
Broadening the Search in Search-Based Software
Testing: It Need Not Be Evolutionary

Robert Feldt and Simon Poulding
Dept. of Software Engineering

Belkinge Institute of Technology, Karlskrona, Sweden
Email: robert.feldt@bth.se and simon.poulding@bth.se

Abstract—Search-based software testing (SBST) can poten-
tially help software practitioners create better test suites us-
ing less time and resources by employing powerful methods
for search and optimization. However, research on SBST has
typically focused on only a few search approaches and basic
techniques. A majority of publications in recent years use
some form of evolutionary search, typically a genetic algorithm,
or, alternatively, some other optimization algorithm inspired
from nature. This paper argues that SBST researchers and
practitioners should not restrict themselves to a limited choice
of search algorithms or approaches to optimization. To support
our argument we empirically investigate three alternatives and
compare them to the de facto SBST standards in regards to
performance, resource efficiency and robustness on different test
data generation problems: classic algorithms from the optimiza-
tion literature, bayesian optimization with gaussian processes
from machine learning, and nested monte carlo search from
game playing / reinforcement learning. In all cases we show
comparable and sometimes better performance than the current
state-of-the-SBST-art. We conclude that SBST researchers should
consider a more general set of solution approaches, more consider
combinations and hybrid solutions and look to other areas for
how to develop the field.

I. INTRODUCTION

The term Search-Based Software Testing (SBST) describes
a number of powerful methods that permit practitioners to
generate test suites for efficiently, and effectively, testing func-
tional and non-functional aspects of software systems [1], [2],
[3]. If the testing goals can be quantified in some manner—or,
in some cases, simply ordered—a multitude of different search
techniques can, in principle, be applied in these methods.
However, in practice, both SBST practitioners and researchers
typically use some form of evolutionary search, i.e. search
algorithms inspired by evolution and natural selection. We fear
that this might limit results and stifle creativity. In this paper
we urge SBST researchers to broaden their view of what the
search aspect of SBST can mean and we will show that many
alternative techniques for search and optimization might have
value.

In order to better understand the current application of
search algorithms in SBST, we analyzed recent testing papers
from three of the field’s major conferences: the International
Symposium on Search-Based Software Engineering (SSBSE),
the search-based software engineering track at the Genetic
and Evolutionary Computation Conference (GECCO), and
the International Workshop on Search-Based Software Testing
(SBST). A total of 39 empirical or tool papers on SBST were

published at these venues in 2013 and 2014. Two-thirds of the
papers—26 out of 39—applied an evolutionary algorithm, of
which 23 applied a Genetic Algorithm (GA): 15 as a standard
GA, 2 as a GA-based memetic algorithm, and 7 as a multi-
objective GA (the majority using NSGA-II)1. The next most-
frequently applied algorithms were Genetic Programming (4
papers), (1+1) EA (4 papers), hill-climbing (3 papers), and
alternating variable methods (3 papers). Our analysis suggests
that evolutionary search, and GAs in particular, are the algo-
rithms of choice for both single- and multi-objective problems
in SBST.

We offer a number of explanations for this prevalence of
GAs as the search technique. GAs can be applied to a wide
range of problem classes and typically find solutions with
acceptably good quality. This wide applicability permits us, as
researchers, to re-use the knowledge gained in applying GAs
to one testing problem when solving subsequent problems. In
addition, there is a great deal of active research in GAs that can
guide their application to testing problems, and this research
is typically disseminated in a form that is readily-accessible to
us. In contrast, the research on classic optimization algorithms
is often described for fellow mathematicians and may be less
accessible.

Nevertheless we argue that there are disadvantages to this
‘one-size-fits-all’ approach to choosing the search algorithm.
While GAs may provide acceptable performance, other al-
gorithms may be better at exploiting the particular structure
of a testing problem: the focus on GAs may be limiting our
creativity as researchers in finding much better fits between the
testing problem and the search algorithm. In particular, GAs
can scale poorly to high-dimensional problems and scalability
is sensitive to the representation of the problem (see, for
example, [4]). Moreover, GAs have many parameters that must
be tuned to the specific problem if the best performance is to
be realised.

This paper makes the three major contributions:
• An argument that SBST researchers should broaden their

horizons and consider search techniques other than evo-
lutionary algorithms.

