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Abstract

Based on a theory for software development that focus on the internal models of the
developer this paper presents a design for an interactive workbench to support the
iterative refinement of developers models. The goal for the workbench is to expose
unknown features of the software being developed so that the developer can check
if they correspond to his expectations. The workbench employs a biomimetic search
system to find tests with novel features. The search system assembles test templates
from small piecesof test code and data packaged into a cell. We describe a prototype
of the workbench implemented in Ruby and focus on the module used for evolving
tests. A case study show that the prototype supportsdevel opment of teststhat are both
diverse, complete and have a meaning to the devel oper. Furthermore, the system can
easily be extended by the devel oper when he comes up with new test strategies.

1. Introduction

Developing software without faultsis an important task in our modern society. The
effectsof faultsin software can rangefrom annoying, over costly tofatal. Having tools
that support software developersin avoiding and removing faultsisthusimportant.

One of the most expensive phases of software development is testing. Since
testing does not directly add any functionality to the software there is a risk that
software developers does not prioritize it enough. Thisis unfortunate since testing is
acrucia step in ensuring the dependability of a piece of software. Animportant goal
for a software development workbench should therefore be to support developersin
finding and writing good tests and to automate testing processes.

A candidate for automating testing would be evolutionary computation. Evo-
lutionary algorithms (EA) ruthlessly exploit weaknesses in the scaffolding software
needed to support the evolutionary process[H]. In an earlier experiment of ours[8, 0]
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the genetic programming (GP) algorithm revealed a fault in our simulator. By out-
putting NotANumber at a crucial step in the ssmulation the evolving programs could
get a perfect score and quickly solve the task. In that study, we fixed the fault, re-re-
viewed the simul ation softwarefor similar or other faultsand restarted the experiment.
In effect, the GP algorithm had hel ped us debug our software. In this paper we inves
tigate this ability further and design a system that capitalizes on the effect.

Evolutionary algorithmshave previously been used to generate test data for soft-
waretesting [[19, P8, B0, B7]. The focus has been on finding test data for structural test-
ing although one study investigated black-box testing [B8] and another one searched
for test casesfor mutation testing [3].

In this paper we propose a system that supports an incremental learning process
for writing code and executable properties of that code. The distinghuishing feature
Isabiomimetic algorithm that can search for new test casesthat highlights previously
unshown features of the code and the specification. The biomimetic algorithm
employs an evolutionary multi-agent system for the search, an artificial chemistry for
communication between entitiesin the system and a fitness eval uation distributed on
multiple evaluatorsthat focuson different aspects. The systemisinteractivein that the
developersactionsindirectly affect the search.

In section 2 we give a background to software development and testing and
present a theory for software development. The theory has implications for tools to
support software devel opment and motivates the workbench for interactive software
engineering' described in section 3. Section 3 also describes the prototype WiseR of
this workbench that we have implemented in the programming language Ruby. The
exeperimentswe have conducted with WiseR are described in section 4. Sections 5, 6
and 7 then summarizesrelated work, discusses the results and draws conclusions.

2. Softwar e development and testing

Software Engineering (SE) isthe ’application of a systematic,disciplined,quantifiable
approach to the development, operation, and maintenance of softfii@feMuch
effort in SE has gone into finding good development processes. The most traditional
exampleisthe waterfall model with strict separation between requirements analysis,
design, implementation and testing. Other processes have abandoned the strict sepa-
ration between phases since they are often impossible to withhold in practice; during
design werealizewehaveoverlooked or underspecified somerequirementsand during
Implementation we realize the design is not complete.

A development processthat hasreceived much attention lately takesthisstanceto

Theworkbench wasoriginally named after ' workbench for interactive software evol ution’ but we changed
evolution to engineering so as not muddle the different uses of evolution in this paper.
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anew level. Extreme Programming (XP), highlights testing as a fundamental activity
toensurequality and putsitinthefront seat [8]. Some X P proponentseven usetheterm
"test-first design’. The tests should be one of the major driving forces and developers
start eachiteration by writing testsfor the code that needsto beimplemented. Thetests
thus constitutes executabl e examples of the requirementson the system.

A natural companion to the test-first ideas of XP is a unit testing framework
that supports the writing of tests and automates the execution and result collection
of running them. Kent Beck originally developed SUnit for unit testing of Smalltalk
classesbut anumber of similar systemshave now been developed for other languages
and they are collectively called XUnit [B]. In practice the XUnit frameworks allow
the developer to specify concrete inputs for the software under test and to state the
expected outputs. Even though they focus on unit testing they are general enough to
support integration and system testing.

Although the unit tests written in a XUnit framework constitutes executable
examplesthey aredifferent from formal specifications. Recently there hasbeen efforts
to overcome this by marrying the JUnit Java unit testing framework with the formal
specification language IML (Java Modeling Language). The contractswrittenin JIML
in the form of pre- and post-conditions that must be valid when calling a method on
aclass are used astest oraclesin the unit testing. This alleviates the developer from
the task of writing the expected outputs and thus simplifies the task of writing tests.
The developer only need to set up the testing context and specify the inputs and
call sequence.

Thetype of testing supported by the XUnit frameworksis called behavioural or
black-box testing. It focus on the behavior of the software under test (SUT) and aims
to test the responses of the SUT regardless of its implementation. An example of a
black-box testing technique isboundary-val uetesting which locatesand probespoints
around extrema and discontinuitiesin the input data domain.

Another type of testingiscalled structural or white-box testing. It focuson thein-
ternalsof the implementation, often the control flow. The goal isto find teststhat give
good coverage of the program, ie. executesall statementsor pathsin the program.

A special typeof testing ismutation testing which createsmutantsof the progam.
Thegoal isthen to deviseteststhat reveal the mutants. By choosing mutant operations
that resemblefaultsthat programmersfrequently introducethe hypothesisisthat atest
set revealing mutants should also be good at revealing real faults.

With this background let us now summarize our view of the software develop-
ment problem in a theory and state the implicationsit has for a development work-
bench. A detailed description of the theory can be found in [I1].

Our theory for software development isbuilt from the five elementsfundamental
to any development process. a patron which has a need for a program or program
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component, a specificationwhich states how the program should and should not
behave, a program, a developemriting it and a library containing all of humanities
total knowledge relevant to the problem at hand. Based on these elements a software
development process is defined as an incremental learning process in which there
are two main ways to make progress. refining an internal model of the developer or
refining an artefact based on an internal model. Since the former underliesthe latter it
Ismore fundamental.

This theory has implications for tools supporting software development. They
should trigger the identification of discrepancies between the internal models of the
developer and theideal artefactsthat would lead to acceptabl e behaviour. Oneway for
them to do that would beto create novel test invocationsfor the devel oper to consider.
If the tool is creative in creating these invocationsit could help the developer *think
outside the box’ and realize hisknowledgeisincomplete. Furthermore the tool should
support the sharing of recipes for creating novel test invocations. If a system for
sharing such recipeswasin wide-spread use it could lead to more general progressin
the area of software development.

Thetheory also describestests ashal f-baked requirements; they are requirements
without a verdict on the actual behavior the program showed. It would be very
powerful to have atool that generated test sequences and then executed the program
on them and presented the test and the program behavior to the developer. Thiswould
allow the devel oper to classify the test asvalid, invalid or irrelevant and the behavior
ascorrect or wrong. Thetool should then generatethe codefor setting up and checking
this behavioral requirement. The tool should also allow the developer to note that a
test isimportant but that they do not know what the expected behavior should be.

It is also important that tests are clearly documented. If a test identifies a fault
we should be able to demonstrate it to others. Also, asthe software is completed and
further evolved to meet additional user requirements we want to be able to re-run
previoustests. Thisregression testing isimportant since the new additions may affect
previous code so that it failswhereit previously worked.

It isaso important that the tests are in a form that facilitates automation. Tests
are typically numerous and it would be too cumbersome to execute them by hand.
If they are written in aform that is easily executed this should lower the barrier for
the developersto continously run and monitor the progress on the tests. Such atight
'feedback loop’ iswhat Extreme Programming and other similar, recent devel opment
methods prescribe [B,H].

In all but trivial cases testing cannot be exhaustive; there are far more possible
combinations of indata than we have the time to run. Thus, the tests we choose to
run should represent different classes of inputs. If the software correctly handles the
few examplesfrom an input classit islikely that it will handle all inputsin the class.
Thispartitioning of the inputsinto different classes should be visible from the teststo
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justify why we have chosen this particular set of tests.

Many tests often have the same structure and only the test data differs between
them. Our development tool s should allow the programmer to expressthese recurring
patternsin aform so that it can bereused in later projectsand by others.

3. WISE - aWorkbench for I nteractive Software Engineering

WISE isadesignfor aninteractivetool supporting software devel opment based on the
theory above. It isan integrated environment for devel oping an executabl e, behavioral
specification and a program that implements it. It also highlights the importance
of tests and their close relation to the behavioral specification. WISE searches for
tests with properties different from the testsit already knows of. Interesting tests are
presented to the devel oper which can review them and classify them. Thisinteractivity
between the tool and the developer is central to the design of WISE.

