
Finding Test Data with Specific Properties
via Metaheuristic Search

Robert Feldt
Dept. of Computer Science and Engineering,
Chalmers University of Technology, Sweden

Email: robert.feldt@chalmers.se

Simon Poulding
Dept. of Computer Science,

University of York, York, UK
Email: simon.poulding@york.ac.uk

Abstract—For software testing to be effective the test data
should cover a large and diverse range of the possible input
domain. Boltzmann samplers were recently introduced as a
systematic method to randomly generate data with a range
of sizes from combinatorial classes, and there are a number
of automated testing frameworks that serve a similar purpose.
However, size is only one of many possible properties that data
generated for software testing should exhibit. For the testing
of realistic software systems we also need to trade off between
multiple different properties or search for specific instances of
data that combine several properties. In this paper we propose a
general search-based framework for finding test data with specific
properties. In particular, we use a metaheuristic, differential
evolution, to search for stochastic models for the data generator.
Evaluation of the framework demonstrates that it is more general
and flexible than existing solutions based on random sampling.

I. INTRODUCTION

Effective testing of realistic software systems can require
the use of highly-structured test inputs. Examples are tree-
like index structures for testing information retrieval software,
source code for testing interpreters and compilers, and concrete
model instances for testing toolchains used in model-driven
engineering.

These data structures are ‘well-formed’ in the sense that
they satisfy often complex constraints regarding their construc-
tion. For trees, the constraints may be expressed in terms of
the number of child nodes at non-leaf nodes: e.g. all nodes
in a binary tree must have at most two child nodes. Valid
source code, i.e. text that exercises compilation functionality
rather than raising errors in the lexer or parser, must satisfy the
syntactical constraints of the programming language. Concrete
model instances must conform to a metamodel describing the
relationships between objects and the attributes they contain.

Many classes of data structure have no restriction on the
size of instances in the class. For some forms of testing, it
may be appropriate to choose a small upper bound on the
size of the structure, e.g. the number of nodes in a tree,
and exhaustively generate all possible instances of the data
structure up to this size bound. However, if testing requires
larger structures—for example, to stress the software, or to
evaluate how its performance scales—exhaustive generation
is no longer feasible: the number of valid instances typically
grows very quickly as the upper bound increases. The solution
in this case is to sample instances at random from a probability
distribution, and to choose the distribution so that the average
size of the instances is sufficiently large. It is this random

sampling approach to test data generation that we consider in
this paper.

Depending on the purpose of the testing, data charac-
teristics other than size will be relevant. For example, unit
testing may benefit from the frequent generation of data
structures that exercise particular parts of the code, while
predicting reliability may require that the distribution of data
emulates that experienced by the software in operation. Such
distributions consider additional characteristics that may be
intrinsic to the data structures themselves, such as the height
of a tree or cyclometric complexity of the source code; or
extrinsic, such as the structural coverage of the software.

We use the term bias objective to refer to the specific
properties that the sampled data structure instances should
exhibit. Large average size is an example of such a bias
objective, but desirable biases may involve any other intrinsic
or extrinsic characteristics of the data structures. The challenge
is therefore to derive an efficient algorithm that randomly
samples well-formed data structures from distributions that
satisfy the bias objectives specified by the test engineer.

To meet this challenge, we propose (a) the use of pro-
grams that incorporate non-deterministic constructs in order to
concisely express how to generate all well-formed instances
of a particular data structure class; and, (b) the application
of automated search to tune the non-determinism in order to
create desirable biases.

This approach has two significant advantages. Firstly, non-
deterministic programs can generate a much wider range of
data structure classes than existing analytical approaches such
as state-of-the-art algorithms based on Boltzmann samplers
(see section II-A), and approaches that use formal grammars
(see section II-B). Secondly, any bias objective expressible as
a fitness metric may be targeted by the search, and multi-
objective optimization can be used to explore the trade-off
between competing biases.

In section II, we consider existing approaches to the gener-
ation of well-formed data structures, and discuss the potential
benefits and difficulties using non-deterministic programs for
this purpose. Our proposed search-based framework, called
GödelTest, is described section III. In section V, we explore the
capabilities of the framework on a problem defined by multiple
bias objectives, and compare the results to those obtained
from a Boltzmann sampler and from an existing automated
testing framework. We conclude the paper and discuss research
directions in section VI.



II. BACKGROUND AND RELATED WORK

A. Data Generation by Boltzmann Samplers

Boltzmann samplers were proposed by Duchon et al. as
efficient algorithms for the random sampling of well-formed
combinatorial data structures [1]. Boltzmann samplers guar-
antee uniform sampling in the sense that all instances of the
same size, n, from a given data structure class have the same
probability of being sampled. (In the absence of any other
bias objective, uniform random sampling can be a desirable
characteristic for testing purposes since there is no unnecessary
bias in the sampling.) This probability value differs according
to the size n: it is proportional to xn where x > 0 is a
control parameter of the sampler. The distribution of sizes of
the sampled objects may therefore be controlled by choosing
a suitable value for x.

Boltzmann samplers are derived by first decomposing the
generation of the data structure class using a small set of
construction operators that combine structurally simpler data
structures. At the bottom of this decomposition is an atomic
structure (e.g. a tree node) that cannot be decomposed any
further. The decomposition results in set of grammar rules that
may include recursion.

To illustrate this decomposition, let us denote the class of
(unlabeled) general trees—trees in which there is no restriction
on the number of child nodes—as G. The root of the tree is
a single atomic tree node, denoted by the class Z , combined
with an ordered list of zero or more child sub-trees, each of
which themselves is a general tree (independent members of
the class G). Therefore the class of general trees is decomposed
into the recursive grammar rule:

G = Z · sequence(G) (1)

Here the product construction operator, denoted A · B, com-
bines one randomly selected instance from the subclass A
with one randomly selected instance from the subclass B.
The sequence operator, denoted sequence(A), first samples
a random integer k ≥ 0, then samples k independent instances
from the subclass A, and combines them as an ordered list.