• An empirical case study that supports this argument
by demonstrating that three alternative classes of al-

1Some papers applied more than one algorithm and so are counted in more
than one category.

gorithm can have advantages over evolutionary search:
‘traditional’ non-evolutionary algorithms of the type used
in Operations Research; a machine learning algorithm:
Gaussian Processes; and Nested Monte-Carlo Search, a
form of Monte-Carlo Tree Search from the domain of
automated game-playing.

• Guidelines for SBST researchers when choosing and
investigating search techniques as part of their testing
methods.

Section II below describes the method we used in the
subsequent sections each focusing on one of the three alterna-
tives to evolutionary search in SBST: traditional optimization
algorithms (Section III), machine learning (Section IV), and
Nested Monte-Carlo Search (Section V). Then, Section VI
discusses the results, and Section VII concludes.

II. METHOD

The goal of the empirical work is to consider multiple
alternatives to an evolutionary search algorithm for one and
the same search-based software testing problem. However, to
evaluate the advantages and disadvantages of each approach
we need to be able to vary the difficulty and size of the
problem; this should make it easier to highlight any differences
in performance, scalability or robustness.

Thus, we have selected three different test data generation
problems of differing size but each using the same SBST tool:
the GödelTest automated test data generation system [5], [6].
For the purposes of this paper the details of GödelTest are not
critical; we refer the reader to earlier papers for details about
the system. However, we give a very brief introduction to the
key concepts of the system below so that we can then describe
the specific SBST problems we have selected.

GödelTest allows a tester to write data generators in the form
of program code and to set specific goals for properties that the
data, or its use in actual testing, should have. The generators
constrain the ways in which a datum can be generated while
allowing a large range of data to be generated depending on
random choices—at locations in the program called ‘choice
points’—during the generation process. By selecting a class of
models for how these choices can be made (a choice model)
and then searching for a specific model instantiation from
which good data are generated, the system can help the tester
fulfill specific testing goals. Note the clear benefits of a search-
based approach to this problem. The system does not care what
the properties are as long as they give a numeric indication
of whether a good or bad datum has been generated. The
properties can be specific to the datum itself (its length/size
or depth for example, or its uniqueness compared to already
seen data), to a set of data, or be properties measured during
execution of the software-under-test (SUT) while providing
the datum as input.

To eliminate variation we use only one fitness criteria for all
of the investigated GödelTest test data generators. The goal is
to create test data of specific goal sizes, measured individually
on each datum. Even though GödelTest could as well use
branch or statement coverage or even a mutation testing score,

measuring the size of the data is simpler and quicker. Since
we will perform experiments with many different optimization
algorithms we do not want to need to start and actually run
a SUT a large number of times. We thus limit ourselves to a
fitness property that can be measured directly on a generated
datum and vary difficulty by the size of the generators and
choice model classes involved.

From a total of three different generators and two dif-
ferent choice model classes we have created six different
optimization problems in the empirical work of this paper.
Table I summarizes the six different problems and their main
characteristics.

Problem 1 (Expr in the table) uses the default sampler
choice model (called simply DefaultCM in the following)
in GödelTest for a recursively defined generator for simple
arithmetic expressions. DefaultCM maps each choice point in
a generator to a specific statistical distribution. Which distribu-
tion to use is typically theoretically motivated. For example,
the number of repetitions to use for repeat choice points is
selected from a Geometric distribution. This distribution has
for example been used in the theoretical work on Boltzmann
samplers [7] in order to guarantee that all possible recursively
defined trees (up to a given size) can be sampled. For rule
choices (which occur when there are multiple rules to select
from) we naturally use a categorical distribution, and so on for
other choice point types. Given that there are 5 choice points
in the expression generator used in problem one and some
distributions need two instead of one real-valued parameter(s)
there is a total of 8 reals that can be selected during the search.

Problem 2 (ExprMix) is the same generator as in problem
1 but the sampler choice model use is the default one but with
the repetitions choice points mapped to a mixture sampler that,
with a certain probability, either selects the default geometric
distribution, or, alternatively, selects a gaussian distribution
with a specific mean and standard deviation (sigma) value.
Thus the number of decision variables for problem 2 is larger,
and requires the optimization algorithms to tune 12 different
reals.

