
Generating Multiple Diverse Software Versions with Genetic Programming

Robert Feldt
Department of Computer Engineering
Chalmers University of Technology
Horsalsv. 11, S-412 96, SWEDEN

feldtace. chalmers. se

Abstract

Software fault tolerance schemes often employ multiple
software versions developed to meet the same specifica-
tion. If the versions fail independently of each other, they
can be combined to give high levels of reliability. While
design diversity is a means to develop these versions, it
has been questioned because it increases development
costs and because reliability gains are limited by
common-mode failures. We propose the use of genetic
programming to generate multiple so f ia re versions and
postulate that these versions can be forced to differ by
varying parameters to the genetic programming algo-
rithm. This might prove a cost-effective approach to
obtain forced diversity and make possible controlled
experiments with large numbers of diverse development
methodologies. This paper qualitatively compares the
proposed approach to design diversity and its sources of
diversity. A n experiment environment to evaluate whether
signijicant diversity can be generated is outlined.

1. Introduction

Design diversity, i.e. several diverse development
efforts, has been proposed as a technique for generating
redundant versions of the same software. These versions
are to be employed in structures such as n-version
programming, with n versions independently calculating an
answer and a voter choosing between them, to give the
resulting system the ability to tolerate software faults. The
difference, i.e. diversity, in the programs that is generated
by the different design methods used for the different
versions is called software diversity. The hope is that the
diversity in the programs will make them exhibit different
failure behavior; they should not fail for the same input
and, if they do, they should not fail in the same manner.

There are two main drawbacks with the approach of
design diversity: (1) it is not clear how we can guarantee

1089-6503/98 $10.00 0 1998 IEEE

that the developed programs fail independently of each
other and (2) the life cycle cost of the software will likely
increase. The original idea of n-version programming
(NVP) put forward in [11 opted for the specification of the
software to be given to different development teams. The
teams should independently develop a solution, and this
independence between the teams should manifest itself in
independent failure behavior. However, software
development personnel have similar education and training
and use similar thinking, methods and tools. This will lead
to common-mode failures, several versions failing for the
same input, and limit the diversity that can be achieved.
Experimental research ([2]) has shown that there are
systems for which the independence assumption is not
valid. The strength of using design diversity has thus been
questioned.

In [3], the term random diversity was proposed to
denote the above scenario; generation of diversity is left to
chance and arises from differences in background and
capabilities of the personnel in the development teams. In
contrast to this, they introduced the notion of enforced
diversity. By listing the known possible sources of
diversity and varying them between the different develop-
ment teams, the software versions can be forced to differ.
In [4], Littlewood and Miller showed that the probability
that two versions developed with different methodologies
would fail on the same input is determined by the
correlation between the methodologies. The correlation is
a theoretical measure of diversity defined over all possible
programs and all possible inputs. Littlewood and Millers
calculations set the goal for studies into achieving software
diversity: find methodologies with small or negative
correlation.

A problem in using design diversity is that life cycle
costs can increase. Obviously, the development cost will
increase; we have to develop N versions instead of one. In
addition to this, maintenance costs increase. Each change
or extension to the specifications of the software must be
implemented, and possibly even redesigned, in each of the

387

diverse versions. The actual cost increases have been
estimated to be near N-fold [5].

This paper introduces a novel approach for developing
multiple diverse software versions to the same specifica-
tion that addresses both the cost and non-independence
problems of design diversity. By varying a number of
parameters affecting the development of programs, we can
force them to differ. The proposed approach uses genetic
programming (GP) which, according to [6], is a technique
for searching spaces of computer programs for individual
programs that are highly “fit” in solving (or approximately
solving) a problem. GP evolves programs built from
specified atomic parts and adhering to a basic specified
structure. Genetic algorithms model evolutionary
processes in nature and are studied under the subject of
Evolutionary Computation (see for example [7]).

Section 2 introduces genetic programming and section
3 discusses how it can be used to develop diverse software
versions. An experiment environment to evaluate how
successful this approach is in generating significant
diversity is described in section 4. No experiment results
are presented. Finally, we give a summary and indicate
future directions for this research.