This form of decomposition is not specific to Boltzmann
samplers. Instead, the contribution of Boltzmann samplers
is a systematic process for constructing an algorithm based
on this decomposition which samples data structures from
a distribution with the uniformity property discussed above.
Each construction operator is associated with a specific local
probability distribution that is sampled during the generation
process. For example, each sequence operator is associated
with a geometric distribution that determines the size of se-
quence. The parameters of these local probability distributions
are calculated from the control parameter x, using functions
that are themselves constructed systematically according to the
decomposition of the subclasses on which the construction
operators operate.

Boltzmann samplers have two very desirable characteris-
tics. Firstly, it is possible to calculate, with relative ease, the
value of x that will give a specific mean size for the sampled
instances. Secondly, the generation process scales well with
target instance sizes. A practical application of a sampler
may additionally apply sophisticated rejection mechanisms to

filter out sampled instances that have sizes outside a small
range around the chosen mean size. Even when combined with
filtering in this way, Duchon et al. show that for many classes,
the time complexity of Boltzmann samplers scales linearly
with the mean size.

A testing application of Boltzmann sampler that leverages
this scalability is described by Canou and Darrasse [2]. The
objective is to generate very large (sizes of 105 nodes and
greater) random instances of tree-like data types in Objective
Caml; such instances are used in a statistical analysis of
the performance of the software-under-test. The data type
definition is decomposed into a grammar that uses construc-
tion operators discussed above, and from this a type-specific
Boltzmann sampler is constructed systematically.

However, there are two limitations to the use of Boltzmann
samplers in the context of software testing. Firstly, the data
structure must be capable of decomposition using the small set
of construction operators from which Boltzmann samplers may
be derived, and this limits the applicability of the approach. For
example, red-black trees have constraints on the tree structure
that cannot be expressed in the Boltzmann sampler grammar.
Secondly, the underlying mathematics of Boltzmann samplers
considers biases only in terms of the property of size: there is
no analytical approach to biasing the Boltzmann sampler for
other properties. We consider this a significant barrier to the
application of Boltzmann sampling to the testing of complex,
realistic software.

B. Data Generation Using Formal Grammars

As for Boltzmann samplers, approaches that generate test
data using formal grammars—a technique known as grammar-
based testing—use a set of production rules to specify how the
data structure may be constructed.

Grammar-based approaches may be used for both bounded-
exhaustive and random generation of test data. In the latter
case, the grammar is converted into a stochastic form by
assigning weights to the production rules: when more than one
rule can be applied during the generation of the data structure,
one of the rules is chosen at random using probabilities
proportional to the weights. Maurer [3] uses such a stochastic
grammar to verify digital circuits in simulation; McKeeman
[4] for testing compilers; and Sirer and Bershad [5] to test
implementations of Java virtual machines.

The advantage of using formal grammars is that they are of-
ten able to represent a wider range of data structure classes than
Boltzmann samples, particularly when the canonical grammar
is extended in order to express particular features of the test
data. For example, Maurer extends a context-free grammar
in order to store and retrieve state information during the
generation process, and with code fragments that are executed
when production rules are applied.

The disadvantage of stochastic grammars is that, unlike
Boltzmann samplers, there is no general analytical approach
for determining how to set the production rule weights (the
equivalent to the local probability distributions of Boltzmann
samplers) in such a way that the distribution of sampled data
structures meets the specified bias objectives.



However, techniques based on constraint solving and on
search have been recently proposed for this purpose, and it is
notable that they are able to meet objectives for properties
other than size. Dreyfus et al. [6] propose a constraint-
based technique for satisfying an intrinsic bias objective—
coverage of features of the test data itself—and illustrate their
approach on the objective of covering of all terminal symbols
in the grammar as frequently as possible. Both Beyene and
Andrews [7], and one of us (Poulding) [8], describe the use of
metaheuristic search in optimising the weights of a stochastic
grammar to meet an extrinsic bias objective: coverage of
structural elements in the software-under-test.

C. Data Generation by Non-Deterministic Programs

Just as the extension of canonical grammars permits a
wider range of data structure classes to be generated, non-
deterministic programs widen the applicability yet further by
dispensing with the remaining restrictions of a grammar-based
representation. The programs are written in languages with
non-deterministic constructs that are able to concisely express
choices during the generation of data structures.

UDITA, although used for bounded exhaustive generation,
is an example of a sophisticated non-deterministic program-
ming framework for generating test data [9]. UDITA extends
Java to permit non-deterministic choices of both primitive data
types and objects that enable generators for data structures to
be created. In [9], the authors demonstrate the application of
UDITA to the generation of well-formed red-black trees.

QuickCheck is a testing tool that utilizes non-deterministic
programs to generate random test data [10]. As for UDITA, the
programs—written in the functional programming language
Haskell—construct generators by combining generators for
simpler data types and built-in random number generators.

The flexibility of non-deterministic programs further com-
plicates the problem of deriving a distribution over the data
structures that satisfies the chosen bias objectives. Indeed,
neither QuickCheck nor UDITA provide a mechanism for
optimising the local non-determinism in generators in order
to meet global bias objectives: the engineer must explore
such biases manually. In stochastic grammars, the problem
can be abstracted away from the details of the grammar by
considering only the production rule weights: the problem
becomes one finding suitable values for a fixed number of
weights. However, the non-deterministic constructs of these
programs are more complex in nature than production rule
weights and so the abstraction and solution of the problem is
more challenging. It is this issue that we address in this paper.

III. GÖDELTEST - A SEARCH-BASED DATA GENERATION
FRAMEWORK

Our framework, GödelTest, combines the flexibility of non-
deterministic programs as a means to generate a wide range
of data structures with metaheuristic search to optimize the
biases in the generated data. In this section, we describe the
features and capabilities of this framework.