Problems 3 (LibXml) and 4 (LibXmlMix) uses the same
choice model classes (DefaultCM and MixtureCM, respec-
tively) but combines them with a generator for XML docu-
ments of a small library, i.e. to model the meta-data of books
and loans. They have 81 and 109 decision variables, respec-
tively. Finally, problems 5 (MathML2) and 6 (MathML2Mix)
similarly combine the two mentioned choice model classes
with a larger generator of XML documents, namely for the
MathML2 standard. They have 360 and 492 decision variables,
respectively. The generators used in problems 3&4 and 5&6
have both been automatically generated from XSD specifica-
tions as described in our earlier paper [8].

A. Experiment settings and fitness function

For all problems we have executed 10 repeated runs per
optimization algorithm per goal. Repeated runs are needed
since all the algorithms are stochastic and their results will
depend on non-deterministic choices during their execution.

TABLE I
THE SIX SBST OPTIMIZATION PROBLEMS USED IN THE EMPIRICAL WORK AND THEIR MAIN CHARACTERISTICS

Id Name Generator Choice model Decision variables Goals (Len. of gen. test data)
1 Expr Recursively defined expressions Default 8 50, 200

2 ExprMix Recursively defined expressions Default w. mixture sampler 12 50, 200

3 LibXml Library XML Default 81 100, 500

4 LibXmlMix Library XML Default w. mixture sampler 109 100, 500

5 MathML2 MathML2 XML Default 360 100, 1000

6 MathML2Mix MathML2 XML Default w. mixture sampler 492 100, 1000

With 10 repeated runs we can get an indication of average
results without an excessive number of repetitions. More rep-
etitions would be needed to compare algorithms on individual
problems though. All optimization algorithms were used with
their default settings. Better results can often be had by tuning
parameters for individual algorithms; however this is out of the
scope of this paper.

While running the optimizations we save each fitness im-
provement to disk. This way we can later graph and com-
pare algorithm performance per the same number of fitness
evaluations. The fitness function for is often noisy since the
stochastic GödelTest generators emit data with a wide range of
lengths, so we sample a set of 200 (N) data from a generator
for each fitness calculation. The specific fitness function used
is a weighted sum of the mean absolute percentage error
(MAPE) and the percentage of invalid data generated:

f(mi) =

N∑
j=1

100 ∗ |Len(dj)−G|
N ∗G

+10∗100 ∗ # invalid datums
N

where Len(dj) is the length of a specific generated datum
when dumped as a string, mi is the specific generator and
model being evaluated, N is the number of sampled data, and
G is the current goal value. A datum is counted as invalid if
more than 2000 choices need to be made while generating it or
if a repetition choice point requests more than 1000 repetitions.
These limits are ad hoc, but put in place to limit execution
times. They were selected high enough so as not to negatively
affect optimization performance, based on initial experiments.

We tried a few different weights but it did not seem to
have a big impact on performance and thus settled on a value
of 10. We selected MAPE in the fitness function since that
makes it easier to compare results for different optimization
problems and goals. All experiments were executed on an
Apple MacBook Pro Retina (mid 2012) with a 2.7MHz Intel
Core i7 (4 CPU cores), and 16GB 1600MHz DDR3 RAM
and using Julia v0.3.5 (2015-01-08). Only one core was used
per optimization algorithm but up to 4 runs were executed in
parallel for maximum CPU utilization. The stopping condition
for each run was 2000 fitness evaluations (when using the
alternative optimization algorithms). The results in the paper is
based on sampling 1000 data from the best model found by an
optimization algorithm and calculating a number of summary
statistics for this set.

III. ALT 1: ALTERNATIVE OPTIMIZATION ALGORITHMS

Optimization is a widely applied and beneficial tool in the
sciences and engineering and has been studied for a long
time in a number of different communities, e.g. mathematical
programming, operations research and non-linear optimiza-
tion, to name but a few. The Nelder-Mead simplex local
optimization algorithm was proposed in the 1960s [9] and
Brent proposed the PRAXIS local optimization algorithm in
his book from 1973 [10]. Most interest has been traditionally
given to methods that require the fitness function to be
differentiable. However, this is rare in SBST. Luckily there
are many application areas with this characteristic so there has
been steady progress also on so called direct search methods
(called derivative-free methods by others). For more detailed
introductions with many example algorithms see [11], [12].

We do not have space here for an extensive evaluation
of the many possible algorithms but have selected a (conve-
nience sampled) subset. A major criterion was that an open-
source and well documented library implementing them was
available. Since our SBST tool is implemented in Julia we
preferred libraries that can interface directly with this pro-
gramming language. Since SBST often requires long-running
and many fitness evaluations the implementations also needs
to be performant.

