008) conducted a systematic literature review (SLR) of empirical studies of
agile software development and LSD up to 2005, and identified 36 relevant empirical studies. Of
those, only one reported on applying lean practices to software development. Other main findings
were that most of the empirical studies focus on a single development method (e.g., XP) and
studies on agile), and implementations are mainly carried out on smaller scale (only three of the
papers investigated settings with more than 50 people).
Cawley et al. (2010) performed an SLR investigating to what extent lean and agile software
development methods have been adopted in regulated safety critical systems development. Most of
the studies identified were based on agile practices (XP and Scrum) combined with traditional
plan-driven development methods, but they found no studies where LSD had been used. However,
they believe that LSD has a potential of improving the development of safety-critical systems, and
thus, point out the need of further investigations in this area.
Wang et al. (2012) reviewed 30 experience reports published in agile conferences in which lean
principles and practices had been applied to agile software development. They divided the reports
into six categories of lean applications in agile software development. One of those concerned
applications of lean approaches for improving the interaction with other units that had already
implemented lean principles and practices established in the overall PD process while keeping the
agile software development processes internally. Furthermore, they found that several recently
published papers reporting on mature agile organizations show that these organizations have a
tendency to move from time-boxed agile processes to more flow-based lean processes. The
growing interest in LSD is also reflected by the fact that special issue on lean has recently been
published in IEEE software (2012).

2.4 Motivations and Objectives of this SMS
There are three main rationales for carrying out the SMS presented in this paper: (1) to the best of
our knowledge there are no systematic mapping studies locating the state of the art building on
LPD with a focus on large-scale software development, (2) an industrial need of evaluating the

 8

strength of evidence and potential industrial value of such state of the art, and (3) gaps and needs
for future research in the area are unclear.
The SMS presented in this paper differs from previous reviews. Dybå and Dingsøyr (2008)
included LSD and had a clear focus on agile methods, while Wang et al. (2012) limited their
review to state of the art using lean applications in agile software development. Our main focus is
on lean application to large-scale software intensive systems development, mainly because agile
methods have primarily been applied to and studied in small-scale software development projects
(Dybå and Dingsøyr, 2008), which is a problem for large-scale development. Lean approaches on
the other hand seem to scale better than agile (Wang et al. 2012), which is why we use lean and
lean principles as the base for our study and analysis. We analyze our results from a broad lean
perspective by using LPD principles applicable to the whole enterprise and not the LSD principles
primarily adapted for software development as the main focus here is on software developed in the
context of larger systems in a multidisciplinary setting (e.g., software controlling the engine or the
CLS system in a vehicle).
Assessing the methodological quality and the strength of evidence in order to assist practitioners in
the case companies to evaluate the potential benefits and risks, and decision support prior to
adopting the state of the art is another main reason for performing the SMS. For this we reflect on
our results from the viewpoint of inter-departmental interaction by building on the collected data
and findings in an industrial case study reported in Pernstal et al. (2012). The study examines the
interface between PD and Man in large-scale development of software-intensive systems at VCC
and VTC. PD is concerned with design and development of software-intensive automotive systems
(e.g., development of power train and chassis control systems for vehicles). Man is concerned with
managing these systems when producing vehicles (e.g., vehicle manufacturing operations affected
by power train and chassis control systems). The case was chosen mainly because inter-
departmental coordination and communication is a key challenge in large-scale software projects
(Kraut and Streeter, 1995) and the interaction between PD and Man has been identified as critical,
both in the case companies and in literature (Morgan and Liker, 2006; Pernstal et al., 2012;
Wheelwright and Clark, 1994; Nihtilä, 1999). Furthermore, the researchers involved in the study
presented in this paper have access to rich and detailed information about the case, allowing better
possibilities to judge the industrial applicability and relevance of the results. In addition, we
assessed the quality of the selected papers by using an evaluation model proposed by Ivarsson and
Gorschek (2009, 2011) for gauging rigor and industrial relevance of studies.
Another main reason for conducting the SMS is to identify gaps and opportunities for future
research (Kitchenham and Charters 2007). LPD has primarily evolved and been adopted in
traditionally hardware-focused industrial sectors (e.g., automotives (Ward, 2007)) and aerospace
(Lean Aerospace Initiative (LAI) (Murman, 2004)), while the empirical evidence for the
applicability of lean and agile software development methods to such large-scale industrial
contexts is unclear (Dybå and Dingsøyr, 2008). However, software is increasingly becoming an
important component in these sectors, and unlike much hardware development and manufacturing,
software development is a nonroutine activity and the "material" itself is intangible, changeable,
and unpredictable (Brooks, 1987; Kraut and Streeter, 1995). Furthermore, to identify and suggest
areas for further studies addressing LPD in software-intensive industrial sectors, we give an overall
picture and an in depth analysis of how the state of the art in large-scale software development
based on lean principles and practices are related to LPD. In addition, to outline research needs
from an SE perspective, the identified state of the art is mapped to the different knowledge areas
(KA) as defined by SWEBOK (Abran et al., 2004). We chose SWEBOK as a way to structure the

 9

paper as it is well known and established framework sponsored by IEEE. Although not perfect or
seen as optimal by all (Kaner, 2003)we considered it to be adequate for our purposes, and any
framework used have both proponents and opposers.

3 Research Methodology
The process for the SMS presented in this paper follows the guidelines by Kitchenham and
Charters (2007). It consists of the four main steps: (1) definition of research questions, (2)
generation of search strategy, (3) study selection, and (4) data extraction and quality assessment.
Three researchers were involved in this SMS. In order to enhance the validity and reliability, we
have continuously documented and updated the research procedures in a review protocol, which is
summarized below.

3.1 Research Questions
The research questions posed in the SMS presented in this paper are shown in Table 1.

Table 1.
Research questions.

Research question Description
RQ1: What is the state of the art in large-scale
software development primarily based on lean
principles and practices?

Investigating if there are research contributions based on lean
principles and practices in large scale development of software-
intensive systems. In this study, we impose no limitations with
regard to the level of evaluation of the state of the art.

RQ2: What are the characteristics of the
identified state of the art?

Structuring and analyzing the main contributions of the
publications by combining the properties included in the sub-
questions RQ2.1, RQ2.2, RQ2.3 and RQ2.4.

RQ2.1: What type of research is
commonly conducted?

Reflecting the research approaches used in the publications
independent from the specific focus area.

RQ2.2: What is the relevance of the
state of the art?

Assessing the quality of the results reported by examining the
level of the industrial relevance.

RQ2.3: What is the rigor of the state of
the art?

Assessing the quality of the results reported by examining the
level of the rigor (e.g. descriptions of study design and context).

RQ2.4: What topics in SE does state-
of-the-art explicitly and clearly target?

Capturing the topics covered and identifying research gaps in the
field of SE.

RQ3: What relationships are there between
state of the art and the principles of LPD?

Ordering and analyzing of the state of the art reported in relation
to the LPD principles. The objectives are to identify research
gaps and needed extensions in LPD for large-scale software
development, and evaluate the applicability of the state of the art,
giving the industrial partners support in decisions on the SPI
project.

3.2 Search Strategy
The SMS was limited to peer-reviewed conference papers or journal articles written in English
language, published between 1990 to 2010, since the term 'lean' was first coined by Womack et
al.(1990). Furthermore, in order to reduce the number of irrelevant results, the search was only
applied to the title, keywords and abstract (Dybå et al. 2007).
The search string was generated on the basis of the scope of this SMS and is composed of two
groups of search terms, population AND intervention. Population includes alternative keywords
representing creation of software-intensive systems or products. Keywords covering common
concepts, principles and practices related to lean are embedded in intervention primarily based on
(Morgan and Liker 2006; Karlsson and Åhlström 1996; Sobek et al. 1999; Wang et al. 2012). As

 10

inter-departmental interaction is one of the most critical challenges in large-scale software
development (Kraut and Streeter 1995), principles and practices that we could relate to this were
specifically considered. In order to identify relevant keywords and balance the comprehensiveness
and precision, the search string evolved over several pilot searches in the Scopus database. These
searches showed that terms not specific for lean, such as "integrated product development", was
used in publications that could be relevant (e.g., Negroni and Trabasso 2009). However, these
studies were excluded during selection process, primarily because they did not focus on software
development. To ensure the reliability and relevancy of the searches and to evaluate the search
strings, emerging key publications were listed and compared to the trial search.
In the first trial search, population targeted large-scale software development. However, the search
showed that there was a lack of relevant publications in this specific area (less than five). To
progress the review, we decided to extend the scope of the SMS so population covered
development of software-intensive systems in general. The relevance of the located state of the art
for large-scale software development was then assessed during the data extraction step.
With regard to the quality of the studies, it would have been effective to use keywords that limit
the publications to studies where the state of the art has been evaluated in some way (e.g.,
empirical, experience, lesson learned etc.) or in terms of a specific research method (e.g.,
experiment, case study etc.). However, trial searches with such restrictions on the search string
showed that there was a high risk of missing relevant papers, resulting in an incomplete overview
of the reviewed area. As a consequence, this delimitation was not imposed. Moreover, the
keywords for some of the practices commonly used in lean, such as pull and problem solving, were
too general, generating many irrelevant hits, and were thus discarded. The final search string's
keywords used for population and intervention and the Boolean expression are presented in Table
2.
Table 2.
Search string and keywords.

Population AND Intervention
software AND (development OR engineering
OR embedded system* OR electronic*)

lean* OR Kanban OR Kaizen OR 'continuous
improvement' OR 'cross* functional' OR
'concurrent engineering' OR 'integrated
product development'

The search string was applied to five electronic databases in the SE field. The list of selected
databases and the dates of the electronic search are provided in Table 3.

Table 3.
Searched databases.

Databases Search date
ACM Digital Library 2011-02-05
IEEE Xplore 2011-02-05
Inspec 2011-02-05
ISI Web of Science 2011-02-05
Scopus (comprises Compendex) 2011-02-05

The search in the databases yielded in a total of 13,984 hits. After removing duplicates 10,230
publications remained to be further investigated. Due to large amount of publications, the reference
management application Mendeley (http://www.mendeley.com) was used.

 11

3.3 Study Selection
The selection of relevant studies that are within the scope and relate to the research questions
posed in this SMS was based on a number of criteria for including publications. The purpose of the
criteria is to ensure inclusion of studies on large-scale software development and any kind of lean
development. In Table 4, the selection question and inclusion criteria are specified and briefly
explained.
Table 4.
Criteria for study selection.

Selection question Inclusion criteria Explanation
Is the main focus of the
study relevant?

The paper clearly states that it
focuses on development of
software or software intensive
products or systems AND
includes any kind of
lean development

-Software-intensive systems or products consist
of integrated software and hardware solutions,
e.g., automobiles, aircrafts, mobile phones, etc.
- Lean development involves methods such as,
Kanban, Kaizen (continuous improvement),
concurrent development etc.

The process for study selection began with selecting relevant publications based on screening the
titles, keywords, and abstracts of the papers.

Start

Step 1 Screen title and keywords

Is the main focus relevant?

Step 2 Read abstract

Is the main focus relevant?

Exclude paper
(It is clear that the paper does NOT focus on
development of software AND lean.)

No

No

Include
paper

Include
paper

Unsure

Unsure

Yes

Yes

Exclude paper
(It is NOT clear that the paper focuses on

development of software AND lean.)

Exclude paper
(It is clear that the paper does NOT focus on
development of software AND lean.)

Fig. 2. Process for study selection based on screening the titles, keywords, and abstracts.

As shown in Fig. 2, the screening process consists of two main steps. First, the title and keywords
are screened. Depending on whether the main focus of the study is relevant, the paper is included.
If there are uncertainties about the main focus of the study, the abstract is read in the second step
where the paper is only included if the main focus is clearly relevant.
The three researchers elaborated a manual containing the process and selection criteria. To
enhance the quality of the manual and establish a unified understanding and interpretation of the
criteria and the process, we piloted and computed the inter-rater agreement. In the first pilot, we
assessed 100 randomly selected publications from the search performed in the databases. The

 12

Fleiss' Kappa (Fleiss 1971) value showed a moderate agreement (0.5) according to Landis and
Koch (1977). We scrutinized the results of the pilot and refined the manual. In particular, the
definitions of the selection criteria were perceived too implicit, and hence they were further
detailed, specified and clarified by adding explanations. Then we performed a second pilot on 30
randomly selected publications, yielding a substantial agreement (0.74) (Landis and Koch 1977),
and one of the researchers used the agreed manual on the remaining papers selected for the
screening.
After the screening, one of the researchers also applied the inclusion criteria to the conclusion and
introduction sections of the remaining set of papers. Papers that were difficult to judge (e.g.,
unclear focus on lean approaches to software development) were classified as "unsure". A full-text
reading of these papers was conducted by the three researchers, and then further evaluated and
discussed based on the inclusion criteria (see Table 4) in a consensus meeting, yielding a final set
of agreed papers for data extraction. Fig. 3 shows the overall study selection process and the
statistics for how the publications from the selection based on the search in databases were reduced
to a final set of studies accepted for data extraction and quality assessment.

Search in databases
(13,984)

Study selection
on the basis of
screening titles,
keywords and

abstracts
(10,230)

-Only published
studies
-1990 to 2011
-Only English
- Comply to the
search string

Duplicates
(3,754)

Excluded
(10,176)

Study selection
on the basis of

reading
introduction and

conclusion
(54)

Excluded
(16)

Final study
selection for

data extraction
and quality
assessment

(38)

Fig. 3. Overall study selection process and statistics.

