
An Interactive Software Development Workbench based on Biomimetic

Algorithms

Robert Feldt

Department of Computer Engineering
Chalmers University of Technology

Gothenburg, SWEDEN

November, 2002

Abstract

Based on a theory for software development that focus on the internal models of the
developer this paper presents a design for an interactive workbench to support the
iterative refinement of developers models. The goal for the workbench is to expose
unknown features of the software being developed so that the developer can check
if they correspond to his expectations. The workbench employs a biomimetic search
system to find tests with novel features. The search system assembles test templates
from small pieces of test code and data packaged into a cell. We describe a prototype
of the workbench implemented in Ruby and focus on the module used for evolving
tests. A case study show that the prototype supports development of tests that are both
diverse, complete and have a meaning to the developer. Furthermore, the system can
easily be extended by the developer when he comes up with new test strategies.

1. Introduction

Developing software without faults is an important task in our modern society. The
effects of faults in software can range from annoying, over costly to fatal.Having tools
that support software developers in avoiding and removing faults is thus important.

One of the most expensive phases of software development is testing. Since
testing does not directly add any functionality to the software there is a risk that
software developers does not prioritize it enough. This is unfortunate since testing is
a crucial step in ensuring the dependability of a piece of software. An important goal
for a software development workbench should therefore be to support developers in
finding and writing good tests and to automate testing processes.

A candidate for automating testing would be evolutionary computation. Evo-
lutionary algorithms (EA) ruthlessly exploit weaknesses in the scaffolding software
needed to support the evolutionary process [5]. In an earlier experiment of ours [9, 10]

- 2 -

the genetic programming (GP) algorithm revealed a fault in our simulator. By out-
putting NotANumber at a crucial step in the simulation the evolving programs could
get a perfect score and quickly solve the task. In that study, we fixed the fault, re-re-
viewed the simulation software for similar or other faults and restarted the experiment.
In effect, the GP algorithm had helped us debug our software. In this paper we inves-
tigate this ability further and design a system that capitalizes on the effect.

Evolutionary algorithms have previously been used to generate test data for soft-
ware testing [19, 26, 30, 37]. The focus has been on finding test data for structural test-
ing although one study investigated black-box testing [38] and another one searched
for test cases for mutation testing [3].

In this paper we propose a system that supports an incremental learning process
for writing code and executable properties of that code. The distinghuishing feature
is a biomimetic algorithm that can search for new test cases that highlights previously
unshown features of the code and the specification. The biomimetic algorithm
employs an evolutionary multi-agent system for the search, an artificial chemistry for
communication between entities in the system and a fitness evaluation distributed on
multiple evaluators that focus on different aspects. The system is interactive in that the
developers actions indirectly affect the search.

In section 2 we give a background to software development and testing and
present a theory for software development. The theory has implications for tools to
support software development and motivates the workbench for interactive software
engineering1 described in section 3. Section 3 also describes the prototype WiseR of
this workbench that we have implemented in the programming language Ruby. The
exeperiments we have conducted with WiseR are described in section 4. Sections 5, 6
and 7 then summarizes related work, discusses the results and draws conclusions.

2. Software development and testing

Software Engineering (SE) is the ’application of a systematic,disciplined,quantifiable
approach to the development, operation, and maintenance of software’[18]. Much
effort in SE has gone into finding good development processes. The most traditional
example is the waterfall model with strict separation between requirements analysis,
design, implementation and testing. Other processes have abandoned the strict sepa-
ration between phases since they are often impossible to withhold in practice; during
design we realize we have overlooked or underspecified some requirementsand during
implementation we realize the design is not complete.

A development process that has received much attention lately takes this stance to

1The workbench was originally named after ’workbench for interactive software evolution’but we changed
evolution to engineering so as not muddle the different uses of evolution in this paper.

- 3 -

a new level. Extreme Programming (XP), highlights testing as a fundamental activity
to ensure quality and puts it in the front seat [4].Some XP proponents even use the term
’test-first design’. The tests should be one of the major driving forces and developers
start each iteration by writing tests for the code that needs to be implemented.The tests
thus constitutes executable examples of the requirements on the system.

A natural companion to the test-first ideas of XP is a unit testing framework
that supports the writing of tests and automates the execution and result collection
of running them. Kent Beck originally developed SUnit for unit testing of Smalltalk
classes but a number of similar systems have now been developed for other languages
and they are collectively called XUnit [8]. In practice the XUnit frameworks allow
the developer to specify concrete inputs for the software under test and to state the
expected outputs. Even though they focus on unit testing they are general enough to
support integration and system testing.

Although the unit tests written in a XUnit framework constitutes executable
examples they are different from formal specifications.Recently there has been efforts
to overcome this by marrying the JUnit Java unit testing framework with the formal
specification language JML (Java Modeling Language). The contracts written in JML
in the form of pre- and post-conditions that must be valid when calling a method on
a class are used as test oracles in the unit testing. This alleviates the developer from
the task of writing the expected outputs and thus simplifies the task of writing tests.
The developer only need to set up the testing context and specify the inputs and
call sequence.

The type of testing supported by the XUnit frameworks is called behavioural or
black-box testing. It focus on the behavior of the software under test (SUT) and aims
to test the responses of the SUT regardless of its implementation. An example of a
black-box testing technique is boundary-value testing which locates and probes points
around extrema and discontinuities in the input data domain.

Another type of testing is called structural or white-box testing. It focus on the in-
ternals of the implementation, often the control flow. The goal is to find tests that give
good coverage of the program, ie. executes all statements or paths in the program.

A special type of testing is mutation testing which creates mutants of the progam.
The goal is then to devise tests that reveal the mutants. By choosing mutant operations
that resemble faults that programmers frequently introduce the hypothesis is that a test
set revealing mutants should also be good at revealing real faults.

With this background let us now summarize our view of the software develop-
ment problem in a theory and state the implications it has for a development work-
bench. A detailed description of the theory can be found in [11].

Our theory for software development is built from the five elements fundamental
to any development process: a patron which has a need for a program or program

- 4 -

component, a specificationwhich states how the program should and should not
behave, a program, a developerwriting it and a library containing all of humanities
total knowledge relevant to the problem at hand. Based on these elements a software
development process is defined as an incremental learning process in which there
are two main ways to make progress: refining an internal model of the developer or
refining an artefact based on an internal model. Since the former underlies the latter it
is more fundamental.

This theory has implications for tools supporting software development. They
should trigger the identification of discrepancies between the internal models of the
developer and the ideal artefacts that would lead to acceptable behaviour. One way for
them to do that would be to create novel test invocations for the developer to consider.
If the tool is creative in creating these invocations it could help the developer ’think
outside the box’and realize his knowledge is incomplete. Furthermore the tool should
support the sharing of recipes for creating novel test invocations. If a system for
sharing such recipes was in wide-spread use it could lead to more general progress in
the area of software development.

The theory also describes tests as half-baked requirements; they are requirements
without a verdict on the actual behavior the program showed. It would be very
powerful to have a tool that generated test sequences and then executed the program
on them and presented the test and the program behavior to the developer. This would
allow the developer to classify the test as valid, invalid or irrelevant and the behavior
as correct or wrong.The tool should then generate the code for setting up and checking
this behavioral requirement. The tool should also allow the developer to note that a
test is important but that they do not know what the expected behavior should be.

It is also important that tests are clearly documented. If a test identifies a fault
we should be able to demonstrate it to others. Also, as the software is completed and
further evolved to meet additional user requirements we want to be able to re-run
previous tests. This regression testing is important since the new additions may affect
previous code so that it fails where it previously worked.

It is also important that the tests are in a form that facilitates automation. Tests
are typically numerous and it would be too cumbersome to execute them by hand.
If they are written in a form that is easily executed this should lower the barrier for
the developers to continously run and monitor the progress on the tests. Such a tight
’feedback loop’ is what Extreme Programming and other similar, recent development
methods prescribe [4, 2].

In all but trivial cases testing cannot be exhaustive; there are far more possible
combinations of indata than we have the time to run. Thus, the tests we choose to
run should represent different classes of inputs. If the software correctly handles the
few examples from an input class it is likely that it will handle all inputs in the class.
This partitioning of the inputs into different classes should be visible from the tests to

- 5 -

justify why we have chosen this particular set of tests.

Many tests often have the same structure and only the test data differs between
them. Our development tools should allow the programmer to express these recurring
patterns in a form so that it can be reused in later projects and by others.

3. WISE - a Workbench for Interactive Software Engineering

WISE is a design for an interactive tool supporting software development based on the
theory above. It is an integrated environment for developing an executable, behavioral
specification and a program that implements it. It also highlights the importance
of tests and their close relation to the behavioral specification. WISE searches for
tests with properties different from the tests it already knows of. Interesting tests are
presented to the developer which can review them and classify them.This interactivity
between the tool and the developer is central to the design of WISE.

A prototype of WISE called WiseR (WISE for and in Ruby) has been implement-
ed in the programming language Ruby. It currently focuses on searching for tests al-
though a simple GUI has been implemented to interact with the system.

WISE draws upon biologically inspired ideas and a running WISE system uses
several biomimetic algorithms. Before we describe the philosophy behind WISE, its
architecture and the WiseR prototype we motivate why biological ideas are used and
the biological processes they resemble.

3.1. Biomimetic ideas in WISE

WISE is based on several ideas inspired by biological systems and uses algorithms
modeled after nature:

• It is continously active even if no developer is present. It searches for better and
more interesting tests or learns how to use the knowledge in the library.

• Few parts of WISE are cast in stone. When there are alternative solutions WISE
implements several of them and then dynamically learns which one works best.