2. Genetic Programming

Genetic algorithms mimic the evolutionary process in
nature to find solutions to problems. Genetic programming
is a special form of genetic algorithm in which the solution
is expressed as a computer program. It is essentially a
search algorithm that has shown to be general and effective
for a large number of problems.

In the classical view of natural evolution, a population
of individuals competes for resources. The most “fit”
individuals survive, i.e. they have a higher probability of
having offspring in the next generation. This process is
modeled in genetic algorithms in which the individuals are
objects expressing a certain, often partial or imperfect,
solution to the investigated problem. In each generation,
each individual is evaluated as to how good a solution it
constitutes. Individuals that are good are chosen for the
next generation with a higher probability than low-fit
individuals. By combining parts of the chosen individuals
into new individuals, the algorithm constructs the
population of the next generation. Mutation also plays an
important part. At random, some parts of an individual are
randomly altered. This is a source of new variations in the
population.

While a genetic algorithm generally works on data or
data structures tailored to the problem at hand, genetic
programming works with individuals that are computer
programs. This technique was introduced by Koza in [6]
and has recently spurred a large body of research ([SI).
Kozas programs are trees that are interpreted in software

but a number of other approaches exist. For example, in
[9] Nordin evolved machine language programs that
control a miniature robot.

A number of GP systems are available. To use one of
them to solve a particular problem, we must tailor it to the
problem. This involves choosing the basic building blocks
(called terminals), such as variables and constants, and
functions that are to be components of the programs
evolved, expressing what are good and bad characteristics
of the programs, choosing values for the control parame-
ters of the system and a condition for when to terminate
the evolution of programs [6]. The control parameters
prescribe, for example, how many individuals are to be in
the population, the probability that a program should be
mutated and how the initial population of programs should
be created.

The major part of tailoring a GP system to a specific
problem is to determine a fitness function that evaluates
good and bad characteristics of the programs and to
develop an environment in which these characteristics can
be evaluated. There is no reason to use GP if it is harder to
implement an evaluation environment than it is to
implement a program solution. However, GP can be used
for problems that we can state but for which no solution is
known. The fitness function is often implemented via test
cases with known good answers. However, the fitness
evaluation process is much more general and constitutes
any activity taken to evaluate the performance of a
program. For example, in [9], the programs are evaluated
in a real robot; the ability of the program to avoid
obstacles while keeping moving is evaluated and used as a
fitness rank.

2.1. Diversity in genetic programming

The term diversity is used with a special meaning in the
Evolutionary Computation (EC) community. If the
population contains programs that are different, it is said to
be diverse. When there is no diversity left in the popula-
tion, i.e. all programs look and behave the same, the GP
run is said to have converged to a solution. This can
happen before good solutions to the problem have been
found and thus different ways to maintain and enhance the
diversity are studied (see for example [lo]).

Several different measures of diversity have been
proposed in the EC community and are classified in [111
into two different classes: genotypic and phenotypic
measures. These classes directly correspond to two of the
four characteristics of software diversity listed in [3].
Genotypic diversity is called structural diversity by Lyu et
al. and measures structural differences between the
programs. Phenotypic diversity is called failure diversity
by Lyu et al. and measures differences in the (failure)
behavior of the programs.

388

The diversity remaining in the population when the GP
run is terminated can be used to enhance the effectiveness
of GP. In [12], Zhang and Joung proposed that a pool of
programs, instead of a single one, should be retained from
a GP run. The output for certain input is established by
applying all the programs in the pool to the input and
taking a vote between them to decide the master output,
much like an NVP system.

Our approach is distinct from the approach of Zhang
and Joung, since we propose that diversity from several
runs of a GP system should be exploited and that a
systematic variation of the parameters to the GP algorithm
should be used to promote diversity. Our goals are also
markedly different from the research on measuring
diversity. This is primarily done to assess whether a run of
a GP system should be stopped because the population has
converged ([I 11).