A prototype of WISE called WiseR (WISE for and in Ruby) hasbeen implement-
ed in the programming language Ruby. It currently focuses on searching for tests al-
though a simple GUI has been implemented to interact with the system.

WISE draws upon biologically inspired ideas and a running WISE system uses
severa biomimetic algorithms. Before we describe the philosophy behind WISE, its
architecture and the WiseR prototype we motivate why biological ideas are used and
the biological processesthey resemble.

3.1. Biomimeticideasin WISE

WISE is based on several ideas inspired by biological systems and uses algorithms
modeled after nature:

* Itiscontinoudly active even if no developer is present. It searchesfor better and
more interesting tests or learns how to use the knowledgein thelibrary.

*  Few partsof WISE are cast in stone. When there are alternative solutions WISE
implements severa of them and then dynamically learns which one works best.

»  Templatesfor testsare built from building blocks resembling cellsin biological
organisms. They have a membrane with ports that can connect to ports on oth-
er cells. In this way cells grow into larger clusters showing more complex be-
havior.

» Test cellsinteract within a biochemical system where proteins can be released
and sensed. Cellscommunicate both with other cells, other entitiesin the system
and with the outside world via the biochemical system.
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*  Thebasic commodity for cellsisenergy. Cellscompete for energy by producing
data or test runs. Evaluators probe the chemical system for data or test runsthat
are novel and give energy to the entitiesthat produced it.

The reasons for this use of biological ideas are manyfold. From a philosophical
viewpoint the problemsfacing a developer have many similarities with the ones that
biological systems are facing. They are ill-defined. If they were not there would be
no real development task since it is by definition the formalization of a system from
loose beginnings.

The problems facing a developer are also dynamic. As she defines some part
of the system, her choices affects other, yet un-defined parts of the system. As she
learns more the importance of some parts might decrease while other parts becomes
more important. Even worse, the target might change asthe patron getsa new idea or
changesthe requirements.

In any development process there is room for multiple different choices. The
developer must identify important trade-offsand study how different decisions affect
the behavior of the system. A workbench supporting the devel oper must support this
playing with alternativesand exploring differing avenues.

Central to any development processis creativity and innovation. The devel oper
needs to be innovative in finding solutions, refining the specification and writing
teststhat show conformance. Above all the developer needsto be creative, and ' think
outside the box’ to identify the faultsin her own internal models.

Even though biomimetic methods may not be the best optimizers, they have an
excellent track record when it comesto ill-defined, dynamic, explorative and creative
processes. So from a philosophical viewpoint they are natural candidates as building
blocksin a devel opment workbench.

An additional reason for the use of biomimetic ideasis that evolutionary algo-
rithms in previous studies have reveaed faults in scaffolding code used during evo-
lution.

One example was in one of our earlier studies where a GP algorithm evolved
aircraft brake controllers 9, 00]. In this experiment a simulator was used to evaluate
theaircraft controllers. The simulator wasfaulty by not correctly handling exceptional
conditionsfrom the controllers. In particular the GP algorithm found that by returning
the float value not-a-number (NaN) in a specific state of the ssimulation it could
trick the smulator into achieving its goal in a non-realistic way without expending
any energy.

In the experiment above the goal was not to test the ssmulator. But since the so-
lutions produced by the evolutionary algorithm interacted with the simulator it wasin
essencetested. Thefault in the ssmulator wasnot identified automatically but required
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human analysis. But it was clearly evident from running the evolutionary system that
something was not right. Since the exploitation of the fault in the simulator was such
an effective means for the EA to reach its goals al solutions in the population soon
used the exploit. By tracing a simulation of one of the solutions the fault was easily
spotted. This also points to the important interplay between the system and a human
in finding and understanding the cause of afault.

Other EC researchershave had similar experiencesathough few report on them
inthefinal papers. In arecent paper [B] the EC researcher Peter Bentley saysthat when
you work with evolution you

...get a few glimpses of the creativity of evolution through the bugs in
your code: the little loopholes that are ruthlessly exploited by evolution
to produce unwanted and invalid solutions.... Each result fascinating, and
each prevented by the addition of another constraint by the developer. The
bugs are never reported in any publication, and yet they point to the true
capabilities of evolution.

In this paper we extend this fault-revealing ability of EA to the testing of
general software.

3.2. Goalsand design philosophy
Thegoalsfor WISE areto
1. find new knowledge about the software under test (SUT), and

2. alow the developer to specify test building blocks, test strategies, and novelty
criteriain aflexible way.

Whilegoal lisobvious, goa 2isexplicitly stated sinceit iswhat makes1possibleboth
for the current SUT but primarily for future development activity. The’flexibility’ in
goa 2 meansthat WISE should limit theform in which the devel oper can describethe
system componentsaslittle aspossible. It should also make asfew assumptions about
them as possible. Thisleadsto the sub-goal that WISE must aso find new knowledge
about the system components since we cannot assume the developer has stated (or
knows) al of it.

Central to WISE’'s design is to focus on the interaction between the devel oper
and the system. The developer is the ultimate source of knowledge so if the system
isin troubleit should inform him. The system should a so encourage feedback on its
progress. Sincetesting can never be exhaustivefor non-trivial systemswewant to find
teststhat are meaningful.
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Another design principleisto avoid making choicesabout the valuesof parame-
tersto the componentsin the system. With choiceswe biaswhat can be expressed and
limit creativity. Thuswhen thereisachoiceof different alternativesWISE implements
severa alternativesand let the system choose which ones are effective at run time.

3.3. Basic Architecture

The WISE architecture has four main parts. an interface to the developer (Ul), a
control module that formulates goals and initiates searches, a knowledge base acting
asacentral repository for information in and about the system, and compute daemons
that perform searches.

The Ul iscentered around the two artefactsthat should be the end results of the
devel opment process: the behavioral specification and the program. It can also display
tests to the developer and allows him to classify them. If he classifies atest and the
output from the program as valid the test is transformed to a behavioral requirement
and becomes part of the specification. Central to making thiswork isthe need to make
thingsexplicit. In asfar aspossiblethe artefactsare stated in aform that theworkbench
can actively use in later steps. Information in comments or ’outside’ the system isa
lost oppportunity since the system has lessinformation to base its decisions on'.

The Ul givesthe devel oper accessto the knowledge base. The knowledge baseis
alocal version of thelibrary that is part of the theory presented in [I]. In the future
we envisage that the knowledge base could be an interface to central libraries on the
Internet or directly linking the knowledge bases of for example the developersin a
development team.

The Control module is the main initiator of actionsin a WISE system. It can
take commands from the developer and set up searches on a compute daemon. If the
developer does not give any commands it can formulate goals and sub-goals and
Initiate actionsbased on them. Asan example, if the user hasnot written or loaded any
new code that needs to be tested the Controller can consult the knowledge base and
initiate a search for test sequencesthat createsa certain type of data.

When the controller initiates a search it sends the search description and any
information needed for the search off to a compute daemon. To decouple the WISE
front-end from the compute daemons this communication is inter-process via a Tu-
pleSpace over TCP/IP. This decouples the Ul and control module from the com-
pute daemon and allow one WISE front-end to use multiple compute daemons. Even
though high performanceisnot agoal of this study this separation was deemed nec-
essary since many of the biomimetic algorithmsare compute-intensive. Including this
in the design from the beginning should make things easier |ater.

tUnlessthisinformation can be parsed and made useful ...
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The compute daemons are independent and may work on separate problems
handed out by a WISE front-end. the TupleSpace model was chosen since it allows
for very flexible communication between nodes I3, 39]. The daemons are not ex-
pected to cooperate to solve problemsbut the simplicity and power of the TupleSpace
model does not disallow it. It decouplesthe WISE module from the number and type
of daemons. The TupleSpace provides a noteboard where information can be pub-
lished and seen by multiple or only some subset of the daemons. It also allows the
daemonsto publish information that can be seen both by the WISE front-end and by
other drones.

The searches in the daemons is done in a dynamically evolving system that
builds test templates that adds novel knowledge. The knowledge can be either about
the piece of software under test (SUT) or about the search builing blocks and how to
assembl e them.

3.4. WiseR -theprototype

A prototype WISE implementation has been implemented in the object-oriented pro-
gramming language Ruby [B8, P9]. It iscalled WiseR (Wisefor Ruby). Ruby wascho-
sen since it isahigh-level language with many featuresthat support fast prototyping.
It belongs to a new class languagesthat sports dynamic typing and easy accessto all
parts of the execution environment. Thiswas deemed necessary in order to allow ex-
perimentation with different parts of the system.

Like the popular languages Java and C++ Ruby is object-oriented. Unlike them
it isdynamically typed ie. thereisno type checking at compile-time. In fact, thereisno
compile-time since Ruby isnot compiled but interpreted’. Even though these aspects
make Ruby non-typical compared to major languagesin use today we do not think it
confoundsour results. If anything, the dynamictyping makesthingsharder for atester.
He cannot simply look at the code and see what types are allowed for parameters. In
some sense, thereislessinformation availablein the code and thus more information
needs to be re-discovered. The availability of a compiler would speed up the system,
makethe client moreresponsiveand allow for more powerful computations. However,
in research and for a prototype we think other factors are more important. More
detalied information about Ruby can be found in appendix B and in the books [[38,

9.