• Templates for tests are built from building blocks resembling cells in biological
organisms. They have a membrane with ports that can connect to ports on oth-
er cells. In this way cells grow into larger clusters showing more complex be-
havior.

• Test cells interact within a biochemical system where proteins can be released
and sensed. Cells communicate both with other cells, other entities in the system
and with the outside world via the biochemical system.

- 6 -

• The basic commodity for cells is energy. Cells compete for energy by producing
data or test runs. Evaluators probe the chemical system for data or test runs that
are novel and give energy to the entities that produced it.

The reasons for this use of biological ideas are manyfold. From a philosophical
viewpoint the problems facing a developer have many similarities with the ones that
biological systems are facing. They are ill-defined. If they were not there would be
no real development task since it is by definition the formalization of a system from
loose beginnings.

The problems facing a developer are also dynamic. As she defines some part
of the system, her choices affects other, yet un-defined parts of the system. As she
learns more the importance of some parts might decrease while other parts becomes
more important. Even worse, the target might change as the patron gets a new idea or
changes the requirements.

In any development process there is room for multiple different choices. The
developer must identify important trade-offs and study how different decisions affect
the behavior of the system. A workbench supporting the developer must support this
playing with alternatives and exploring differing avenues.

Central to any development process is creativity and innovation. The developer
needs to be innovative in finding solutions, refining the specification and writing
tests that show conformance. Above all the developer needs to be creative, and ’think
outside the box’ to identify the faults in her own internal models.

Even though biomimetic methods may not be the best optimizers, they have an
excellent track record when it comes to ill-defined, dynamic, explorative and creative
processes. So from a philosophical viewpoint they are natural candidates as building
blocks in a development workbench.

An additional reason for the use of biomimetic ideas is that evolutionary algo-
rithms in previous studies have revealed faults in scaffolding code used during evo-
lution.

One example was in one of our earlier studies where a GP algorithm evolved
aircraft brake controllers [9, 10]. In this experiment a simulator was used to evaluate
the aircraft controllers.The simulator was faulty by not correctly handling exceptional
conditions from the controllers. In particular the GP algorithm found that by returning
the float value not-a-number (NaN) in a specific state of the simulation it could
trick the simulator into achieving its goal in a non-realistic way without expending
any energy.

In the experiment above the goal was not to test the simulator. But since the so-
lutions produced by the evolutionary algorithm interacted with the simulator it was in
essence tested. The fault in the simulator was not identified automatically but required

- 7 -

human analysis. But it was clearly evident from running the evolutionary system that
something was not right. Since the exploitation of the fault in the simulator was such
an effective means for the EA to reach its goals all solutions in the population soon
used the exploit. By tracing a simulation of one of the solutions the fault was easily
spotted. This also points to the important interplay between the system and a human
in finding and understanding the cause of a fault.

Other EC researchers have had similar experiences although few report on them
in the final papers. In a recent paper [5] the EC researcher Peter Bentley says that when
you work with evolution you

…get a few glimpses of the creativity of evolution through the bugs in
your code: the little loopholes that are ruthlessly exploited by evolution
to produce unwanted and invalid solutions…. Each result fascinating, and
each prevented by the addition of another constraint by the developer.The
bugs are never reported in any publication, and yet they point to the true
capabilities of evolution.

In this paper we extend this fault-revealing ability of EA to the testing of
general software.

3.2. Goals and design philosophy

The goals for WISE are to

1. find new knowledge about the software under test (SUT), and

2. allow the developer to specify test building blocks, test strategies, and novelty
criteria in a flexible way.

While goal 1is obvious, goal 2 is explicitly stated since it is what makes 1possible both
for the current SUT but primarily for future development activity. The ’flexibility’ in
goal 2 means that WISE should limit the form in which the developer can describe the
system components as little as possible. It should also make as few assumptions about
them as possible. This leads to the sub-goal that WISE must also find new knowledge
about the system components since we cannot assume the developer has stated (or
knows) all of it.

Central to WISE’s design is to focus on the interaction between the developer
and the system. The developer is the ultimate source of knowledge so if the system
is in trouble it should inform him. The system should also encourage feedback on its
progress. Since testing can never be exhaustive for non-trivial systems we want to find
tests that are meaningful.

- 8 -

Another design principle is to avoid making choices about the values of parame-
ters to the components in the system. With choices we bias what can be expressed and
limit creativity.Thus when there is a choice of different alternatives WISE implements
several alternatives and let the system choose which ones are effective at run time.

3.3. Basic Architecture

The WISE architecture has four main parts: an interface to the developer (UI), a
control module that formulates goals and initiates searches, a knowledge base acting
as a central repository for information in and about the system, and compute daemons
that perform searches.

The UI is centered around the two artefacts that should be the end results of the
development process: the behavioral specification and the program. It can also display
tests to the developer and allows him to classify them. If he classifies a test and the
output from the program as valid the test is transformed to a behavioral requirement
and becomes part of the specification. Central to making this work is the need to make
things explicit. In as far as possible the artefacts are stated in a form that the workbench
can actively use in later steps. Information in comments or ’outside’ the system is a
lost oppportunity since the system has less information to base its decisions on1.

The UI gives the developer access to the knowledge base. The knowledge base is
a local version of the library that is part of the theory presented in [11]. In the future
we envisage that the knowledge base could be an interface to central libraries on the
Internet or directly linking the knowledge bases of for example the developers in a
development team.

The Control module is the main initiator of actions in a WISE system. It can
take commands from the developer and set up searches on a compute daemon. If the
developer does not give any commands it can formulate goals and sub-goals and
initiate actions based on them. As an example, if the user has not written or loaded any
new code that needs to be tested the Controller can consult the knowledge base and
initiate a search for test sequences that creates a certain type of data.

When the controller initiates a search it sends the search description and any
information needed for the search off to a compute daemon. To decouple the WISE
front-end from the compute daemons this communication is inter-process via a Tu-
pleSpace over TCP/IP. This decouples the UI and control module from the com-
pute daemon and allow one WISE front-end to use multiple compute daemons. Even
though high performance is not a goal of this study this separation was deemed nec-
essary since many of the biomimetic algorithms are compute-intensive. Including this
in the design from the beginning should make things easier later.

1Unless this information can be parsed and made useful…

- 9 -

The compute daemons are independent and may work on separate problems
handed out by a WISE front-end. the TupleSpace model was chosen since it allows
for very flexible communication between nodes [15, 39]. The daemons are not ex-
pected to cooperate to solve problems but the simplicity and power of the TupleSpace
model does not disallow it. It decouples the WISE module from the number and type
of daemons. The TupleSpace provides a noteboard where information can be pub-
lished and seen by multiple or only some subset of the daemons. It also allows the
daemons to publish information that can be seen both by the WISE front-end and by
other drones.

The searches in the daemons is done in a dynamically evolving system that
builds test templates that adds novel knowledge. The knowledge can be either about
the piece of software under test (SUT) or about the search builing blocks and how to
assemble them.

3.4. WiseR - the prototype

A prototype WISE implementation has been implemented in the object-oriented pro-
gramming language Ruby [36, 29]. It is called WiseR (Wise for Ruby). Ruby was cho-
sen since it is a high-level language with many features that support fast prototyping.
It belongs to a new class languages that sports dynamic typing and easy access to all
parts of the execution environment. This was deemed necessary in order to allow ex-
perimentation with different parts of the system.

Like the popular languages Java and C++ Ruby is object-oriented. Unlike them
it is dynamically typed ie. there is no type checking at compile-time. In fact, there is no
compile-time since Ruby is not compiled but interpreted1. Even though these aspects
make Ruby non-typical compared to major languages in use today we do not think it
confounds our results. If anything, the dynamic typing makes things harder for a tester.
He cannot simply look at the code and see what types are allowed for parameters. In
some sense, there is less information available in the code and thus more information
needs to be re-discovered. The availability of a compiler would speed up the system,
make the client more responsive and allow for more powerful computations.However,
in research and for a prototype we think other factors are more important. More
detalied information about Ruby can be found in appendix B and in the books [36,
29].

WiseR is both implemented in and supports development of Ruby code.All three
artefacts are expressed as Ruby code. Even though this is not a requirement in WISE
it makes things easier for our prototype. We can reuse common functionality used in
analyzing the artefacts. It is also easier to exchange information between them.

1Although Java was originally and is often used as an interpreted language there are numerous compilers
available. In any case Java is typed so differs from Ruby in this regard.

- 10 -

Figure 1. WiseR GUI main window with the Code window active and loaded with the
Array#maximum source code

- 11 -

The focus when developing WiseR has been on a module that searches for tests,
WiseR-Tests. In addition to WiseR-Tests the system contains of a GUI and small
implementations of the control module and a knowledge base. The main window of
the WiseR GUI is shown in figure 1.

Before going deeper into WiseR-Tests we briefly describe the WiseR GUI and
the support WiseR has for writing specifications.

3.4.1. The WiseR graphical user interface

WiseR’s main window, shown in figure 1, has 5 tab windows for different types of
information. The Specification and Code tabs are always present. They are two edit
windows for writing the specification and the program, respectively. The ’Knowledge
Base’ tab is also always present. It gives an overview of the hierarchical data stored in
the knowledge base and allows the developer to change parameters etc.

In the ’Modules’ menu the developer can load a module. After loading the
WiseR-Tests module it adds to additional tab windows. The ’Pools’ tab shows all the
pools that are currently active and can show some simple statistics for them. The
’Tests’window is the place where tests found by searches in the pools are reported to
the developer.

Examples of how the different tabs look during a run can be found in the case
study section below.