Fortunately, the NLopt open-source library fulfills all our
criteria: it is implemented in C with interfaces to many
modern-day programming languages including Julia, includes
many classic algorithms with up-to-date implementations
based on recent tweaks proposed in published research, and
it is relatively well-documented. It includes both local and
global optimization algorithms as well as tutorials and concrete
advice on how to combine algorithms together. A typical
recommendation is to first run a global optimization algorithm
and then “polish off” the best solution found with a shorter
local optimization run. We followed this recommendation for
the 3 algorithm combinations from NLopt we used in the
empirical work: CRS+BOB, ESCH+COB, and SRES+BOB.
Additionally, we included the traditional differential evolution
(DE) algorithm used in our previous papers on GodelTest [5]
as implemented in the BlackBoxOptim Julia package devel-
oped by one of the authors. We also included a random search
algorithm (RandSrch) and a classic, direct search algorithm
(Compass) that were also available in BlackBoxOptim. Some
further details about the evaluated algorithms can be found in

TABLE II
OPTIMIZATION ALGORITHMS USED AND THEIR MAIN CHARACTERISTICS

Name Description Refs Type Library
DE Differential evolution (rand/1/bin) [13] Evo BlackBoxOptim

SRES+BOB Stochastic Ranking Evo Strategy, then BOBYQA [14], [15] Evo. Combination NLopt

ESCH+COB Evo Strategy, then COBYLA [16], [17] Evo. Combination NLopt

CRS+BOB Controlled Random Search (CRS), then BOBYQA [18], [19], [15] Combination NLopt

Compass Direct (compass) search with adaptive step size [11] Non-Evo BlackBoxOptim

RandSrch Random Search (baseline) N/A Non-Evo BlackBoxOptim

TABLE III
SUMMARY RESULTS FOR INVESTIGATED OPTIMIZATION ALGORITHMS ON

EACH OF TWO GOALS FOR THE SIX INVESTIGATED SBST PROBLEMS.
VALUES LISTED ARE THE AVERAGES FOR 120 RUNS OF EACH

OPTIMIZATION ALGORITHM. RANK WAS CALCULATED BASED ON LOWEST
ACHIEVED MAPE VALUE AFTER ONE RUN OF EACH OF THE 7 INCLUDED

ALGORITHMS (THEN AVERAGED), THE OTHER COLUMNS SHOWS THE
AVERAGE FOR ALL RUNS PER ALGORITHM, EXCEPT WINS THAT SHOW
HOW MANY TIMES (OF 12) THE ALGORITHM HAD THE LOWEST MAPE

VALUE.

Algorithm Rank Wins MAPE HitRate Time
ESCH+COB 2.2 6 29.7 5.5 705.3
CRS+BOB 3.21 4 44.5 8.5 1203.7
DE 3.24 2 43.6 4.0 985.9
RandSrch 3.8 0 46.9 1.8 1145.3
Compass 3.9 0 49.3 2.1 1168.6
SRES+BOB 4.9 0 64.3 3.5 1583.1
Unoptimized 6.7 0 164.79 0.2 0.0

table II and the table also refers to papers with more details
for each algorithm.

Table III summarizes all of the results from 120 executions
of each of the evaluated optimization algorithms (720 runs
in total with a total of ∼121 CPU hours on a single-core
processor). It also includes the same results from a 1000 data
sampled from the unoptimized generator for each problem.
This shows a baseline for the performance one can get on
these problems by using GodelTest right out of the box. The
RandSrch algorithm shows another type of baseline: what
a random search using the same (2000) number of fitness
evaluations would give. For each algorithm the table lists
the average rank, the MAPE, the hit rate (percentage of
generated data that are exactly on the goal value), and the
time needed for one optimization run. For example we can
see that the ESCH+COB combination from the NLopt library
is on top based on an average rank of 2.2, with a MAPE of
29.7% from the goal value, returns a datum with exactly the
goal characteristic about 5.5% of the time after an average
optimization time of 705.3 seconds.