We chose to implement the version of the framework used
in the empirical work of this paper using Ruby since this
language provides extensive meta-programming features that

facilitate the implementation. (These implementation details
are discussed in section IV.) For this reason, we illustrate our
description of the GödelTest framework using data-generating
programs written in Ruby. This choice of implementation
language need not restrict the language in which the target
of the generated data—the software-under-test—is written: the
data may be exported by the framework to be imported by a
suitable test harness.

A. Overview

The two core concepts in the framework are generators
and choice models.

A generator is a non-deterministic program that describes
how to construct a well-formed data structure. In this respect it
is equivalent to the grammars used by Boltzmann samplers and
grammar-based testing. The non-determinism in the generator
code—necessary for it to generate different concrete instances
of the data structure—arises from the use of a small set of
constructs that either (a) influence control flow by identifying
alternative execution paths that can be taken; or (b), influence
state by setting specific variables with primitive data types to
random values. Each instance of such a construct is called a
choice point.

The choice model describes how to resolve the non-
determinism when running the generator program. Each time a
choice point is encountered at execution time, the choice model
is queried in order to decide which execution path to take, or
which value a variable should take. The interface between the
generator and choice model is a sequence of numbers, which
we term Gödel numbers1, that identifies which of the options
to choose at each choice point.

Therefore, by varying the choice model, we may influence
the probability distribution over the data structures output by
the generator with the objective of introducing biases that
optimize the efficiency of the test process. In this paper,
we describe the use of metaheuristic optimization (‘search’)
algorithms for this purpose. The clean separation of generator
and choice model facilitates this process: the algorithm need
only search over the space of possible choice models and
can ignore other irrelevant details of how the data structure
is constructed. The space of choice models is defined by a
sampler factory which specifies a set of samplers: elementary
components from which a choice model may be constructed
and then tuned.

This structure of GödelTest framework is summarized in
Figure 1. In the sections below we describe the features of
generators and choice models in more detail.

B. Generator and Choice Points

A generator consists of a set of related rules (each imple-
mented as a Ruby method) that together describe how a valid
data structure is generated. It has an entry point and can then,

1A Gödel numbering is an assignment of elements from a countable
mathematical object to natural numbers to allow algorithmic manipulation
of the mathematical object. Even though our simpler choice models typically
do not operate on the sequence as a whole (even though they can in principle
and might in the future), and the analogy is thus often not perfect, we utilize
this terminology for both the numbers and the name of the framework.



Choice Model Search
Tunes

Generates

Supplies Gödel numbers
[2, 1, 4, 0, 2, 3, 0]

...

Generator

choice points

Optimizes

Data

Sampler 
Factory

Adapts

Fig. 1. Overview of the GödelTest framework, its core concepts and their
connections

possibly recursively, call other methods in the same way as
deterministic code.

Choice points enable non-determinism in the generator by
identifying choices that can be taken as to control flow or
data state in the generator. In the current implementation of
GödelTest there are four types of choice points: one implicit
and three explicit2. The four choice points are listed in Table I.

The mult and plus explicit choice points capture the
two types of repetition common during the construction of
data structures, and are the equivalent of similar constructs in
regular expressions and other grammars. They take a name of
a method, call that method a random number of times, and
combine all the values returned by the method calls as an
Array. The only distinction between them is that while plus
always makes at least one call to the method, mult might
make no calls at all and just return an empty array.

The choose_int choice point samples an integer at
random from an interval defined by arguments to the choice
point. It enables a more concise and controllable mechanism
for specifying non-deterministic integer values than would be
possible with the repetition constructs alone.

The implicit choice point rule choice corresponds to ran-
domly selecting one of a set of alternative rules, much like
the ‘or’ (|) construct in context-free grammars. A rule choice
is created automatically whenever at least two methods in a
generator have the same name. When the code for the generator
is loaded each method is given a unique index among the
methods with the same name. Thus a natural way to specify
alternative constructions of a sub-structure of the data is to
implement each one as a method in the generator.

Each time any of these four choice points is executed
when running the generator, the choice point queries the choice
model to determine its behavior. The Gödel number provided

2As in any language design problem there is a trade-off between what can
be efficiently expressed and how many base constructs are needed to enable
that expression; we strive for practical trade-off rather than minimality, at least
in this version.

TABLE I. CHOICE POINTS IN GÖDELTEST

Type Returns Description

mult(:m) Array Zero or more repeated calls to the
method named m, returns an array of the
values returned from each call

plus(:m) Array One or more repeated calls to the
method named m, returns an array of the
values returned from each call

choose_int(min, max) Integer Sample an integer between min and
max, inclusive

rule choice Varies Select one of a set of possible methods
with the same name (this choice point
is implicit), calls it and then returns its
return value

by the choice model determines the number of times a method
is executed by mult or plus; the integer returned by a call
to choose_int; and the index of the rule executed when a
rule choice method is called.

Figure 2 shows a simple example of a GödelTest gener-
ator which illustrates these constructs3. This generator can
construct sequences of simple arithmetic expressions. The
generator is written as a normal Ruby class that inherits
GodelTest::Generator. The generator has six meth-
ods and uses three different types of choice points: plus,
choose_int and two rule choices (one rule choice for the
method named expression and one for operation). The
method named start is always the entry point to a generator
and will be called each time an object is to be generated. Here
it is defined as a call to plus which will perform one or
more calls to the method expression and return an array
of the value returned from each such call. The expression
method has two definitions and is therefore a rule choice:
each time the method is called, the choice model is queried to
determine which of the two implementations to execute. The
second implementation of expression will simply call the
number method which generates an integer and returns it as
a string.