3.4.2. Writing specifications in WiseR

Even though the model for software development introduced in [12] and summarized
in section 2 above considered requirements as atomic invocations of the program
with a state, input stimuli, output and a classification of the invocation, WiseR gives
rudimentary support for writing and checking requirements in a more general form.

A specification in WiseR is written as a set of properties in a class inheriting from
the class Properties. The superclass Properties add some helper methods for defining
the 4 different types of properties supported by WiseR:

• pre - A pre-condition that should hold before a method is called. Gets the
arguments to the method as arguments.

• post - A post-condition that should hold after a method is called. Gets the output
from the method, the object and the arguments for the call as arguments. Can
NOT access the object before the call.

• invariant - A condition that should always hold for objects of the class, both
before and after any call.

- 12 -

• raises_exception - Indicates that the method must raise an exception when called.
Gets the arguments for the call as arguments.

We see that the first three are simply the ones dictated by Bertrand Meyer in his design
by contract method [24, 25]. We added raises_exception since it seemed useful. Not
much thought has gone in to this at this stage though and the way specifications are
written may have to be updated in the future. For example, the post-conditions in
WiseR cannot access attributes of the object before the call was made. This is a rather
serious limitation for expressiveness of specifications and needs to be adressed in
the future.

All of the three first methods above take a symbol that gives the name of the con-
dition and a block of code that implements the condition. The block must evaluate to
true if the condition holds or false if it doesn’t. The latter indicates that the specifica-
tion is not fulfilled.

The raises_exception property takes a name, the class of the raised exception and
a block implementing the condition under which the exception should be raised.

In addition to the four property creating methods above there are two more
to indicate which class and method the properties should hold for. They are called
for_class and for_method, respectively.

Additionally WiseR can add behavioral atomic requirements as described in
section 2 and in paper [12]. They are added in a second class after the properties class
at the bottom of the specification.

An example of a full specification is given in the case study section.

3.5. WiseR-Tests

WiseR-Tests is a WiseR module that searches for test templates with novel features.
It starts a search by creating a pooland filling it with cellsthat are thought relevant to
the search.The cells represent recipes for how to create (small) parts of a test template.
Cells communicate with each other by sending proteinsinto a biochemical fluidin
the pool. Portson the cells have protein sensorsthat detect proteins flowing by. If the
protein is a product that the port could have use for it saves some of the proteins.When
the cell later ’runs’ it can use the protein to search for and connect to the originating
cell. As cells connect to more cells and grow into cell clusters they can produce and
emit more complex products.

Cells in the pool compete for energy. Without energy a cell hibernates. Cells with
high energy levels can execute more actions and have a higher chance of growing into
mature cell clusters that produce unique products.

The main source of energy is the evaluatorson the surface of the pool. Like

- 13 -

ports they have protein sensors attached to the biochemical fluid of the pool. Different
evaluators sense different types of products. When the sensor of an evaluator fires
the evaluator examines the product to assess its novelty. If the product is novel the
evaluator assigns an energy score to it and boosts the originating cells energy level.An
evaluator also communicates with the outside world by updating the knowledge base
with the knowledge gained from the analyzed products.

With this high-level description of the main components of WiseR-Tests let us
now go into the details on each one of them.

3.5.1. Cells

To construct a test we need an object of the class to be tested, a sequence of calls to
the object, input data for each call and a description of what to do with the generated
results. Essentially a test is a small program itself, invoking the class under test (CUT)
for a specific purpose.

One approach we could take would be to evolve such test cases directly. For
example, a genetic programming algorithm could be used to assemble test programs
from the syntactical elements of the programming language. However, there are a
number of problems with such an approach.

If we evolve source code directly there is no information about the higher level
structure of the test. There is only the code. We will have a hard time writing whole
test strategies with only the syntactic elements of the programing language. How
should we specify what and how things can vary? Strategies are templates for a piece
of source code; not for individual code elements.

When developing tests the goal is not only that they should efficiently test the im-
plementation and show its conformance to the specification. They should also justify
for humans (developers or ’customers’) that the system has been thouroughly tested.
It is hard to see how such a justification could be built at the same time as evolving
the code from atomic syntactic elements. There simply is not enough information to
describe the semantics of the test in human-understandable terms. A possible solution
would be to analyze the evolved test to produce a description of it. This seems very
hard and a backward kind of way.Our representation for evolving tests should support
descriptions at its core so that one and the same representation can be used both for
running the test and generating a description of what it does.

A further problem with an evolutionary process based on low-level syntactical
elements would be that it is unclear how it would scale. Evolutionary algorithms are
used on increasingly larger problems and the evolved solutions are more complex but
there is still a question of how well they will scale to really complex problems. By
evolving the tests from higher-level building blocks we increase the likelihood that it
will scale.

- 14 -

Finally, it is often the case that several tests have the same structure. Only some
constants or input data differs between tests. The representation we choose must
support the easy generation of large number of tests having the same structure.

These problems have led us to define a more powerful representation for test
building blocks than what is traditionally used in for example Genetic Programming.
In fact the design itself is inspired by cells which are the main building blocks of all
biological systems.

The basic building block for our tests are cells. Each type of cell is implemented
as one Ruby class. When writing a new cell there are two things the developer must
do. He must specify the ports of the cell and he must give one method that implements
the functionality of the Cell.

To capture the fact that a single cell can often generate a number of variants. Ex-
ample of variants are a cell OrderingOfElements that can sort the elements in an array.
It has two variants: one for sorting ascendingly and one for sorting descendingly. This
allows one and the same cell to capture related variants together. By varying a variant
specifier when executing the cell we can choose which variant will be chosen.

In addition to variants cells can often generate random examples of a variant.The
OrderingOfElements above cannot be randomized1 but for example a FixnumGen cell
for generating Fixnums would have no variants but many different randomizations.
Any combination of variants and randomization is possible.

As an example here is the definition of the ArrayGen cell for creating Array’s
filled with objects:

class ArrayGen < DataGenerator
 semantics "Array of size v(:size) filled with t(:element)"

 out_port :out, {:type => Array}

 in_port :size, {:semantics => "Size of generated arrays",
 :type => "Positive Fixnum or zero"}

 in_port :element, {:semantics => "Elements for array",
 :type => Object}

 def max_num_variants
 [port(:size).max_num_variants, port(:element).max_num_variants]
 end

1Well it actually can if it takes input from other cells that can be randomized.

- 15 -

 def run(token)
 Array.new(e(:size)).map {e(:element)}
 end
end

The ArrayGen cell is a data generator and thus inherits from the DataGenerator
base cell class. The semantics line gives the semantics of the cell. Then comes the defi-
nitions of one out port and two in ports. The ports are named and assigned meta-data
that further defines them. Then comes two methods. The max_num_variants method
returns an array with the combined number of variants of the cells connected on the
ports. The run method is the one that will be called when the cell produces a product.
Here it executes the cell connected to port :size, creates an Array of that size and then
fills it by repeatedly calling the cell connected to the element port.

One thing to note is how the string given as the semantics for the cell contains
references to the cells connected to the respective ports. The ’v’method call will insert
the value received on port size while the ’t’ method returns the type of the objects
returned on port element. This simple scheme allows descriptions of the tests to be
built. Since its a simple scheme it will not work in more complex situations but it gives
a reasonable hint.

In addition to DataGenerators there are also CodeGenerators. CodeGenerators
are cells that implement a piece of Ruby code. They can range from simple cell that
call a method to complex test strategies.

A major design goal was to allow flexibility for the developer writing cells. As
few requirements as possible should restrict how cells can be written and how they
work. A cell should be an isolated building block for building a piece of a test. How
to assemble the building blocks to create tests should not be presepcified.

This flexibility is acheived by a flexible cell connection process. Cells connect
through ports. A port has a type which specifies what other ports it can connect to. A
cell can have zero or multiple ports and the number of ports can change dynamically
based on what other cells it has already connected to.

Figure 2 shows an example of a cell cluster for testing the Array#maximum1

method on arrays of Fixnum’s2. It is built from four cells. SizeOfDataStructure gen-
erates common sizes of datastructures such as array’s and hash’es. When executed it
generates a size and sends it through its out port to the in port named size on the Ar-
rayGen. The ArrayGen cell creates an array of the given size and fills it with elements

1In Ruby C#m indicates the instance method named m on an object of class C.
2Fixnum is the Ruby class for 31-bit integers

- 16 -

[prev]
CallInstanceMethod(Array, maximum)

[in]
[next]

[out]

ArrayGen

[size] [elem]

[out]

SizeOfDataStructure

[out]

FixnumGen

Figure 2. Test cell cluster with four cells for testing the Array#maximum method

generated by the FixnumGen cell. Finally the CallInstanceMethod cell calls the max-
imum method on the object received through its in port.

The CallInstanceMethod cell in the figure has two additional ports: a prev and
a next port. They are used to build more complex tests by linking together several
statements.

Cells are active agents in the system and are scheduled to be run depending on
how much energy they have. When a cell runs it selects one of a set of cell actions
and executes it. Every cell has the same set of cell actions but the parameters that
determine the specifics of the action is saved in a genome in the cell. Different cells
have different genomes and can thus evolve to perform different actions. In this way
we need not explicitly tune parameter values in the system and cells with different
functions can evolve different behaviour.

In the WiseR prototype there are currently only 4 different actions:

• Cloner - clones the cell

• Producer - produces a product if we are connected enough to be able to produce
something

• Connector - connects to other cells if we have free ports and any of the port
sensors have picked up something interesting

• Disconnector - disconnects one or more of the cells in the cluster by breaking up
a connection

- 17 -

The actions are implemented as separate Ruby classes inheriting from one and the
same base class. This model makes it very easy to experiment with alternative actions;
you simply write a new action and hooks it up to the base Cell class. An example
would be to implement a crossover action. We have not yet done that since crossover
can be said to emerge from the combined actions of a disconnector and a connector.