Overall we see that some optimization is needed since the
MAPE for the unoptimized generators is on average ∼165%
off target. By spending a couple of minutes of optimization
time the best performers can take this down to ∼20-40%
(depending on problem) while increasing the hit rate from
0.2% up to ∼5-8%. Note that the average time presented here
is negatively affected by problems 3 and 4 which took a very

long time for all the algorithms; for the other problems the
optimization time was just a few minutes. There is no clear
pattern that any specific type of optimization algorithm have
an edge; even though the ESCH+COB hybrid algorithm are in
top both on rank, MAPE and time needed performance varied
over the problems. In fact the CRS+BOB non-evolutionary
hybrid had the largest number of top ranked positions but was
negatively affected on average because of bad performance
on problems 5 and 6; we can only speculate that the random
search component of CRS does not scale as well when the
number of dimensions increase. Also, CRS+BOB had consis-
tently higher hit rates than the others except for problems 5
and 6. Random search also generally performs relatively good
but has a lower hit rate. Possibly, this can be explained by
the fact that a random search might stumble upon solutions
that are in the vicinity of the goal but then cannot refine
the solutions to approach the goal further. This analysis is
supported by the fact that CRS+BOB is essentially a smarter
way to randomly search throughout the search space and then
uses the BOBYQA local optimization algorithm to fine-tune
the best solution found.

We also looked at robustness of the optimization algorithms.
CRS+BOB has a somewhat larger variation in MAPE than
the other algorithms. Overall, we also note that there is
less difference for the problems using the default sampler.
Probably this model (class) is too restrictive while the use of
a mixture sampler allows more fine-tuned adaptation. Future
work should investigate if a better default model should be
included with the system.

When it comes to time performance the evolutionary al-
gorithms seem to have a slight edge with ESCH+BOB the
fastest and DE second (but 40% slower on average). Here
CRS+BOB seem to take 30-50% more time on average,
depending on problem. Our analysis is that since it uses low-
discrepancy Sobol sequences to ensure a better coverage of
the whole search space it will also sample more points that
lead to many choices during generation and thus long fitness
evaluation times. The evolutionary algorithms will rather focus
performance on more promising areas of the search space
where good performance can be found which also generates
fewer invalid data. This is not always the right trade-off;
depending on problem characteristic the CRS approach may
sometimes be preferable.

The top performer both in sub-classes based on different
choice model classes as well as overall, i.e. ESCH+COB,
uses a combination with 90% of evaluations given to an
evolutionary algorithm and then fine-tuning the best solution
found via a short run of the COBYLA local optimization al-
gorithm. Maybe such hybrid solutions are worth investigating
further in SBST more generally? It seems to be both robust,
time efficient and gives top performance on all problems we
investigated.

IV. ALT 2: OPTIMIZATION VIA MACHINE LEARNING

Machine Learning is a very active area of research and has
seen a plethora of results in the last 15-20 years. The area
is broad and concerned with many different aspects of how
computers can better learn from data and create predictive
models. One of the important contributions in recent years are
Gaussian Processes (GPs), a way to put a prior probability on a
set of functions and then update the probabilities in a bayesian
framework to adapt the functions to collected data [20]. GPs
are powerful kernel-based methods and can model complex,
non-linear functions in a non-parametric fashion. Also since
they model the uncertainty of their estimates they provide
additional information which is commonly utilized to im-
prove optimization of simulation models and algorithm hyper-
parameters [21]. A downside is that they typically do not scale
well to problems with very many decision variables.

We applied GPs to our problem by using it as a surrogate
function for modeling the fitness landscape. Starting from an
initial 25 points sampled via latin hypercube sampling we
evaluated their fitness and used the GP for regressing the
fitness value from the decision variables. We then sampled
a large number of random points as well as random points
at different step sizes away from the current minima. The GP
then predicted the fitness of all of these candidates and the top
5 were then actually evaluated on the fitness function. Based
on the new points we then updated the GP surrogate function
and repeated.

Space does not permit a detailed analysis, but after only
2000 sampled datums this approach could reach MAPE levels
of ∼80% on problem 5 and after 20000 sampled datums it
frequently reach MAPE levels of ∼50%. This does not rival
the top performer for this problem (ESCH+BOB) that reached
on average a MAPE of ∼39% after 400,000 sampled datums
(2000 evaluations with 200 datums per evaluation) but the
key point is to quickly get a rough sense of the shape of the
fitness landscape. Even on this high-dimensional problem a GP
approach can provide a quick focusing of interesting areas of
the search space. However, when running for longer time the
GP is not a practical solution since a vanilla implementation of
it, such as ours, scales like O(N3) in the number of regressed
points the modeling time quickly becomes excessive. However,
it is interesting to consider them as being at one extreme of a
spectrum of optimization approaches; they can quickly sketch
out the overall shape of a fitness landscape. For example, we
envisage them being useful for identifying areas of a landscape

that lead to long fitness evaluation times, which can then be
avoided.