The example also shows one of the benefits of writing
generators in a programming language rather than using gram-
mars: the number of compound, parenthesized expressions,
i.e. the first definition of the expression method, can
be limited by a count kept in the instance variable named
@large_left. Each time a compound expression is returned
the state variable is decremented and when it reaches 0 this
method will fall back to just generating a number. This would
be difficult to achieve with a grammar-based approach.

The final line of code of the example will call the generator,
here by specifying the initial value of the state variable. This
will return the generated object and print it out as a string.
One example of the output from running this Ruby program
is:

["(6+3)", "((9+2)+8)", "(2-5)", "6"]

In this case the generator created 4 expressions, three of which
were compound.

3The example is somewhat contrived for illustration purposes.



class SeqOfExprGen < GodelTest::Generator
def start
plus(:expression)

end

def expression
return number if @large_left < 1
@large_left -= 1
"(" + expression + operation + expression + ")"

end
def expression
number

end

def operation
"+"

end
def operation
"-"

end

def number
choose_int(0, 10).to_s

end
end

puts SeqOfExprGen.generate_with_state\
({"@large_left" => 7}).to_s

Fig. 2. Example of a generator for sequences of simple, size-limited
expressions

C. Choice Model and Samplers

A choice model controls the resolution of non-determinism
when a generator is executed. In this paper, the choice models
are stochastic and thus represent a probability distribution over
the data structures that are output by the generator Such a
choice model enables the random generation of test data with
desirable biases as described in the introduction. However,
the separation of generators and choice models in GödelTest
permits a great deal of flexibility as to the nature of choice
models: we have implemented choice models that permit
bounded exhaustive testing, and envisage models in the form
of adaptive learners.

Choice models are constructed from basic building blocks
called samplers. In this paper we use a simple form of choice
model whereby each choice point instance is assigned its
own dedicated sampler in order to provide Gödel numbers.
The Gödel numbers sampled for one choice point are thus
independent of the numbers sampled for other choice points
in the generator. We considered this simple form of choice
model first, and found it effective for the empirical work
presented here. However, it is a strength of our design that
other choice models can implement more elaborate schemes.
For example, we have experimented with choice models that
describe dependencies between the Gödel numbers sampled
for different choice points.

Samplers have parameters that determine which Gödel
numbers are returned by the choice model. It is the values of
these parameters that are tuned by the search algorithm in order
to optimize the choice model. For the stochastic samplers used
in this work, the parameters control the statistical distributions
from which the Gödel numbers are sampled.

A sampler factory defines a coherent set of samplers that

can be used to construct a choice model. This mechanism
facilitates extensions to the GödelTest framework: as we
investigate new types of samplers, we can provide them as
additional sampler factories.

To provide concrete examples of samplers, we describe
here two base samplers and one meta sampler that we utilize
in the empirical work of section V.

The GeometricSampler samples Gödel numbers ac-
cording to a geometric distribution for which the probability
of the Gödel number k is:

P(k) =
{
(1− p)pk if 0 ≤ k

0 otherwise
(2)

where 0 ≤ p ≤ 1 is a parameter to the sampler4.

The HistogramSampler defines a categorical distribu-
tion across an interval of integers. The interval is by default
[0, 4], but a different interval can be specified on instantiation
of the sampler. For this default interval, the sampler takes five
weight parameters, p0, p1, p2, p3, p4, and the probability of the
Gödel number k is:

P(k) =

{
pk/

∑4
i=0 pi if 0 ≤ k ≤ 4

0 otherwise
(3)

where the denominator,
∑4

i=0 pi, is used to normalize the
weights so that they form a set of probabilities.

Each time the choice model is queried at a choice point,
the generator provides information about the choice point (its
type and unique identification number) as well as the execution
context. This information is made available to the sampler and
can be used to dynamically adapt the behavior of the choice
model during execution.

The is particularly useful when a generator method calls
itself: a common idiom in the generation of many data struc-
tures. The context information includes the recursion depth and
so the choice model can change its output depending on the
depth. In the sampler factory used in this paper, a meta sampler
called DecaySampler may be applied to a base sampler
for this purpose. If the base sampler takes n parameters,
the DecaySampler takes a further set of n parameters
that specify how the base sampler’s behavior changes with
recursion depth.

For example, the DecaySampler (with one parameter
0 ≤ r ≤ 1) may be applied to GeometricSampler (with
one parameter p). The combined sampler returns Gödel num-
bers according to a geometric distribution with the parameter
p·rd where d is the recursion depth. Assuming r is strictly less
than one, the combined sampler is increasingly likely to return
Gödel numbers closer to 0 as the recursion get deeper: Figure 3
illustrates this behavior. Since a Gödel number of 0 typically
indicates no further recursion (for example, when the choice
point is mult), this behavior avoids recursive generation of
data structures of infinite size.

4Note that the definition of the sampler parameter (p) differs from that
normally used for the geometric distribution (p′) in that p = 1 − p′. This
is for compatibility with the DecaySampler described below—it ensures
that a the deepest levels of recursion the Gödel number 0 has the highest
probability of being sampled—and for consistency with the definition of the
geometric distribution used in Boltzmann samplers.



Similarly, for a combination of the DecaySampler (pa-
rameters ri) and HistogramSampler (parameters pi), at
recursion depth d the ith weight is pi · rid.

Gödel number

pr
ob

ab
ilit

y

0 1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

● ● ● ● ● ● ● ●

●

●

●

●

●
●

● ●

●

●

●

●

●
● ● ●

0.9 0.75× = 0.68

depth 0 depth 1 depth 2

0.75× = 0.51

Fig. 3. The probability distributions used by a combination of a
DecaySampler (parameter 0.75) and a GeometricSampler (parameter
0.9) at the first three recursion depths.