2.2. Parameters to a GP system

In the remainder of this paper, we take a pragmatic
view of genetic programming. We consider it as a
technique for searching a space of programs and view it as
a "black box" with three sets of parameters: parameters
defining the program space to be searched (program space
parameters), parameters defining details about the search
(search parameters) and parameters to the evaluation
environment (evaluation parameters).

The program space parameters include parameters
defining the terminal and function sets and the structure of
the programs. These parameters define a space of all
possible programs adhering to the specified structure and
applying the specified functions to the specified terminals.

The search parameters affect only the result, i.e. the
effectiveness, of the searches in the space of programs
defined by the program space parameters. Examples of
search parameters are the number of programs in the
population and the probability that a program should be
mutated.

The evaluation parameters define, for example, the
number and nature of test cases to be used in evaluation.
The strategy for evaluation is also viewed as a parameter.
An example of a strategy would be to let the test cases
change to test the programs on difficult input values.

It is worth noting that this black-box view frees us from
considering only genetic programming. We can consider
other algorithms searching a user-definable program space
or other algorithms that generate programs. Possible
substitutions for GP could be program induction methods
or other machine learning algorithms studied in the area of
artificial intelligence. Diversity could be found by varying
the algorithm used.

3. Software diversity using genetic
programming

The output from a run of a GP system is a population of
programs that are solutions to the problem stated in the
fitness function implemented in the evaluation environ-
ment. The solutions are of differing quality; some
programs may solve the problem perfectly, others might
not even be near solving a single instance of the problem
and in between are programs with differing rates of
success. The diversity in this population can be exploited,
as was done in [12]. However, the amount of diversity
available in the population after a GP run will be limited
since populations tends to converge to a solution. One way
to overcome this might be to rerun the system with the
same parameter settings. GP is a stochastic search process,
and two runs with the same parameters can produce
different results. Diversity might also be achieved by
altering parameter values between different runs of the GP
system. If we change the search parameters to a GP
system, the search might end in different areas of the
search space of programs, thus yielding diverse software
versions. Furthermore, if we change the program space to
be searched by altering the program space parameters, we
will get programs using different functions and terminals
and adhering to a different structure. Diversity might also
be achieved by changing parameters to the evaluation
environment. Thus, we propose that diverse software
versions are developed by running, re-running and varying
parameters to a genetic programming system tailored to
the specification for the version(s).

Table 1 outlines the phases in using the proposed
method. We start by developing an environment to
evaluate the quality of programs. i.e. how well they adhere
to the requirements stated in the specification. Thus. upon
entering this phase, we need to have a specification at
hand. Next, we need to choose which parameters to vary,
which values to vary them between and which combina-
tions of parameter values to run with the GP system.
Research is needed to evaluate which parameters most
affect the diversity of the resulting programs and how to
choose their values. The principle for the choice o f values
should be to include concepts that are thought to be needed
to develop a solution, but careful consideration must be
made so that the diversity that can be found is not limited.

389

an evaluation environment.

7. Choose programs Choose the combination of programs that give the lowest total failure probability for the
software fault tolerance structure to be used.

Table 1. Phases of the proposed method for developing diverse program by varying parameters to
a genetic programming system

There are large numbers of parameters to a GP sys-
tem, and most of them can take multiple values, so the
number of combinations of parameter values is vast. We
think that a systematic exploration of these different
combinations should be tried. Statistical methods for the
design and analysis of experiments, as for example
fractional factorials as described in [131, will likely be
needed to this end.

in the next phase (5) , the chosen combinations of
parameter values is supplied to the GP system which is
run to produce the programs. From each run, the best,
several or all of the developed program versions can be
kept for later testing. If the program generation is not
successful, iteration back to phases 2,3 and 4 may be
necessary. Upon leaving phase 5 , we have a pool of
programs. Running a GP system is an automatic process
and does not need any human intervention, so the
number of programs developed can be large. If we are to
use the programs in a specific software fault tolerance
scheme, such as an n-version system, we need to choose
which programs in the pool to use. Calculating measures
of diversity such as the correlation measures in [4] or the
failure diversity measure in [3] might be useful in this
task and can be calculated from the test data in phase 6.