All actions cost energy based on how long time they execute. A high-resolution
timer is used to measure this and deduct the energy level of the cell accordingly.

The cloner cell action is typically activated when the energy of the cell is high.
However its activation probability is governed by a constant that is part of the
cell genome. Once activated the cloner simply clones the cell and any cells that is
connected to it. When a cell is cloned its genome can undergo mutations. After a cell
has cloned it must transfer a percentage of its energy to the clone. The percentage is
also part of the genome and undergo evolution.

In contrast to the cloner, the producer cell action is activated pretty often given
that the cell has matured enough so it can produce a product. A cell is mature if it has
only one open port and its either an out port or a left sequence port. The former can
produce a Ruby object while the latter can run a test and produce a TestRun product.

When a cells producer action is activated it will create a token and execute itself
on the token. The token is passed among the cells during production and records
intermediate results, calls to methods and results returned from statements. The token
also selects for a certain variant of the variants the cell can produce and specifies the
random seed to use for randomizations. Both the variant selector and the random seed
are saved and together with a mature cell uniquely determines a test run.

Cell executions are protected in several ways so that invalid connections do not
lead to infinite loops or uncaught exceptions. A time out value is used and terminates
the cell execution after a constant number of seconds that depends on the speed of the
CPU1. The cell execution is also invoked within a protected block that will catch any
exception. If a test run raises an exception it is used as the return value from the test
run. This allows evaluators to check for exceptions and punish the cell clusters that
caused them.

When a cell has been executed it packs up the product in a protein, tags it with
a unique id and ejects it into the fluid. The process of creating proteins cost energy
and that energy is reflected in the concetration of the protein sent out. The amount of
energy to spend on the product protein is determined by the cell genome. The amount
of energy sent is a sort of gamble the cell makes. By sending out more proteins the
potential gain can be higher if an evluator likes the product. However, if they do not
the cell will gain no new energy and the energy spent on producing the protein is lost.

1WiseR tests the speed of the CPU on startup.

- 18 -

Sending out many proteins also increases the likelihood that other cells i need of the
cells product gets the message.

The connector action is pretty straightforward. When activated it checks if any
port sensors have detected interesting products that we could have use for.The method
used to assess if a product is interesting is a parameter and governed by the genome.
One method simply chooses products at random, another ranks the products according
to their semantic match with the ports sementics.

The disconnector action is even simpler than the connector. It can be activated
by chance but the probability that it is activated raises (by how much is governed
by genome) when there are connections in the cluster that cause invalid executions.
The disconnector will choose one of the problematic connections randomly and
disconnect it.

3.5.2. Ports

Cells connect to each other via ports. A port is a placeholder for a piece of the test
coded for by the cell that can vary. Ports are either connectedto another port or are
freefor new connections. Free ports can be further divided into openand closed.An
open port has to be connected for the cell to be mature. Closed ports does not have to
be connected for the cell to be mature. A mature cell can open a closed port so that it
can grow into a more complex test template. Cells can add or delete ports dynamically
if needed.

There are four common types of ports: in port, out port, left sequence port and
right sequence port. In ports are used to receive objects from other cells and out ports
are used to send objects to other cells. In ports can only connect to out ports and out
ports can only connect to in ports.

Sequence ports are used to chain pieces of code together into more complex
templates. Every test template must start with a closed left sequence port; it indicates
the first statement of the test. Right and left sequence ports can only connect to
each other.

Ports are implemented as a separate class and can be easily extended. This way
new type of ports with new semantics can be added.

Ports serve a dual purpose. In addition to being the connection points between
cells they are the cells main medium for communication. Cells can send out informa-
tion through ports and ports have sensors that sense information sent by other entities
in the system.

Ports have a simple form of memory. They keep information about which ports
on other cells they have been connected to and statistics on what was sent and received
by the port during a connection. This information can be exploited by the cell when

- 19 -

deciding which ports and cells to connect to. When a cell dies or when the pool is
halted the information saved in the ports can be mined and entered into the knowledge
base. ’In’ ports are informed by the cell when the information received on the port
resulted in an invalid execution of the cell. The ports can thus keep track of which
other ports it is fruitful or meaningless to connect to. This way we need not require
that the developer specify the exact requirements that needs to be fulfilled for a port
to accept a connection.

As an example lets consider the ArrayGen cell from figure 2. Its in port named
’size’expects a Fixnum value that is larger than equal to 0 since it cannot create arrays
with a negative number of elemets. However, since there is no Ruby class for positive
Fixnums the type expected on the size port is simply stated to be Fixnum.When WiseR
evolves arrays it may happen that NegativeFixnumGen cells connect to the size port.
Since they will never result in valid arrays the size port on ArrayGen will be informed
of this each time the ArrayGen tries to produce a product. The port saves the type of
cell and port it is connected to and calculates an exception rate, ie. the probability that
this connection will cause an exception when the cell produces a product.Connections
with high exception rates are the primary candidates the Disconnector cell action.Also
when the cell dies and the ports are mined for information the knowledge base will be
updated. The next time the system runs the knowledge base now shows that it is not
a good idea to connect NegativeFixnumGens to the size port on ArrayGen. This will
decrease the probability that such a connection happens again.

Often the developer has detailed knowledge about the port and what kind of
connections it can accept. He can specify such knowledge as meta-data when adding
a port to a cell. It is encouraged that ports at least have meta data describing their
semantics ie. their purpose. This allows the selection of candidates for innjection into
a pool based on semantic similarity as described above. However semantics are not
required. If so the cell will be injected into pools randomly so that the system can learn
about the type of connections it can take part in.

3.5.3. Biochemical fluid

Cells communicate by sending proteins into a simulated biochemical fluid surround-
ing the cells in the pool. Proteins are constructed from a series of acids. An acid is
either an ordinary Ruby object or a special acid used when matching proteins. The
special acids are:

• DontCareAcid - matches any other acid, used when we don’t care what is in a
certain position of the protein

• ClassAcid - wraps a Ruby class, matches any Ruby object that is a kind of the
wrapped class, used to match a whole series of proteins that are similar in

- 20 -

structure but only differ by the actual object

• MultiClassAcid - same as ClassAcid but matches object that is kind of one of
several classes

• NumAcid - encodes a numerical value in the protein, used to indicate the
concentration of the protein

The concentration of the protein indicates how many copies of the protein is sent out
into the fluid. The implementation is simply to release on protein and have the concen-
tration indicate the number of copies.This saves down on the number of computations
the biochemical fluid needs to perform when delivering proteins to sensors.

When a sensor senses a protein there is a reaction that may decrease the conce-
tration of the protein in the fluid. However there are sensor that sense proteins without
reducing their concentration. This is for example used to get a notion of time steps in
the system. For each iteration of the main pool loop that schedules cells for execution
the pool sends out a time chemical in the fluid. Elements in the pool can sense the con-
centration of the time protein without affecting its concentraion.

It is possible to register reactions with the fluid. This can be used to setup up de-
caying proteins whose concentration decrease over time. The prototype only supports
RateDecayReactions that consume a percentage of the currently available concetra-
tion of the protein. They are used for the Frustration protein which is emitted by eval-
uators when they have seen no progress for a long time. The Frustration protein slowly
decays unless more frustration is emitted by evaluators. The level of frustration can be
a good indication of the overall progress the search is making. Sensors for frustration
can also trigger global pool actions. The prototype does not currently use them but an
example would be an Earthquake pool action that triggered on high frustration levels
and randomly killed off cells in the pool. After such an earthquake new types of cells
could be given more room since previously dominating cells have been killed off.

The fluid is implemented as a simple tuplespace. Sensors register with the fluid
object and are organized in a hierarchy depending on the specificity of its matching
protein.When proteins are injected into the pool the fluid object look ups the matching
sensors and lets them react with the protein in a random order until no more sensors
are left or the concetration is zero.So the fluid in the prototype does not model a spatial
structure of protein diffusion. It is as if all sensors and emitters where at the same
distance from each other and the protein randomly reacted with some of them.

3.5.4. Pool

A pool is a container for cells in different stages of development. It has a biochemical
fluid that the cells use to communicate with each other.

- 21 -

Pools allow any entity that has a biochemical sensor or emitter to connect to the
fluid. This allows the WiseR front-end to sense the status of the evolution in the pool
and injectors to inject new cells into the pool when the proteins indicate that progress
is slow. Novelty evaluators connects to the pool to sense products produced by mature
cells and to send them energy based on the products novelty.

The pool is the main actor in the system and drives everything by scheduling
cells that can execute. The pool keeps a list of the cells ordered from highest to lowest
energy. At each time step it randomly select one of the cells from the top 10% of cells
having highest energy.

3.5.5. Novelty Evaluators

Novelty evaluators are the main energy sources in the system. They evaluate products
produced by the cells and clusters and give them energy if the product is novel.

Novelty evaluators sense products in the fluid with a sensor. The sensor reacts
with matching proteins and thus grabs a part of them. If the evaluator likes what they
see they will give energy back to the producing cell in accordance with how many
proteins they grabbed. Cells that send out much proteins thus have a greater chance of
being spotted and getting more energy back.

The actual constants that govern how many proteins an evaluator grab and how
much they give back is evolved with an evolutionary strategy algorithm local to the
evaluator. This was added to the system since it was hard to set the constants manually
and they affected the overall success of the system.

Novelty evaluators was added to the system so that many different criteria for test
novelty could be added independently of each other. The approach is similar to [35]
and allows multiple criteria and even contradicting criteria to coexist.