WiseR isboth implemented in and supportsdevelopment of Ruby code. All three
artefacts are expressed as Ruby code. Even though thisisnot a requirement in WISE
it makesthings easier for our prototype. We can reuse common functionality used in
analyzing the artefacts. It isalso easier to exchange information between them.

IAlthough Java was originally and is often used as an interpreted language there are numerous compilers
available. In any case Javaistyped so differsfrom Ruby in thisregard.
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Il YWiseR - Workbench for Interactive Software Engineering in Ruby

File Edit Modules Help

cla=s=s Arrav
def maximum
max = =elf[0]
self[l...-1] =ach do |=lement |
max = element 1f =lement » max
end
nax
end
end

Figure 1. WiseR GUI main window with the Code window active and loaded with the

Array#maximum source code
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The focuswhen devel oping WiseR has been on amodule that searchesfor tests,
WiseR-Tests. In addition to WiseR-Tests the system contains of a GUI and small
implementations of the control module and a knowledge base. The main window of
the WiseR GUI isshown in figure 1.

Before going deeper into WiseR-Tests we briefly describe the WiseR GUI and
the support WiseR hasfor writing specifications.

3.4.1. The WiseR graphical user interface

WiseR’s main window, shown in figure 1, has 5 tab windows for different types of
information. The Specification and Code tabs are always present. They are two edit
windowsfor writing the specification and the program, respectively. The’ Knowledge
Base' tabisalso always present. It givesan overview of the hierarchical data stored in
the knowledge base and allows the devel oper to change parametersetc.

In the "Modules menu the developer can load a module. After loading the
WiseR-Tests module it adds to additional tab windows. The ' Pools' tab showsall the
pools that are currently active and can show some simple statistics for them. The
'Tests' window isthe place where tests found by searchesin the pools are reported to
the devel oper.

Examples of how the different tabs ook during a run can be found in the case
study section below.

3.4.2. Writing specifications in WiseR

Even though the model for software development introduced in [I2] and summarized
In section 2 above considered requirements as atomic invocations of the program
with a state, input stimuli, output and a classification of the invocation, WiseR gives
rudimentary support for writing and checking requirementsin a more general form.

A specificationin WiseR iswritten asaset of propertiesin aclassinheritingfrom
the class Properties. The superclass Properties add some hel per methods for defining
the 4 different types of properties supported by WiseR:

e pre - A pre-condition that should hold before a method is called. Gets the
argumentsto the method as arguments.

*  post - A post-condition that should hold after amethod is called. Getsthe output
from the method, the object and the arguments for the call as arguments. Can
NOT accessthe object before the call.

* invariant - A condition that should aways hold for objects of the class, both
before and after any call.
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*  raises_exception- Indicatesthat the method must rai se an exception when called.
Getsthe argumentsfor the call asarguments.

We seethat thefirst three are ssmply the onesdictated by Bertrand Meyer in hisdesign
by contract method [P4, 23]. We added raises_exception since it seemed useful. Not
much thought has gone in to this at this stage though and the way specifications are
written may have to be updated in the future. For example, the post-conditions in
WiseR cannot accessattributesof the object beforethe call wasmade. Thisisarather
serious limitation for expressiveness of specifications and needs to be adressed in
the future.

All of thethreefirst methods above take a symbol that givesthe name of the con-
dition and ablock of code that implementsthe condition. The block must evaluate to
trueif the condition holdsor falseif it doesn’'t. The latter indicatesthat the specifica-
tion isnot fulfilled.

Theraises_exception property takesaname, the classof theraised exception and
ablock implementing the condition under which the exception should be raised.

In addition to the four property creating methods above there are two more
to indicate which class and method the properties should hold for. They are called
for_classand for_method, respectively.

Additionally WiseR can add behavioral atomic requirements as described in
section 2 and in paper [I2]. They are added in a second class after the propertiesclass
at the bottom of the specification.

An example of afull specification isgiven in the case study section.

3.5. WiseR-Tests

WiseR-Testsis a WiseR module that searchesfor test templates with novel features.
It startsa search by creating apool and filling it with cellsthat are thought relevant to
the search. The cellsrepresent recipesfor how to create (small) partsof atest template.
Cells communicate with each other by sending proteinsinto a biochemical fluidin
the pool. Portson the cells have protein sensorghat detect proteinsflowing by. If the
proteinisaproduct that the port could haveusefor it savessome of the proteins. When
the cell later 'runs’ it can use the protein to search for and connect to the originating
cell. As cells connect to more cells and grow into cell clusters they can produce and
emit more complex products.

Cellsinthe pool competefor energy. Without energy acell hibernates. Cellswith
high energy level scan execute more actionsand have a higher chance of growinginto
mature cell clustersthat produce unique products.

The main source of energy is the evaluatorson the surface of the pool. Like



-13-

portsthey have protein sensorsattached to the biochemical fluid of the pool. Different
evaluators sense different types of products. When the sensor of an evaluator fires
the evaluator examines the product to assess its novelty. If the product is novel the
evaluator assignsan energy scoreto it and booststhe originating cellsenergy level. An
evaluator also communicateswith the outside world by updating the knowledge base
with the knowledge gained from the analyzed products.

With this high-level description of the main components of WiseR-Tests let us
now go into the details on each one of them.

3.5.1. Cells

To construct a test we need an object of the classto be tested, a sequence of callsto
the object, input data for each call and a description of what to do with the generated
results. Essentially atest isasmall program itself, invoking the classunder test (CUT)
for a specific purpose.

One approach we could take would be to evolve such test cases directly. For
example, a genetic programming algorithm could be used to assemble test programs
from the syntactical elements of the programming language. However, there are a
number of problemswith such an approach.

If we evolve source code directly there is no information about the higher level
structure of the test. There is only the code. We will have a hard time writing whole
test strategies with only the syntactic elements of the programing language. How
should we specify what and how things can vary? Strategies are templatesfor a piece
of source code; not for individual code elements.

When devel oping teststhe goal isnot only that they should efficiently test theim-
plementation and show its conformance to the specification. They should aso justify
for humans (devel opersor ' customers') that the system has been thouroughly tested.
It is hard to see how such ajustification could be built at the same time as evolving
the code from atomic syntactic elements. There ssimply is not enough information to
describethe semanticsof thetest in human-understandable terms. A possible solution
would be to analyze the evolved test to produce a description of it. This seems very
hard and abackward kind of way. Our representation for evolving testsshoul d support
descriptions at its core so that one and the same representation can be used both for
running the test and generating a description of what it does.

A further problem with an evolutionary process based on low-level syntactical
elementswould be that it is unclear how it would scale. Evolutionary algorithms are
used on increasingly larger problemsand the evol ved solutions are more complex but
there is still a question of how well they will scale to really complex problems. By
evolving the tests from higher-level building blockswe increase the likelihood that it
will scale.
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Finally, it is often the case that several tests have the same structure. Only some
constants or input data differs between tests. The representation we choose must
support the easy generation of large number of tests having the same structure.

These problems have led us to define a more powerful representation for test
building blocks than what istraditionally used in for example Genetic Programming.
In fact the design itself isinspired by cellswhich are the main building blocks of all
biological systems.

The basic building block for our testsare cells. Each type of cell isimplemented
as one Ruby class. When writing a new cell there are two things the devel oper must
do. He must specify the portsof the cell and he must give one method that implements
the functionality of the Cell.

To capturethefact that asingle cell can often generate anumber of variants. Ex-
ampleof variantsareacell OrderingOfElementsthat can sort the elementsin an array.
It hastwo variants: one for sorting ascendingly and one for sorting descendingly. This
allowsone and the same cell to capture related variantstogether. By varying a variant
specifier when executing the cell we can choose which variant will be chosen.

In addition to variantscellscan often generate random examplesof avariant. The
OrderingOf Elementsabove cannot be randomized! but for example a FixnumGen cell
for generating Fixnums would have no variants but many different randomizations.
Any combination of variantsand randomization is possible.

As an example here is the definition of the ArrayGen cell for creating Array’s
filled with objects:

cl ass ArrayGen < Dat aGener at or
semantics "Array of size v(:size) filled with t(:elenent)”

out _port :out, {:type => Array}

in_port :size, {:semantics => "Size of generated arrays",
:type => "Positive Fixnumor zero"}

in_port :elenent, {:semantics => "Elenents for array",
ctype => (bject}

def max_numvari ants

[port(:size).max_numyvariants, port(:elenent).max_numvariants]
end

Well it actually canif it takesinput from other cellsthat can be randomized.
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def run(token)
Array.newe(:size)).map {e(:elenment)}
end
end

The ArrayGen cell isa data generator and thusinherits from the DataGenerator
base cell class. The semanticsline givesthe semanticsof the cell. Then comesthe defi-
nitions of one out port and two in ports. The ports are named and assigned meta-data
that further defines them. Then comes two methods. The max_num_variants method
returns an array with the combined number of variants of the cells connected on the
ports. The run method isthe one that will be called when the cell produces a product.
Hereit executesthe cell connected to port :size, createsan Array of that size and then
fillsit by repeatedly calling the cell connected to the element port.