The search string generated 13,984 published studies between 1990 and 2011 written in English.
Of those, 3,754 were identified as duplicates by listing titles and authors alphabetically in
Mendeley, which resulted in leaving 10,230 publications for the screening. After applying the
inclusion criteria on the titles, keywords, and abstracts, 10,176 papers were found irrelevant,
reducing the remaining number of publications to 54. Many of the excluded papers reported on
engineering of computer-aided software applications and tools applied to virtual development of
mechanical parts (e.g., CAD/CAM), automation in production, and lean manufacturing. Finally, 16
papers were excluded because either a copy of the full text was not available; the results of the
study were reported multiple times, or there was an unclear focus on software development.
Hence, a total of 38 publications were left for the subsequent quality assessment and data
extraction (see Appendix A).

3.4 Data Extraction and Quality Assessment
We developed a data extraction form on the basis of the research questions posed in Section 3.1.
The construction of the form aimed to gather data needed for the data synthesis so that the research
questions could be answered. This was primarily done quantitatively by classifying the selected
studies into a number of representative properties (systematic mapping)(Petersen et al. 2008), but
also qualitatively through in-depth analysis of the data (systematic review) (Kitchenham and
Charters 2007). Table 5 describes the properties used in the extraction form and their mapping to
the research questions.

 13

Table 5.
Overview of extracted data.
Property Description Research

question(s)
Main focus - Lean in large-scale software development

- Development phases
- Methods and practices used (e.g., Kanban, Kaizen, and concurrent
development etc.).
- Type of contribution (e.g., model, framework, process, method,
practice, metrics etc.).

RQ1

Context - Domain (e.g., automotive, aerospace, telecommunication, web etc.).
- Project type (e.g., size, duration, complexity).
- Product type (e.g., system, software application, service complexity).

RQ1

Type of research Categorization of the research type used in the papers based on the
existing classification scheme provided in Wieringa et al. (2006).

RQ2.1

Relevance and rigor Quality assessment of the papers by evaluating rigor and relevance
based on the method used by Ivarsson and Gorschek (2009, 2011).

RQ2.2,
RQ2.3

Topic in SE Mapping of the main contributions of the papers to topic(s) in the SE
field according to the KAs in SWEBOK (Abran et al. 2004)

RQ2.4

LPD principles Mapping of the main contributions of the papers to the LPD principles
in the LPDS model (Morgan and Liker 2006).

RQ3

For a deeper analysis, data was enriched by extracting qualitative data including descriptions of the
study context and the contributions, reported success factors and limitations, and the objectives of
the study.
To mitigate any misinterpretation of the study results due to low study quality, the extraction form
also included a quality assessment that was performed for each of the studies. For estimating the
study quality, the studies were assigned scores for rigor and relevance according to the evaluation
method provided in Ivarsson and Gorschek (2009, 2011).
In order to enhance the precision and consistency of the data extraction, and a common
understanding and interpretation of the properties among the researchers, we piloted the data
extraction form two times on a limited number of papers. After each pilot, the results were
compared and any disagreements between the researchers were resolved through further
discussions until consensus was reached. For example, clarifications of the knowledge areas and
research types were needed, and it was necessary to divide the level of relationship between the
contributions of the papers and the LPD-principles into the three scores of 'no', 'weak' and 'strong'
relationship. A 'strong' relationship entails that it is clearly and explicitly stated while a 'weak'
relationship means that it is only possible to deduce it.
The piloted data extraction form was then used by one of the researchers, who performed the
further data extraction. While doing the data extraction, the form was continuously discussed and
updated (e.g., adding, splitting and reformulating categories). The final data extraction form is
provided in Appendix B. The extracted data of each paper was filled out and documented in an MS
Excel sheet. Furthermore, a short rationale was added explaining why the paper should be in a
certain category (e.g., why the paper was attributed to a specific research type). From the entered
data, we calculated the frequencies of publications in each category, and used qualitative data
coding for scrutinizing and categorizing the extracted quotes (e.g., shared results, claims and
recommendations).

 14

4 Results and Analysis
In this section, we present the results of the SMS derived from the 38 papers finally selected
according to the research questions specified in Section 3.1. Of these, 16 studies addressed large-
scale software development. The 38 included papers (S1-S38) are listed in Appendix A.

4.1 Quality Assessment (RQ2.2 and RQ 2.3)
We performed the quality assessment by evaluating the rigor and relevance of the studies based on
the aspects included in the model presented by Ivarsson and Gorschek (2011). The level of the
industrial relevance of the reported results is estimated with regard to the realism of the research
setting and the applicability of the research method for investigating phenomena in the real world.
The level of rigor is estimated through examination of to what extent and detail the context and
research method are presented, and the validity of the results is discussed. The maximum score for
rigor is three, while relevance has a maximum of four.
Fig. 4 shows the distribution of rigor and relevance of the selected studies, using a bubble graph
(Petersen et al. 2008). The size of the bubbles is proportional to the number of papers that are in
the pair of scores for relevance and rigor corresponding to the bubble coordinates (the number of
papers addressing large-scale software development is placed in brackets). The graph shows that
12 studies have zero relevance (32 percent) and of these nine studies (24 percent) have both zero
rigor and relevance where two studies address large-scale software projects. Typically, the 12
studies include descriptions of solutions that were evaluated by using small examples (six out of
12), or relying on the view of the author(s) (four out of 12). However, this does not mean that these
studies are out of scope of this review and thus should be excluded. The purpose of the model is to
give an overall picture in the field being reviewed by approximating the potential industrial
relevance and its progress, rather than providing precise and detailed criteria for an exact
classification of each individual study (Ivarsson and Gorschek 2011). Furthermore, our main
objective of the SMS is to establish knowledge about state of the art, being helpful for the case
companies in the search for solutions to the key issues identified in the SPI project. State of the art
deemed as irrelevant according to the model can be relevant for the case companies as there may
be other factors influencing the evaluation of the relevance than those based on the actual use in
industry. This makes it difficult to distinguish relevant studies from irrelevant ones. For example,
the likelihood of introducing subjective bias when assessing the value of research is high in both
what to assess (e.g., what constitutes value and quality), and reviewers' competence to assess it
(Dybå et al. 2007). Also the time perspective needs to be considered as it takes in the order of 15-
20 years before state of the art has matured so it can be implemented in industry (Dybå et al.
2005). However, drawing conclusion merely based on these 12 studies should not be done as the
model indicates they have low quality.
On the other hand, 24 studies have relevance equal to three or more than three. Furthermore, 14
out of the 16 studies on large-scale software development have relevance equal to four. The
relatively high values of relevance are explained by that many studies are reporting on experiences
of applying lean approaches to real industrial settings. However, most of the studies are located in
the lower left and right quadrant, where 28 studies have a rigor equal to one or less than one and 11
of these studies are on large-scale software development. Insufficient information about the study
design and lacking discussion of the validity are the main reasons for the low values of rigor. For
example, 16 studies did not even briefly describe the study design, and only one provided a
detailed discussion of the validity. Omitting to report how the study was performed (e.g., sampling,
data collection and analysis), where (in what context), and any limitations of the results (e.g.,

 15

generalizability and reliability) make it difficult to replicate the study and evaluate the results
(Dybå et al. 2005; Ivarsson and Gorschek 2011).

Fig. 4. Distribution of rigor and relevance of selected studies (number of studies on large-scale are placed in
brackets).

To summarize, even though the quality assessment shows that the relevance of the studies is
relatively high, the lack of rigor reduces the possibility to judge the capability of the state of the art
to be contributing for practitioners seeking to adopt new best practices, and limits replications of
the studies.

4.2 Current State of the Art (RQ1)
In total 38 studies dealt with state of the art in software development built on lean principles and
practices. The studies were performed in contexts ranging from large and complex projects in
multi-national companies to student projects in academia. Of these, 42 percent (16 out of 38)
clearly dealt with software development in large-scale settings in different industrial sectors, such
as aerospace, avionics, telecommunication and industrial automation.
For all the selected studies, we identified and categorized the used lean practices. Each study was
then classified into a single category. However, in some studies lean practices were applied in
combination with agile methods (hybrids) and in many studies it was unclear which lean or agile
method that had been used. Therefore, studies not focusing on specific methods and practices (e.g.,
studies only mentioning or only implicitly related to a practice) were classified as generic lean or
generic lean and agile.
In Fig. 5, the number of studies per category of lean and agile methods is presented. For each
category the total number of studies and studies addressing large-scale development are given. For

 16

example, the total number of studies classified as generic lean is 14 where nine of these studies are
addressing large-scale development. For all the studies, 66 percent (25 out of 38) reported on
solely lean, while 34 percent (13 out of 38) reported on lean and agile hybrids. Almost the same
relationships can be seen for studies on large-scale development, where 69 percent (11 out of 16)
reported on lean and 31 percent (5 out of 16) on hybrids. It is notable that publications reporting on
combinations of lean or hybrids of lean and agile, and plan-driven development (e.g., waterfall,
RUP, and V-model) could not be found, since such combinations have been recommended for
large-scale software development (Boehm 2002; Karlström and Runesson 2005; Sommerville
2007).
Looking at the diagram, most of the studies (24 out of 38) do not focus on any specific lean
practice; 14 studies report on generic lean, eight on generic lean and agile, one on generic lean and
agile model driven development, and one on generic lean and XP. Pull System (Kanban software
development) is the most frequently reported lean practice (six studies), but it can also be observed
that this practice has not been reported in large-scale software systems development. Furthermore,
12 out of the 14 studies reporting on a specific lean practice have been published recently (2006-
2010). This is much in line with Wang et al.(2012), who saw a trend of adopting more and more
concrete lean practices, and in particular, Kanban software development. With regard to studies on
large-scale development, 81 percent (13 out of 16) are classified into generic lean (nine studies),
generic lean and agile (three studies), and generic lean and agile model driven development (one
study). Value stream mapping (two studies) and visual management (one study) are the only
specific types of lean practices that are clearly focused on and reported.

Fig. 5. Practices and methodologies reported and their frequencies.

4.3 Type of Research (RQ2.1)
To obtain an overview of the research type used in the studies, they were classified according to
the classes provided in Wieringa et al .(2006). The diagram in Fig. 6 shows the distribution of the
research types for all the selected studies (black bars), and the 16 studies on large-scale

14

8

5

1 1
2

1 1 1 1 1 1 1

9

3
1 1 1 1

0
2

4
6
8

10
12

14
16

Generic
 lean

Generic
 lean and agile

Pull s
ystem (K

anban)

Contin
uous im

provement (K
aizen)

Contin
uous im

provement a
nd generic

 agile

Lean Six Sigma
Jidoka

Value Stre
am M

apping

Visu
al M

anagement

Pull s
ystem (K

anban) a
nd SCRUM

Generic
 lean and Agile M

odel D
riv

en Dev.

Generic
 lean and XP

Value Stre
am M

apping and SCRUM
 Practices and methods

N
o.

 o
f p

ub
lic

at
io

ns

Lean&agile
(Total)

Lean
(Large-scale)Lean (Total)

Lean&agile
(Large-scale)

 17

development (black and white bars). For example, in total 17 studies are classified as experienced
studies and of these 10 are studies on large-scale development. It can be observed that the most
common research type used is experience papers (45 percent of all studies and 62 percent of
studies on large-scale development) in which practitioners have reported their own experiences,
followed by evaluation research (21 percent of all studies and 25 percent of the studies on large-
scale development). Furthermore, a majority of the publications are non-empirical (76 percent),
since only 24 percent (nine out of 38) can be classified as evaluation research and validation
research. Of those four studies on large-scale development are empirical. This indicates that the
reviewed area in this SMS is not yet mature. One reason for this can be that the lean and agile
principles and practices have been introduced relatively recently in the field of SE (e.g., (Beck
2004; Poppendieck and Poppendieck 2003; Schwaber and Beedle 2001). Another reason could be
that although LPD has been used for many years by Japanese automakers and Western companies
in, for example, the automotive and aerospace industry (Murman 2004; Ward 2007), it is not until
recent years that software has become an important component in these traditionally hardware-
focused industrial sectors (Venkatech Prasad et al. 2010; Broy et al. 2007). Nevertheless, in order
to increase the maturity, there is a need for more validation and evaluation research efforts,
involving rigorous research methods (see also Section 4.1). These include, case studies on large-
scale software development projects in real industrial settings, where data is collected and
analyzed systematically and the validity of the results are scrutinized (Ivarsson and Gorschek
2009, 2011).

Fig. 6. Research type distribution of all studies (black bars) and studies on large-scale software development (black
and white bars).

4.4 Topics in SE (RQ2.4)
We mapped the main contributions of the papers to topic(s) in the SE field according to the KAs in
SWEBOK (Abran et al. 2004) in order to obtain an overview of the coverage of the studies in the
SE domain. Each study could be mapped to multiple KAs. The diagram in Fig. 7 shows the
proportion of all studies (black bars) and studies on large-scale software development (black and
white bars) per KA. For example, the proportion of all studies in the KA of engineering tools and
methods is 16 percent and the proportion of studies on large scale development in this KA is 10
percent.

1

8

7

1

4

17

0

4

1

0

1

10

0 2 4 6 8 10 12 14 16 18

Validation Research

Evaluation Research

Solution Proposal

Philosophical Papers

Opinion Papers

Experience Papers

Re
se

ar
ch

 ty
pe

Number of studiesLarge-scale

Total

 18

Fig 7. Proportions of studies per KA all studies (black bars) and studies on large-scale software development (black
and white bars).