Evaluators that evaluate test runs report their findings to the WiseR GUI. The
GUI uses the information from the evaluators to sort the tests that are presented to the
developer. More novel tests get higher scores and end up higher on the list.

The novelty evaluators that have been implemented for the WiseR proto-
type are:

• ViolatesPostcondition - violates a post-condition in the specification (only active
if there are any postconditions) (10)

• ViolatesInvariant - violates an invariant in the specification (only active if there
are any pre-conditions) (10)

• UnseenException - a previously unseen exception was raised when calling a
method (9)

- 22 -

• UniqueMethodCalls - the number and order of methods called on the test object
differs from previous tests (8)

• UniqueAttributeType - the type of object returned from an attrbiute of the class
differs from previous tests (8)

• UniqueReturnTypes - results from methods have different type than previously
returned results (5)

• UniqueCellTypes - the number and type of cells in the cluster that produced the
test (5)

• UniqueCellConnections - the number and type of connections in the cluster that
produced the test (5)

• UniqueAttributeValue - the object returned from an attribute of the class differs
from previous tests (4)

• UniqueReturnValues - results from methods have different values than previously
returned results (3)

• UniqueParameterNumber - the number of parameters used when calling a
method are different than what has been previously used (2)

• UniqueParameterValues - the values of the parameters to a method differs from
what has been previously used (1)

The number in parenthesis is an initial weight that the evaluators have. The weight is
updated based on which tests the developer investigates and classifies. The weight is
used to calculate an aggregate novelty score by summing the individual scores from
the evaluators multiplied by their weight.

Many of the evaluators above are of a binary nature and will not change much
during a run. However, when they do apply and give high uniqueness scores they
ensure that the cell cluster that created the condition gets lots of energy. This promotes
the exploration of similar cell clusters since the cells get many changes to run actions
that may clone or disconnect cells and connect to other cell combinations.

However the gist of evaluation are the evaluators that evaluate the uniqueness
of Ruby objects used as parameters in method calls, returned from method calls and
returned from attributes.

These evaluators use distance functions to compare the similarity of Ruby ob-
jects.The distance functions for simple objects like numbers is simply the absolute val-
ue of their difference. For complex objects the evaluator checks the values of attribute
methods on the object. For example for an Array the evaluator would call the length

- 23 -

method to compare the lengths of the Arrays.This need not be prespecified since Ruby
supplies reflective methods so that the evaluator can dynamically find out which meth-
ods are attributes and call them. For objects that can be enumerated (aggrations such
as Array’s,Hashe’s etc) the evaluator will recursively apply itself to compare each sub-
object.

3.5.6. Feedback from developer interaction

WiseR continously monitors the actions of the developer and uses this information
to guide the search. When the developer classifies a test the cells that participated in
producing the test gets an energy boost based on how unique the test is according to
the evaluators and by counting how many tests with the same classification that are
already in the specification.

The weight of evaluators that gave the test a high novelty value are also boosted
somewhat.

3.5.7. Controller

The controller in WiseR is very simple. It receives goal statements from the UI, divides
them into sub-goals and identifies building blocks that could be useful in searching for
a test meeting the goal.

There are only two goal statements supported by the WiseR prototype:

• ’Test method X on class C’

• ’Co-test methods Y1, Y2, …, YN on class C’

The former tells the system to focus on testing one method while the latter indicates
that a set of methods should be tested together. One example where the latter goal
could be used would be when testing the push and pop methods of a PriorityQueue.
With the second type of goal statement above we could tell the system that these
methods ’go together’ so its probably a good idea to call them both in a test.

Upon receiving a goal statement the controller checks whether the method(s) to
be tested are instance or class methods.An instance method is a method on an instance
(object) of a class. A class method is a method on the class itself. The canonical
example of a class method is the method used to create instances1:

Create an array object (instance of Array) of length 3
a = Array.new(3)

1In Ruby the ’#’ character indicates that the rest of the line is a comment

- 24 -

If the method under test (MUT) is an instance method the Controller formulates
the sub-goal of first creating an instance of the class. So the goal of testing an instance
method is broken down into first creating an instance of the class and then testing the
method on the instances. After goal analysis the goals enter a goal queue where they
are served in turn. The current status and history of the goal queue can be inspected
by the developer in the UI.

The controller now takes the next goal from the queue. It first looks in the knowl-
edge base if we already know how to create objects of this type. If not it searches the
knowledge base for Cells with meta-data that is relevant to the goal. A cell is deemed
relevant if it is known to generate objects of the right type or if its semantics match-
es the semantics of the goal. The semantic matching is done by a simple heuristic al-
gorithm based on the edit distance between words. The algorithm used is further de-
scribed in appendix A.

The search for Cells to include as building blocks in the search is repeated in
several steps to ensure that the in-ports of previously chosen Cells has some chance to
connect to other cells.For example if an ArrayGen Cell has been chosen the controller
will in the next round search for Cells with meta-data that is relevant for connecting
to the ArrayGen’s in-ports.

4. Case Study

In this section we describe a case study that have been carried out on the WiseR
system.

4.1. Array#maximum

This experiment is an interactive session with WiseR on a simple example, the
Array#maximum method used throughout this paper. The example is somewhat con-
trived since the implementation of Array#maximum contain a bug on purpose in order
to show the workings of the system.

4.1.1. Experimental set-up

For this experiment we start with WiseR in a clean state, ie. it has no knowledge except
for the standard cells that come with the basic WiseR system. The cells in such a basic
system contains data generators for the common Ruby classes, different ways to call
methods with different number of parameters, many different cells for generating
boundary cases of arrays since they are so common in Ruby programs and cells to
multiplex between datagenerators.

- 25 -

4.1.2. The experiment

The developer needs a method on the Array class that gives the maximum object of
all the objects in the Array. He starts WiseR and chooses the specification window. He
writes a few properties that the method must obey:

class ArrayMaximumProperties < Properties
 in_class Array

 for_method :maximum

 # maximum must be element of array
 post :max_is_an_element do |out, ary|
 ary.include? out
 end

 # maximum must be larger than equal all the elements
 post :max_is_larger_than_equal do |out, ary|
 ary.all? {|element| out >= element}
 end
end

He goes on to the Code window to create an implementation and writes:

class Array
 def maximum
 max = self[0]
 self[1...-1].each do |element|
 max = element if element > max
 end
 max
 end
end

The algorithm simply loops over the elements and keeps the max element in a variable
and then returns it. Note that there is an error in the code for the range specifying
which elements to loop over (-1 refers to the last element in the array and a…b to
the range from a up to but NOT including b). This was introduced for the sake of
the experiment.

As soon as he has entered a valid Ruby program (ie. that parses ok), WiseR
initiates a search by creating a pool and injecting cells into it. The cells are chosen
based on their semantics as described earlier.

- 26 -

As test runs are found by the pool they show up in the Tests window. The
developer goes there to check on the findings. Listed on the top is the entry ’Raises
NameError:undefined method each for nil’. This indicates that the maximum method
has raised an exception. By clicking on the entry it expands to show different test runs
for which this happens. By double-clicking on one of them it can be viewed in the
lower window. Figure 3 is a screen capture of the WiseR window at this point.

The developer views the source code for the test. It shows the test code and
the output from the method in the comment. He realizes he has forgotten about the
boundary case of an array of size 0. He decides that the method should return the nil
object when called on an empty array since this is the standard way in Ruby to handle
empty arrays. He updates the max_is_an_element to

maximum must be element of array or nil if array empty
 post :max_is_an_element_or_nil do |out, ary|
 if ary.length > 0
 ary.include? out
 else
 out == nil
 end
 end

and adds a new first statement in the implementation that returns nil if the length is
zero. When the program or specification is updated all the evolved tests are reexecuted
and the window with tests redrawn.

The previously selected test now returns nil which is the required behavior
so the developer classifies it as being a valid test run. WiseR converts the test into a
requirement and adds it to the specification after the ArrayMaximumProperties class
in the specification window:

class ArrayMaximumSpec < Specification
 def req_1
 # Calling Array#maximum on
 # Array of size 0 filled with Fixnum
 # Array of size 0 filled with String
 # Array of size 0 filled with Symbol
 assert_equal(nil, [].maximum)
 end
 end

We see that WiseR not only added the test we choose that had Fixnum’s as elements
but also the tests that give the same code but are generated in other ways. However,
the algorithm WiseR uses for merging tests is simplistic and should be extended.Right

- 27 -

Figure 3. The Tests window in WiseR showing the ’Array of size 0 filled with Fixnum’s’ test

- 28 -

now it has only very simple heuristics for how to merge test descriptions that do not
work for more complex tests.

At this stage the developer also realizes that the description of this test is not
optimal. The test is labeled ’Array of size 0 filled with Fixnum’ but it is not in-
teresting what type of objects are in an empty array. He decides to update the ca-
pabilities of the system by adding a specialized test cell for this boundary case.
He goes into the knowledge base and clicks down in the hierarchy to Wiser-
Tests/Cells/DataGenerators/Array and chooses ’New cell based on…’ from the con-
text menu accessed by right-clicking the mouse. He gets an edit window with the code
for ArrayGen except that the ArrayGen name has been removed so he can write a new
cell name. He writes ’EmptyArrayGen’ as the name, deletes the two in ports and up-
dates the meta-data and code to execute when running the code. He ends up with (you
can compare this to the code for ArrayGen given above):

class EmptyArrayGen < DataGenerator
 semantics "Empty Array without any elements (length is 0)"

 out_port :out, {:type => Array}

 def run(token)
 Array.new(0)
 end
end

He doesn’t need to define the max_num_variants method since it returns 1 by default
as defined in the DataGenerator class.