V. ALT 3: NESTED MONTE-CARLO SEARCH

Monte-Carlo Tree Search (MCTS) methods use stochastic
simulation (the ‘Monte-Carlo’ aspect) to efficiently solve prob-
lems that can be represented as finding the best path of choices
through a tree of decisions [22]. For each possible choice at a
decision point, one or more random simulations are performed
in order to assess the impact of taking that choice, and this
information is used by the search to select one of the choices.
Although the assessment through random simulation will
necessarily be noisy, there is often sufficient signal to guide the
search along a good path. MCTS methods have demonstrated
particular success in the domain of automated game play, the
tree of decisions in this domain being the possible moves made
at each turn in the game by the automated player and one or
more human opponents.

In our previous work [6], we demonstrated that Nested
Monte-Carlo Search (NMCS), a variant of MCTS applied to
single-player games [23], could be applied to the generation of
test data by GödelTest. The tree of decisions in this context are
the choice points encountered when executing the generator
program. The algorithm is described in detail in [6]; we sum-
marize it here in conjunction with Figure 1. The current choice
point has three choices. For each of these choices, a single
random simulation is performed that first takes that choice
and then subsequently makes random choices—sampled from
a choice model such as the default sampler choice model—
until the execution of the generator is complete (indicated by
the filled node). The properties of the datum generated by each
simulation are evaluated, and the choice that led to the best
datum is taken. The process is then repeated at the next choice
point encountered by the generator.

0 1 2
current choice point

ra
nd

om
 s

im
ul

at
io

n

Fig. 1. Nested Monte-Carlo Search applied to GödelTest.

Our motivation for applying NMCS to GödelTest was that—
in contrast to optimizations applied to the choice model—
NMCS exerts control over choices made during the generation
process itself. The random nature of the simulations made by
NMCS ensures that the data generated across multiple runs of
the generator remains diverse, but we speculated that NMCS
could dynamically adjust the path taken in the generator to
ensure that the each generated datum had desired properties.
The empirical results of our previous work [6] support this
hypothesis.

However the effectiveness of NMCS was found to be
sensitive to the choice model used for the random simulation.
For that reason we demonstrate here a combination of NMCS
and a search algorithm: the choice model is first optimized
by a search algorithm, and then NMCS is used to sample test
data using the optimized choice model with the objective of
generating test data very close to the desired properties.

In Table IV we show the results of combining NMCS with
choice models that have been pre-optimized with one of the
top 3 optimization algorithms from Section III above. We also
include the random search as well as 100 samples from the
(unoptimized) sampler choice model as baselines. The goal
here is to create 100 MathML2 XML documents each having
a length of 1000 characters. The results are based on a very
brief pre-optimization step with only 400 fitness evaluations
(each using a sample of 50 data) since only very little time
would typically be available for pre-optimization for a specific
testing target.

The result that stands out is the effectiveness of NMCS
itself. There is some advantage in combining NMCS with
pre-optimized choice models, but since NMCS gets very low
MAPE values even when combined with the unoptimized
model, the benefit is limited. On average there is a speedup but
the average generation time when NMCS is combined with
one of the pre-optimized models is larger than when using
the default model. And since the speed-ups (here measured
in relation to Unoptimized+NMCS) are still modest compared
to the time it takes to run a pre-optimization we doubt such
combinations have much value in practice. The main benefit
from NMCS comes from the algorithm itself but since it can
help to pre-optimize, future work should investigate doing this
for stretch goals that are very hard to reach.

VI. DISCUSSION

Our results confirm that evolutionary search is not always
the best way to perform the search part of search-based
software testing. There are alternative algorithms from the
optimization literature that can give similar or sometimes
better results. By reconsidering what the search is used for we
can find alternative approaches that are not purely focused on
optimization. Gaussian processes (GPs) from machine learning
can quickly find roughly the right areas of the search space
with very few fitness evaluations and nested monte-carlo
search (NMCS) from reinforcement learning can hone in more
precisely on the testing target one has set. And throughout
our investigations we have repeatedly seen that random search
often can perform on par with more advanced approaches.
Our empirical results are only indicative; more experiments
are needed before we can conclude that any one approach
has a particular advantage. It is also not clear if the selected
test generation problems are representative. We also note that
future research should investigate also alternative approaches
in an even wider sense of the word; most of the algorithms
investigated here can still be considered ‘soft computing’.
Below we note some implications of this work and guidelines
that we set for ourselves in future SBST work. We urge other

SBST researchers to consider if they should adopt something
similar for their work.