In [4], systematic approaches to making design
choices when employing design diversity were intro-
duced. If we hypothesize that our choices of parameter
values are analogous to these design choices, the findings
in [4] might be used to choose among the combinations
of parameter values. A particular set of design choices is
called a design methodology in [4] and, if we take our
analogy even further, our GP approach would enable us
to try a large number of design methodologies in the
same setting. However, it is unclear whether the use of
GP or a common evaluation environment limits the
diversity to be explored such that the variations in design
methodologies are only minor. Research is needed to
evaluate this.

In the following, we list sources of diversity when an
approach such as NVP is used and identifies which GP
parameters relate to these sources. Thereafter, the cost
issue of using the proposed GP approach is briefly
discussed. Central to the result of applying the described
method is that GP can evolve good solutions in the first
place. it is not probable that the versions can be used if
they fail on a large number of input cases. This issue is
further discussed below.

3.1. Comparison of diversity sources

To qualitatively assess the value of the proposed
approach, we would like to compare the sources of
design diversity with the parameters we can affect in the
GP system and what effect on the generated program
they might have. Table 2 shows a taxonomy of sources of
design diversity and parameters that correspond to these
sources. The taxonomy is not intended to be complete
but covers the most important aspects mentioned in the
literature (see for example [14] and [3]). The taxonomy
has been carried over from the Software Metrics area
([15]). Our motivation for this is that what can be
measured can be varied and what can be varied, and
applies to software and its development, is a potential
source of diversity. In [15], Fenton arrives at this
taxonomy by viewing a piece of software as a set of
activities (processes) using resources to produce artifacts
(products). In table 2, a source with leading number 1 is
a process, with leading number 2 is a product and with
leading number 3 a resource.

We stress that making a comparison like this is not
easy; it is not clear-cut how an approach such as genetic
programming can be compared with more traditional
software development techniques.

390

Products. Wc cannot directly specify what algorithms
and data structures should be used by the GP programs.
If we were to give two development teams different
functions and terminals to use in their program, however,
it might affect what algorithm they used to solve their
problem. If the same reasoning applies to our GP system,
we would expect the algorithm used in the developed
programs to differ for runs with different functions and
terminals. The same argument applies for the parameter
that determines the permitted structure of the programs.
If we dictate that a development team cannot use any
subroutines or cannot use recursion, that team might not
implement a certain algorithm, forcing them to consider
other solutions. In GP, we can introduce functions and
terminals that give access to certain types of data
structures, such as indexed memory, lists or stacks.

Some studies have shown that using different imple-
mentation language can give rise to diversity ([3]). The
counterpart in GP is the representation language. 'This
could be one of the earlier mentioned function trees or
machine instructions. Other examples are programs
implemented with directed acyclic graphs, functional
languages or stack-based microinstructions.

Resources. The representation languages in GP are often
only intermediary. After the GP run, this intermediate
language can be translated into some target language.

Processes. The potential diversity arising from different This makes it possible to leverage diversity available
specification processes and/or types also can be used from using different compilation tools, such as compil-
with the GP approach. The difference is that each ers, linkers and loaders. The personnel and team sources
specification must be implemented in an evaluation of design diversity have no direct counterpart in GP.
environment. The design and implementation processes There are many parameters to be set when using GP that
have no direct counterpart in GP. With GP, we do not have no direct counterparts in ordinary development
explicitly design the programs; they evolve to meet our methodologies. These should not be viewed as purely
specification. However, the task of choosing parameters, new ways of adding diversity sources since it is probable
their values and combinations to be used in the different that a variation in many of them will have to be restricted
runs resembles a high-level design activity. We decide considerably for the GP process to find a satisfactory
not exactly how the program is to be designed but which solution.
major concepts can be used.