It can be observed that most of the studies could be classified into the KAs of engineering
management (32 percent) and engineering process (24 percent), whereas there are few studies
clearly addressing the KAs of configuration management (2 percent), maintenance (2 percent)
design (2 percent) and quality (3 percent). The proportions of the studies on large-scale software
development show a similar pattern. The largest proportions of these studies are mapped to the
KAs of engineering management (30 percent) and engineering process (33 percent), and there are
no studies classified into the KAs of configuration management, maintenance, design, and quality.
An explanation for this is the broadness of the KAs of engineering management and engineering
process spanning over the other KAs, which makes it easier to classify the studies into these two
KAs. Many studies that did not clearly specify which KA they addressed, usually dealt with SPI.
In order to primarily reducing lead times and enhance quality, these studies involved different
ways of tackling issues of general software development management based on lean management
principles (e.g., defining customer value and eliminating waste). This indicates that the reviewed
area of interest is immature, since most of the studies provide implicit state of the art without
detailed and practical guidance for adapting it to different situations and problems within a specific
KA. Lacoste (S15) and Linear and Preston (S16), for example, only articulate that Kaizen
(continuous improvement) management is a beneficial approach when improving the software life
cycle processes. Another example is Perera and Fernando (S24), who conducted an experiment
involving ten student projects and found that a hybrid process of lean and agile produces more
lines of code than an agile process, but they do not provide a detailed description of how the
processes differ and which practices are used.
Along with the lack of rigor, this makes it difficult for practitioners to understand the applicability
of the state of the art reported. For example, four studies on large-scale software development
could be mapped to the KA of requirements and of these only two had a rigor of more than one,
namely Ippolito and Murman (S11) and Petersen and Wohlin (S25). Ippolito and Murman (S11)

1,6%

1,6%

1,6%

15,9%

3,2%

13,3%

0,0%

6,7%

6,7%

0,0%

0,0%

30,0%

10,0%

0,0%

6,3%

6,3%

23,8%

31,7%

11,1%

33,3%

0,0% 5,0% 10,0% 15,0% 20,0% 25,0% 30,0% 35,0%

Requirements

Design

Construction

Testing

Maintenance

Configuration management

Engineering management

Engineering process

Engineering tools and methods

Quality

K
no

w
le

dg
e

A
re

as

Large-scale

Total

 19

conducted three detailed case studies and 128 surveys. With the goal of improving the software
upgrade value stream in development of large-scale software-intensive systems, they sought to
identify effective lean practices for eliciting software requirements from aerospace system level
requirements. However, the reported findings and recommendations only formed a high-level basis
for developing a framework that would increase the value-added contribution of the software
requirement process. Petersen and Wohlin (S25), on the other hand, provide examples of actual
uses of a method influenced by the Quality Improvement Paradigm (QIP) (Basili 1985) called
Software Process Improvement through Lean Measurement (SPI-LEAM). SPI-LEAM was
designed for improving the flow in software development and applied in large-scale industrial
setting for measuring inventories of software requirements.

4.5 Relationships between the State of the Art and LPD Principles (RQ3)
To answer RQ3, we identified relationships between the main contributions of the selected studies
and the principles in LPDS. Each study could have multiple relationships. Table 6 describes the
principles, lists all the selected studies, and shows the number of them for each principle.
Relationships to studies on large-scale software development are also shown and their frequencies
are placed in brackets. Furthermore, only the strong relationships identified (see Section 3.4) are
given in Table 6 (Appendix C shows both the strong and weak relationships). For example, there
are nine studies with strong relationships to Principle 1, and of these four studies (S11, S13, S20,
and S27) are on large-scale software projects.
Looking at Table 6 and how the strong relationships identified for all studies were scattered over
the sub-systems in LPDS, 42 relationships could be attributed to process, 15 to skilled people and
11 to tools and technology. The number of relationships between studies on large-scale
development and the sub-systems are 16 for process, seven for skilled people, and six for tools and
technology. Thus, a majority of the studies have a process-oriented focus. Even though the
importance of skilled people has been acknowledge as a major factor for success in software
projects (Brooks 1987; Kraut and Streeter 1995), this indicates that there is still a strong belief that
the processes must be changed for effectively producing software-intensive systems.
Both for all studies and those on large-scale software development, Principle 3 has the highest
number of relationships (25 and 11 respectively), followed by Principle 12 (10 and five
respectively) and Principle 1 (nine and four respectively). Apparently, the main areas of interest in
the studies are lean principles and practices for defining customer value, reducing waste, creating
flow in the PD process, and visual management. Moreover, none of the studies have a strong
relationship to Principles 5, 8 and 13, which indicates an overall lack of research on the role of
product manager, integration of suppliers, and tools for standardization and organizational learning
in lean approaches to development of software. It can also be seen that there are no strong
relationships between Principle 10 and studies on large-scale software development.
In the following, this section presents a deeper analysis of the strong relationships between the
principles and the studies on large-scale software development. Thus, Principles 5, 8, 13 and 10 are
not further analyzed. In order to assist the case companies to evaluate the potential value of the
results prior to deciding on adopting the state of the art, practical implications are analyzed and
reflected upon based on the data extracted from the reviewed papers and on previous observations
in the case study by Pernstal et al.(2012). In addition, potential gaps and implications for future
research are discussed.

 20

Table 6
Relationships between lean principles in LPDS (Morgan and Liker 2006) and selected studies

Sub-system Principle Description Strong relationship
Total Large-

scale
Freq.

Process 1.Establish customer-
defined value to separate
value-added activity from
waste.

To create a lean PD process, it is important to establish a customer defined value
as a first step. Once these values have been identified, diffused and understood
throughout the whole organization, it is possible eliminate waste.

S7,S11,S13,
S14 S20,S21,
S26,S27 S33

S11, S13,
S20,S27

9 (4)

2. Front-load the PD
process while there is
maximum design space to
explore alternative
thoroughly.

Involves problem-solving at root cause level in early project phases. The aim is to
eliminate late engineering changes like 'quick fixes' and patches that rarely result
in increased product or process performance.

S7,S8,S12,
S18,S26,S27,
S33

S27 7 (1)

3. Create a leveled PD
process flow.

Involves eliminating waste (everything that does not contribute to the value for
the customer) and establishing flow (regular pace) in the PD process. The total PD
value stream is examined with the aim to eliminate non-value adding activities
that occur between development steps such as unnecessary handovers of
documents and reinvention instead of standardization of components. Flow is
created by incremental development where work is broken down into suitable
tasks.

S3,S6,S7,S8,
S9,S10,S11,
S12,S13,S14,
S15,S17,S18,
S19,S20,S22,
S23,S25,S28,
S29,S30,S32,
S34,S37,S38

S3, S11,
S13, S20,
S22, S23,
S25, S28,
S30, S32,
S37

25 (11)

4. Utilize rigorous
standardization to reduce
variation, and create
flexibility and predictable
outcomes.

Standardization has a large influence on PD since it reduces variation that enables
increased flexibility and predictable outcomes. There are three categories of
standardization: design standardization, process standardization, and engineering
skill-set standardization.

S32 S32 1 (1)

Skilled
People

5. Develop a chief
engineer system to
integrate development
from start to finish.

The top management appoints a chief engineer immediately after a new program
has been decided upon. The chief engineer is considered to be the owner of the
product and is responsible for the whole development process from concepts to
launch.

 0

6. Organize to balance
functional expertise and
cross-functional
integration.

Creating efficient PD organizations by combining the benefits of product and
functional focused structures in a matrix organization. This allows simultaneous
attention to functional and program demands.

S36 S36 1 (1)

7. Develop towering
technical competence in
all engineers.

The necessity to use a rigorous recruitment process, mentoring and on-the-job-
training (OJT) in a structured way. For example, in order to have the capability to
technically challenge design engineers, the recruitment and training of
manufacturing engineers should be equally comprehensive.

S11,S16,S23,
S29

S11, S23 4 (2)

8. Fully integrate
suppliers into the Product
Development
System.

Comprises a high degree of supplier involvement. This implies early involvement
of suppliers in PD, a rigorous selection of suppliers, and that suppliers are
committed to continuously maintain and develop their engineering and
manufacturing capabilities in order to meet the demands of the ordering company,
i.e. original engineering manufacturer (OEM).

 0

9. Build in learning and
continuous improvement.

To achieve continuous improvement (Kaizen) of products or processes, it is
important to recognize and encourage learning and understanding of technologies
and processes where both tacit and explicit knowledge are developed, diffused
and maintained in the organization n.

S3,S13,S15,
S16,S22,S26,
S27,S35

S3, S13,
S22, S27

8 (4)

10. Build a culture to
support excellence and
relentless improvement.

The culture embraces a fairly stable set of assumptions that are taken-for-granted,
shared beliefs, meanings, and values in an organization that govern the members'
operations and enables the organization to rely less on formal lean control
systems.

S16, S19 2 (0)

Tools &
Technology

11. Adapt technology to
fit your people and
processes.

Tools and technology must be customized based on organizational needs. This
means that the integration of new technologies facilitating incorporation with
existing systems or tools and adaptation to established processes should be
seamless, and not vice versa.

S31 S31 1 (1)

12. Align your
organization through
simple visual
communication

Deals with the organization's capability of effectively coordinating complex
communication such as requirements, test results, project status reports and
manufacturing constraints between teams and across functions in the PD process.

S6,S8,S11,
S14,S19,S20
S25,S28,S31,
S38

S11, S20,
S25, S28,
S31

10 (5)

13. Use powerful tools for
standardization and
organizational learning

To build learning organizations, it is necessary to deploy tools that support
development, diffusion and preservation of both explicit and tacit knowledge, on
which evolving standards are based.

 0

Principle 1—Establish Customer Defined Value: To suppress the occurrence of waste, lean
organizations emphasize elicitation and dissemination of defined customer values throughout the
organization to all involved teams by breaking down the overall goals to meaningful objectives on
all levels of the organization. This leads to increased understanding in downstream activities of
what creates value for the customer.

 21

Kettunen (S13) presents a research model for investigating and evaluating the performance of
process improvements based on lean and agile principles and practices in software development
organizations. Specifying customer value is central in the model as the performance on enterprise
level is expected to be based on continuous delivery of high product value. In a case study by
Middleton et al. (S20), they claim that customer value is the most important issue to initially focus
on in software development. To define customer value, the development team they studied,
therefore iteratively elicited and refined requirements in close cooperation with the customer,
yielding a list of prioritized features. When prioritizing the requirements, the Kano model (Kano
1996) describing the relationship between customer satisfaction and quality and categorizing
customer needs into three types, was found useful. However, Ippolito and Murman (S11) found
that eliciting the customer value of software changes in large systems is complex as they are
dependent upon multiple, interacting values associated with other changes to the whole system
(e.g., sensors, certifications, hardware, and supporting equipment). Consequently, this creates
multiple value streams where the development of software includes just one part of identified
customer values of the complete set of values for developing the total system.
Dissemination of defined customer values throughout the organization to all involved teams leads
to increased understanding in downstream activities of what creates value for the customer.
Middleton et al. (S20) and Rudolf and Paulish (S27) report on using design structure matrix
(DSM) (Eppinger et al. 1994)for breaking down defined customer requirements in order to
transform them into design requirements that are deployed to further the PD process, and ensure
value-adding requirements on lower abstraction levels.
All four studies on large-scale development mapped to this principle address how customer value
is identified and broken down for the design of software-intensive systems, but not for other
functions of a development organization. Referring to our case, there are no studies on how to
transfer customer value to Man and breaking it down to best practices that create most value for
the customer of these systems in the manufacturing operations. For example, one observation was
difficulties in determining the types of software-intensive systems in vehicles that are most
beneficial to configure in the manufacturing processes and how this should be performed
effectively (e.g., configuration by assembly plant software download or parameter setting of pre-
loaded software). Thus, for a better understanding of how to create customer value concerning
design and manufacturing aspects of large software-intensive systems, there is a need of more
studies, which in turn can provide specific knowledge and best practices that can be added to LPD
for large-scale development of software-intensive systems.

Principle 2—Front-load the PD Process: Front-loading encompasses clarifications and trade-offs
of different aspects and requirements in early phases of the PD process in order to obtain more
robust and optimized systems. This reduces the risk for rework in late development phases. Rudolf
and Paulish (S27) was the only study on large-scale software development that had a strong
relationship to this principle. To achieve early problem-solving, they used root cause analysis
based on A3s and 5Whys. However, the study merely report on what to do on a high level, but not
how the actual implementation should look like. Furthermore, evidence for the applicability of the
presented state of the art is unclear as Rudolf and Paulish (S27) only give brief descriptions and
experiences of applying problem-solving in the case company.
Active involvement of manufacturing engineers in early phases is recognized in research as one of
the most critical factors in PD, since it reduces the risk of pushing through manufacturing

 22

prerequisites in late phases, which often leads to costly changes and jeopardizes the launch of the
product (Sobek et al. 1999; Wheelwright and Clark 1994).
Difficulties in attaining early and pro-active manufacturing involvement was one of the main
issues identified at the case companies. The primary reasons for this were that software-intensive
systems are intangible and are often described in written requirements specifications implying a
high abstraction level to be interpreted and understood. In addition, the manufacturing processes
and tools that are affected by in-vehicle software are often recognized as complex, since they
incorporate both vehicle communication technologies and interaction with other IT systems that
integrate PD and Man (such as product data management systems and factory systems). Being able
to understand and foresee the impact of software-intensive systems on the manufacturing processes
in early phases is therefore often highly dependent on deep knowledge and a great deal of
experience among both manufacturing and design engineers. For example, designing the audio
systems in a vehicle without foreseeing required failure diagnostics for the loudspeakers and
buttons, can make it difficult and costly to secure the quality of the system in the manufacturing
processes (for example, manual intervention is needed). Integrated problem-solving (Wheelwright
and Clark 1994) and Set Based Concurrent Engineering (SBCE) (Sobek et al. 1999) are lean
practices that elevate active cross-departmental development work, but they do not consider
specific contextual needs. Thus, there is a need for future research giving a better understanding of
early and active communication and balancing of demands on products and manufacturing
operations in large-scale development of software-intensive systems, on which specific methods
and practices can be developed and effectively applied, and suggested as add-ons to this LPD
principle.