Evolutionary algorithms are very general search algorithms
and rarely fail outright when applied on difficult search prob-
lems. It is understandable that they have gained a strong fol-
lowing and are the ‘workhorse’ of SBST. However, one down-
side is that they often have a plethora of tuning parameters.
In contrast, many of the traditional optimization algorithms
included in for example the NLopt library have no or only a
few tunable parameters. They have been around for long and
often performs well without tuning. Similar arguments have
been made in SBST and, for example, Arcuri and Fraser, after
an extensive empirical investigation, concluded that default
settings for parameters are often a sensible choice since tuning
might not pay off [24]. However, this depends on how well
the developer of the search algorithm have tuned parameters
and your context might differ from theirs. For ultimate control
we often implement our own search algorithms and thus must
tune their parameters; algorithms that require less or no tuning
would thus be preferable.

A subtle example of these problems have cropped up during
the empirical work for this paper. We had tuned the general DE
algorithm used by default in GödelTest for long optimization
runs which thus can start from a large population to better
retain diversity. However, for the practical testing work for
which we develop GödelTest, what a tester needs is to more
quickly find a spread of testing data with differing character-
istics. Thus, we might be better off with multiple short runs
starting from very small populations. Or we can consider a
simple alternative such as random search or machine learning
approaches that can extract more information per evaluation,
and thus more quickly can find roughly the right place to be.
Or start from one such ‘rough’ approach and then refine it
with a local search as implemented in libraries like NLopt.

When we applied Nested Monte-Carlo Search to our prob-
lem we had to rethink what was actually our goal with the
search and we had to view our problem in a new light. The
approach has similarities with Estimation of Distribution Al-
gorithms (see for example, [25]), the evolutionary algorithms
that build stochastic models of which parts of and values
in the genotype give good performance for the phenotype.
But NMCS is more direct and thus simpler to implement. It
does not need to build up the model, or implement specific
data structures to house such a model, by simply randomly
sampling new paths, or falling back to a previous good
choice, it can find a good way forward. But NMCS has also
made us rethink our problem because of its very different
characteristics; rather than being ‘generally’ good but not ever
exactly right (like DE) it takes a much longer time to find
something very close to target. This is not a first choice of
search algorithm in a testing tool; for complex data generators
the testers might have to wait a long time to even get one test
datum. But by combining NMCS with an initial random or
maybe GP search over the search space a good complement
might be NMCS to seek out specific target areas where
failures might be lurking. And against such a combination

TABLE IV
RESULTS WHEN PRE-OPTIMIZING A CHOICE MODEL AND THEN USING IT WITHIN THE NESTED MONTE CARLO SEARCH CHOICE MODEL THAT

ADAPTIVELY SELECTS PATHS THAT LEAD CLOSER TO A TARGET MATHML2 XML OUTPUT LENGTH OF 1000 CHARACTERS.

Algorithm combination Mean length MAPE HitRate Avg. Time Avg. Speedup
ESCH+COB+NMCS 997.2 0.3 97.3 7.4 1.4

RandSrch+NMCS 996.5 0.4 97.6 3.5 2.2

DE+NMCS 996.4 0.4 98.5 2.9 3.2

CRS+BOB+NMCS 996.4 0.6 98.8 1.7 1.8

Unopt+NMCS 983.6 1.6 96.9 2.2 1.0

Unoptimized 257.0 73.3 0.0 0.1 35.8

it is less clear what are the key advantages of an evolutionary
search. During this work we have come to view our DE as
a generalist without much teeth. We end this discussion by
listing reminders to ourselves in future SBST work:

• Investigate alternatives - by adopting your problem to
an alternative technique you change your view on it and
avoid limiting your creativity, and

• Combine approaches - hybrids can combine strengths
of different members into a more adapted whole, and

• Always include random search - since you cannot know
in advance if your problem really benefits from a more
refined algorithm, and you will learn from the sanity
check, and

• Consider existing libraries - it is not always best to
implement yourself, lots of work has gone into debugging
and tuning parameters in existing optimization libraries.