The potential diversity from using different imple- Summary. There are a large number of parameters in a
mentation processes resembles using different types of GP system, and they correspond to some of the sources
GP system with, for example, different program of diversity in traditional design diversity approaches.
representations. An example would be using function Research is needed to evaluate which of the parameters,
trees to represent the programs in one run and using if any, can be used to force the development of diverse
linear representations in another. software versions.

The diversity to be found by different testing schemes We believe that a change in the program space
has no direct counterpart in GP. However, choosing the parameters has the greatest potential for generating
number and values for the test cases to use in evaluating diversity since it alters the space of programs that are
the programs relates to testing as well as to test data searched. Furthermore, changing these parameters is not
(point 2.5). For different runs, we might choose to difficult and does not incur a large cost and thus should
concentrate the test cases in a special region of the input be the focus of a pilot experiment. Changing the
data space. Another parameter that resembles alternating parameters of the evaluation environment also shows
the test process would be to allow the test cases to potential for diversity. However, the cost of doing so is
change dynamically. greater and may involve developing altemative

structure functions and

Table 2. Correspondence between sources
of diversity in traditional design diversity
approaches (based on [15], [14] and [3])
and our proposed GP approach

391

evaluation environments. Finally, changing the search
specific parameters should primarily change the rate of
success for the GP system. Thus these parameters must
be altered to find suitable solutions and may not be
available to use for diversity purposes.

3.2. Cost of using genetic programming

Developing one program version in GP is an auto-
matic process. It needs a great deal of processing power
but can be speeded up by using parallel computer
systems. The evaluation of individuals in a GP popula-
tion can be done in parallel, and the different runs can be
made in parallel when we develop multiple versions.
Compared to a traditional approach to design diversity,
such as NVP, the cost of development will likely be low;
NVP uses human software developers while GP uses
processors. This would imply that using GP would
decrease the cost of developing an n-version system. The
initial cost for the GP approach is higher, however; we
may need to try parameter combinations we have not pre-
specified, and it is unclear how the verification and
maintenance costs compare with a traditional approach.

When using GP, we design and implement an evalua-
tion environment from the specification, choose which
GP parameters to vary and which values to vary between.
With the NVP process, this preparation phase includes
administrative tasks such as choosing the design teams,
distributing information to them and managing their
work. An additional cost in the GP approach is convert-
ing the developed versions to a format suitable for
execution. The internal representation in the GP system
must be converted to binaries for the target machine.
However, this cost can be expected to be low since it can
be automated.

The cost issue is further complicated if we take
verification and maintenance into account. It is unclear
how the verification costs of the two approaches
compare. The programs developed with GP are generally
difficult for humans to read. Their building blocks are
the same as in ordinary programs, but there are no
comments or design documents and the code can be very
complex. In the general case, one cannot expect to debug
the programs in the ordinary sense. The program(s)
possibly need to be reinserted into the GP system and
further developed. Another approach might be to re-run
development but emphasizing requirements on the
program differently (in the evaluation environment).
Similar approaches may be used when maintenance is
performed on the n-version system owing to, for
example, changing requirements. In this case, the
evaluation environment would probably also have to be
updated.

3.3. Applicability of genetic programming

We stress that there are serious deficiencies in the
theoretical knowledge about genetic programming. The
research field is only a couple of years old, and the
technique has been applied mostly to toy problems.
There is a feeling in the evolutionary computation
community that it is time to “step up” and attack real
problems, but there is a risk that GP will not scale up to
more complex tasks. The applicability of our proposed
approach is directly tied to the applicability of GP. If GP
can not be scaled up to larger problems, neither can our
proposed approach.

At its current level o f maturity, GP is probably best
suited for controllers, which are small and isolated
program components, even though this somewhat
contradicts the reason for using software diversity in the
first place. The success criteria for control algorithms can
be more easily described than, for example, desktop
applications since their effects are apparent in the
physical world (or in a simulation). Furthermore, GP can
be applied even if the underlying control algorithms are
poorly understood or not even theoretically known. If we
can implement our requirements in an evaluation
environment, GP can be applied.