IV. IMPLEMENTATION OF GÖDELTEST

The implementation of GödelTest is written in the Ruby
programming language [11]. Its core currently contains 945
non-blank, non-comment lines of code with another 146 lines
implementing standard generators and 369 lines implementing
different choice model and sampler classes. This excludes
the search and optimization framework for which the generic
evolutionary and statistical optimization classes of the Ruby
gem feldtruby is used. Currently we use a Differential
Evolution (DE) [12] optimizer for tuning model parameters
but we see no reason simpler optimizers could not work well;
it will depend on the specific model class and how well suited
its models are to the generator being optimized.

There are three non-trivial techniques used in the current
implementation that rely on Ruby and its meta-programming
abilities: method renaming, code instrumentation, and simple
static analysis. All three are performed dynamically as the code
for a generator is loaded. Since all Ruby code is executed as
it is loaded, we are able to detect the addition of methods
to a subclass of the Generator class and to rename and
instrument methods so that we can control their later execution.
The method renaming allows multiple method definitions to
have the same name without later definitions overwriting
earlier ones which is the default Ruby behavior. It also allows
us to instrument the generator code and insert a dispatch
method for each rule choice. This dispatch method will first
call the choice model and use the returned Gödel number to
decide which specific method implementation to invoke.

The simple static analysis of the code in each method body
of a generator is used to detect and extract information about
the explicit choice points. The implementation also ensures
that each choice point of a generator, whether explicit or
implicit (rule choice), has a unique identification number. After
all methods of a generator has been loaded we thus have
instrumented the code to insert dispatch methods, renamed all
methods of an implicit choice point and created information
about all choice points, their context and constraints. This

information is later used by model factories to adapt a choice
model to a generator. It is also used by the samplers in the
choice model to provide appropriate Gödel numbers during
the generation process.

Even though Ruby’s dynamic nature and flexibility makes
it easier to perform these operations they are not essential; the
main benefit of using Ruby and existing extension libraries
is that these fairly advanced techniques can be implemented
concisely. However, corresponding effects could be achieved
in any other, modern programming language. For a language
like C, that does not provide any meta-programming facilities,
a combination of preprocessing and parsing to rename methods
and extract information would be needed. For Java there are
several bytecode manipulation and instrumentation libraries
and solutions available that could be of help. As an alternative
approach the current Ruby-based implemenation could be used
to generate data or test code for these other languages. This
can be accomplished easily by generating strings representing
data or test code for other languages, even though performance
and level of integration might suffer.

V. EMPIRICAL EVALUATION

A. Objectives

In this section we describe a simple set of experiments
that illustrate the capabilities of GödelTest. We compare the
ability of GödelTest to generate data structures according to
chosen bias objectives with that of Boltzmann samplers (an
analytical technique) and QuickCheck (a non-deterministic
program technique)5.

Boltzmann samplers are the most restrictive of the three
techniques in terms of the types of data structures that can
be generated: the structure must be expressible in the combi-
natorial grammar used by Boltzmann samplers. We therefore
choose unlabeled general trees—trees in which there is no
restriction on the number of child nodes at each branch node—
as the data structure: in section II-A we described how this data
structure may be expressed in the Boltzmann sampler grammar.
Although this data structure is simple and does not exercise the
flexibility of either QuickCheck or GödelTest, it nevertheless
illustrates the capabilities of all three techniques.

We target biases in two properties simultaneously: mean
tree size (i.e. number of nodes) and mean tree height (i.e. max-
imum number of nodes from the root to a leaf). The concept
of size is built into both Boltzmann samplers and QuickCheck,
but there is no straightforward way to accommodate other
properties such as tree height in either of these techniques.
However, GödelTest can target any property—such as both tree
size and height—that is expressible as a fitness metric for the
search algorithm, and we use these experiments to illustrate
this capability. In the following experiments we consider two
specific targets: (mean size = 100, and mean height = 6); and
(mean size = 100, and mean height = 36).

5We use QuickCheck rather than UDITA—the other major non-
deterministic program for test data generation discussed in the related work
of section II-C—because QuickCheck samples data at random as does the
version of GödelTest used in this paper, while UDITA is used for bounded
exhaustive testing. Generating very large data structures in an (bounded or
not) exhaustive testing paradigm is infeasible.



B. Configuration – Boltzmann Sampler

To configure the Boltzmann sampler of general trees, we
applied the analytical approach of [1] to calculate the parame-
ter of a geometric probability distribution that is associated
with the sequence operator in equation (1). There is no
mechanism to accommodate tree height in this analysis, and
so we considered only the mean size of 100 that is common
to both targets. For this mean size, the geometric distribution
must use a parameter of approximately 0.502512. (Space
considerations preclude us from giving further details of the
calculation here.)

C. Configuration – QuickCheck

To configure QuickCheck, we implemented a general tree
data type, Tree, and a generator for this data type as an
instance of the typeclass Arbitrary. The Haskell source
code is shown in Figure 4. The listOf’ function is used
to derive a random length for the list of child trees at each
branch node while specifying the size of those child trees in a
manner consistent with the target tree size. When generating
trees we use a modified version of the QuickCheck sample’
function (not shown) that specifies a tree size of 100.

The data structure size is a concept built in to the standard
QuickCheck implementation and therefore we have used it to
meet our first bias objective of mean tree size 100. To accom-
modate the second bias objective of tree height simultaneously
would require significant (and therefore costly) custom coding
by the test engineer to adapt the generation code: such coding
would be non-trivial even for a Haskell or QuickCheck expert.
We therefore consider it unrealistic to implement it for this
comparison experiment: if we had done, similar custom code
would need to be added to the GödelTest generator to ensure
a fair comparison.

data Tree = Node Int [Tree] deriving (Eq, Show, Ord)

instance Arbitrary Tree where
arbitrary = sized tree’
where tree’ n = liftM2 Node arbitrary (
resize (n-1) (listOf’ arbitrary))

listOf’ gen = sized $ \n ->
do k <- choose (0,n)
if k == 0

then vectorOf 0 gen
else vectorOf k (resize ((n+k-1) ‘div‘ k) gen)

Fig. 4. QuickCheck generator and declaration for unlabeled general trees

D. Configuration – GödelTest

1) Generator: The generator for general trees in GödelTest
is show in Figure 5.

class GeneralTreeGen < GodelTest::Generator
def start
Tree.new(mult(:start))

end
end

Fig. 5. GödelTest generator for unlabeled general trees

2) Choice Models: We consider two different choice mod-
els for this GödelTest generator. The generator has only one
choice point—the recursive mult construct—and so each
choice model consists of a single sampler.

