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Abstract: Software fault-tolerance schemes often 
employ multiple software versions developed to 
meet the same specification. If the versions fail 
independently of each other, they can be 
combined to give high levels of reliability. 
Although design diversity is a means to develop 
these versions, it has been questioned because it 
increases development costs and because 
reliability gains are limited by common-mode 
failures. The use of genetic programming is 
proposed to generate multiple software versions 
by varying parameters of the genetic 
programming algorithm. An environment is 
developed to generate programs for a controller 
in an aircraft arrestment system. Eighty programs 
have been developed and tested on 10 000 test 
cases. The experimental data show that failure 
diversity is achieved, but for the top performing 
programs its levels are limited. 

1 Introduction 

One approach to software Fault tolerance employs mul- 
tiple versions of the same software to mask the effect of 
faults when a minority of versions fails [l]. Design 
diversity, i.e. several diverse development efforts, has 
been proposed as a technique for generating these 
redundant versions. The difference in the programs, 
which is generated by the different design methods, is 
called software diversity. The hope is that the diversity 
in the programs will make them exhibit different failure 
behaviour: they should not fail for the same input and, 
if they do, they should not fail in the same manner. 

There are two main drawbacks with the design-diver- 
sity approach: it is not obvious if and how we can 
guarantee that the programs fail independently, and the 
life-cycle cost of the software will probably increase. 
The original idea of N-version programming (NVP) 
opted for the software specification to be given to dif- 
ferent development teams [ 11. The teams should inde- 
pendently develop a solution, and this independence 
between the teams should manifest itself in independent 
Failure behaviour. However, software-development per- 
sonnel have similar education and training and use sim- 
ilar thinking, methods and tools. This can lead to 
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common-mode failures, i.e. several versions failing for 
the same input, and limit the diversity thst can be 
achieved. Experimental research has shown 1 hat there 
are systems for which the independence assumption is 
not valid [2]. The strength of using design diversity has 
thus been questioned. 

In [3], the term random diversity was proposed to 
denote the above scenario: generation of diversity is left 
to chance and arises from differences in ihe back- 
ground and capabilities of the personnel in the develop- 
ment teams. In contrast to this, they introduced the 
notion of enforced diversity. By listing the krown pos- 
sible sources of diversity and varying them between the 
different development teams, the software versions can 
be forced to differ. In [4], Littlewood and Miller 
showed that the probability that two versions devel- 
oped with different methodologies would fail on the 
same input is determined by the correlatiorl between 
the methodologies. The correlation is a theoretical 
measure of diversity defined over all possible programs 
and all possible inputs. The Littlewood and Miller cal- 
culations set the goal for studies into achieving soft- 
ware diversity: find methodologies with a small or 
negative correlation. 
.4 problem in using design diversity is that life-cycle 

costs can increase. Obviously, the development cost will 
increase: we have to develop N versions instead of one. 
In addition to this, maintenance costs increise. Each 
change or extension to the specifications of the soft- 
ware must be implemented, and possibly even rede- 
signed, in each of the diverse versions. The astual cost 
increases have been estimated to be near N-fold [5 ] .  

This paper introduces a novel approach for develop- 
ing multiple diverse software versions to the s,ime spec- 
ification, which addresses both the development cost 
and non-independence problems of design diversity. 
The proposed approach uses genetic programming 
(GP), which, according to [6], is a technique for search- 
ing spaces of computer programs for indiviiual pro- 
grams that are highly ‘fit’ for solving (or appr 3ximately 
solving) a problem. GP  evolves programs from speci- 
fied atomic parts that adhere to a basic specified struc- 
ture. Genetic algorithms model evolutionary processes 
in nature and are studied under the subject of evolu- 
tionary computation (see, for example, [7]). By varying 
a number of parameters affecting the development of 
programs, we can force them to differ. 

2 Genetic programming 

Genetic algorithms mimic the evolutionary process in 
nature to find solutions to problems. Genetic program- 
ming is a special form of genetic algorithm in which the 
solution is expressed as a computer progr,im. It is 
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essentially a search algorithm that has been shown to 
be general and effective for a large number of prob- 
lems. 