When using the proposed approach, it is crucial that
the evaluation environment is free from errors. Since the
environment is used to evaluate all programs developed,
it is a single point of failure in our development process.
This is analogous to the role of the specification in NVP.

4. Pilot experiment environment

We have developed an experiment environment and
designed a pilot experiment to investigate whether GP
can be used to force the development of diverse software
versions. A sketch of the environment is shown in figure
1 below. A pool of programs is developed by a GP
system, and each program is tested on the same test set.
The failure behavior of the programs can be compared to
assess whether any significant diversity has been
achieved.

The application problem is to develop a control
program for an airplane arrestment system. These
systems are used at airfields to bring an airplane to a safe
stop in the case of runway overrun. A cable is attached to
the incoming airplane and large hydraulic discs are
activated to brake the plane. A computer employing a
control program sets the break pressure. This application
was chosen mainly for simplicity; it is well known at our
department, and a simulator is available.

392

I- - - - - - - - - - -
P o o l o f p r o g r a m s

I

I I I
P r o g r a m ~ i t n e s s

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

E v a l u a t i o n
e n v i r o n m e n t

S i m u l a t o r ...

D e v e l o p m e n t

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I- - - - - - - - - - -
I F a i l u r e I
I I

I
I e v a l u a t i o n I

:a--
I d a I

S i m u l a t o r I : *

w i t h o u t c o m e f o r e a c h

P a r a m e t e r s

Figure 1. Experiment environment for developing and evaluating airplane arrestment controlllers.

The GP development system is built on the GPSys
system developed in Java by Adil Qureshi at the
University College in London. Simulations are done to
evaluate the fitness of the programs arrestments of
airplanes with different mass and velocity. The perform-
ance of the programs is evaluated according to several
criteria extracted from the specification; examples are
that the plane does not exceed strength limits or retard
the pilot too heavily. Real-valued penalty scores are
assigned for each criterion, and these penalties are
aggregated to a fitness score. The failure evaluation that
takes place after development uses the same simulator to
evaluate the programs but, instead of giving real-valued
penalty scores, the outcome is simply deemed a failure or
a success.

The custom developed parts of the experiment envi-
ronment are made up of 1125 lines of Java code. They
have been tested, and we are now in a position to start
the experiments. What remains to be implemented is a
measure of diversity between programs and methodolo-
gies that can be calculated from the failure evaluation
data. We will probably calculate correlations pairwise
between methodologies, as described in [4], and/or use

the failure diversity measure described by [3]. However,
to obtain statistically significant results, we need an
analysis of how many programs to develop with each
methodology and how many test cases to have in the test
set. We are currently working on these issues together
with statisticians at our university.

5. Summary and future directions

We have introduced the idea of using genetic pro-
gramming as a means to force the development of
diverse software versions. Genetic programming is a
stochastic search technique for searching in spaces of
programs. It has a large number of parameters that
determine the basic structure, operators and building
blocks used in the program versions developed and
governs how the programs develop in these basic forms.
In addition parameters are available in the environment
that is used to evaluate to what extent a program version
fulfills criteria stated by the program specification.
Choosing values for these parameters parallels, in the
terminology of [4], making design choices and results in
different development methodologies. The promise of

393

the proposed approach is that the design choices can be
made in a controlled manner, using for example factorial
designs, which will allow a search for diverse programs.
In addition, the cost of developing multiple versions
shows a potential to decrease since multiple versions can
be developed once a GP system has been set up. The
effect on the life cycle costs of a multi-version system is
not known.

Having large numbers of software versions that
adhere to the same specification may prove an important
step in understanding software diversity and its
limitations. The technique can be used on a set of
problems not commonly considered by the safety critical
computing community: those for which we can state the
characteristics of success and failure but for which we
know no solution. Furthermore, the approach described
in this paper is not limited to genetic programming. It
can be used with other techniques for program generation
or induction to obtain more sources of diversity.