Principle 3—Eliminate Waste and Create Flow: Identifying and eliminating sources of waste in
a value stream by using value stream mapping (VSM) (Womack and Jones 2003) are central in
Principle 3. When using VSM in PD, the available and required resources from a holistic view of
the PD system are mapped out, enabling increased understanding of waste and the sources of waste
in a PD value stream (Morgan and Liker 2006; Poppendieck and Poppendieck 2003). Based on the
seven wastes of manufacturing (Ohno 1988), Morgan and Liker (2006) provide corresponding
sources of waste in PD, and Poppendieck and Poppendieck (2003) specifically interpret them to
suit the SE domain.
For a considerable amount (25, equaling 66 percent) of the total 38 studies, we could identify a
strong relationship to Principle 3. Of these, eleven studies addressed large-scale software
development where six of them dealt with elimination of waste. Table 7 gives an overview of what
type of waste each of these six studies focused on, and gives a description of each waste in PD and
examples related to SE.

 23

Table 7
Seven wastes
Seven wastes Description Studies on large-

scale
1. Overproduction—
producing more or earlier
than the next process needs.

* When completing design tasks before the next development step in the PD value
stream flow, there is a need to process the tasks (e.g., finish coding before testing)
* Carrying out unnecessary activities that are not required for the next step or developing
extra features without customer value (e.g., developing software for functionality that
does not provide value to the customer).

S28

2. Waiting—waiting for
materials, information, or
decisions.

Development engineers often have to wait for reviews, decisions, permissions or
information before they can perform dedicated key activities in the PD process (e.g.,
handshaking and sign-offs of software requirements specifications).

S22, S28

3. Conveyance—moving
material or information
from place to place.

Making unnecessary transfers between activities such as exchange of information
between actors and diffusion of decisions throughout the development team leads to loss
of momentum, information and accountability in the PD process (e.g., many handovers
of written code and results of system integration or verification).

S28

4. Processing—doing
unnecessary processing on
tasks or an unnecessary
task.

Unnecessary or incorrect engineering, such as designing from scratch instead of using
carry-over or standardized components (e.g., refactoring of working code is omitted), or
developing of unique manufacturing processes to fit a specific system or vehicle
program instead of striving for standards and commonality.

S20, S22, S28

5. Inventory—a build-up of
material or information that
is not being used.

*Information waiting in queues to be processed by the next step where information gets
lost (e.g., designers cannot manage large batches of approved software requirements
specifications, creating a risk of omitting important information).
*Tasks that are partially done or transferred too late to where it is needed (e.g., code is
written, but not integrated in the system).

S3, S20, S25, S28

6. Motion—excess motion
or activity during task
execution.

*Development engineers may attend unnecessary meetings (e.g., redundant review
meetings for status reports on coding, system integration or test results).
*Unnecessary distances between program members (e.g., suppliers, designers and
manufacturing engineers, may create inefficient transfers of information or knowledge,
leading to inappropriate design decisions).

S20, S22, S23,
S28

7. Correction—fixing
problems.

*Any additional work for fixing problems that could have been prevented earlier in the
product development (e.g., late and expensive in-vehicle software changes due to
insufficient adaptation to manufacturing processes affected by the software or
occurrence of bugs). Thus, planned development activities, such as Poka-yoke (e.g.,
checklists, standards, and detailed test plans), for catching and preventing errors in
product development, cannot be directly referred to this type of waste.

S20, S28

Table 7 shows that four studies can be attributed to the waste caused by inventories. An underlying
reason for this may be the well-known just-in-time approach adopted in manufacturing aiming to
eliminate inventories, and that research on general PD recognizes that inventory influences other
types of waste negatively (Morgan and Liker 2006). For example, Middleton et al. (S20) claim that
minimizing inventories of unverified code and large volumes of requirements fosters the
development teams to uncover hidden defects earlier in the PD flow, which reduces rework in late
phases. Peterson and Wohlin (S25) claim that inventories also increase waiting times, the number
of developed extra features without customer value, and uncompleted tasks. For measuring
different types of inventories in software development, they present the SPI-LEAM method. SPI-
LEAM was applied to a real case, where the inventory of requirements were measured on the
overall process life-cycle. This led to a number of suggested improvements. For example, to deal
with overload situations in the development team, the team pulled prioritized requirements from a
buffer instead of pushing requirements into development.
The only study that could be related to all types of waste was Sekimura and Maruyama (S28), who
introduced and applied TPS to large-scale development of business application software. Instead of
focusing on one type of waste, they emphasize the importance of identifying and eliminating all
seven types of waste. For example, work allotments were changed for reducing waste in
processing, recurrence of defects were prevented by analyzing and taking corrective actions based
on software defect reports, and inventories were eliminated in terms of answer rates within 24
hours.

 24

Although VSM is a central practice in lean, only two studies report on using VSM in developing
software-intensive systems. In a case study by Mujtuba et al. (S22), VSM was applied to a
software product customization process. On the basis of a static validation they conclude that VSM
was useful and its benefits can be conveyed to more general SPI efforts. They identified waste
related to waiting (e.g., delays for customer sign-offs and system integration), processes (e.g., extra
processes for design) and motion (e.g., motion of requirements). Similarly, Pernell-Klabo (S23)
experienced that VSM is a helpful practice when introducing and transitioning towards agile
software development where motion was the most prevalent type of waste identified, followed by
processing and overproduction.
In addition to eliminating waste, lean organizations endeavor to establish a flow (i.e. regular pace)
of material and/or information. In software development, software concepts of object-oriented
programming and modular design stress the need to decompose the work packages into the
smallest units possible, because there is a complexity explosion and the chances of having a defect
and the cost of finding it goes up exponentially with the size of the build (Hoffman and Weiss
2001).
Accordingly, to establish and maintain flow, most of the studies suggest incremental development
where previously large project tasks are divided into smaller chunks (Aoyama (S3); Middleton
(S20); Sutton et al. (S32); Vodde (S37)). For example, Aoyama (S3) introduces and applies a
model for managing development of large-scale software systems in a concurrent manner, named
concurrent development system (CDS). CDS is the ancestor to the agile software process model
(ASP) (Aoyama 1997). The tasks were divided into so-called minor and major enhancements
depending on the possibilities to decouple the parts of the systems developed. To facilitate release
planning and enable a smooth development flow, the development time of major enhancements
was set to a multiple of minor enhancement. In this study, the major enhancements were six
months and the minor three months. Furthermore, the development process was divided into an
upper sub-process including requirements analysis, design, and implementation, and a lower sub-
process involving integration and system tests. Each sub-process had to be completed within a
fixed cycle time (here three months) with a fixed number of developers, and iterated over multiple
releases (cf. sprints in Scrum (Schwaber and Beedle 2001)). Applying the CDS resulted in a
shorter development cycle time (from one year to three months), and reduced fluctuations in
development sizes and build-up of inventories, improving the utilization ratio of workload.
Similarly, Middleton et al. (S20) balance the workload by breaking down projects into manageable
chunks of work, termed ‘kits’ (batches of requirements are decomposed into ‘stories’), which in
turn enable the setting of a cycle time. Furthermore, they observed that staff with multiple skills
has a positive impact on reducing fluctuations and in workload.
Overall, when creating flow and eliminating waste in large scale software development, there is
little research and evidence of the benefits and limitations of lean practices or tools. For example,
different types of waste seem to occur depending on the degree of exploration and focus in the
research. This indicates that solely focusing on one certain type of waste, may imply a risk of
factors outside this waste area being left out of the analysis in the efforts of eliminating waste. For
example, despite that it was well motivated to develop a method for measuring inventories in
Peterson and Wohlin (S25), it can be questioned whether inventories is the most influencing and
prevalent type of waste in a software development flow.
An observation in the case study was that the types of waste in the PD and Man interface are
multifaceted. For example, most software-related issues (e.g., inadequate vehicle diagnostics
implementation) come to light in the pre-production evaluation phase peaking somewhere in the

 25

middle of this stage. Consequently, this causes unplanned and costly design loop backs of both in-
vehicle software and affected manufacturing processes in the final part of the project.
Another example is managing the large interface between PD and Man usually also entails a
comprehensive meeting structure causing unnecessary meetings and overwhelming inter-
departmental transferring of information. In addition, the development of increasingly software-
intensive automotive systems creates more complex interdependencies between previously
decoupled and modular systems in vehicles (e.g., the CLS system as described in Section 2.1).
This makes it even more important to ensure cross departmental information transfer whilst not
inflating the meeting structure and efforts to deliver information. It is, however, rarely an option to
dedicate more resources for integrating these systems and the manufacturing processes in highly
competitive businesses, such as automotives. This will probably also diminishing the true needs of
interaction and thereby hinder the possibilities to uncover and reduce waste.

Principle 4—Utilize a Rigorous Standardization: Standardization is important as it reduces
variation, which enables increased responsiveness to change and flexibility and predictable
outcome. Morgan and Liker (2006) classify standardization into three categories, design, process,
and engineering skill set. However, reducing variability in PD is complicated as there are good and
bad variability (Reinertsen 2009). Good variability adds value and should be exploited while bad
variability (e.g., sloppiness and repeating mistakes) should be eliminated, but it is often difficult to
distinguish between them. Consequently, to accomplish the required response in PD to rapid
changes without reducing productivity and system quality, it is necessary to pursue standardization
of processes and design and to achieve process discipline among employees without suppressing
variability that increases an organization's success.
One of the future key challenges in SE is that development of software must be responsive to rapid
changes without compromising system quality (Sommerville 2007). However, only one of the
large-scale studies is concerned with standardization in lean development. For spreading lean
throughout the aerospace industry, Sutton (S32) reports on the experiences from using the LAI
program (Murman 2004), which was initiated by the U. S. Air Force in 1992. Responsiveness to
change is one of the meta-principles in LAI, emphasizing standardization through domain
engineering. This implies that requirements and architecture are structured along domain lines,
which provide a standardized and stable basis for variants. The LAI practices and principles were
applied to a software project, and overall, Sutton concluded that it was a success as it reduced cost
and risk. However, the impact of standardization is not explicitly discussed.
Reflecting on this principle in relation to our case, the software-intensive systems entail an
increase of variants being dealt with in the automotive industry. A premium car typically has about
80 electronic fittings that interact on several networks in the car, and can be ordered depending on,
for example, the country etc.(Broy et al. 2007). Simple yes or no decisions for each function yield
a possible maximum of roughly 280 variants to be ordered and produced for a car. In addition,
differences between production units in terms of available processes, assembly sequences, and
tools lead to excessive work for adapting the variabilities in design and manufacturing. For
example, adapting variants of networks (e.g., CAN and FlexRay), and diagnostics and software
download concepts (e.g., ISO 14229-1 2006) in the vehicles, and different tools for communicating
with the vehicles in manufacturing, increase the complexity and effort of managing software-
intensive systems in production. Although partnerships such as Automotive Open System
Architecture (Autosar 2009) aim to standardize software-intensive systems in the automotive
domain, the SMS presented in this paper shows that there is a lack of research providing better

 26

understanding and advice, and helping the standardization of design, processes and competences
across engineering disciplines and departments in the context of large-scale software-intensive
systems development.

Principle 7—Develop Towering Technical Competence: This concerns the importance of
having comprehensive recruitment, structured and sophisticated training, and mentoring programs
in order to obtain necessary skills needed to perform ones work, but also sufficient understanding
of others work.
Two of the studies addressing large-scale software development are concerned with Principle 7.
When introducing and changing from traditional to lean approaches in software development,
Pernell-Klabo (S23) experienced the importance of informing and training the staff. After the use
of training workshops and pilot projects, the staff became more motivated for change, and positive
results were achieved. For example, 40 percent of the lead time was reduced. Ippolito and Murman
(S11) found that the survey respondents believed that on-the-job training (OJT) is the most
widespread method and the only effective training method while formal training is less effective.
This view is emphasized in lean companies, which are aware of the necessity of OJT as new
engineers can develop their own working procedures if they are thrown into projects without
proper guidance, leading to increased variability in the product development system (Morgan and
Liker 2006).
This principle relates to one issue found in the case study showing that there was a lack of mutual
understanding of the work done by design and manufacturing engineers. For example, the
knowledge and experience of manufacturing operations affected by in-vehicle software among
design engineers, and the level of SE competence within manufacturing. In related earlier work,
low understanding of each other's work has been found as a major cause for gaps in software
requirements communication (Bjarnarsson et al. 2009), but also a critical factor in the PD and Man
interface for a successful production start (Lakemond et al. 2007; Vandevelde andVan Dierdonk
2003). This can be improved by encouraging the staff to experience different functions (e.g., job
rotation), and comprehensive and thorough recruitment of, for example, manufacturing engineers
in order to give them a better capability to understand and technically challenge design engineers
(Carlsson 1991; Morgan and Liker 2006; Nihtilä 1999).
Developing necessary skills and mutual understanding of each other's work across departments in
large-scale software development seems to be important, but the results of the SMS presented here
shows that research addressing this LPD principle is scarce.