One thing to note is how the string given as the semantics for the cell contains
referencesto the cellsconnected to the respective ports. The v’ method call will insert
the value received on port size while the 't" method returns the type of the objects
returned on port element. This simple scheme allows descriptions of the tests to be
built. Sinceitsasimple schemeit will not work in more complex situationsbut it gives
areasonable hint.

In addition to DataGenerators there are also CodeGenerators. CodeGenerators
are cellsthat implement a piece of Ruby code. They can range from simple cell that
call amethod to complex test strategies.

A major design goal wasto allow flexibility for the developer writing cells. As
few requirements as possible should restrict how cells can be written and how they
work. A cell should be an isolated building block for building a piece of atest. How
to assemble the building blocksto create tests should not be presepcified.

Thisflexibility is acheived by a flexible cell connection process. Cells connect
through ports. A port has a type which specifieswhat other portsit can connect to. A
cell can have zero or multiple ports and the number of ports can change dynamically
based on what other cellsit hasalready connected to.

Figure 2 shows an example of a cell cluster for testing the Array#maximum®
method on arrays of Fixnum’'s. It is built from four cells. SizeOfDataStructure gen-
erates common sizes of datastructures such as array’sand hash’ es. When executed it
generatesa size and sendsit through its out port to the in port named size on the Ar-
rayGen. The ArrayGen cell createsan array of the given sizeand fillsit with elements

Yn Ruby C#m indicates the instance method named m on an object of classC.
2Fixnum isthe Ruby classfor 31-bit integers
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Figure 2. Test cell cluster with four cellsfor testing the Array#maximum method

generated by the FixnumGen cell. Finally the CalllnstanceM ethod cell callsthe max-
Imum method on the object received through itsin port.

The CalllnstanceMethod cell in the figure has two additional ports: a prev and
a next port. They are used to build more complex tests by linking together several
statements.

Cells are active agents in the system and are scheduled to be run depending on
how much energy they have. When a cell runsit selects one of a set of cell actions
and executes it. Every cell has the same set of cell actions but the parameters that
determine the specifics of the action is saved in a genome in the cell. Different cells
have different genomes and can thus evolve to perform different actions. In thisway
we need not explicitly tune parameter values in the system and cells with different
functions can evolve different behaviour.

In the WiseR prototype there are currently only 4 different actions:

. Cloner - clonesthe cell

*  Producer - producesa product if we are connected enough to be able to produce
something

*  Connector - connects to other cells if we have free ports and any of the port
sensors have picked up something interesting

»  Disconnector - disconnectsone or more of the cellsin the cluster by breaking up
aconnection
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The actions are implemented as separate Ruby classes inheriting from one and the
same base class. Thismodel makesit very easy to experiment with aternative actions;
you simply write a new action and hooks it up to the base Cell class. An example
would be to implement a crossover action. We have not yet done that since crossover
can be said to emerge from the combined actions of a disconnector and a connector.

All actions cost energy based on how long time they execute. A high-resolution
timer isused to measure this and deduct the energy level of the cell accordingly.

The cloner cell action istypically activated when the energy of the cell is high.
However its activation probability is governed by a constant that is part of the
cell genome. Once activated the cloner ssimply clones the cell and any cells that is
connected to it. When a cell is cloned its genome can undergo mutations. After a cell
has cloned it must transfer a percentage of its energy to the clone. The percentage is
also part of the genome and undergo evolution.

In contrast to the cloner, the producer cell action is activated pretty often given
that the cell has matured enough so it can produce a product. A cell ismatureif it has
only one open port and its either an out port or a left sequence port. The former can
produce a Ruby object whilethe latter can run atest and produce a TestRun product.

When a cellsproducer action isactivated it will create atoken and execute itself
on the token. The token is passed among the cells during production and records
intermediate results, callsto methods and resultsreturned from statements. The token
also selectsfor a certain variant of the variantsthe cell can produce and specifiesthe
random seed to usefor randomizations. Both the variant selector and the random seed
are saved and together with a mature cell uniquely determinesatest run.

Cell executions are protected in several ways so that invalid connections do not
lead to infinite loops or uncaught exceptions. A time out value is used and terminates
the cell execution after aconstant number of secondsthat depends on the speed of the
CPU™ The cell execution is aso invoked within a protected block that will catch any
exception. If atest run raises an exception it is used as the return value from the test
run. This allows evaluators to check for exceptions and punish the cell clusters that
caused them.

When a cell has been executed it packs up the product in a protein, tagsit with
a unique id and gjects it into the fluid. The process of creating proteins cost energy
and that energy isreflected in the concetration of the protein sent out. The amount of
energy to spend on the product protein isdetermined by the cell genome. The amount
of energy sent isa sort of gamble the cell makes. By sending out more proteins the
potential gain can be higher if an evluator likes the product. However, if they do not
the cell will gain no new energy and the energy spent on producing the proteinislost.

WiseR tests the speed of the CPU on startup.
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Sending out many proteins also increasesthe likelihood that other cellsi need of the
cells product getsthe message.

The connector action is pretty straightforward. When activated it checksif any
port sensorshave detected interesting productsthat we could have usefor. The method
used to assessif aproduct isinteresting is a parameter and governed by the genome.
One method simply chooses productsat random, another ranksthe productsaccording
to their semantic match with the ports sementics.

The disconnector action is even simpler than the connector. It can be activated
by chance but the probability that it is activated raises (by how much is governed
by genome) when there are connections in the cluster that cause invalid executions.
The disconnector will choose one of the problematic connections randomly and
disconnect it.

3.5.2. Ports

Cells connect to each other via ports. A port is a placeholder for a piece of the test
coded for by the cell that can vary. Ports are either connectedo another port or are
freefor new connections. Free ports can be further divided into openand closedAn
open port hasto be connected for the cell to be mature. Closed ports does not have to
be connected for the cell to be mature. A mature cell can open a closed port so that it
can grow into amore complex test template. Cellscan add or delete portsdynamically
if needed.

There are four common types of ports: in port, out port, left sequence port and
right sequence port. In ports are used to receive objectsfrom other cellsand out ports
are used to send objectsto other cells. In ports can only connect to out ports and out
ports can only connect to in ports.

Sequence ports are used to chain pieces of code together into more complex
templates. Every test template must start with a closed | eft sequence port; it indicates
the first statement of the test. Right and left sequence ports can only connect to
each other.

Ports are implemented as a separate class and can be easily extended. Thisway
new type of portswith new semantics can be added.

Ports serve a dual purpose. In addition to being the connection points between
cellsthey are the cells main medium for communication. Cells can send out informa-
tion through portsand ports have sensorsthat sense information sent by other entities
in the system.

Ports have a simple form of memory. They keep information about which ports
on other cellsthey have been connected to and statisticson what was sent and received
by the port during a connection. Thisinformation can be exploited by the cell when
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deciding which ports and cells to connect to. When a cell dies or when the pool is
halted the information saved in the ports can be mined and entered into the knowledge
base. ’In’ ports are informed by the cell when the information received on the port
resulted in an invalid execution of the cell. The ports can thus keep track of which
other portsit is fruitful or meaningless to connect to. This way we need not require
that the developer specify the exact requirementsthat needs to be fulfilled for a port
to accept a connection.

As an example lets consider the ArrayGen cell from figure 2. Itsin port named
'size’ expectsaFixnum valuethat islarger than equal to 0 sinceit cannot create arrays
with anegative number of elemets. However, since thereisno Ruby classfor positive
Fixnumsthetype expected onthe sizeport issimply stated to be Fixnum. When WiseR
evolves arraysit may happen that NegativeFixnumGen cells connect to the size port.
Sincethey will never result invalid arraysthe size port on ArrayGen will beinformed
of thiseach time the ArrayGen triesto produce a product. The port savesthe type of
cell and port it isconnected to and cal cul ates an exception rate, ie. the probability that
thisconnection will cause an exception when the cell producesa product. Connections
with high exception ratesarethe primary candidatesthe Disconnector cell action. Also
when the cell diesand the ports are mined for information the knowledge base will be
updated. The next time the system runs the knowledge base now shows that it is not
agood idea to connect NegativeFixnumGensto the size port on ArrayGen. Thiswill
decrease the probability that such a connection happens again.

Often the developer has detailed knowledge about the port and what kind of
connectionsit can accept. He can specify such knowledge as meta-data when adding
a port to a cell. It is encouraged that ports at least have meta data describing their
semanticsie. their purpose. Thisallowsthe selection of candidatesfor innjection into
a pool based on semantic similarity as described above. However semantics are not
required. If sothecell will beinjectedinto poolsrandomly sothat the system canlearn
about the type of connectionsit can take part in.