It is unclear whether the design choices we can affect
using genetic programming result in any significant
failure diversity in the generated programs. The theory
and application of genetic programming is in its infancy
and, while much research is ongoing, sufficiently low
failure rates might never be obtained. To evaluate
whether GP can be used to generate significant diversity,
we have developed an experiment environment to
conduct a pilot experiment. More research on how to
compare two programs or methodologies and assess their
diversity under statistical rigor will strengthen this
research; these issues are currently being worked on. If
these activities are successful, we will go on to conduct
larger experiments.

Investigating how new computational models, such as
evolutionary computation, affect and can be used in the
field of software reliability and fault tolerance is
interesting and generates many ideas. We believe that a
well of inspiration for building reliable computing
systems can be found by studying nature and biological
organisms as suggested in [161.

Acknowledgements

The author wishes to acknowledge Jorgen
Christmansson, Martin Hiller, Marcus Rimen, Jan Torin
and the anonymous referees whose thoughtful remarks
increased the quality of this paper. The author strongly
opposes the use of the knowledge or ideas in this paper
for aggressive military applications.

References

[I] A. Avizienis, and L. Chen. On the implementation of n-
version programming for software fault-tolerance during
program execution. Proc. of COMPSAC-77, pp. 149-1 55,
1977.

[2] J. C. Knight, and N. Leveson. An experimental evaluation
of the assumption of independence in multiversion pro-
gramming. IEEE Trans. on Software Engineering,
12(1):96-109, January 1986.

[3] M. Lyu, J-H. Chen, and A. Avizienis. Experience in
metrics and measurements for N-version programming.
Int. Journal of Reliability. Qualitv and Safe@ Engineer-
ing, 1 (1):4 1-62, 1994.

[4] B. Littlewood, and D. R. Miller. Conceptual modelling of
coincident failures i n multiversion software. IEEE Trans.
on SoftwareEng., 15(12):1596-1614, December 12.

[5] L. Hatton. N-Version design versus one good version.
IEEE Software, 14(6):71-76. November / December 1997.

[6] J . R. Koza. Genetic Programming - On the Programming
of Computers by Means of Natural Selection. MIT Press,
Cambridge, Massachusetts, 1992.

[7] T. Back, U. Hammel, and H-P. Schwefel. Evolutionary
computation: comments on the history and current state.
IEEE Trans. on Evolutionaty Computation, 1 (l):3-17,
April 1997.

[8] J. R. Koza et al. (ed). Proc. o f Second Annual Con$ on
Genetic Programming, July 13-16, 1997. Morgan Kauf-
mann, San Fransisco, Califomia, 1997.

[9] P. Nordin, and W. Banzhaf. Real Time Evolution of
Behavior and a World Model for a Miniature Robot using
Genetic Programming. Tech. Report 5/95, Dept. of Com-
puter Science, University of Dortmund, 1995.

[I O] C. 0. Ryan. Reducing Premature Convergence in
Evolutionaty Algorithms. PhD thesis, Computer Science
Department, University College, Cork, July 2, 1996.

[I I] W. Banzhaf, P. Nordin, R. Keller and F. Francone.
Genetic Programming - An Introduction. Morgan Kauf-
mann, San Fransisco, Califomia, 1998.

[I21 B-T. Zhang, and J-G Joung. Enhancing robustness of
genetic programming at the species level. Proc. of Second
Annual Conference on Genetic Programming, July 13-1 6 ,
1997, Stanford University, USA, pp. 336-342.

131 G. E. Box et al. Statistics f o r Experimenters - An
Introduction to Design, Data Analysis and Model Build-
ing. John Wiley & Sons, New York, 1978.

141 F. Saglietti. Strategies for the acheivement and assessment
of software fault-tolerance. IFAC I I r k World Congress on
Automatic Control, Tallinn, USSR, 1990, pp. 303-308.

151 N. E. Fenton. Software Metrics - A Rigorous Approach.
Chapman & Hall, 199 1.

161 A. Avizienis. Building dependable systems: how to keep
up with complexity. Special Issue from FTCS-25 Silver
Jubilee, Pasadena, Califomia, June 27-30, 1995, pp. 4-1 5.

3 94