Principle 9—Build in learning and Continuous Improvement: Establishing, maintaining, and
capitalizing on continuous improvement are dependent on organizations' capability of building
learning organizations where development, diffusion, and maintenance of organizational know-
how, are natural tasks in daily work (Takeuchi and Nonaka 1986). Similarly, for SPI there are
software process maturity models such as the capability maturity model integration (CMMI)
(CMMI 2010) and Automotive SPICE (Automotive SIG. 2010). However, these are high level
frameworks that do not detail how the actual implementation should look like in the actual
industrial setting as they adopt one-size-fits-all view across companies and projects (Fayad and
Laitnen 1997; Kuilboer and Ashrafi 2000; Zahran 1998).
Four of the studies on large-scale software development pay attention to Principle 9. To
accomplish continuous improvements across a company, Rudolf and Paulish (S27) established a
cross-business unit community. The community has regular meetings where general improvement

 27

frameworks and practices are shared and refined, so they can be adopted and standardized across
the company. Furthermore, the improvements must be based on an understanding of the actual
situation, which is best obtained by engaging people close to the identified problems and actually
doing the work. Similarly, Aoyama (S3) established a central project SE team (PSET) coordinating
feedback from developers and supporting management for achieving continuous improvement of
the development processes. In addition, Kettunen (S13) suggests that lean-related process
improvements do not only involve learning from incremental SPI, but also learning from more
radical shifts of the business processes, which can be managed by organizational development
programs.
In the case study we found that there are particular difficulties in specifying manufacturing
requirements to be understandable and convertible to measurable parameters for developers of
software-intensive systems. In line with Almefelt et al. (2006), the main reason for this was that
they were often experienced-based rather than being specifications of purposes and goals, and that
they describe expected results (i.e. tacit knowledge). For example, the designs of software-
intensive systems are expected to allow effective configuration and quality assurance of the
systems in manufacturing. In large-scale software projects, Kraut and Streeter (1995) stress the
value of combining both formal communication (e.g., written and transferred specifications and
structured meetings) and informal communication (e.g., unscheduled face-to-face meetings and e-
mail or phone conversations) across organizational boundaries. Furthermore, it is well-known that
much information in software development is tacit and never written down (1995). Consequently,
only focusing on improving the quality of the Man and PD specifications of explicit know-how
and the formal processes for transferring them, is not enough in order to effectively accomplish
continuous improvement.
Even though the LPD principle of continuous improvement has been widely promoted and adopted
in industry, there are very few studies on how organizations developing large-scale software
manage to accomplish this, and evidence of the benefits and limitations in such organizations is
unclear.

Principle 11—Adapt Technology to Fit People and Processes: This principle concerns the
necessity of customizing tools and technology to achieve LPD. For this, five sub-principles are
given in LPDS. They are presented in Table 8.

Table 8
Sub-principles of Principle 11.
Sub-principle Description
1. Technologies must be seamlessly integrated. Introducing and implementing new technologies must allow a smooth integration of them

and existing systems and technologies.
2. Technologies should support the process —
not drive it.

New technologies must be adopted to established processes and not vice versa.

3. Technologies should enhance people—not
replace them.

Instead of motivating investments in new tools and technology by downsizing, it is more
important to value and use the personnel's technical experience, skills, and expertise.

4. Specific solution oriented—not a silver bullet. There are no magic tools or methods that can replace hard work by skilled personnel.
5. The right size—not king size . Technologies providing the best performance are rarely the ones that are most effective

for improving PD.

Staron et al. (S31) was the only study on large-scale software development that had a strong
relationship to Principle 11. They conducted an action research project in close cooperation with
industry, where prediction methods for forecasting a defect backlog in large streamline software
development projects were developed and evaluated. When assessing different prediction models,
an important finding in their study was that too complex methods are very vulnerable to changes in

 28

the ways of working at companies, which means that they are reluctant to adopt them. This is in
line with Weber and Weisbrod (2003), who report on challenges and experiences of RE in
development of software-intensive automotives systems. They particularly emphasize the necessity
of developing adaptable tools and methods that support engineers in their daily tasks, since there is
otherwise a significant risk of users rejecting the tools. For example, they experienced that
introduced tools and methods for consolidating RE and model-based development (MBD) were
often discarded after a while after being used in projects.
In the case study, both case companies expressed a need of MBD tools for enabling earlier and
more frequent prototyping loops of automotive software-intensive systems, which can support
early verification of manufacturing operations affected by these systems. Like today's virtual build
events (VBE) for securing the assembly of mechanical parts, the goal is to enable the export of
digital models of software-intensive automotive systems from the systems used for MBD to the
manufacturing systems, or vice versa.
When developing such MBD technologies, the five sub-principles of Principle 11 should be
considered. For example, manufacturing engineers should be involved in the further development
of modeling tools and working procedures, and it is preferred that this development is an evolving
process rather than a big bang. In effect, it may start with an elaboration of work procedures
comprising analyses based on observations of computerized visualizations of the software-
intensive systems on an appropriate abstraction level (e.g., the functional level), and by using
cross-functional techniques such as FMEA together with checklists and requirements containing
manufacturing prerequisites. In the end, the tools and methods allow fully automized VBEs, where
the complete vehicle can be modeled and validated in virtual representations of the manufacturing
processes.
However, available know-how and support in LPD and earlier work for actually using the sub-
principles when adopting new tools and technologies for large scale software development, seems
to be very limited.

Principle 12—Align the Organization Through Simple Visual Communication: When
reducing lead-times in PD by replacing traditional sequential over-the-wall processes with
concurrent development practices, studies on PD reveal that communication becomes one of the
most critical factors in PD (e.g., (Clark and Fujimoto 1991). In particular, communication and
coordination of workgroups that develop interdependent pieces of large software system, is crucial
for a successful outcome of the development effort (Kraut and Streeter 1996).
Overall, many introductions of LPD typically start with visualization (planning, action and status
boards), and one reason for this may be the desire of management to strengthen and maintain their
control when LPD is deployed (Holmdal 2010). Thus, it is a little surprising that a majority of the
studies do not map to this principle.
Five studies on large-scale software development are mapped to Principle 12. Two of them report
on visualizing the state of the software project, using boards divided into different areas with the
aim to uncover project abnormalities (e.g., time and defects). Middleton et al. (S20) focus on
continuously monitoring the velocity of the team, and they retrospectively improve the accuracy of
estimated time and resources by posting the number of units of work completed over time
compared to a target. Sekimura and Maruyama (S28) visualized project management information
on an electronic board as the development was performed at several locations and in parallel. For
ensuring that correct information were used, the personnel had to follow three rules (1) daily
submission of work time, (2) save information in specified folders on shared server, and (3)

 29

correctly describe information on prescribed worksheets. However, Ippolito and Murman (S11)
found that the methods for measuring and indicating project properties are often deficient. For
example, their results showed that the end-to-end cycle time is not well understood by the process
leadership leading to difficulties in making product cost and performance design trades, with
respect to total time.
Staron et al. (S31) and Peterson and Wohlin (S25) (SPI-LEAM) were the only studies suggesting
methods for measuring and presenting project metrics. Staron et al. (S31) present a metric that
predicts the number of defects in large-scale software projects using a mix of lean and agile
principles that will be open during a particular week. The metric is based on moving average
combined with the current level of a defect backlog. For visualizing and communicating the
forecast of a defect trend to stakeholders, they simplified the metric and packeted it as an indicator
(an arrow) into an MS Vista Gadget. In SPI-LEAM, the inventories were measured as the number
of requirements and displayed in cumulative flow diagrams visualizing undesired behavior of the
development (e.g., bottlenecks). The flexibility of SPI-LEAM allows it to be used for different
types of development artifacts that can be selected to fit specific organizational needs.
As mentioned above, one of the issues found in the case study concerned problems in managing
specifications between PD and Man, and in particular, requirements. For improving this, SPI-
LEAM may be used to measure the number of requirements that have been transferred from PD to
Man, or vice versa, and are waiting to be understood and handshaked by the counterpart. However,
the inventory measurements only indicate the level of requirements, but the produced level of
quality of the requirements is not shown. For example, to what extent are the manufacturing
requirements understood by design engineers? Therefore, it is also necessary to use methods that
aim to ensure that the development processes generate the right quality of the requirements. One
example is Fricker et al.(2010), who report on a method for improving software requirements
negotiation.

4.6 Validity threats
An overall challenge in this SMS was to define the scope, since the investigated area is
multidisciplinary and spans the fields of, for example, SE, systems and manufacturing engineering,
and management. Searches across disciplines are difficult, as different terminology for the same
notion is often used and must be dealt with when defining the search criteria (e.g., electronic and
embedded systems in systems engineering and software development in SE). Since LPD has
started to be widely adopted in many industries developing complex software systems in large
organizations, and communication and coordination across departments is critical for such
development (automotive and aerospace), we have chosen focus on lean principles and practices.
Although the investigation takes a broad view covering different engineering disciplines and
industrial sectors developing software, and was not restricted to empirical research, this is a
limitation of our results.
One of the major threats to this study is selection bias. As a protection against this threat, we used
three main strategies. First, to balance the comprehensiveness and precision of the search string,
we performed several trial searches in the Scopus database, where we tested alternative keywords
and combinations of them, see Section 3.2. Furthermore, to capture most of the relevant studies,
the publication year was set to be between 1990 and 2010, since the lean paradigm was first
introduced by Womack et al. (1990) in 1990. Second, we collected publications from different
sources including the ACM Digital Library, IEEE Xplore, Inspec, ISI Web of Science, and Scopus.
To ensure we located all studies published in 2010, the final search was performed in February

 30

2011. Third, to guard against built-in bias of the selection based on screening of title, keywords
and abstract, the criteria for inclusion and the screening process was elaborated by three
researchers. The screening was piloted twice on randomly selected papers, and the consistency was
evaluated by calculating the Fleiss Kappa value (Fleiss 1971). The first pilot involved 100 papers
and resulted in a too low inter-rater agreement (0.5). Therefore, the inclusion criteria and the
screening process were refactored (e.g., better clarifications of the inclusion criteria) and a second
pilot was performed. The inter-rater agreement increased to 0.76, which was deemed acceptable
based on the recommendations provided in Landis and Koch (1977).
However, basing the inclusion of publications on reading the abstract is a limitation of this study,
since the abstract may not reflect the content of the paper and relevant papers can have been
missed. In order to mitigate this threat, the inclusion criteria can be tested on a number of papers
that are randomly selected for full text reading (e.g., ten percent of the papers). Alternatively, the
screening could have been performed in parallel by several researchers, enabling triangulation of
the results. However, due to the large number of publication that were left for the screening
(10,230), it was deemed not feasible to perform any of these alternatives with the available
resources.
Data extraction bias is another major threat to this study. Usually, the studies are possible to
classify into multiple classes (Glass et al. 2002), which increases the complexity of classifying
them, and the difficulties of excluding variations owing to random dispersion of personal
judgments. The main strategy for reducing this threat was to involve several researchers in the data
extraction. To enhance the quality of the data extraction form, it was jointly developed and refined
by the three researchers and piloted twice to assess and augment the consistency of the extracted
data as described in Section 3.4. Since many papers lacked sufficient information for unambiguous
classification of them, it would have been preferable to perform parallel data extraction and cross-
checking of the results between the researchers for all of the 38 papers on which data extraction
was applied. However, a lack of resources made this impossible. Therefore, the researcher who
extracted data for the remaining papers was to denote a short rationale explaining why the paper
should be in a certain category. This was then used when the involved researchers debriefed and
discussed uncertain classifications.
The possibility to generalize the findings in relation to the case used here are limited as the case
study only involves two companies in the automotive domain. Using the results of similar case
studies at other automotive companies may result in different findings, as they most likely face
different needs. However, between 1999 and 2010, VCC played a leading role in the development
of software-intensive systems at Ford Motor Company, which is one of the world's major car
manufacturers, and VTC is one of the world's largest producers of heavy vehicles. Furthermore,
both companies are organized as matrix organizations and their development of software-intensive
systems is more or less guided by the V-model (ABG 1997) process that follows the overall
vehicle development system, with its milestones (gates) for decision-making in a vehicle program
(see also: Pernstal et al. 2012). This industrial setting is commonly used among automakers (Broy
et al. 2007; Charfi and Selami 2004). Thus, we believe that our characterization and evaluation of
the state of the art in these industrial settings are relevant for several companies, at least
automotive companies.
The reliability threats are also a major concern in SMSs. To obtain reliability in this study, three
researchers were involved in the investigation. They continuously documented and updated the
research procedures in a review protocol (e.g., inclusion or exclusion procedures and piloting) as
well as specifications (e.g., inclusion or exclusion criteria and data extraction forms) during the

 31

study. The research methodology is presented and explained in Section 3 and the data extraction
form is shown in Appendix B.
To summarize, it is possible we may have missed some relevant papers since the area of interest is
multidisciplinary, where different terminologies and data sources are used. However, we have
included as many studies as possible, and although we believe that the findings of this
investigation can be slightly different in similar studies, it is unlikely that the overall findings will
be different.