In the first choice model, we use GeometricSampler as
the base sampler. This is motivated by the use of a geometric
distribution at the equivalent point in the Boltzmann sam-
pler implementation. Since the choice point is recursive, we
combine the GeometricSampler with a DecaySampler
as described in section III-C in order to avoid infinite trees.
We refer to this choice model in the following as Decay
Geometric (DG). It has two parameters that can be tuned using
metaheuristic: the single parameter to GeometricSampler
and the decay rate parameter to DecaySampler. We apply
the DG choice model to our first target: (mean size = 100,
mean height = 6).

In the second choice model, we use a
HistogramSampler (over the Gödel number interval
[0,4]) as the base sampler. This sampler enables a wider range
of probability distributions to be represented, but requires
more parameters than the GeometricSampler for this
purpose. Again we combined the base sampler with the
DecaySampler to give the model more expressivity. We
refer to this choice model as Decay Histogram[0,4] (DH04). It
has a total of ten parameters that can be tuned: five for each of
the Gödel number choices of the HistogramSampler, and
a corresponding five decay rates for the DecaySampler.
We apply the DH04 choice model to our second target: (mean
size = 100, mean height = 36).

3) Metaheuristic Search with Differential Evolution: To
tune the parameter of the choice models, we use a steady-
state implementation of the Differential Evolution (DE) algo-
rithm [12]. This choice was one of convenience more than by
design; we see no reason why other search-based optimizers
may not be effective on this problem. DE is known as a gen-
erally potent search-based optimizer for continuous variables;
a recent survey of the DE state-of-the-art even calls it ‘one
of the most powerful stochastic real-parameter optimization
algorithms in current use’ [13]. It has been successfully used
in complex, multi-objective optimization problems in many
different domains.

DE is an example of an evolutionary algorithm taking its
basic inspiration from Darwinian evolution as seen in nature.
As such it evolves a population of candidate solutions by
selection and breeding. Solutions that performs better than
others, according to a fitness criteria, have a higher chance
of being used as parents in the recombination that breeds
new child solutions. These new solutions, in turn, will replace
poorly performing solutions in the population. Over time, this
evolutionary process leads to a set of solutions that gradually
improve according to the fitness criteria. Evolutionary algo-
rithms have proven to be very versatile optimization algorithms
with multiple applications also in software testing [14], [15].
Compared to more traditional optimization methods they have
fewer requirements of the fitness function and can thus be ap-
plied in more situations without problem-specific adaptations.

In contrast to other evolutionary algorithms, DE considers
the difference among parent solutions when creating new
candidate (child) solutions [13]. This has the important effect



that the search will self-adapt its step size. As the population
focuses on the best performing regions of the space of solutions
being searched there will be smaller differences between
solutions and the step size used when creating new solutions
will decrease. This leads to a more fine-grained and focused
optimization process over time. The DE implementation we
use is the one implemented in the Ruby gem feldtruby
(version 0.4.8). It is a steady-state version of DE, i.e. in each
step of the algorithm only a single, new candidate solution is
created. This is in contrast to most DE algorithms, which are
typically generational, i.e. updates each solution in the popu-
lation in each step. Even though there is some evidence that
steady-state algorithms can improve the search process [16]
there is no evidence that it is generally advisable. In our
experience it can lead to simpler and shorter implementations
and performs at least as good as generational evolutionary
algorithms.

For the parameter settings of the DE algorithm we have
used the defaults set in feldtruby which in turn are based
on the recommendations from a recent survey of the DE
literature [13]. The key parameter settings are shown in Table II
below. We refer the reader to [13] for details and discuss here
briefly only those parameters specific to this experimentation.

We use the traditional DE mutation and crossover strategy
of DE/rand/1/bin. This is a random sampling of a total of 4
parents, using one difference vector and binomial crossover.
Two of the sampled parents are used to calculate a differ-
ence vector (by an element-wise subtraction of their solution
vectors) which is then added to one of the other sampled
parents to create the ‘donor’ vector. A random, binomial
crossover between the donor and the final, sampled parent
then creates the new candidate solution. Even though there are
studies were other DE strategies can give better performance
DE/rand/1/bin has shown consistently good results over wide
sets of problems.

The selection of parents in DE is typically performed
by random, uniform sampling from the individuals in the
population. In our prior experience of DE, the use of ‘trivial
geography’, as proposed by Spector et al. [18], consistently
improves performance on a large set of diverse test functions.
We have thus used this type of sampling in the experimental
work presented here and have restricted the radius, from
which all parents for a DE mutation step are sampled, to
eight consecutive individuals of the population array. Thus, the
sampling of four parents is done by first randomly sampling
a group of 8 consecutive solutions in the population and then
sampling 4 parents from that group of 8.

For fitness we have used the range-independent fitness
aggregation scheme of Bentley and Wakefield called Sum-of-
Weighted-Global-Ratios (SWGR) [17]. We use this to get a
single fitness value to optimize from three sub-objectives that
we employ. The first two sub-objectives are to minimize the
root mean square (RMS) value of the distance from the target
objective value to the corresponding value for the generated
trees. The third sub-objective is to minimize the failure rate,
i.e. the number of generation attempts for a model that results
in deeply nested calls that exceeds the call limit (1000 in our
experiments). The fitness function thus puts pressure on the
search process to favor choice models that do not lead to failed

generation attempts and where the generated tree has a size and
height close to the target.