Going back to the Tests window there are now a new top-level entry
’Array#maximum violates max_is_larger_than_equal_all_elements’.The tests show-
ing this behavior has two Fixnum or String elements. After ensuring himself that the
max_is_larger_than_equal_all_elements is a valid property to require and that its im-
plementation is flawless the developer examines the tests in close detail. The one with
Fixnum’s look like:

def test_64
 # Calling Array#maximum on
 # Array of size 2 filled with Fixnum
 [-196424314, 837355386].maximum #=> -196424314
end

Something is obviously not right with the implementation and he goes to review it.
Well, the pool has now spotted the problem with the implementation that it never
compares to the last element in the array. Before updating the implementation he turns

- 29 -

the tests into requirements. He classifies them as valid state and valid input but invalid
output so WiseR generates only a skeleton requirement where the developer can fill
in the expected output. Here’s the requirement above after he has filled in the blank:

def req_2
 # Calling Array#maximum on
 # Array of size 2 filled with Fixnum
 assert_equal(837355386, [-196424314, 837355386].maximum)
end

He updates the implementation to use the full range 1..-1. Tests are now rerun based
on the new implementation and he goes back to the Tests window. On top is now
new entries of the form ’Array#maximum raises NameError: undefined method >
for nil’. The tests showing this behavior each have two or more elements that are nil
or symbols. The developer realises that his implementation will only work for objects
that have comparison operators that allow ordering of the elements. He considers
adding a property to ensure this but instead decides that raising this exception is the
correct behavior in such situations so he classifies the tests as valid and the output as
expected. WiseR adds requirements of all the tests. As an example here is the one with
4 symbols:

def req_5
 # Calling Array#maximum on
 # Array of size 4 filled with Symbol.
 assert_raises(NameError) {[:vT, :Ho, :ye, :zZ].maximum}
end

He also adds the property at the top of the specification:

raises_exception :elements_must_be_comparable, NameError do |ary|
 ary.all? {|element| element.kind_of?(Comparable)}
end

Going back to the Tests he sees a new type of entry labeled ’Array#maximum raises
TypeError: failed to convert Fixnum into String’ and examining the test he sees an
array with both Fixnum’s and String’s in it. Aha, not only need they be Comparable
they need to be comparable to each other. In a similar way as before he write a new
property and converts some tests into requirements.

Going back to the Tests window again he examines some of the ’normal’ tests
that do not raise an exception or violates any properties. He examines them and turns
several of them into requirements by classifying them as valid.

He continues doing this until he feels satisfied there are no more errors.

- 30 -

4.1.3. Analysis

The interactive WiseR session reported above shows that WiseR was effective both in
finding bugs in the specification and implementation of the Array#maximum method.
The problem with max_is_an_element was an error in the developer internal model of
what the method should do. There was a boundary case he hadn’t considered. Seeing
the actual test that shows the erroneous behavior gives insight of where the internal
model needs to be refined.

5. Related work

5.1. In evolutionary algorithms for testing

There has been a number of studies that use genetic algorithms (GA’s) for structural
testing, ie. ensuring that all parts of the implementation are executed by the test set.
Jones et al used a GA to generate test-data for branch coverage [19]. They use the
control-flow graph (CFG) to guide the search. Loops are unrolled so that the CFG is
acyclic. The fitness value is based on the branch value and the branching condition.
They evaluated the approach, with good results, on a number of small programs.

Michael and McGraw at RST corporation have developed Gadget - a tool for
generating test data that give good coverage of C/C++ code [26]. Gadget work for full
C/C++ code and automatically instruments the code to measure the condition/decision
coverage. This requires that each branch in the code should be taken and that every
condition (atomic part of a control-flow affecting expression) in the code should
be true at least once and false at least once. Four different algorithms can be used to
search for test data in Gadget: simulated annealing, gradient descent and two different
genetic algorithms. One of the GA’s scored the best on a large (2046 LOC) program
which is part of an autopilot system but on synthetic programs the GA had problems
with programs of high complexity. Simulated annealing fared better here. In all of the
experiments random testing fared the worst when the complexity increased.

Pargas et al use a GA to search for test data giving good coverage [30]. They
use the control dependence graph instead of the control flow graph since it gives
more information on how close to the goal node an execution was. Their system uses
the original test suite developed for the SUT as the seed for the GA since it should
cover the programs requirements. To reduce the execution time their system employs
multiple processors. They compare their system to random testing on six small C
programs. For the smallest programs there is no difference but for the three largest
programs the GA-based method outperforms random testing.

Tracey et al presents a framework for test-data generation based on optimisation
algortihms for structural testing [37]. It is similar to both Jones et al and Michael and

- 31 -

McGraw approaches and uses a CFG and branch condition distance functions. They
use both simulated annealing and a genetic algorithm for the optimisation. Their tool
is automated and works with ADA code.

Tracey have used a similar technique for functional (black-box) testing [38].
The formal specification is described with pre- and post-conditions that each function
must obey. The goal is to find indata that will fullfill the pre-condition and the negated
post-condition. These expressions are converted to disjunctive normal form. All pairs
of single disjuncts from pre- and post-conditions are considered targets for the search
since a fault is found when either of them is fulfilled.

Mueller and Wegener used an evolutionary algorithm to find bounds for the
execution time of real-time programs and compared it to static analysis of the software
[27]. Even though the evolutionary algorithm cannot give any safe timing garantuees
it is universally applicable and only requires knowledge about the programs interface.
Static analysis can give garantuees but only in a theoretical world. It needs extensive
knowledge about the actual hardware if we are to trust the results. Such knowledge
may not always be available.

Baudry et al have used genetic algorithms for evolving test sequences for muta-
tion testing of Eiffel programs [3]. Their model is similar to ours in that they focus on
specification, implementation and tests. Their specifications are written with pre- and
post-conditions and invariant. A tool mutates the programs and a genetic algorithm
searches for test sequences that kills the mutants.The GA is seeded with test sequences
written by the developer. Mutants that are not killed by the GA are analyzed by hand
to see if they are mutants that did not change the workings of the software.

Genetic algorithms have been used to generate test scripts for GUI testing [20].
Even though the tests generated were simple the authors concluded that the GA could
test an application in an unexpected, but not purely random way.

5.2. In evolutionary multi-agent systems

Like WiseR the system developed by Krzysztof Socha and Marek Kisiel-Dorohinic-
ki uses multiple entities, called agents, that together explore a multi-objective search
landscape [34]. Agents exchange a non-renewable resource called life energy in trans-
actions based on comparing their behavior against a fitness function. The traditional
evolutionary processes of selection and inheritance are not governed by some central
authority but happen locally in each agent. When agents have high energy they will
reproduce and when energy goes low they die. Agents have a physical location in the
world they are in and all actions happen locally. The system has been applied to opti-
mization of some numeric test functions with promising results.

Our system differs from Socha’s and Kisiel-Dorohinicki’s by not using locality,
having heterogenous agents, a renewable ’energy’and a dynamically changing fitness

- 32 -

landscape. The agents in our system are cells of diverse constitution. They exist in a
pool without a physical location. Communication thus go to many more other cells.
This is needed since there may be fewer receivers and too strong locality might hinder
progress.More importantly our system does not try to optimize a static fitness function
and the fitness function is not smooth. In these conditions we don’t think it would be
possible to have a non-renewable ’energy’ resource.

5.3. In cell-based programming models

Some research groups are studying how programming models inspired by biological
systems can be used to build more robust systems. George et al recently introduced
such a model where cell programs are automatons containing discrete states and
transitions between the states [16]. Cells can sense there immediate neighbourhood
and send out chemicals. They can also divide. The authors beleive they will be able to
build self-healing software with the model.

The ’Amorphous Computing’group at MIT studies organizational principles and
programming languages for coherent behavior from the cooperation of myriads of
unreliable parts [1].

5.4. In evolutionary design systems

The Agency GP system is used to let designers explore the design space of 3D objects
[35]. It has a very flexible approach to fitness evaluation where agents evaluating one
aspect of fitness can be released into the system and affect fitness evaluation. New
agents can be added as needed. The authors claim that this model is well suited for
fitness evaluation based on conflicting, non-linear and multi-level requirements. Our
model with evaluators is very similar to this agent-based fitness model.

Ian Parmee and colleagues have investigated the use of genetic algorithms for
conceptual engineering design [31]. Their research has focused on different ways to
allow the designer to guide the multi-objective optimization carried out by the genetic
algorithm. They have applied their systems to ’traditional’ engineering disciplines
such as aerospace and civil engineering.

5.5. In biochemically inspired system

Lones and Tyrell have proposed a new representation for genetic programming in-
spired by gene expression and enzymes in the metabolic pathways of cells [22, 23].
The building blocks for the GP algorithm are enzymes containing an activity and a set
of specificities.The activity is the function the enzyme encodesand the specificitiesare
templates that determine which other components the enzyme can connect to. Geno-
types are sets of enzymes and develop into a program by starting the build process

- 33 -

from an output enzyme. The system has been evaluated on the evolution of simple,
non-recurrent digital circuits. The WiseR-Tests system shares many similarities with
Enzyme GP (EGP). Our cells corresponds to EGP’s activities and our ports to EGP’s
specificities.

Many other researchers also build computational models based on modeling cell
communication via chemicals. An overview of different approaches is given in [17]
which also presents an aggregated model taking different parts from the earlier mod-
els.Their system is very similar to ours in that a blackboard is used for communication
between autonomous agents.However, their ultimate goal is to model cells for medical
research.