3.5.3. Biochemical fluid

Cells communicate by sending proteinsinto a simulated biochemical fluid surround-
ing the cells in the pool. Proteins are constructed from a series of acids. An acid is
either an ordinary Ruby object or a specia acid used when matching proteins. The
special acidsare:

*  DontCareAcid - matches any other acid, used when we don’'t care what isin a
certain position of the protein

* ClassAcid - wraps a Ruby class, matches any Ruby object that isa kind of the
wrapped class, used to match a whole series of proteins that are similar in



-20-
structure but only differ by the actual object

*  MultiClassAcid - same as ClassAcid but matches object that is kind of one of
several classes

* NumAcid - encodes a numerical value in the protein, used to indicate the
concentration of the protein

The concentration of the protein indicates how many copiesof the protein issent out
into thefluid. Theimplementationissimply to release on protein and have the concen-
tration indicate the number of copies. Thissavesdown on the number of computations
the biochemical fluid needsto perform when delivering proteinsto sensors.

When a sensor senses a protein there is a reaction that may decrease the conce-
tration of the proteinin thefluid. However there are sensor that sense proteinswithout
reducing their concentration. Thisisfor example used to get a notion of time stepsin
the system. For each iteration of the main pool loop that schedulescellsfor execution
the pool sendsout atime chemical in thefluid. Elementsin the pool can sensethe con-
centration of the time protein without affecting its concentraion.

It ispossible to register reactionswith the fluid. This can be used to setup up de-
caying proteinswhose concentration decrease over time. The prototype only supports
RateDecayReactions that consume a percentage of the currently available concetra-
tion of the protein. They are used for the Frustration protein which isemitted by eval-
uatorswhen they have seen no progressfor along time. The Frustration protein slowly
decaysunlessmorefrustration isemitted by evaluators. Thelevel of frustration can be
agood indication of the overall progressthe search ismaking. Sensorsfor frustration
can aso trigger global pool actions. The prototype does not currently use them but an
example would be an Earthquake pool action that triggered on high frustration levels
and randomly killed off cellsin the pool. After such an earthquake new typesof cells
could be given more room since previously dominating cells have been killed off.

Thefluid isimplemented as a simple tuplespace. Sensors register with the fluid
object and are organized in a hierarchy depending on the specificity of its matching
protein. When proteinsareinjected into the pool thefluid object look upsthe matching
sensors and lets them react with the protein in a random order until no more sensors
areleft or the concetrationiszero. So thefluid inthe prototype doesnot model aspatial
structure of protein diffusion. It isasif all sensors and emitters where at the same
distance from each other and the protein randomly reacted with some of them.

3.5.4. Pool

A pool isacontainer for cellsin different stagesof development. It hasa biochemical
fluid that the cells use to communicate with each other.
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Pools allow any entity that has a biochemical sensor or emitter to connect to the
fluid. Thisallowsthe WiseR front-end to sense the status of the evolution in the pool
and injectorsto inject new cellsinto the pool when the proteinsindicate that progress
iIsslow. Novelty evaluators connectsto the pool to sense products produced by mature
cellsand to send them energy based on the products novelty.

The pool is the main actor in the system and drives everything by scheduling
cellsthat can execute. The pool keegpsalist of the cellsordered from highest to lowest
energy. At each time step it randomly select one of the cellsfrom thetop 10% of cells
having highest energy.

3.5.5. Novelty Evaluators

Novelty evaluators are the main energy sourcesin the system. They evaluate products
produced by the cellsand clustersand give them energy if the product isnovel.

Novelty evaluators sense products in the fluid with a sensor. The sensor reacts
with matching proteins and thus grabs a part of them. If the evaluator likes what they
see they will give energy back to the producing cell in accordance with how many
proteinsthey grabbed. Cellsthat send out much proteinsthus have a greater chance of
being spotted and getting more energy back.

The actual constants that govern how many proteins an evaluator grab and how
much they give back is evolved with an evolutionary strategy algorithm local to the
evaluator. Thiswasadded to the system sinceit washard to set the constantsmanually
and they affected the overall successof the system.

Novelty evaluatorswasadded to the system so that many different criteriafor test
novelty could be added independently of each other. The approach is similar to [B5]
and allows multiple criteria and even contradicting criteriato coexist.

Evaluators that evaluate test runs report their findings to the WiseR GUI. The
GUI usesthe information from the evaluatorsto sort the teststhat are presented to the
developer. More novel tests get higher scoresand end up higher on thelist.

The novelty evaluators that have been implemented for the WiseR proto-
type are:

*  ViolatesPostcondition - violatesa post-condition in the specification (only active
if there are any postconditions) (10)

* Violateslnvariant - violates an invariant in the specification (only activeif there
are any pre-conditions) (10)

*  UnseenException - a previously unseen exception was raised when calling a
method (9)
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*  UnigueMethodCalls- the number and order of methods called on the test object
differsfrom previoustests (8)

e UniqueAttributeType - the type of object returned from an attrbiute of the class
differsfrom previoustests (8)

*  UniqueReturnTypes - results from methods have different type than previously
returned results (5)

*  UniqueCdITypes- the number and type of cellsin the cluster that produced the
test (5)

*  UniqueCellConnections- the number and type of connectionsin the cluster that
produced the test (5)

e UniqueAttributeVa ue - the object returned from an attribute of the classdiffers
from previoustests (4)

*  UniqueReturnVal ues- resultsfrom methodshavedifferent valuesthan previously
returned results (3)

e UniqueParameterNumber - the number of parameters used when calling a
method are different than what has been previously used (2)

e UniqueParameterValues- the values of the parametersto a method differsfrom
what has been previously used (1)

The number in parenthesisisan initial weight that the evaluators have. The weight is
updated based on which tests the developer investigates and classifies. The weight is
used to calculate an aggregate novelty score by summing the individual scores from
the evaluators multiplied by their weight.

Many of the evaluators above are of a binary nature and will not change much
during a run. However, when they do apply and give high uniqueness scores they
ensurethat the cell cluster that created the condition getslotsof energy. Thispromotes
the exploration of similar cell clusterssince the cellsget many changesto run actions
that may clone or disconnect cellsand connect to other cell combinations.

However the gist of evaluation are the evaluators that evaluate the uniqueness
of Ruby objects used as parametersin method calls, returned from method calls and
returned from attributes.

These evaluators use distance functions to compare the similarity of Ruby ob-
jects. Thedistancefunctionsfor simple objectslike numbersissimply the absoluteval-
ueof their difference. For complex objectsthe evaluator checksthe valuesof attribute
methods on the object. For example for an Array the evaluator would call the length
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method to comparethelengthsof the Arrays. Thisneed not be prespecified since Ruby
suppliesreflective methods so that the evaluator can dynamically find out which meth-
ods are attributes and call them. For objectsthat can be enumerated (aggrations such
asArray’s, Hashe'setc) theevaluator will recursively apply itself to compare each sub-
object.

3.5.6. Feedback from developer interaction

WiseR continously monitors the actions of the developer and uses this information
to guide the search. When the devel oper classifies atest the cellsthat participated in
producing the test gets an energy boost based on how unigue the test is according to
the evaluators and by counting how many tests with the same classification that are
already in the specification.

Theweight of evaluatorsthat gave the test a high novelty value are also boosted
somewhat.

3.5.7. Controller

Thecontroller inWiseR isvery simple. It receivesgoal statementsfrom the Ul, divides
them into sub-goalsand identifiesbuil ding blocksthat could be useful in searching for
atest meeting the goal.

There are only two goal statements supported by the WiseR prototype:

. "Test method X on classC’
. "Co-test methodsY1,Y2,...,YNonclassC

The former tells the system to focus on testing one method while the latter indicates
that a set of methods should be tested together. One example where the latter goal
could be used would be when testing the push and pop methods of a PriorityQueue.
With the second type of goa statement above we could tell the system that these
methods’ go together’ so its probably a good ideato call them both in atest.

Upon receiving a goal statement the controller checks whether the method(s) to
betested areinstance or classmethods. Aninstance method isamethod on an instance
(object) of a class. A class method is a method on the class itself. The canonical
example of aclass method isthe method used to create instances®:

# Create an array object (instance of Array) of length 3
a = Array. new 3)

n Ruby the'# character indicatesthat therest of the lineisacomment
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If the method under test (MUT) isan instance method the Controller formul ates
the sub-goal of first creating an instance of the class. So the goal of testing an instance
method is broken down into first creating an instance of the classand then testing the
method on the instances. After goal analysisthe goals enter a goal queue where they
are served in turn. The current status and history of the goal queue can be inspected
by the developer in the Ul.

The controller now takesthe next goal from the queue. It first looksin the knowl-
edge baseif we already know how to create objects of thistype. If not it searchesthe
knowledge base for Cellswith meta-data that isrelevant to the goal. A cell isdeemed
relevant if it isknown to generate objects of the right type or if its semantics match-
esthe semantics of the goal. The semantic matching isdone by a simple heuristic al-
gorithm based on the edit distance between words. The algorithm used is further de-
scribed in appendix A.