E. Method

The two GödelTest choice models were each tuned in five
separate optimization runs using the DE algorithm described
above. For the DH04 choice model, a maximum of 20,000
fitness evaluations were performed, using a sample size of 10
to estimate mean tree size and height during evaluations. We
refer to the tuned model as DH04[20k,10] where the values
in brackets specify the number of evaluations and the sample
size. For the DG choice model, a maximum of 5,000 fitness
evaluations were performed, using a sample size of 25. We
refer to the tuned model as DG[5k,25].

10,000 trees were then sampled from each of the four
generation mechanisms: the Boltzmann sampler, QuickCheck,
a tuned DH04[5k,25] GödelTest generator, and a tuned
DG[20k,10] generator. The size and height of each sampled
tree were measured in order to compare how accurately the
target bias objectives were met.

F. Results and Discussion

Figure 6 show scatter plots of the sizes and heights of
the 10,000 trees generated by each of the four generation
mechanisms. The Boltzmann sampler and QuickCheck con-
sidered only the common tree size target of 100, and so both
targets are indicated as crosses on these two scatter plots. The
DH04[20k,10] targeted the simultaneous bias objective (mean
size = 100, mean height = 36) indicated by a single cross;
DG[5k,25] targeted the simultaneous bias objective (mean size
= 100, mean height = 6). For each of DH04 and DG, we
show a representative example resulting from one of the five
optimization runs.

The two targets were chosen to illustrate that the Boltz-
mann sampler is unable to meet the tree height objectives. Even
though the Boltzmann sampling model is theoretically justified
and can, in principle, sample trees of specified mean size it
does not seem to be a practical solution for more complex
solutions: only a very small proportion of trees have sizes near
the chosen mean value. QuickCheck shows a much narrower
spread of tree sizes around the target of 100, but does not
incorporate the tree height objective into its default generation
mechanism. As a result, few trees are near the target of mean
height 36.

The distribution of trees generated by the tuned GödelTest
DH04 model is markedly different from that of the Boltzmann
sampler as well as QuickCheck. Even though it is not sharply
focused around the target, it samples a region in the space
of trees which the Boltzmann sampler is unable to, and
QuickCheck unlikely to, explore. The distribution achieved
by the tuned DG model is again different from that of the
Boltzmann sampler: while the distribution is close to the target
for the tree height, the spread of tree sizes remains large.

Figure 7 illustrates the difference between the evaluated
approaches in more detail. It plots the percentage of trees that
are within a certain tolerance (as a percentage) of the target size
and height. This is relevant because rejection filtering applied
after the generation mechanism is the standard approach for



TABLE II. PARAMETER SETTINGS THE EXPERIMENTS

Parameter Value Description

Population size 100 Number of individuals in population
DE algorithm rand/1/bin Random parent selection, 1 difference vector (the difference between two of the parents) and binomial crossover
F 0.7 Scale factor (weight) of difference vector in DE mutation
CR 0.5 Crossover rate in DE binomial crossover
Number of parents 4 Number of parents sampled for each generation of a new candidate solution: one target parent (to be replaced), one

base parent and two for calculating the difference vector
Sampling Radius(8) Parents are sampled from 8 consecutive individuals in the population (with wrap-around at the population ‘edges’)
Fitness aggregation SWGR Sum-of-Weighted-Global-Ratios, the range-independent fitness aggregation scheme for multi-objective optimization

described in [17]
Fitness samples 10 or 25 Number of objects generated for each fitness calculation
Max calls 1000 Maximum number of method calls (in the generator) allowed when generating one object
Sub-objective 1 RMS to target size Root mean square error between the size of a tree and the target size (used in both experiments)
Sub-objective 2 RMS to target height Root mean square error between the height of a tree and the target height (used in the multi-objective experiment)
Sub-objective 3 Failure rate Ratio of failed to total number of generation attempts

Boltzmann QuickCheck DH04[20k,10]e DG[5k,25]a

20

40

60

80

100 200 100 200 100 200 100 200
Tree size

Tr
ee

 h
ei

gh
t

Fig. 6. Scatter plots of the size and heights of trees generated with three different generators: left Boltzmann, mid left QuickCheck, mid right Decay
Histogram[0,4] with target (100, 36), and right Decay Geometric with target (100, 6)). The crosses in the left plots indicate the target sizes and heights that are
the bias objectives in the right plots.

obtaining trees with specific characteristics both in the work on
Boltzmann sampling and in the QuickCheck documentation:
the higher the proportion of sampled trees that are within
a chosen tolerance, the more efficient the rejection filtering
approach will be.

For the GödelTest tuned DH04 model around 290 (2.9%)
of the 10,000 generated trees have a size in the range 90-110
and a height in the range 33-39 (+/- 10%). This percentage is
only 0.49% for the tested QuickCheck generator and 0.01% (a
single tree) for the tested Boltzmann sampler. In the figure we
also show the 95% confidence intervals calculated from the five
separate optimization runs for the GödelTest generators; this
shows that tuning results are quite tight on average even though
individual search runs might produce sub-optimal results.

It is worth noting that the DG choice model has only two
degrees of freedom and so is a very restricted model for the
search to explore. When this model class (through its factory)
was tuned to the other, (mean size = 100, mean height =

0

20

40

60

0 10 20 30 40 50
Tolerance (%) from target

Pe
rc

en
ta

ge
 o

f g
en

er
at

ed
 tr

ee
s Id

GödelTest DH04
QuickCheck
Boltzmann

Fig. 7. Trees within a certain tolerance (%) from the target values (mean
size = 100, mean height = 36) for GödelTest DH04 (red), Quickcheck (green)
and Boltzmann sampling (blue)



36) target it had problems converging on good parameters.
Understanding the properties of different model classes and
how they can be (automatically) selected or searched for
different targets and data generation problems is likely to be
an important area of future research.