5 Conclusions
This paper presents an SMS that explores and examines the state of the art based on lean principles
and practices, as used in large-scale development of software-intensive systems. The scope of this
SMS was primarily justified by an expressed need from two case companies to support them in
decisions on an SPI projectfocusing on the inter-departmental interaction between PD and Man.
In addition, the case companies, but also in many other companies in which software development
is becoming an increasingly substantial part of PD, are introducing LPD, and they develop their
products in multidisciplinary large-scale settings where communication and coordination within
and across departments is critical. Thus, the focus of the analysis of the results was on the
relationships between the reported state of the art and the broadly well-established lean principles
inherent to LPD. Each principle was analyzed by using extracted data from the selected studies and
data based on previous observations from the assessment of the case companies. This was a way to
gauge the potential value of the results for the case companies, but also to identify the gaps in
research on applying lean approaches in large-scale software-intensive systems development.
Furthermore, to provide researchers with an overview of the status of the area and any research
gaps, the selected studies were classified into a number of representative facets (e.g., research type
and topic in SE) and visually summarized. To assist practitioners when seeking to adopt new
“best” lean practices, and give researchers information about the quality of the studies reported, the
degree of relevance and rigor for each study was also assessed and gauged. In total, data were
extracted from 38 studies and the major findings were:

 Only 16 of the 38 studies (42 percent) clearly dealt with large-scale software development
(RQ1). 11 out of these 16 studies reported on lean and five on hybrids building on
combinations of lean and agile principles. Since it is recommended in research to combine
traditional and agile methods in large-scale software development, it was unexpected that
we could not find publications reporting on combinations of lean and plan-driven
development (e.g., waterfall, RUP, and V-model). A majority of all the studies (24 out of
38) reported on the use of lean in general terms without specifying the particular practice
adopted. Value stream mapping (two studies) and visual management (one study) were the
only specific lean practices reported in the studies on large-scale software development.

 Classifying the studies into research types (RQ2.1) revealed a strong need for performing
more studies on software development in real industrial cases where data for adopting lean
principles and practices are systematically collected, analyzed, and evaluated. Most of the
studies could be classified as experience papers (45 percent) and 10 of these studies dealt
with large-scale software projects. Only 24 percent of all the studies could be classified as
empirical and among these only four studies addressed large-scale development.

 The quality assessment of the studies (RQ2.2 and RQ2.3) showed that it is difficult for
practitioners to judge the feasibility of the state of the art reported, and the possibilities to

 32

replicate the studies and assess the validity of their results are limited. A majority (65
percent) of the studies report on work carried out in industries yielding a relatively high
relevance. Of these, 14 studies addressed large-scale software development. However,
about 75 percent of all the studies (28 out of 38) and nine studies on large-scale software
development have relatively low values of rigor because of inadequate or missing
descriptions of the study design and context, and evaluations of the validity.

 Classifying the studies into SE topics (RQ2.4) showed that there is little practical guidance
for resolving problems identified in a specific KA (e.g., RE, testing, and coding), indicating
that the reviewed area of interest is immature. Most of the studies primarily provide generic
state of the art, since more than half of the studies could be classified into the broad KAs of
engineering management (31 percent) and engineering process (24 percent). An almost
identical pattern could also be seen for the studies on large scale development and none of
these studies is classified into the KAs of configuration management, maintenance, design,
and quality.

 The analysis of the relationships between LPD principles and the reported state of the art
(RQ3) revealed that most of the studies focused on reducing waste and creating flow in the
PD process (Principle 3). This was followed by visual management (Principle 12) and
defining customer value (Principle 1). Furthermore, none of the studies on large-scale
development had a strong relationship to the role of product manager (Principle 5), supplier
integration (Principle 8), building a culture for continuous improvement (Principle 10), or
tools for standardization and organizational learning (Principle 13).

 The deeper analysis showed that there is an overall lack of research that investigates the
exploitation of LPD principles in the context of large-scale software development. The
main contributions of the studies focused on identifying and eliminating waste through, for
example, uncovering and measuring inventories of software development artifacts (e.g.,
requirements), and VSM. Establishing and maintaining flow in the software development
process was also addressed by some studies, where incremental and concurrent
development was most frequently suggested.

 When performing literature reviews on research across scientific fields (here SE, systems
and manufacturing engineering, and management), the results indicate that it is difficult to
obtain desired precision while at the same time ensuring the coverage of the search. The
search in the selected databases resulted in a total amount of 10,230 papers, which were left
for subsequent steps in the inclusion process. Of these, only 38 papers were selected for the
subsequent data extraction. The main reasons are that different terminology is commonly
used for the same notion, or terms are too general without the ability to filter out irrelevant
studies.

We conclude that the current state of the art in research, offering specific advice to industry
professionals pursuing improvements in large-scale software development, by applying lean
principles and practices, is scarce. Furthermore, the implication for future research is that there is a
strong need for more rigorous studies on the benefits of LPD. This includes a need to explicitly
map what must be added to LPD and how the base principles must be changed and extended in
order to support lean-oriented industrial sectors where the share of software in the products is
rapidly growing.

 33

Appendix A. List of included studies
[S1] A.L. Alwardt, N. Mikeska, R.J. Pandorf, P.R. Tarpley, A lean approach to designing for software testability.
Proceedings of IEEE AUTOTESTCON, pp. 178-183, 2009.
[S2] S.W. Ambler, Agile software development at scale, Lecture Notes in Computer Science
vol. 5082, Springer, 2008, pp. 1-12.
[S3] M. Aoyama, Managing the concurrent development of large-scale software systems, International Journal of
Technology Management 14(1997) 739-765.
[S4] R. Benefield; Agile Deployment: Lean Service Management and Deployment Strategies for the SaaS
Enterprise, Proceeding IEEE 42nd Hawaii International Conference on System Sciences, HICSS '09, pp.1-5,
2009.
[S5] M. Dall'Agnol, A. Janes, G. Succi, E. Zaninotto, Lean managementA metaphor for extreme
programming?, Lecture Notes in Computer Science, vol. 2675, Springer, 2003, pp. 26-32.
[S6] E. Danovaro, A. Janes, G. Succi, Jidoka in software development, Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications, OOPSLA, pp. 827-830, 2008
[S7] V. Gruhn, C. Schäfer, No-frills software engineering for business information systems experience
Report, Proceedings of the eigth conference on New Trends in Software Methodologies, Tools and Techniques ,
SoMe_T 09, pp. 93-105, 2009
[S8] J. Heidenberg, I. Porres, Metrics functions for kanban guards, Proceedings 17th IEEE International
Conference and Workshops on the Engineering of Computer-Based Systems, ECBS, pp. 306-310, 2010.
[S9] M. Ikonen, Leadership in Kanban software development projects: A quasi-controlled experiment, Lecture
Notes in Business Information Processing, vol. 65, Springer, 2010, pp.85-98.
[S10] M. Ikonen, P. Kettunen, N. Oza, P. Abrahamsson, (2010). Exploring the sources of waste in Kanban
software development projects. Proceedings of the 36th IEEE EUROMICRO Conference on Software
Engineering and Advanced Applications, SEAA, pp. 376-381, 2010.
[S11] B. Ippolito, E. Murman, Improving the software upgrade value stream, Proceeding of the 43rd AIAA
Aerospace Sciences Meeting and ExhibitMeeting Papers, pp. 4791-4803, 2005.
[S12] A. Janes, G. Succi, To pull or not to pull. Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, OOPSLA, pp. 889-894, 2009.
[S13] P. Kettunen, (2010), A tentative framework for lean software enterprise research and development. Lecture
Notes in Business Information Processing, vol. 65, Springer, 2010, pp. 60-71.
[S14] F. Kinoshita, Practices of an agile team. Proceedings of the Agile Conference 2008, AGILE'08, IEEE, pp.
373-377, 2008.
[S15] F.J. Lacoste, Killing the gatekeeper: introducing a continuous integration system. Proceedings of the Agile
Conference 2009, AGILE'09, IEEE, pp. 387-392, 2009.
[S16] P. Linecar, D. Preston, Kaizen: a review of Japanese approaches to IT, Proceedings First
InternationalConference on Software Quality Management, pp. 903-909, 1993.
[S17] V. Mandic, M. Oivo, P. Rodríguez, P. Kuvaja, H. Kaikkonen, B. Turhan, What is flowing in lean software
development?, Lecture Notes in Business Information Processing, vol. 65, Springer, 2010, pp. 72-84.
[S18] M. Mehta, D. Anderson, D. Raffo, Providing value to customers in software development through
lean principles, Software Process Improvement and Practice, 13 (2008) 101-109.
[S19] P. Middleton, Lean software development: two case studies, Software Quality Journal 9 (2001) 241-252.
[S20] P. Middleton, P.S. Taylor, A. Flaxel, A. Cookson, Lean principles and techniques for improving the quality
and productivity of software development projects: A case study, International Journal of Productivity and Quality
Management 2 (2007) 387-403.
[S21] R. Morien, Agile management and the Toyota way for software project management, Proceedings of the 3rd
IEEE International Conference on Industrial Informatics, Perth, Australia, pp. 516-522, 2005.
[S22] S. Mujtaba, R. Feldt, K. Petersen, Waste and lead time reduction in a software product customization
process with value stream maps, Proceedings of the Australian Software Engineering Conference, ASWEC, pp.
139-148, 2010.
[S23] E. Parnell-Klabo, Introducing lean principles with Agile practices at a fortune 500 company, Proceedings of
the Agile Conference 2006, IEEE, pp. 232-239, 2006.
[S24] G.I.U.S, Perera, M.S.D Fernando, Enhanced agile software developmentHybrid paradigm with
LEAN practice, Proceedings of the 2nd International Conference on Industrial and Information Systems, ICIIS
2007, pp 239-243, 2007.

 34

[S25] K. Petersen, C. Wohlin, Software process improvement through the Lean Measurement (SPILEAM)
method, Journal of Systems and Software 83 (2010) 1275-1287.
[S26] D. Raffo, D.J. Anderson, R. Harmon, Integrating lean principles with value based software engineering,
Proceedings of Technology Management for Global Economic Growth 2010, PICMET'10, pp. 1-10, 2010.
[S27] H. Rudolf, F. Paulisch, (2010). Experience report: Product creation through lean approaches, Lecture Notes
in Business Information Processing, vol. 65, Springer, 2010, pp. 104-110.
[S28] T. Sekimura, T. Maruyama, Development of enterprise business application software by introducing Toyota
production system, Fujitsu Scientific and Technical Journal 42 (2006) 407-413.
[S29] C.M. Shinkle, C.M. (2009). Applying the Dreyfus model of skill acquisition to the adoption of kanban
systems at Software Engineering Professionals (SEP), Proceedings of the Agile Conference 2009, AGILE'09,
IEEE, pp. 186-191, 2009.
[S30] H. Smits, The impact of scaling on planning activities in an agile software development context,
Proceedings of the 40th Annual Hawaii International Conference on System Sciences, HICSS 2007, 2007.
[S31] M. Staron, W. Meding, B. Söderqvist, A method for forecasting defect backlog in large streamline software
development projects and its industrial evaluation, Information and Software Technology 52 (2010) 1069-1079.
[S32] J.M. Sutton, Lean software for the lean aircraft, Proceedings of theAIAA/IEEE Digital Avionics Systems,
pp. 49-54, 1996.
[S33] M. Taipale (2010). HuitaleA story of a Finnish lean startup, Lecture Notes in Business Information
Processing, vol. 65, Springer, 2010, pp. 111-114.
[S34] M. Thias, B. Cohen, The power of proximity: how colocated lean-agile teams deliver better project
outcomes with fewer resources, Cutter IT Journal, 22 (2009) 37-43.
[S35] A.C. Tonini, F.J.B. Laurindo, M.M. De Spinola, An application of six sigma with lean production practices
for identifying common causes of software process variability, Proceedings of the International Conference on
Management of Engineering and Technology, IEEE, pp. 2482-2490, 2007.
[S36] K. Vilkki, K. (2010). When agile is not enough, Lecture Notes in Business Information Processing, vol. 65,
Springer, 2010, pp 44-47.
[S37] B. Vodde, Measuring continuous integration capability, CrossTalk 21 (2008) 22-25.
[S38] E.R. Willeke, The Inkubook experience: A tale of five processes, Proceedings of the Agile Conference
2009, AGILE'09, IEEE, pp. 156-161, 2009.

 35

Appendix B. Data extraction form
Section A—General data

Section B—Type of Research (Wieringa et al. 2006). What type of research is conducted?

Section C─Relevance of State-Of-The-Art (Ivarsson and Gorschek 2010). What is the relevance of the study?

Section D—Rigor of State-Of-The-Art (Ivarsson and Gorschek 2010). What is the rigor of the study?

ID Attribute
A1 Title
A2 Author(s)
A3 Year
A4 Source
A5 Study purpose/objectives
A6 Domain (e.g., Automotive, Telecom, Web, etc.)
A7 Success/Failure?

A8 Does the paper repeat a work that has already been reviewed in another paper?

A9 Focus on lean or inter-departmental interaction?
A10 Focused method/practice
A11 Clearly and explicitly dealing with large scale software development?

A: General Data

ID Type
B1 Validation Research

B2 Evaluation Research

B3 Solution Proposal

B4 Philosophical
Papers

B5 Opinion Papers

B6 Experience Papers

A solution for a problem is proposed, the solution can be either novel or a significant extension of an existing technique.
The potential benefits and the applicability of the solution is shown by a small example or a good line of argumentation.
These papers sketch a new way of looking at existing things by structuring the field in form of a taxonomy or conceptual
framework.
These papers express the personal opinion of somebody whether a certain technique is good or bad, or how things should
been done. They do not rely on related work and research methodologies.
Experience papers explain on what and how something has been done in practice. It has to be the personal experience of
the author. Experience differs from evaluation as it is no explicit comparison between the treatments, for example, you
implement lean but you really dont no what the old process was.