The search for Cells to include as building blocks in the search is repeated in
several stepsto ensurethat the in-portsof previously chosen Cellshas some chanceto
connect to other cells. For exampleif an ArrayGen Cell hasbeen chosen the controller
will in the next round search for Cells with meta-data that is relevant for connecting
to the ArrayGen’sin-ports.

4. Case Study

In this section we describe a case study that have been carried out on the WiseR
system.

4.1. Array#maximum

This experiment is an interactive session with WiseR on a simple example, the
Array#maximum method used throughout this paper. The example is somewhat con-
trived sincetheimplementation of Array#maximum containabug on purposein order
to show the workings of the system.

4.1.1. Experimental set-up

For thisexperiment we start with WiseR in aclean state, ie. it hasno knowledge except
for the standard cellsthat come with the basic WiseR system. The cellsin such abasic
system contains data generators for the common Ruby classes, different waysto call
methods with different number of parameters, many different cells for generating
boundary cases of arrays since they are so common in Ruby programs and cells to
multiplex between datagenerators.
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4.1.2. The experiment

The developer needs a method on the Array class that gives the maximum object of
al the objectsinthe Array. He startsWiseR and choosesthe specification window. He
writesa few propertiesthat the method must obey:

cl ass ArrayMaxi nunProperties < Properties
in_class Array

for _met hod : maxi num

# maxi mum nust be el enent of array

post :max_is_an_el enent do |out, ary|
ary.include? out

end

# maxi mum nust be [ arger than equal all the el enents
post :max_is_larger_than_equal do |out, ary|
ary.all? {|elenment| out >= el enent}
end
end

He goes on to the Code window to create an implementation and writes:

cl ass Array
def nmaxi mum
max = sel f[ 0]

self[1l...-1].each do | el enent|
max = element if elenent > nax
end
nmax
end
end

Thealgorithm simply loopsover the elementsand keepsthe max element inavariable
and then returns it. Note that there is an error in the code for the range specifying
which elements to loop over (-1 refers to the last element in the array and a...b to
the range from a up to but NOT including b). This was introduced for the sake of
the experiment.

As soon as he has entered a valid Ruby program (ie. that parses ok), WiseR
initiates a search by creating a pool and injecting cellsinto it. The cells are chosen
based on their semantics as described earlier.
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As test runs are found by the pool they show up in the Tests window. The
developer goes there to check on the findings. Listed on the top is the entry * Raises
NameError: undefined method each for nil’. Thisindicatesthat the maximum method
hasrai sed an exception. By clicking on the entry it expandsto show different test runs
for which this happens. By double-clicking on one of them it can be viewed in the
lower window. Figure 3isa screen capture of the WiseR window at this point.

The developer views the source code for the test. It shows the test code and
the output from the method in the comment. He realizes he has forgotten about the
boundary case of an array of size 0. He decides that the method should return the nil
object when called on an empty array sincethisisthe standard way in Ruby to handle
empty arrays. He updatesthe max_is an_element to

# maxi mum nust be el enent of array or nil if array enpty
post :max_is_an_elenent_or_nil do |out, ary]|
If ary.length > 0
ary.include? out
el se
out == nil
end
end

and adds a new first statement in the implementation that returns nil if the length is
zero. When the program or specification isupdated all the evolved testsare reexecuted
and the window with testsredrawn.

The previously selected test now returns nil which is the required behavior
so the developer classifiesit as being a valid test run. WiseR converts the test into a
requirement and adds it to the specification after the ArrayMaximumPropertiesclass
In the specification window:

cl ass ArrayMaxi nunSpec < Specification

def req_1
# Cal l'i ng Array#maxi mum on
# Array of size O filled with Fi xnum
# Array of size O filled with String
# Array of size O filled with Synbol
assert_equal (nil, [].maximm

end

end

We see that WiseR not only added the test we choose that had Fixnum’s as elements
but also the tests that give the same code but are generated in other ways. However,
thea gorithm WiseR usesfor merging testsissimplistic and should be extended. Right
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end
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Figure 3. The Testswindow in WiseR showing the’ Array of size Ofilled with Fixnum’s' test
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now it has only very simple heuristicsfor how to merge test descriptionsthat do not
work for more complex tests.

At this stage the developer aso realizes that the description of this test is not
optimal. The test is labeled 'Array of size O filled with Fixnum’ but it is not in-
teresting what type of objects are in an empty array. He decides to update the ca-
pabilities of the system by adding a specialized test cell for this boundary case.
He goes into the knowledge base and clicks down in the hierarchy to Wiser-
Tests/Cells/DataGenerators/Array and chooses’ New cell based on...’” from the con-
text menu accessed by right-clicking the mouse. He getsan edit window with the code
for ArrayGen except that the ArrayGen name has been removed so he can writeanew
cell name. He writes’ EmptyArrayGen’ as the name, deletes the two in ports and up-
dates the meta-data and code to execute when running the code. He ends up with (you
can compare thisto the code for ArrayGen given above):

cl ass EnptyArrayGen < Dat aGener at or
semantics "Enpty Array wi thout any elenments (length is 0)"

out port :out, {:type => Array}

def run(token)
Array. new 0)
end
end

He doesn’t need to define the max_num_variants method since it returns 1 by default
as defined in the DataGenerator class.

Going back to the Tests window there are now a new top-level entry
'Array#maximum violatesmax_is larger_than_equal _all _elements'. Thetests show-
ing this behavior hastwo Fixnum or String elements. After ensuring himself that the
max_is larger_than _equal_all elementsisavalid property to require and that itsim-
plementation isflawlessthe devel oper examinesthetestsin close detail. The onewith
Fixnum’slook like:

def test 64
# Calling Array#maxi num on
# Array of size 2 filled with Fi xnum
[-196424314, 837355386] . maxi num #=> - 196424314
end

Something is obviously not right with the implementation and he goes to review it.
WEell, the pool has now spotted the problem with the implementation that it never
comparesto thelast element in the array. Before updating the implementation heturns
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thetestsinto requirements. He classifiesthem asvalid state and valid input but invalid
output so WiseR generates only a skeleton requirement where the developer can fill
in the expected output. Here' sthe requirement above after he hasfilled in the blank:

def reqg_2

# Calling Array#maxi mum on

# Array of size 2 filled with Fi xnum

assert equal (837355386, [-196424314, 837355386] . maxi mun
end

He updates the implementation to use the full range 1..-1. Tests are now rerun based
on the new implementation and he goes back to the Tests window. On top is now
new entries of the form ’Array#maximum raises NameError: undefined method >
for nil’. The tests showing this behavior each have two or more elements that are nil
or symbols. The devel oper realisesthat hisimplementation will only work for objects
that have comparison operators that allow ordering of the elements. He considers
adding a property to ensure this but instead decides that raising this exception isthe
correct behavior in such situations so he classifiesthe tests as valid and the output as
expected. WiseR addsrequirementsof all thetests. Asan example hereisthe onewith
4 symbols:

def req_ 5
# Calling Array#maxi num on
# Array of size 4 filled with Synbol.
assert_raises(NaneError) {[:VvT, :Ho, :ye, :zZ].maxi nun}
end

He also addsthe property at the top of the specification:

rai ses_exception :elenments_nust_be_conparable, NameError do |ary|
ary.all? {|element| elenent.kind_ of ?(Conparabl e)}
end

Going back to the Tests he seesa hew type of entry labeled ' Array#maximum raises
TypeError: failed to convert Fixnum into String’ and examining the test he sees an
array with both Fixnum’'s and String’sin it. Aha, not only need they be Comparable
they need to be comparable to each other. In a similar way as before he write a new
property and converts some testsinto requirements.

Going back to the Tests window again he examines some of the 'normal’ tests
that do not raise an exception or violates any properties. He examinesthem and turns
several of them into requirementsby classifying them asvalid.

He continues doing this until he feels satisfied there are no more errors.
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4.1.3. Analysis

Theinteractive WiseR session reported above showsthat WiseR was effective bothin
finding bugsin the specification and implementation of the Array#maximum method.
Theproblemwithmax_is an_element wasan error in the devel oper internal model of
what the method should do. There was a boundary case he hadn’t considered. Seeing
the actual test that shows the erroneous behavior givesinsight of where the internal
model needsto be refined.

5. Related work

5.1. In evolutionary algorithmsfor testing

There has been a number of studiesthat use genetic agorithms (GA'’s) for structural
testing, ie. ensuring that all parts of the implementation are executed by the test set.
Jones et a used a GA to generate test-data for branch coverage [19]. They use the
control-flow graph (CFG) to guide the search. Loops are unrolled so that the CFG is
acyclic. The fitness value is based on the branch value and the branching condition.
They evaluated the approach, with good results, on a number of small programs.