5.6. In software testing

The QuickCheck system by Claessen and Hughes is a tool for automatic specification-
based testing of programs written in the functional programming language Haskell [6].
The programmer provides a specification of the program by writing properties that the
functions in the program must satisfy. The programmer can also combine simple test
data generators into more complex ones. The data generators are then used to generate
random data for testing the properties of the specification.

The Ballista system can be used for robustness testing of commercial-off-the-
shelf (COTS) components [21]. They use the very simple criterion ’Crash or not?’ to
determine if the response was valid and thus do not require a behavioral specification.
The reason is that specifications are often not available for COTS software. The test
sets generated by Ballista are exhaustive based on the data types of parameters to each
function. There are generators available for each data type and they return extreme or
boundary values. Our approach with data generators is very similar to Ballista’s with
the exception that we allow multiple generators for each type and generators can be
combined by connecting to each other.

5.7. In methods for semi-automated software development

The Programmer’s Apprentice (PA) was an attempt to build intelligent assistants to
support in requirements analysis, design and implementation of a program [32]. They
sought to automate the programming process by applying techniques from Artificial
Intelligence. As a step towards that long-term goal they built assistants that could help
the developer make intelligent decisions. For example, the implementation assistant
allowed a programmer to construct programs by combining algorithmic fragments
stored in a library.

PA is similar to WISE in that it allows the developer to bypass the system and di-
rectly enter code (or tests in WISE). But PA’s way to represent knowledge is different.

- 34 -

It is based on finding and encoding knowledge in pre-specified formats. Restrictions
are thus put on how people must enter knowledge about the domain. The knowledge
is also represented in a form that is different from the implementation language. In
contrast the format used to represent knowledge in WISE is the same as the program-
ming language itself. This makes things easier for developer since they do not need to
learn another language. Another difference is that the Programmer’s Apprentice sys-
tem does not concern itself with testing.

The approach taken by PA can be called rule-based. A similar approach is the
case-based reasoning approach to automated SE taken by some systems [7]. Like
WISE they use some fuzzy measure of similarity to find components from a library
that are relevant to a task. Like WISE they also learn by allowing the developer to add
knowledge to the system. However, none of them have focused on testing and few of
them produces artefacts that can easily be read by humans [7]. Since WISE focuses on
knowledge about tests and test sequences are often simpler than the software they test
the tasks facing WISE is simpler.However, a possible future work can be to investigate
if and how more complex meta-data and matching schemes, as used in case-based SE
systems, can be used in WISE.

Scheetz et al used an AI planner to generate test cases from an UML class dia-
gram [33]. The UML diagram needs to be augmented with test-specific information.

6. Discussion and future work

6.1. Discussion

On why we did not compare the biomimetic search algorithm to random search.
The interactive aspects of WiseR makes it hard to compare the system to a blind ran-
dom search. If we compare the system without any developer interaction we the sys-
tem is crippled and it is hard to draw conclusions about the full power of the system.
Such an experiment could shed light on the importance and effect of the developer
interaction. However, it is not even clear what should be considered a random search
to which we could compare.What amount of information should we allow the random
search to have? Should it have access to the port memories showing which ports are
valid or invalid to connect to? Should it be allowed to use the semantic matching al-
gorithm to select a set of cells that are promising? It is not clear-cut what the answers
should be and the limited time available for this study did not allow us to investigate
this any further. It is an important point for future work though.

On why it is fast enough even though Ruby is interpreted. Even though Ruby
is interpreted and between 5-100 times slower than compiled C (depending on the
type of task) the WiseR system can find tests in reassonable time. One reason is that

- 35 -

the system can test very many cell clusters while the developer investigates a single
test.Another reason is that much knowledge about potentially good tests is captured in
the cells. They are high-level building blocks that have shown to be useful in previous
testing efforts.

On how tied the system is to Ruby.Even though our goal has been for a general-
ly useful system the WiseR prototype uses many special features of Ruby that may not
be available in other languages.Reflection is used in the evaluators to find way to com-
pare unknown objects. The fact that Ruby is interpreted also helps since we can easily
reload tests. But there are not only downsides with going for other languages. A stat-
ically typed language would simplify things since the types of data would be known.

On WiseR’s complexity. The design of WiseR might appear complex on the
surface. Even if there is no absolute way to measure and compare the complexity
of software systems we think a major cause for WiseR’s apparent complexity is
that it utilizes concepts not commonly used in software designs. The fact is that the
complete WiseR system, including rudimentary graphical interfaces and the code
for the test cells, is about 3800 lines of Ruby code1. We do not consider that a major
software system.

On the risc of using automated methods to search for tests. There is a clear
risc with using automated methods such as the one employed by WiseR for finding
tests: we get a false sense of security by seeing the mass of tests that can be fairly
easily added. However, if the system does not have the right information to base the
search on it only searches a small subset of the space of possible input sequences. We
note that this is a potential problem and that further development of WiseR should
try to find methods to at least partyl overcome this. As an example the QuickCheck
system by Claessen and Hughes can summarize the different input data sequences
used in the test to show their disitrbution [6]. Something similar would be of value to
WiseR, possibly combined with some way of visualizing these distributions.

6.2. Future work

6.2.1. Further experiments on WiseR-Tests

The case study described in section 4 are limited and on a very small development
task. To really gauge the power of the developed system we need to perform more
experiments on larger development tasks. Since the developer is such an important
element in the WISE philosophy experiments should be carried out with several
developers on one and the same development task. This could reveal differences in
how developers experience and make use of WiseR’s capabilities.

1Including comments and blank lines

- 36 -

One way to acheive developer feedback about the system could be to release it as
open-source. An intriguing possibility would be to develop WiseR-Tests into a plugin
for the new FreeRide Ruby integrated development environment [13].

6.2.2. Extending WiseR-Tests

There are a multitude of things that can be changed within the current WiseR pro-
totype.

The connection between what cells are available in the CellPool and the tourna-
ments in the Arena could be tighter. This might add important feedback that more
quickly would steer the evolution to interesting areas of the TestSpace. It would also
have the potential of trapping the process in local minima, ie. parts of the TestSpace
where not much new knowledge is to be found. Exploring this trade-off might be
worthwhile.

Improve the descriptions and process of generating test descriptions from a
builder. Even though it currently give valuable information to the developer its a bit
awkward and might be improved upon.

The controller is not currently part of the evolutionary process in WiseR. We
consider this a drawback. This decision was made because we wanted the goal of the
current searches to be visible to the developer. It was not clear how a goal could be
formulated from an ongoing evolutionary process. An interesting area for future work
would be to have a co- or meta-evolutionary search for CellSource’s that could attach
to the running search and add new cell material. Much of the scaffolding needed for
this is already present with the system of triggers that monitor the knowledge base for
when to inject new cell material into the pool.

6.2.3. Additional modules and extending WISE

CodeFaultAnalyser. The WISE system knows when you are correcting the source
code and can thus save information about error corrections that you do. By saving the
faulty and corrected syntax trees these trees can be analyzed.Over time the system can
build a knowledge of your common faults and how to correct them. This information
can be coupled with the Tester module to allow strengthening the tests based on mu-
tation analysis. By basing the mutations on the actual faults of the user we can assure
they are representative. This would be an excellent basis for mutation-based testing in
the spirit of [Baudry et al] but with faults that are relevant for the current developer.

Explicitly representing faults also makes it possible to exchange fault sets
between different developers. Thus over time this could lead to a common database of
faults and how to solve them. Faults and corrections could also be exchanged over the
internet etc.

- 37 -

A basic CodeFaultAnalyser module has been implemented in WiseR. However,
it has not yet been integrated with Tester so that they can cooperate to strengthen the
tests. Future work should strive to integrate these two modules so that they can use
each others knowledge. For example, knowledge about the developers common faults
could be used to create mutant code that tests would have to identify as faulty. A new
novelty evaluator could thus reward tests that killed (new) mutants.

CellExtractor. There are many possibilities for automating the extraction of
test cells, ie. test strategies, test code patterns and test data generators. By analysing
existing test suites the system could find recurring patterns that can be extracted into
new test cells and used for future test evolution.

Extractors could also insert specific data generators tailored to the implemen-
tation at hand. A static analysis of the code to be tested could reveal values that are
boundary cases for this particular implementation and thus are likely to reveal new
information about the system.

7. Conclusions

Based on the theory of software development proposed in [11]we identified opportuni-
ties for a workbench to support the development process. Our design for an integrated
software development workbench, WISE, tries to follow the ideas indicated by the the-
ory. It explicitly represents both the artefacts to be produced during development and
encourage the encoding of meta-information about testing that can be used to derive
meaningful tests.

WISE uses biomimetic algorithms to support the development processes. In par-
ticular,WiseR,our first prototype of WISE implemented in the programming language
Ruby, evolves test templates that generate tests that add interesting information to the
system. A common design theme is flexibility. The developer can continously interact
with the automatic evolutionary process to guide it and turn it to interesting areas of
the design space.

We have performed an initial case study on WiseR. It shows that WiseR can
successfully evolve test sets that are both powerful and meaningful.

Appendix A. Algorithm for calculating semantic similarity

The WiseR prototype uses the following heuristic to compare the semantic similarity
of two strings:

1. Divide both strings into it constituent words while dropping any non-alphanu-
meric characters.

- 38 -

2. Delete the short, ’trivial’words that tend not to carry much information:a, an, the,
in, on, of, and, or.

3. Calculate the edit distance (also called the Levenstein distance [14]) for
all pairs of words in the two strings that share a prefix at least of length
MIN_PREFIX_LENGTH. Inverse this to get a similarity score.