Description
Techniques investigated are novel and have not yet been implemented in practice.Techniques used are for example
experiments, i.e., work done in the lab.
Techniques are implemented in practice and an evaluation of the technique is conducted. That means, it is shown how the
technique is implemented in practice (solution implementation) and what are the consequences of the implementation in
terms of benefits and drawbacks (implementation evaluation). This also includes to identify problems in industry.
Evaluation is formal i.e. old treatment is compared to new treatment (e.g. Lean practices). There must be some sort
collection of empirical data (e.g. interviews, questionnaires or measurement of dependent variables) that are compared
(e.g., defects throughput, leadtime etc.)

ID Aspect Contribute to relevance (1) Do not contribute to relevance (0)

C1 Subject The subjects used in the study are representative of the
intended users of the state-of-the-art.

The subjects used in the study are not representative of the
intended users of the state-of-the-art (e.g., students,
researchers or subjects not mentioned.

C2 Context The study is performed in a setting that is representative
of the intended setting.

The study is not performed in a setting that is representative of
the intended setting (e.g., laboratory).

C3 Scale
The scale of the state-of-the-art used in the study is of
realistic scale, i.e. industrial scale.

The scale of the state-of-the-art used in the study is of
unrealistic scale (e.g., down-scaled industrial, toy example).

C4 Research Method

The research method used is designated for
investigations of real world situation (e.g., action
research, case studies, surveys).

The research method used is not designated for investigations
of real world situation (e.g., conceptual analysis, laboratory
experiment).

C: Relevance of State-Of-The-Art (Ivarsson and Gorschek 2010). What is the relevance of the study?

ID Aspect Strong description (1) Medium description (0,5) Weak description (0)

D1

Context

The context is described to the degree where a reader
can understand and compare it to another context. This
involves descriptions of context facets and their related
elements, e.g., product (maturity, size), process
(activities, workflow), people (roles, competencies).

The context in which the study is
performed is briefly described to the
degree to which a reader can understand
and compare it to another context.

There is no description of
the context in which the
study was performed

D2
Study design

The study design is described to the degree to which a
reader can understand the design with regard to, for
example, treatment, variables, sampling etc.

The study is briefly described e.g. we
implemented tool x in department c for n
months and then department b etc.

There is no description of
the study design.

D3
Validity

The validity threats are described and discussed in detail
(e.g. external, internal, construct and construct validity,
and reliability) and measures to limit them are presented.

The validity of the study is mentioned but
not detailed.

There is no discussion of
the threats to the study's
validity

 36

Section E─SWEBOK Knowledge Areas (KA) (http://www.computer.org/portal/web/swebok/html/ch1). What KA(s) can the
contributions of the paper explicitly and clearly be mapped to?

ID KA
E1 Requirements

E2 Design

E3 Construction

E4 Testing

E5 Maintenance

E6 Configuration
management

E7 Engineering
management

E8 Engineering
process

E9 Engineering tools
and methods

E10 Quality

E: SWEBOK Knowledge Areas (KA) (http://www.computer.org/portal/web/swebok/html/ch1)
What KA(s) can the contributions of the paper explicitly and clearly be mapped to?

Description

Testing is an activity performed for evaluating product quality, and for improving it, by identifying defects and problems. Software testing consists of the dynamic
verification.

Configuration management (CM) is the discipline of identifying the configuration of a system, e.g. specific versions of hardware, firmware, or software items combined
according to specific build and at distinct points in time for the purpose of systematically controlling changes to the configuration, and maintaining the integrity and
traceability of the configuration throughout the system life cycle.

Software Engineering Management can be defined as the application of management activities—planning, coordinating, measuring, monitoring, controlling, and
reporting—to ensure that the development and maintenance of software is systematic, disciplined, and quantified (IEEE610.12-90). Examples: organizational policies
and standards provide the framework in which software engineering is undertaken, and the notion of project management involving project integration management,
project scope management, project time management, project cost management, project quality management, project human resource management, and project
communications management.The software engineering process is concerned with the definition, implementation, assessment, measurement, management, change, and improvement of the
software life cycle processes themselves. Measurement should be in KA Engineering management unless it is measurement of the process cause then it goes into KA
Engineering Process.
This KA includes specific methods and tools whithin any other KA . When the focus is on the tool or method, rather than on the KA that the tool/method helps in/with, it
belongs in this KA.

Software quality in this KA cover static techniques, those which do not require the execution of the software being evaluated (e.g., inspection), while dynamic
techniques are covered in the Software Testing KA.

The Software Requirements (KA) is concerned with the elicitation, analysis, specification, and validation of software requirements.

Software design is defined in [IEEE610.12-90] as both "the process of defining the architecture, components, interfaces, and other characteristics of a system or
component" and "the result of [that] process". Viewed as a process, software design is the software engineering life cycle activity in which software requirements are
analyzed in order to produce a description of the software's internal structure that will serve as the basis for its construction. More precisely, a software design (the
result) must describe the software architecture - that is, how software is decomposed and organized into components - and the interfaces between those components.
It must also describe the components at a level of detail that enable their construction.

The term software construction refers to the detailed creation of working, meaningful software through a combination of coding, verification, unit testing, integration
testing, and debugging.

Software maintenance is defined as the totality of activities required to provide cost-effective support to software. Activities are performed during the pre-delivery stage,
as well as during the post-delivery stage. Pre-delivery activities include planning for post-delivery operations, for maintainability, and for logistics determination for
transition activities. Post-delivery activities include software modification, training, and operating or interfacing to a help desk.

http://www.computer.org/portal/web/swebok/html/ch1

 37

Section F—Principles in Lean Product Development (LPD) (Morgan and Liker 2006). What relationships are there
between the LPD-principle(s) and the contributions of the paper?

Strong relationship (++) Weak relationship (+) No relationship (0)
There is a clear and explicit
relationship between the
contributions of the paper
and the principle.

It is possible to deduce a
relationship between the
contributions of the paper and
the principle but it is not clear
and explicit.

There is no relationship
between the conributions of
the paper and the principle.

F1 Establish customer-
defined value to
separate value –added
activity from waste.

F2 Front-Load the Product
Development Process
while there is maximum
design space to explore
alternative thoroughly.

F3 Create a leveled
Product Development
Process flow

F4 Utilize rigorous
standardization to
reduce variation, and
create flexibility and
predictable outcomes.

F5 Develop a chief
engineer (CE) system to
integrate development
from start to finish.

F6 Organize to balance
functional expertise and
cross-functional
integration.

F7 Develop towering
technical competence in
all engineers

F8 Fully integrate suppliers
into the Product
Development System.

F9 Build in learning and
continuous
improvement.

F10 Build a culture to
support excellence and
relentless improvement.

F11 Adapt technology to fit
your people and
processes.

F12 Align your organization
through simple visual
communication.

F13 Use powerful tools for
standardization and
organizational learning.

Deals with the organization's capability of efficiently coordinating complex communication (e.g.,
requirements, test results, project status reportsmanufacturing constraints etc..) between teams and
across functions in PD.

To achieve continuous improvement (kaizen) of products/processes, it is important to recognize and
encourage learning and understanding of technologies and processes where both tacit and explicit
knowledge are developed, diffused and maintained in the organization. For example, a cognitive
learning approach is emphasized where problems are viewed as opportunities and it is essential to
bring the problems to the surface and solve them as early as possible.

Culture embraces a fairly stable set of taken-for-granted assumptions, shared beliefs, meanings, and
values in an organization that govern the members' operations and enables the organization to rely less
on formal lean control systems. Encouraging a mindset among the employees based on customers
come always first and there is always more to learn, understand and improve are examples of building
a lean culture within an organization.

To create a lean PD process, it is important to establish a customer defined value as a first step. Once
these values have been identified, diffused and understood throughout the whole PD-organization it is
possible eliminate waste.

Front loading the product development process involves solving problems at root cause level in early
project phases aiming to eliminate late engineering changes like "quick fixes" and patches that rarely
result in increased product or process performance. This is achieved through concurent and
multidisciplinary approaches such as Set Based Concurrent Engineering (SBCE).

Leveling out the PD flow involves elimination of waste (everything that does not contribute to the value
for the customer) in the product development flow. The total PD value stream is examined aiming to
eliminate non value adding activities that occur between development steps (e.g. unnecessary
handovers of documents and reinvention instead of standardization of components ("not invented
here").

Creating efficient PD organizations by combining the benefits of product and functional focused
structures in a matrix organization allowing simultaneous attention to functional and program demands.
This matrix structure contains the program based organizations in the lateral direction and the deep
specialized functional departments in the vertical.

To build learning organizations, it is necessary to deploy tools that support development, diffusion and
preservation of both explicit and tacit knowledge.

Tools and technology must be customized based on organizational needs. For example, seamless
integration of new technologies facilitating incorporation with existing systems/tools and adaptation to
established processes and not vice versa.

Standardization has a large influence on PD since it reduces variation which enables increased
flexibility and predictable outcomes. There are three categories of standardization: 1) design
standardization, 2) process standardization and 3) engineering skill-set standardization.

The CE is appointed by the top management immediately after a new program has been decided
where the CE are considered as the owner of the product responsible for the whole development
process from concepts to launch.

The necessity to use a rigorous recruitment process, mentoring and on-the-job-training (OJT) in a
structured way. For example, in order to have the capability to technically challenge PD engineers, the
reqruitment and training of manufacturing engineers should be equally comprehensive.

Comprises such as a high degree of supplier involvement which implies early involvement of suppliers
in PD, rigorous selection of suppliers and that suppliers are committed to continuously maintain and
develop their engineering and manufacturing capabilities to meet the demands of the ordering
company (e.g., OEM).

ID Principle Description

 38

Appendix C. Relationships between lean principles in LPDS (Morgan and
Liker 2006) and selected studies

Table C.1
Sub-system Principle Description Strong relationship* Weak

relationship
Studies Freq. Studies Freq.

Process 1 .Establish customer-
defined value to separate
value-added activity
from waste.

To create a lean PD process, it is important to establish a customer defined
value as a first step. Once these values have been identified, diffused and
understood throughout the whole organization, it is possible eliminate waste.

S7,S11,S13,
S14S20,S21,
S26,S27 S33

9(4) S8, S22,
S32

3(2)

2. Front-load the PD
process while there is
maximum design space
to explore alternative
thoroughly.

Involves problem-solving at root cause level in early project phases. The aim
is to eliminate late engineering changes like 'quick fixes' and patches that
rarely result in increased product or process performance.

S7,S8,S12,
S18,S26,S27
,S33

7(1) S4,S14
S17,S35

4(0)

3. Create a leveled PD
process flow.

Involves eliminating waste (everything that does not contribute to the value for
the customer) and establishing flow (regular pace) in the PD process. The total
PD value stream is examined with the aim to eliminate non-value adding
activities that occur between development steps such as unnecessary
handovers of documents and reinvention instead of standardization of
components. Flow is created by incremental development where work is
broken down into suitable tasks.

S3,S6,S7,S8,
S9,S10,S11,
S12,S13S14,
S15,S17,S18
S19,S20,S22
,S23,S25,S2
8,S29,S30,S
32,S34,S37,
S38

25
(11)

S1,S5
S21,S27
S31,S33

6(3)

4. Utilize rigorous
standardization to
reduce variation, and
create flexibility and
predictable outcomes.

Standardization has a large influence on PD since it reduces variation that
enables increased flexibility and predictable outcomes. There are three
categories of standardization: design standardization, process standardization,
and engineering skill-set standardization.

S32 1(1) S3,S18
S20,S28

4(3)

Skilled People 5. Develop a chief
engineer system to
integrate development
from start to finish.

The top management appoints a chief engineer immediately after a new
program has been decided upon. The chief engineer is considered to be the
owner of the product and is responsible for the whole development process
from concepts to launch.

 0 S11 1(1)

6. Organize to balance
functional expertise and
cross-functional
integration.

Creating efficient PD organizations by combining the benefits of product and
functional focused structures in a matrix organization. This allows
simultaneous attention to functional and program demands.

S36 1(1) S2,S27 2(2)

7. Develop towering
technical competence in
all engineers.

The necessity to use a rigorous recruitment process, mentoring and on-the-job-
training (OJT) in a structured way. For example, in order to have the capability
to technically challenge design engineers, the recruitment and training of
manufacturing engineers should be equally comprehensive.

S11,S16,S29
, S23

4(2) S1,S17
S20

3(2)

8. Fully integrate
suppliers into the
Product Development
System.

Comprises a high degree of supplier involvement. This implies early
involvement of suppliers in PD, a rigorous selection of suppliers, and that
suppliers are committed to continuously maintain and develop their
engineering and manufacturing capabilities in order to meet the demands of
the ordering company, i.e. original engineering manufacturer (OEM).

 0 0

9. Build in learning and
continuous
improvement.

To achieve continuous improvement (Kaizen) of products or processes, it is
important to recognize and encourage learning and understanding of
technologies and processes where both tacit and explicit knowledge are
developed, diffused and maintained in the organization.

S3,S13,S15,
S16,S22,S26
,S27,S35

8(4) S17,S23
S25,S28
S29,S34

6(3)

10. Build a culture to
support excellence and
relentless improvement.

The culture embraces a fairly stable set of assumptions that are taken-for-
granted, shared beliefs, meanings, and values in an organization that govern
the members' operations and enables the organization to rely less on formal
lean control systems.