Michael and McGraw at RST corporation have developed Gadget - a tool for
generating test datathat give good coverage of C/C++ code [P8]. Gadget work for full
C/C++ code and automatically instrumentsthe code to measure the condition/decision
coverage. Thisrequiresthat each branch in the code should be taken and that every
condition (atomic part of a control-flow affecting expression) in the code should
be true at least once and false at least once. Four different algorithms can be used to
search for test datain Gadget: simul ated annealing, gradient descent and two different
genetic algorithms. One of the GA’s scored the best on alarge (2046 LOC) program
whichispart of an autopilot system but on synthetic programsthe GA had problems
with programsof high complexity. Simulated annealing fared better here. In all of the
experiments random testing fared the worst when the complexity increased.

Pargas et a use a GA to search for test data giving good coverage [[30]. They
use the control dependence graph instead of the control flow graph since it gives
more information on how close to the goal node an execution was. Their system uses
the original test suite developed for the SUT as the seed for the GA since it should
cover the programs requirements. To reduce the execution time their system employs
multiple processors. They compare their system to random testing on six small C
programs. For the smallest programs there is no difference but for the three largest
programsthe GA-based method outperforms random testing.

Tracey et a presentsaframework for test-data generation based on optimisation
algortihmsfor structural testing [34]. It issimilar to both Joneset a and Michael and
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McGraw approaches and uses a CFG and branch condition distance functions. They
use both simulated annealing and a genetic algorithm for the optimisation. Their tool
Isautomated and workswith ADA code.

Tracey have used a similar technique for functional (black-box) testing [33].
Theformal specification isdescribed with pre- and post-conditionsthat each function
must obey. The goal isto find indatathat will fullfill the pre-condition and the negated
post-condition. These expressions are converted to digunctive normal form. All pairs
of single disunctsfrom pre- and post-conditionsare considered targetsfor the search
since afault isfound when either of them isfulfilled.

Mueller and Wegener used an evolutionary agorithm to find bounds for the
executiontimeof real-time programsand compared it to static analysisof the software
[24]. Even though the evolutionary algorithm cannot give any safe timing garantuees
it isuniversally applicable and only requiresknowledge about the programsinterface.
Static analysis can give garantuees but only in atheoretical world. It needs extensive
knowledge about the actual hardware if we are to trust the results. Such knowledge
may not always be available.

Baudry et al have used genetic algorithmsfor evolving test sequencesfor muta-
tion testing of Eiffel programs[B]. Their model issimilar to oursin that they focuson
specification, implementation and tests. Their specifications are written with pre- and
post-conditions and invariant. A tool mutates the programs and a genetic algorithm
searchesfor test sequencesthat killsthemutants. The GA isseeded with test sequences
written by the devel oper. Mutantsthat are not killed by the GA are analyzed by hand
to seeif they are mutantsthat did not change the workings of the software.

Genetic algorithms have been used to generate test scriptsfor GUI testing [E0].
Even though the tests generated were simpl e the authors concluded that the GA could
test an application in an unexpected, but not purely random way.

5.2. In evolutionary multi-agent systems

Like WiseR the system developed by Krzysztof Socha and Marek Kisiel-Dorohinic-
ki uses multiple entities, called agents, that together explore a multi-objective search
landscape [34]. Agentsexchange anon-renewableresource called lifeenergy in trans
actions based on comparing their behavior against a fithess function. The traditional
evolutionary processesof selection and inheritance are not governed by some central
authority but happen locally in each agent. When agents have high energy they will
reproduce and when energy goeslow they die. Agents have a physical location in the
world they arein and all actions happen locally. The system has been applied to opti-
mization of some numeric test functionswith promising results.

Our system differsfrom Socha's and Kisiel-Dorohinicki’sby not using locality,
having heterogenous agents, arenewable’ energy’ and adynamically changing fitness
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landscape. The agentsin our system are cells of diverse constitution. They exist in a
pool without a physical location. Communication thus go to many more other cells.
Thisisneeded since there may be fewer receiversand too strong locality might hinder
progress. Moreimportantly our system doesnot try to optimizea static fitnessfunction
and the fitness function is not smooth. In these conditions we don’t think it would be
possible to have a non-renewable’ energy’ resource.

5.3. In cell-based programming models

Some research groups are studying how programming models inspired by biological
systems can be used to build more robust systems. George et al recently introduced
such a model where cell programs are automatons containing discrete states and
transitions between the states [[I8]. Cells can sense there immediate neighbourhood
and send out chemicals. They can also divide. The authorsbeleive they will be ableto
build self-healing software with the model.

The’ AmorphousComputing’ group at MIT studiesorgani zational principlesand
programming languages for coherent behavior from the cooperation of myriads of
unreliable parts[d].

5.4. In evolutionary design systems

The Agency GP system isused to | et designersexplore the design space of 3D objects
[BH]. It has a very flexible approach to fitness eval uation where agents eval uating one
aspect of fithess can be released into the system and affect fitness evaluation. New
agents can be added as needed. The authors claim that this model iswell suited for
fitness eval uation based on conflicting, non-linear and multi-level requirements. Our
model with evaluatorsisvery similar to this agent-based fitness model.

lan Parmee and colleagues have investigated the use of genetic algorithms for
conceptual engineering design [31]. Their research has focused on different ways to
allow the designer to guide the multi-objective optimization carried out by the genetic
algorithm. They have applied their systems to ’traditional’ engineering disciplines
such as aerospace and civil engineering.

5.5. In biochemically inspired system

Lones and Tyrell have proposed a new representation for genetic programming in-
spired by gene expression and enzymes in the metabolic pathways of cells [E3, E3].
Thebuilding blocksfor the GP algorithm are enzymes containing an activity and a set
of specificities. Theactivity isthefunction theenzymeencodesand the specificitiesare
templates that determine which other components the enzyme can connect to. Geno-
types are sets of enzymes and develop into a program by starting the build process
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from an output enzyme. The system has been evaluated on the evolution of simple,
non-recurrent digital circuits. The WiseR-Tests system shares many similarities with
Enzyme GP (EGP). Our cells correspondsto EGP's activitiesand our portsto EGP's
specificities.

Many other researchersal so build computational modelsbased on modeling cell
communication via chemicals. An overview of different approachesis given in [I4]
which also presents an aggregated model taking different partsfrom the earlier mod-
els. Their systemisvery similar to oursin that ablackboardisused for communication
between autonomousagents. However, their ultimate goal isto model cellsfor medical
research.

5.6. In softwaretesting

The QuickCheck system by Claessen and Hughesisatool for automatic specification-
based testing of programswritteninthefunctional programminglanguageHaskell [B].
The programmer providesaspecification of the program by writing propertiesthat the
functionsin the program must satisfy. The programmer can also combine simple test
data generatorsinto more complex ones. The data generatorsare then used to generate
random data for testing the propertiesof the specification.

The Ballista system can be used for robustness testing of commercial-off-the-
shelf (COTS) components [ET]. They use the very simple criterion’ Crash or not? to
determineif the response wasvalid and thusdo not require a behavioral specification.
The reason is that specifications are often not available for COTS software. The test
setsgenerated by Ballista are exhaustive based on the datatypesof parametersto each
function. There are generators available for each data type and they return extreme or
boundary values. Our approach with data generatorsisvery similar to Ballista’'swith
the exception that we allow multiple generators for each type and generators can be
combined by connecting to each other.

5.7. In methodsfor semi-automated softwar e development

The Programmer’s Apprentice (PA) was an attempt to build intelligent assistants to
support in requirementsanalysis, design and implementation of a program [32]. They
sought to automate the programming process by applying techniques from Artificial
Intelligence. Asastep towardsthat long-term goal they built assistantsthat could help
the developer make intelligent decisions. For example, the implementation assistant
allowed a programmer to construct programs by combining algorithmic fragments
stored in alibrary.

PA issimilar to WISE inthat it allowsthe devel oper to bypassthe system and di-
rectly enter code (or testsin WISE). But PA’sway to represent knowledge isdifferent.
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It is based on finding and encoding knowledge in pre-specified formats. Restrictions
are thus put on how people must enter knowledge about the domain. The knowledge
Is also represented in a form that is different from the implementation language. In
contrast the format used to represent knowledge in WISE isthe same asthe program-
ming language itself. Thismakesthings easier for devel oper since they do not need to
learn another language. Another differenceisthat the Programmer’s Apprentice sys
tem does not concern itself with testing.

The approach taken by PA can be called rule-based. A similar approach is the
case-based reasoning approach to automated SE taken by some systems []. Like
WI SE they use some fuzzy measure of similarity to find components from a library
that arerelevant to atask. Like WISE they a so learn by allowing the devel oper to add
knowledge to the system. However, none of them have focused on testing and few of
them producesartefactsthat can easily be read by humans|[]. Since WISE focuseson
knowledge about testsand test sequencesare often simpler than the software they test
thetasksfacing WISE issimpler. However, apossiblefuturework can betoinvestigate
if and how more complex meta-data and matching schemes, asused in case-based SE
systems, can be used in WISE.

Scheetz et al used an Al planner to generate test cases from an UML classdia-
gram [B3]. The UML diagram needsto be augmented with test-specific information.