Importantly, the GödelTest generator for general trees is
strikingly simple; essentially a single line of code (in addition
to the minimum boilerplate). In comparison, the QuickCheck
generator adapted to the targets in question is fairly complex
and involves multiple, framework-specific constructs. For more
complex generators and/or targets this advantage is likely to be
even more substantial and will affect usability and adoption.

VI. CONCLUSION

This paper considers the problem of generating highly-
structured test inputs in such a way that the distribution of
test data has desirable bias objectives. These objectives may
be chosen by the engineer for such purposes as evaluating
scalability (a bias towards large structures), detecting faults ef-
ficiently, or predicting reliability by emulating the distribution
of data that may experienced by the software in operation.

To address this problem, we have introduced the GödelTest
framework. The framework enables a concise specification of
the data structure’s generation as a program extended with
a small set of non-deterministic constructs: such a method
of specification is much more flexible than either Boltzmann
samplers or formal grammars. A choice model that describes
the non-deterministic choice points in the program is abstracted
automatically from the program. In this paper, we resolve
the non-determinism using stochastic samplers that describe
a local probability distribution at each point.

GödelTest enables the parameters of these local samplers
to be tuned—here by metaheuristic search—in order to meet
global bias objectives. To illustrate the capability of this
approach, we considered the simultaneous satisfaction of two
bias objectives for general tree instances. Both the Boltzmann
sampler and QuickCheck generation techniques accommodate
only one of these objectives, but GödelTest is able to bias the
distribution in order to better meet both objectives.

The purpose of this paper has been to introduce the
GödelTest framework and demonstrate its capabilities on a
simple example that is nonetheless challenging for the ana-
lytical approach of Boltzmann samplers and the programmatic
approach of QuickCheck. In future work we will explore the
use of GödelTest in generating test data for more complex data
structures (and thereby evaluate the framework’s scalability),
and formulations for the local samplers that provide a sufficient
degree of freedom to enable bias objectives to be met while
remaining amenable to search. As discussed in section III,
GödelTest’s abstraction of the choice model from the program
will facilitate the use of the same framework for bounded
exhaustive generation, and the dynamic adaptation of samplers
using machine learning. It can also help improve early explo-
ration in software development [19] where bias objectives can
help ensure diversity of generated data.

ACKNOWLEDGMENTS

This work is funded in part by EPSRC grant EP/J017515/1,
DAASE: Dynamic Adaptive Automated Software Engineering,

and in part by the SWELL research school and AVSATS grants
from Vinnova.

REFERENCES

[1] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, “Boltzmann
samplers for the random generation of combinatorial structures,” Com-
binatorics, Probability and Computing, vol. 13, no. 4-5, pp. 577–625,
2004.

[2] B. Canou and A. Darrasse, “Fast and sound random generation for
automated testing and benchmarking in objective caml,” in Proceedings
of the 2009 ACM SIGPLAN workshop on ML. ACM, 2009, pp. 61–70.

[3] P. Maurer, “Generating test data with enhanced context-free grammars,”
IEEE Software, vol. 7, no. 4, pp. 50 –55, July 1990.

[4] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[5] E. G. Sirer and B. N. Bershad, “Using production grammars in software
testing,” SIGPLAN Not., vol. 35, no. 1, pp. 1–13, 1999.

[6] A. Dreyfus, P.-C. Heam, and O. Kouchnarenko, “Random grammar-
based testing for covering all non-terminals,” in Proceedings of the
6th IEEE Conference of Software Testing, Verification and Validation
Workshops (ICSTW), 2013, pp. 210–215.

[7] M. Beyene and J. Andrews, “Generating string test data for code
coverage,” in Proceedings of the IEEE International Conference on
Software Testing, Verification and Validation (ICST 2012), 2012, pp.
270–279.

[8] S. Poulding, R. Alexander, J. A. Clark, and M. J. Hadley, “The opti-
misation of stochastic grammars to enable cost-effective probabilistic
structural testing,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2013), 2013, pp. 1477–1484.

[9] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and
D. Marinov, “Test generation through programming in UDITA,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1. ACM, 2010, pp. 225–234.

[10] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random
testing of haskell programs,” in Proceedings of the 5th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2000),
2000, pp. 268–279.

[11] D. Thomas, C. Fowler, and A. Hunt, Programming Ruby. Pragmatic
Programmers, 2004.

[12] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[13] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” Evolutionary Computation, IEEE Transactions on,
vol. 15, no. 1, pp. 4–31, 2011.

[14] M. Xiao, M. El-Attar, M. Reformat, and J. Miller, “Empirical evaluation
of optimization algorithms when used in goal-oriented automated test
data generation techniques,” Empirical Software Engineering, vol. 12,
no. 2, pp. 183–239, 2007.

[15] P. McMinn, “Search-based software test data generation: a survey,”
Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[16] R. Kumar and P. Rockett, “Improved sampling of the pareto-front in
multiobjective genetic optimizations by steady-state evolution: a pareto
converging genetic algorithm,” Evolutionary computation, vol. 10, no. 3,
pp. 283–314, 2002.

[17] P. J. Bentley and J. P. Wakefield, “Finding acceptable solutions in the
pareto-optimal range using multiobjective genetic algorithms,” in Soft
Computing in Engineering Design and Manufacturing. Springer, 1998,
pp. 231–240.

[18] L. Spector and J. Klein, “Trivial geography in genetic programming,”
in Genetic programming theory and practice III. Springer, 2006, pp.
109–123.

[19] R. Feldt, “Genetic programming as an explorative tool in early software
development phases,” in Proceedings of the 1st International Workshop
on Soft Computing Applied to Software Engineering, 1999, pp. 11–20.