VII. CONCLUSION

The empirical work in this paper illustrates an SBST method
for which search techniques other than an evolutionary al-
gorithm can achieve better results. This supports our more
general position: that researchers in SBST should avoid the
‘one-size-fits-all’ approach to selecting the search technique
to use by considering a wider class of optimisation algo-
rithms, such as traditional Operations Research algorithms,
approaches from machine learning, and hybrid approaches.

ACKNOWLEDGMENT

This work was funded by The Knowledge Foundation
(KKS) through the project 20130085 Testing of Critical Sys-
tem Characteristics (TOCSYC).

REFERENCES

[1] P. McMinn, “Search-based software test data generation: a survey,”
Software testing, Verification and reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[2] ——, “Search-based software testing: Past, present and future,” in
Software Testing, Verification and Validation Workshops (ICSTW), 2011
IEEE Fourth International Conference on. IEEE, 2011, pp. 153–163.

[3] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based
testing for non-functional system properties,” Information and Software
Technology, vol. 51, no. 6, pp. 957–976, 2009.

[4] D. Thierens, “Scalability problems of simple genetic algorithms,” Evol.
Comput., vol. 7, no. 4, pp. 331–352, Dec. 1999.

[5] R. Feldt and S. Poulding, “Finding test data with specific properties via
metaheuristic search,” in Proc. of 24th IEEE International Symposium
on Software Reliability Engineering (ISSRE 2013). IEEE, 2013, pp.
350–359.

[6] S. Poulding and R. Feldt, “Generating structured test data with specific
properties using Nested Monte-Carlo Search,” in Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2014),
2014, (to appear).

[7] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, “Boltzmann
samplers for the random generation of combinatorial structures,” Com-
binatorics, Probability and Computing, vol. 13, no. 4-5, pp. 577–625,
2004.

[8] S. Poulding and R. Feldt, “The automated generation of human-
comprehensible XML test sets,” in Proc. 1st North American Search
Based Software Engineering Symposium (NasBASE), 2015, to appear.

[9] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” The computer journal, vol. 7, no. 4, pp. 308–313, 1965.

[10] R. P. Brent, Algorithms for minimization without derivatives. Courier
Dover Publications, 1973.

[11] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct
search: New perspectives on some classical and modern methods,” SIAM
review, vol. 45, no. 3, pp. 385–482, 2003.

[12] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to derivative-
free optimization. Siam, 2009, vol. 8.

[13] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[14] T. P. Runarsson and X. Yao, “Search biases in constrained evolutionary
optimization,” Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 35, no. 2, pp. 233–243, 2005.

[15] M. J. Powell, “The bobyqa algorithm for bound constrained optimization
without derivatives,” Cambridge NA Report NA2009/06, University of
Cambridge, Cambridge, 2009.

[16] C. H. S. Santos, M. S. Goncalves, and H. E. Hernandez-Figueroa, “De-
signing novel photonic devices by bio-inspired computing,” Photonics
Technology Letters, IEEE, vol. 22, no. 15, pp. 1177–1179, 2010.

[17] M. J. Powell, “A direct search optimization method that models the
objective and constraint functions by linear interpolation,” in Advances
in optimization and numerical analysis. Springer, 1994, pp. 51–67.

[18] W. Price, “Global optimization by controlled random search,” Journal
of Optimization Theory and Applications, vol. 40, no. 3, pp. 333–348,
1983.

[19] P. Kaelo and M. Ali, “Some variants of the controlled random search
algorithm for global optimization,” Journal of optimization theory and
applications, vol. 130, no. 2, pp. 253–264, 2006.

[20] C. Rasmussen and C. Williams, “Gaussian processes for machine
learning,” Adaptive computation and machine learning, 2006.

[21] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
arXiv preprint arXiv:0912.3995, 2009.

[22] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey
of Monte Carlo tree search methods,” IEEE Trans. Computational
Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43, 2012.

[23] T. Cazenave, “Nested Monte-Carlo search.” in Proc. 21st Int’l Joint
Conf. Artificial Intelligence (IJCAI), 2009, pp. 456–461.

[24] A. Arcuri and G. Fraser, “Parameter tuning or default values? An
empirical investigation in search-based software engineering,” Empirical
Software Engineering, vol. 18, no. 3, pp. 594–623, 2013.

[25] P. Larrañaga and J. A. Lozano, Estimation of distribution algorithms: A
new tool for evolutionary computation. Springer Science & Business
Media, 2002, vol. 2.