6. Discussion and futurework

6.1. Discussion

On why wedid not compar e the biomimetic search algorithm to random sear ch.
The interactive aspects of WiseR makesit hard to compare the system to a blind ran-
dom search. If we compare the system without any devel oper interaction we the sys
temiscrippled and it is hard to draw conclusions about the full power of the system.
Such an experiment could shed light on the importance and effect of the developer
interaction. However, it isnot even clear what should be considered a random search
towhichwe could compare. What amount of information should weallow therandom
search to have? Should it have access to the port memories showing which ports are
valid or invalid to connect to? Should it be allowed to use the semantic matching al-
gorithm to select a set of cellsthat are promising? It isnot clear-cut what the answers
should be and the limited time available for this study did not allow usto investigate
thisany further. It isan important point for future work though.

On why it isfast enough even though Ruby isinter preted. Even though Ruby
Is interpreted and between 5-100 times slower than compiled C (depending on the
type of task) the WiseR system can find testsin reassonable time. One reason is that
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the system can test very many cell clusters while the developer investigates a single
test. Another reason isthat much knowledge about potentially good testsiscapturedin
the cells. They are high-level building blocksthat have shown to be useful in previous
testing efforts.

On how tied the system isto Ruby. Even though our goal hasbeenfor ageneral-
ly useful system the WiseR prototype uses many special featuresof Ruby that may not
be availablein other languages. Reflectionisused in the evaluatorsto find way to com-
pare unknown objects. Thefact that Ruby isinterpreted also helpssince we can easily
reload tests. But there are not only downsides with going for other languages. A stat-
ically typed language would simplify things since the types of data would be known.

On WiseR’s complexity. The design of WiseR might appear complex on the
surface. Even if there is no absolute way to measure and compare the complexity
of software systems we think a major cause for WiseR’'s apparent complexity is
that it utilizes concepts not commonly used in software designs. The fact is that the
complete WiseR system, including rudimentary graphical interfaces and the code
for the test cells, is about 3800 lines of Ruby code!. We do not consider that a major
software system.

On therisc of using automated methodsto search for tests. Thereisa clear
risc with using automated methods such as the one employed by WiseR for finding
tests: we get a false sense of security by seeing the mass of tests that can be fairly
easily added. However, if the system does not have the right information to base the
search onit only searchesa small subset of the space of possible input sequences. We
note that thisis a potential problem and that further development of WiseR should
try to find methods to at least partyl overcome this. As an example the QuickCheck
system by Claessen and Hughes can summarize the different input data sequences
used in the test to show their disitrbution [B]. Something similar would be of valueto
WiseR, possibly combined with some way of visualizing these distributions.

6.2. Futurework

6.2.1. Further experiments on WiseR-Tests

The case study described in section 4 are limited and on a very small development
task. To really gauge the power of the developed system we need to perform more
experiments on larger development tasks. Since the developer is such an important
element in the WISE philosophy experiments should be carried out with several
developers on one and the same development task. This could reveal differencesin
how devel opers experience and make use of WiseR's capabilities.

Y ncluding comments and blank lines
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Oneway to acheive devel oper feedback about the system could betoreleaseit as
open-source. An intriguing possibility would be to devel op WiseR-Testsinto a plugin
for the new FreeRide Ruby integrated development environment [[L3].

6.2.2. Extending WiseR-Tests

There are a multitude of things that can be changed within the current WiseR pro-
totype.

The connection between what cells are available in the CellPool and the tourna-
ments in the Arena could be tighter. This might add important feedback that more
quickly would steer the evolution to interesting areas of the TestSpace. It would also
have the potential of trapping the processin local minima, ie. parts of the TestSpace
where not much new knowledge is to be found. Exploring this trade-off might be
worthwhile.

Improve the descriptions and process of generating test descriptions from a
builder. Even though it currently give valuable information to the developer its a bit
awkward and might be improved upon.

The controller is not currently part of the evolutionary process in WiseR. We
consider thisa drawback. This decision was made because we wanted the goal of the
current searches to be visible to the developer. It was not clear how a goal could be
formulated from an ongoing evolutionary process. An interesting areafor future work
would beto have a co- or meta-evolutionary search for CellSource' sthat could attach
to the running search and add new cell material. Much of the scaffolding needed for
thisisalready present with the system of triggersthat monitor the knowledge basefor
when to inject new cell material into the pool.

6.2.3. Additional modules and extending WISE

CodeFaultAnalyser. The WISE system knows when you are correcting the source
code and can thus save information about error correctionsthat you do. By saving the
faulty and corrected syntax treesthesetreescan be analyzed. Over timethe system can
build a knowledge of your common faults and how to correct them. Thisinformation
can be coupled with the Tester module to alow strengthening the tests based on mu-
tation analysis. By basing the mutations on the actual faults of the user we can assure
they arerepresentative. Thiswould be an excellent basisfor mutation-based testingin
the spirit of [Baudry et al] but with faultsthat are relevant for the current devel oper.

Explicitly representing faults also makes it possible to exchange fault sets
between different developers. Thusover timethiscould lead to acommon database of
faultsand how to solve them. Faults and corrections could a so be exchanged over the
internet etc.
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A basic CodeFaultAnalyser module has been implemented in WiseR. However,
it has not yet been integrated with Tester so that they can cooperate to strengthen the
tests. Future work should strive to integrate these two modules so that they can use
each othersknowledge. For example, knowledge about the devel opers common faults
could be used to create mutant code that testswould have to identify asfaulty. A new
novelty evaluator could thusreward teststhat killed (new) mutants.

CellExtractor. There are many possibilities for automating the extraction of
test cells, ie. test strategies, test code patterns and test data generators. By analysing
existing test suitesthe system could find recurring patternsthat can be extracted into
new test cellsand used for future test evolution.

Extractors could also insert specific data generators tailored to the implemen-
tation at hand. A static analysis of the code to be tested could reveal valuesthat are
boundary cases for this particular implementation and thus are likely to reveal new
information about the system.

7. Conclusions

Based onthetheory of softwaredevelopment proposed in [[1] weidentified opportuni-
tiesfor aworkbench to support the devel opment process. Our design for an integrated
software devel opment workbench, WISE, triesto follow theideasindicated by thethe-
ory. It explicitly represents both the artefactsto be produced during devel opment and
encourage the encoding of meta-information about testing that can be used to derive
meaningful tests.

WI SE uses biomimetic algorithmsto support the devel opment processes. In par-
ticular, WiseR, our first prototypeof WISE implemented inthe programminglanguage
Ruby, evolvestest templatesthat generate teststhat add interesting information to the
system. A common design themeisflexibility. The devel oper can continously interact
with the automatic evolutionary processto guide it and turn it to interesting areas of
the design space.

We have performed an initial case study on WiseR. It shows that WiseR can
successfully evolve test setsthat are both powerful and meaningful.

Appendix A. Algorithm for calculating semantic similarity

The WiseR prototype usesthe following heuristic to compare the semantic similarity
of two strings:

1. Divide both strings into it constituent words while dropping any non-al phanu-
meric characters.
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2. Deetetheshort, trivial’ wordsthat tend not to carry much information: a, an, the,
in, on, of, and, or.

3. Cadculate the edit distance (also called the Levenstein distance [14]) for
al pairs of words in the two strings that share a prefix at least of length
MIN_PREFIX_LENGTH. Inversethisto get asimilarity score.

4. Sort al the similarity scores and sum them with a weight that is the inverse of
their rank.

5. For each word that do not share a prefix subtract aMISSING_PENALTY from
the similarity score

The MIN_PREFIX LENGTH and MISSING_PENALTY constants was optimized
(off-line) with an evolutionary strategy so that the heuristic above gives values that
correspond with common sense on a set of strings. However, no evolution is done
online on these parameters.

No doubt there are better algorithms for doing the semantic matching and
Investigating them could be an important future work. However, the above heuristicis
simple and gives an indication of semantic similarity. Since the measureisonly used
to select building blocksit isnot fundamental to the success of the system.

Appendix B. Short introduction to Ruby and its syntax

Since Ruby is not very well known we here gives a brief introduction to it and its
syntax. Thisintroduction is heavily based on a paper by Michael Neumann [23].

Ruby is an interpreted, object-oriented programming language. It is similar to
both Smalltalk, Perl and Python but the syntax is more like Eiffel, Modula or Ada.
Like Smalltalk everything is an object?, there is a garbage collector, variables don’t
have type, there is only single-inheritance and code can be packaged into objects.
Ruby’s Perl heritage manifests itself in strong support for text-manipulation using
regular expressions and substitution but also iterators. In many regards Ruby is very
similar to Python athough many consider the object-orientedness to be somewhat
purer in Ruby than in Python.

In Ruby you declare a classand a method like:

class Myd ass
def ny_met hod
1

There are some exceptionsto this but they are not important here
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end
end

and can now get an instance (object) of the classand call the method with

o = Myd ass. new
o. ny_met hod # Returns 1!
where everything after the # isa comment.

Ruby isdynamic. All classesare open and at any time you can add new methods
to classes.

Ruby has an eval method so that Ruby code in strings can be eval uated.

eval "1" # Returns 1!
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