4. Sort all the similarity scores and sum them with a weight that is the inverse of
their rank.

5. For each word that do not share a prefix subtract a MISSING_PENALTY from
the similarity score

The MIN_PREFIX_LENGTH and MISSING_PENALTY constants was optimized
(off-line) with an evolutionary strategy so that the heuristic above gives values that
correspond with common sense on a set of strings. However, no evolution is done
online on these parameters.

No doubt there are better algorithms for doing the semantic matching and
investigating them could be an important future work. However, the above heuristic is
simple and gives an indication of semantic similarity. Since the measure is only used
to select building blocks it is not fundamental to the success of the system.

Appendix B. Short introduction to Ruby and its syntax

Since Ruby is not very well known we here gives a brief introduction to it and its
syntax. This introduction is heavily based on a paper by Michael Neumann [28].

Ruby is an interpreted, object-oriented programming language. It is similar to
both Smalltalk, Perl and Python but the syntax is more like Eiffel, Modula or Ada.
Like Smalltalk everything is an object1, there is a garbage collector, variables don’t
have type, there is only single-inheritance and code can be packaged into objects.
Ruby’s Perl heritage manifests itself in strong support for text-manipulation using
regular expressions and substitution but also iterators. In many regards Ruby is very
similar to Python although many consider the object-orientedness to be somewhat
purer in Ruby than in Python.

In Ruby you declare a class and a method like:

class MyClass
 def my_method
 1

1There are some exceptions to this but they are not important here

- 39 -

 end
end

and can now get an instance (object) of the class and call the method with

o = MyClass.new
o.my_method # Returns 1!

where everything after the # is a comment.

Ruby is dynamic. All classes are open and at any time you can add new methods
to classes1.

Ruby has an eval method so that Ruby code in strings can be evaluated.

eval "1" # Returns 1!

References

[1] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George Homsy,
Thomas F. Knight, Radhika Nagpal, Erik Rauch, Gerald J. Sussman and Ron
Weiss. Amorphous Computing. Communications of the ACM43 (5), 74-82
(2000).

[2] Kent Beck, Dave Thomas, Andy Hunt et al. Agilent Develop-
ment Manifesto. Tech. Rep. (2001). URL http://citeseer.nj.nec.com/jus-
tice93objectoriented.html.

[3] Benoit Baudry, Vu Le Hanh, Yves Le Traon. Testing-for-Trust: The Genetic Se-
lection Model Applied to Component Qualification. In Technology of Object-
Oriented Languages and Systems (TOOLS 33), 2000.

[4] Kent Beck. Extreme Programming Explained, 1997.

[5] Peter J.Bentley. Fractal Proteins. Tech.Rep. (2002), Dept.of Computer Science,
University College London.

[6] Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random
testing of Haskell programs. In International Conference on Functional
Programming, 2000.

[7] H. Dayani-Fard and J.I. Glasgow and D.A. Lamb. A Study of Semi-Automated

1Unless you explicitly freeze them in which case they are not allowed to change at all

- 40 -

Program Construction. Tech. Rep. AI memo 933A (1998), MIT’s Artificial
Intelligence Laboratory.

[8] Stephane Ducasse. SUnit Explained. Tech. Rep. (2000). URL
http://www.iam.unibe.ch/~ducasse/WebPages/Programmez/OnTheWeb/Eng-
Art8-SUnit-V1.pdf.

[9] Robert Feldt. Generating Diverse Software Versions with Genetic Programming:
an Experimental Study. IEE Proceedings - Software Engineering145 (6),
228–236 (December 1998). Special issue on Dependable Computing Systems

[10] Robert Feldt. Genetic Programming as an Explorative Tool in Early Software
Development Phases. In Conor Ryan and Jim Buckley, Proceedings of the 1st
International Workshop on Soft Computing Applied to Software Engineering,
pages 11–20, 1999.

[11] Robert Feldt. A Theory of Software Development. Tech. Rep. (2002), Depart-
ment of Computer Engineering, Chalmers University of Technology, Gothneb-
urg, Sweden.

[12] Robert Feldt. A Theory of Software Development. Tech.Rep.(November 2002),
Department of Computer Engineering, Chalmers University of Technology,
Gothenburg, Sweden.

[13] Curt Hibbs, Rich Kilmer et al. The FreeRide Ruby IDE home page, 2002. URL
http://www.rubyide.org/cgi-bin/wiki.pl?HomePage.

[14] Hal Fulton. The Ruby Way, 2001.

[15] D. Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems7 (1) (1985).

[16] Selvin George, David Evans and Lance Davidson. A Biologically Inspired
Programming Model for Self-Healing systems. In ACM SIGSOFT Workshop on
Self-Healing Systems, 2002.

[17] P.P. González Pérez, M.C. Garcia, C.G. Garcia and J. Lagunez-Otero. Integration
of Computational Techniques for the Modelling of Signal Transduction. Tech.
Rep. (2001), Instituto de Quimica, Universidad Nacional Autonoma de Mexico.
URL http://www.cogs.susx.ac.uk/users/carlos/doc/GonzalezEtAl-integration-
of-computational-techniques.pdf.

[18] IEEE Standards Team. IEEE Standard Glossary of Software Engineering
Terminology. Tech. Rep. (1990).

- 41 -

[19] B. Jones, H. Sthamer, D. Eyres.. Automatic Structural Testing Using Genetic
Algorithms. Software Engineering Journal11 (5), 299–306 (September 1996).

[20] David Kasik and Harry George. Toward Automatic Generation of User Test
Scripts. In Proceedings of the Conf. on Human Factors in Computing Systems:
Common Ground, pages 244-251, 1996.

[21] Nathan P. Kropp and Philip J. Koopman Jr. and Daniel P. Siewiorek. Automated
Robustness Testing of Off-the-Shelf Software Components. In Proceedings of
the Fault-Tolerant Computing Symposium, pages 230-239, 1998.

[22] M.A. Lones and A.M. Tyrrell. Biomimetic Representation in Genetic Program-
ming. In Proceedings of the Workshop on Computation in Gene Expression at
the Genetic and Evolutionary Computation Conference 2001 (GECCO2001),
2001.

[23] M.A. Lones and A.M. Tyrrell. Crossover and Bloat in the Functionality Model
of Enzyme Genetic Programming. In Proc. 2002 World Congress on Computa-
tional Intelligence., 2002.

[24] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

[25] Bertrand Meyer. Applying ’Design by Contract’. IEEE Computer25 (10), 40-51
(October 1992).

[26] Christoph C. Michael and Gary McGraw. Automated Software Test Data Gen-
eration for Complex Programs. In Proceedings 13th IEEE Conference in Auto-
mated Software Engineering, pages 136–146. IEEE Computer Society, October
1998. URL citeseer.nj.nec.com/66954.html.

[27] F. Mueller and J. Wegener. A Comparison of Static Analysis and Evolutionary
Testing for the Verification of Timing Constraints. In IEEE Real Time Technol-
ogy and Applications Symposium, 1998.

[28] Michael Neumann. Comparing and Introducing Ruby. Tech. Rep. (Febru-
ary 2002). URL http://www.s-direktnet.de/homepages/neumann/rb/down-
load_ruby.html.

[29] Michael Neumann, Robert Feldt, Lyle Johnson, Jonothon Ortiz. Ruby Develop-
er’s Guide. Syngress, 2002.

[30] Roy P. Pargas and Mary Jean Harrold and Robert Peck. Test-Data Generation
Using Genetic Algorithms. Software Testing, Verification and Reliability9 (4),
263–282 (July 1999). URL citeseer.nj.nec.com/pargas99testdata.html.

- 42 -

[31] Ian Parmee. Evolutionary and Adaptive Computing in Engineering Design: The
Integration of Adaptive Search Exploration and Optimization with Engineering
Design Processes. Springer Verlag UK, 2000.

[32] Charles Rich and Richard C. Waters. The Programmer’s Apprentice:A Program
Design Scenario. Tech.Rep.AI memo 933A (1987),MIT’s Artificial Intelligence
Laboratory.

[33] M.Scheetz,A.von Mayrhauser,R.France,E.Dahlman and A.Howe. Generating
Test Cases from an OO Model with an AI Planning System. In Proceedings
of International Symposium on Software Reliability Engineering (ISSRE ’99),
1999.

[34] Krzysztof Socha and Marek Kisiel-Dorohinicki. Agent-based Evolutionary
Multiobjective Optimisation. In Proceedings of Congress on Evolutionary
Computation (CEC’02),Honolulu,HI,USA, pages 109-114, May 12-17 2002.

[35] Peter Testa, Una-May O’Reilly and Simon Greenwold. AGENCY GP: Agent-
Based Genetic Programming for Spatial Exploration. In Proceedings of the
ACSA, 2002. URL http://www.ai.mit.edu/projects/emergentDesign/agency-gp/
ACSA.html.

[36] Dave Thomas and Andy Hunt. Programming Ruby: A Pragmatic Programmer’s
Guide. Addison-Wesley, 2000.

[37] N J Tracey and J A Clark and K C Mander and J A McDermid. An Automated
Framework for Structural Test-Data Generation. In Proceedings 13th IEEE
Conference in Automated Software Engineering. IEEE Computer Society,
October 1998. URL http://www.cs.ukc.ac.uk/pubs/1998/974.

[38] Nigel Tracey and John Clark and Keith Mander. Automated Program Flaw Find-
ing using Simulated Annealing. In Software Engineering Notes, Proceedings
of the International Symposium on Software Testing and Analysis, pages 73–81.
ACM SIGSOFT, March 1998. URL http://www.cs.york.ac.uk/testsig/publica-
tions/njt-mar98b.html.

[39] P. Wyckoff. T Spaces. IBM Systems Journal37 (3) (1998). URL http://
www.research.ibm.com/journal/sj/373/wyckoff.html.