S16, S19 2(0) S4,S18
S27

3(2)

Tools &
Technology

11. Adapt technology to
fit your people and
processes.

Tools and technology must be customized based on organizational needs. This
means that the integration of new technologies facilitating incorporation with
existing systems or tools and adaptation to established processes should be
seamless, and not vice versa.

S31 1(1) S3,S7
S13,S19
S24,S27
S28,S38

8(4)

12. Align your
organization through
simple visual
communication.

Deals with the organization's capability of effectively coordinating complex
communication such as requirements, test results, project status reports and
manufacturing constraints between teams and across functions in the PD
process.

S6,S8,S11,
S14,S19,S20
S25,S28,S31
,S38

10(5) S7,S9
S10,S18
S27,S29
S35,S37

8(2)

13. Use powerful tools
for standardization and
organizational learning.

To build learning organizations, it is necessary to deploy tools that support
development, diffusion and preservation of both explicit and tacit knowledge,
on which evolving standards are based.

 0 S20,S25 2(2)

*Frequencies of relationships to studies on large-scale software development are placed in
brackets.

 39

References

ABG. (1997). V-Model: Development Standard for IT-Systems of the Federal Republic of Germany. Lifecycle
Process Model.

Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J. (2003). New directions on agile methods: a
comparative analysis. In The 25th International Conference on Software Engineering, pp. 244-254.

Abran, A., Moore J.W. et al. (2004). Guide to the software engineering body of knowledge (SWEBOK®), IEEE
Computer Society Guide.

Almefelt, L., Berglund, F., Nilsson, P., & Malmqvist, J. (2006). Requirement management in practice: findings
from an empirical study in the auto-motive industry. Research in engineering design, 17, 3.

Andersen, B., & Fagerhaug, T. (2000). Roo1 Cause Anlysis: Simplified Tools and Techniques. Milwaukee,
Wisconsin: ASQ Quality Press.

Aoyama, M. (1997). Agile Software Process Model. In The 21st Annual International Computer Software and
Applications Conference, COMPSAC '97. Washington DC, USA.

Automotive SIG. (2010). The SPICE User Group, Automotive SPICE Process Assessment Model v2.5 and
Process Reference Model v4.5, http://www.automotivespice.com.

Basili, V.R. (1985). Quantitative Evaluation of Software Methodology. University of Maryland. College Park,
MD.

Beck, K. (2004). Extreme Programming Explained: Embrace Chage (2nd ed). Addison-Wesley.
Bjarnason, E., Wnuk, K., Regnell, B. (2009). Requirements are slipping through the gaps—A case study on

causes & effects of communication gaps in large-scale software development. In Proc. IEEE 19th
International Requirements Engineering Conference, pp. 37-460.

Brooks, F.P. (1987). No Silver Bullet Essence and Accidents of Software Engineering. IEEE Computer 20, 10-19.
Broy, M., Kruger, I.H., Pretschner, A., & Salzmann, C. (2007). Engineering Automotive Software. Proceedings of

the IEEE, 95, 2.
Boehm, B. (2002). Get ready for agile methods, with care. IEEE Computer 35, 64–69.
Carlsson, M. (1991). Aspects of the Integration of Technical Functions for efficient Product Development. R&D

Management, 21, pp. 55-66.
Cawley, O., Wang, X., Richardsson, I.. (2010). Lean/Agile Software Development Methodologies In Regulated

Environments - State of the art. Lecture Notes in Business Information Processing, Vol. 65, 31-36, Springer-
Verlag, Berlin Heidelberg.

Charfi, F., Sellami, F. (2004). Overview on Dependable Embedded Systems in Modern Automotive. In Proc.of
the 2004 IEEE Int. Conference on Industrial Technology.

Clark, K.B., Fujimoto, T. (1991). Product Development Performance: Strategy, Organization and Management in
the World Auto Industry. Harvard Business School, Boston..

CMMI. (2010). Capability Maturity Model Integration Version 1.3. Technical Report CMU/SEI-2010-TR-033.
Software Engineering Institute (SEI). http://www.sei.cmu.edu/cmmi/.

Conboy, K. (2009). Agility from first principles: Reconstructing the concept of agility in information systems
development. Information Systems Research, 20, 329–354.

Coplien, J., & Bjornwig, G. (2010). Lean architecture for agile software development. West Sussex, UK, John
Wiley & Sons Ltd.

Curtis, B., Krasner, H., Iscoe, N. (1988). A field study of the software de-sign process for large systems.
Communications of the ACM 31.

Dannenberg, J., & Kleinhans, C. (2004). The coming age of collaboration in the automotive industry. Mercer
Manage. J., 18, 88–94.

de Almeida Biolchini, J.C., Mian, P.G., Natali, A.C.C., Conte, T.U., Travassos, G.H. (2007). Scientific research
ontology to support systematic review in software engineering. Advanced Engineering Informatics 21, 133–
151.

Dybå, T., Dingsøyr, T. (2008). Empirical Studies of Agile Software Development: a Systematic Review. Journal
of Information and Software Technology 50, 833-859.

Dybå, T., T Dingsøyr, T., Hanssen, G.K. (2007). Applying Systematic Reviews to Diverse Study Types: An
Experience Report. In First International Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 225-234.

http://www.automotivespice.com/
http://www.sei.cmu.edu/cmmi/

 40

Dybå, T., Kitchenham, B., Jorgensen M. (2005). Evidence-based software engineering for practitioners. Software,
IEEE 22, 58-65.

Eppinger, S.D., Whitney, D.E., Smith, R.P., Gebala, D.A. (1994). A Model-Based Method for Organizing Tasks
in Product Development. Research in Engineering Design 6, 1–13.

Fayad, M.E., Laitnen, M. (1997). Process assessment considered wasteful. Commun. ACM 40, 125-128.
Fleiss, J. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin 76, 378–382.
Fricker, S., Gorschek, T., Byman, C., Schmidle, A. (2010). Handshaking with Implementation Proposals:

Negotiating Requirements Understanding. IEEE Software 27, 72-80.
Glass, R.L., Vessey, I., Ramesh, V. (2002). Research in software engineering: an analysis of the literature.

Information and Software Technology 44, 491-506 .
Hibbs, C., Jewett, S., Sullivan, M. (2009). The Art of Lean Software Development: A Practical and Incremental

Approach. O’Reilly Media, Inc.
Highsmith, J. (2002). Agile Software Development Ecosystems. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA.
Hiranabe, K. (2008). Kanban Applied to Software Development: from Agile to Lean. Available from:

http://www.infoq.com/articles/hiranabe-lean-agile-kanban (accessed on Dec. 12).
Hoffman, D., Weiss, D. (2001). Software Fundamentals: Collected Papers by David L. Parnas. Upper Saddle

River, NJ: Addison Wesley.
Holmdahl, L. (2010). Lean Produktutveckling på Svenska, Göteborg, ISBN 978-91-979196-0-9.
Ivarsson, M., Gorschek, T. (2009). Technology Transfer Decision Support in Requirements Engineering

Research: A Systematic Review of REj. Requirements Engineering journal, 14, 155-175.
Ivarsson, M., Gorschek, T. (2011). A Method for Evaluating Rigor and Industrial Relevance of Technology

Evaluations. Empirical Software Engineering, 16, 365-395.
Kaner, C. (2003). Blog Archive » SWEBOK Problems, Part 2, 2003-06-27, http://kaner.com/?p=27. Accessed 7

Dec. 2012.
Kano, N. (1996). Guide to TQM in Service Industries. Asian Productivity Org.
Karlsson, C., Åhlström, P. (1996). Assessing changes towards lean production. International Journal of

Operations & Production Management 16, 24-41.
Karlström, D., Runesson, P. (2005). Combining agile methods with stage-gate project management. IEEE

Software, 22, 43–49.
Kennedy, M.N., Harmon, K., Minnock, E. (2008). Ready, Set, Dominate –implementing Toyota’s set based

Learning for Developing Products … and nobody can catch you. Richmond, VA: Oaklea Press.
Kitchenham, B., Charters, S. (2007). Guidelines for Performing Systematic Literature Reviews in Software

Engineering. Technical Report EBSE 2007-01, School of Computer Science and Mathematics, Keele
University.

Kraut, R., & Streeter L.A. (1995). Coordination in software development. Communications of the ACM, 38, 69-
81.

Kuilboer, J.P., & Ashrafi, N. (2000). Software Process and Product Improvement: An Empirical Assessment.
Information and Software Technology, 42, 27-34.

Lakemond, N., Johansson, G., Magnusson, T., Safsten K. (2007). Interfaces between technology development,
product development and production: critical factors and a conceptual model. International Journal of
Technology Intelligence and Planning 3, 317-330.

Landis, J.R., Koch G.G. (1977). The measurement of observer agreement for categorical data. Biometrics 33,
159–174.

Layman, L., Williams, L., Cunningham, L. (2004). Exploring extreme programming in context: an industrial case
study. Agile Development Conference 2004.

Lean Software Development. (2012). IEEE Software 95.
Liker, J.K. (2004). The Toyota Way: 14 Management Principles from the World's Greatest Manufacturer.

McGraw-Hill, New York.
Mannaro, K., Melis, M., Marchesi, M. (2004). Empirical analysis on the satisfaction of IT employees comparing

XP practices with other software development methodologies. In Extreme Programming and Agile Processes
in Software Engineering, Lecture Notes in Computer Science, vol. 3092, Springer Verlag, 166–174.

Miller, E.J., & Rice, A.K. (1967). Systems of organizations. London Tavistock.
Morgan, J.M., & Liker, J.K. (2006). The Toyota Product Development System: Integrating People, Process, and

Technology. Productivity Press, New York.

 41

Murman, E. (2004). Lean Aerospace Initiative.Eng Syst Symp. MIT, Cambridge, MA. Available at
http://esd.mit.edu/symposium/pdfs/day1-2/murman-slides.pdf, 16 slides.

Negroni, D.Y., Trabasso L.G. (2009). A quality improving method to assist the Integrated Product Development
process. In Proc. of the 17th International Conference on Engineering Design (ICED 09,) Palo Alto, CA, pp
127-136.

Nihtilä, J. (1999). R&D–Production integration in the early phases of new product development projects. Journal
of Engineering and Technology Management, 16, 55-81.

Ohno, T. (1988). Toyota Production System. Beyond Large-Scale Production. Productivity Press, Portland.
Pernstal, J., Magazinius, A., Gorschek, T. (2012). A Study Investigating Challenges in the Interface between

Product Development and Manufacturing in the Development of Software Intensive Automotive Systems.
International Journal of Software Engineering and Knowledge Engineering 20, 965-1004.

Petersen, K. (2010). Is Lean Agile and Agile Lean? A Comparison Between Two Software Development
Paradigms. In Modern Software Engineering Concepts and Practices: Advanced Approaches; Ali Dogru and
Veli Bicer (Eds.), IGI Global.

Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M. (2008). Systematic Mapping Studies in Software Engineering.
In 12th International Conference on Evaluation and Assessment in Software Engineering, 71-80.

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: an agile toolkit. Addison-Wesley,
Boston.

Reinertsen, D.G. (2009). The Principles of Product Development Flow: Second Generation Lean Product
Development. Celeritas Publishing, Redondo Beach, CA.

Schwaber, K., & Beedle, M. (2001). Agile Software Development with Scrum. Prentice Hall, Upper Saddle River.
Sobek, D.K., Ward, A.C., Liker, J.K. (1999). Toyota's Principles of Set-Based Concurrent Engineering. Sloan

Management Review 40.
Sommerville, I. (2007). Software Engineering, Eighth ed. Addison-Wesley Publishers Ltd.
Svensson, H., Höst, M. (2005). Views from an organization on how agile development affects its collaboration

with a software development team. Lecture Notes in Computer Science, vol. 3547, Springer Verlag, Berlin,
487–501.

Takeuchi, H., I. Nonaka, I. (1986). The new product development game. Harvard Business Review, January-
February, 137-146.

Vandevelde, A., Van Dierdonk, R. (2003). Managing the design-manufacturing interface. Int. J. of Operations &
Production Management 23, 1326-1348.

Venkatesh Prasad, K., Broy, M., & Krueger, I. (2010). Scanning Advances in Aerospace & Automobile Software
Technology. Proc. of the IEEE, 98, 510-514.

Wang, X., Conboy, K., Cawley, O. (2012). “Leagile” software development: An experience report analysis of the
application of lean approaches in agile software development. J. of Systems and Software 85, 1287– 1299.

Ward, A.C. (2007). Lean product and process development. Lean Enterprise Institute, Cambridge, Mass. ISBN
978-1-934109-13-7.

Weber, M., Weisbrod, J. (2003). Requirements engineering in automotive development: experiences and
challenges. IEEE Software 20, 16–24.

Wellington, C.A., Briggs, T., Girard, C.D. (2005). Comparison of student experiences with plan-driven and agile
methodologies. In Proceeedings of the 35th ASEE/ IEEE Frontiers in Education Conference 2005.

Wheelwright, S.C., & Clark, K.B. (1994). Accelerating the design-build-test cycle for effective product
development. International Marketing Review 11,32-46.

Wieringa, R., N.A.M. Maiden, N.A.M., Mead, N.R., Rolland C. (2006). Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion. Requirements Engineering 11, 102–107.

Womack, J., & Jones, D. (2003). Lean Thinking: Banish Waste and Create Wealth in your Corporation, Revised
and updated edition. Simon & Schuster Ltd., London, UK.

Womack, J.P., Jones, D.T., Roos, D. (1990). The Machine that Changed the World. Rawson Associates, New
York.

Zahran, S. (1998). Software Process Improvement: Practical Guidelines for Business Success. Reading, Addison-
Wes.