In the classical view of natural evolution, individuals 
in a population compete for resources. The most ‘fit’ 
individuals survive, i.e. they have a higher probability 
of having offspring in the next generation. This process 
is modelled in genetic algorithms, in which the individ- 
uals are objects expressing a certain, often partial or 
imperfect, solution to the investigated problem. In each 
generation, each individual is evaluated as to how good 
a solution it constitutes. Individuals that are good are 
chosen for the next generation with a higher probabil- 
ity than low-fit individuals. By combining parts of the 
chosen individuals to form new individuals, the algo- 
rithm constructs the population of the next generation. 
Mutation also plays an important part. At random, 
some parts of an individual are randomly altered. This 
is a source of new variations in the population. 

Whereas a genetic algorithm generally works on data 
or data structures tailored to the problem at hand, 
genetic programming works with individuals that are 
computer programs. This technique was introduced by 
Koza in [6] and has recently spurred a large body of 
research [SI. Koza programs are trees that are inter- 
preted in software, but a number of other approaches 
exist. For example, in [9], Nordin evolved machine lan- 
guage programs that control a miniature robot. 

A number of GP  systems are available. To use one of 
them to solve a particular problem, we must tailor it to 
the problem. This involves choosing the basic building 
blocks (called terminals), such as variables and con- 
stants, and functions that are to be components of the 
programs evolved, expressing what are good and bad 
characteristics of the programs, choosing values for the 
control parameters of the system and a condition for 
when to terminate the evolution of programs [6]. The 
control parameters prescribe, for example, how many 
individuals are to be in the population, the probability 
that a program should be mutated and how the initial 
population of programs should be created. 

The major part of tailoring a GP  system to a specific 
problem is to determine a fitness function that evalu- 
ates good and bad characteristics of the programs and 
to develop an environment in which these characteris- 
tics can be evaluated. There is no reason to use GP  if it 
is harder to implement an evaluation environment than 
it is to implement a program solution. However, GP  
can be used for problems that we can state but for 
which no solution is known. The fitness function is 
often implemented via test cases with known good 
answers. However, the fitness evaluation process is 
much more general and constitutes any activity carried 
out to evaluate the performance of a program. For 
example, in [9], the programs are evaluated in a real 
robot: the ability of the program to avoid obstacles 
while keeping the robot moving is evaluated and used 
as a fitness rank. 

2. I Diversity in genetic programming 
The term diversity is used with a special meaning in the 
evolutionary computation (EC) community. If the pop- 
ulation contains programs that are different, it is said 
to be diverse. When there is no diversity left in the pop- 
ulation, i.e. all programs look and behave the same, the 
GP  run is said to have converged to a solution. This 
can happen before good solutions to the problem have 
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been found, and thus different ways to maintain and 
enhance the diversity are studied (see for example [IO]). 
Measuring the diversity in the population is fundamen- 
tal to this aim. 

Several different measures of diversity have been pro- 
posed in the EC community and are classified into two 
different classes: genotypic and phenotypic measures 
[ 1 11. These classes directly correspond to two of the 
four characteristics of software diversity listed in [3]. 
Genotypic diversity is called structural diversity by Lyu 
et al. and measures structural differences between the 
programs. Phenotypic diversity is called failure diver- 
sity by Lyu et al. and measures differences in the fail- 
ure behaviour of the programs [3]. 

The phenotypic diversity remaining in the population 
when the GP  run is terminated can be used to enhance 
the effectiveness of GP. In [12], Zhang and Joung pro- 
posed that a pool of programs, instead of a single one, 
should be retained from a GP  run. The output for a 
certain input is established by applying the programs in 
the pool to the input and taking a vote between them 
to decide the master output, similar to an N-version 
system. Our approach is distinct from the approach of 
Zhang and Joung, as we propose that diversity from 
several runs of a GP  system should be exploited and 
that the parameters of the system should be systemati- 
cally varied to promote diversity. Our goals are also 
markedly different from the research on measuring 
diversity in GP  populations. The main goal of such 
research is to decide whether the run should be stopped 
because the population has converged [ 1 11. 

2.2 Parameters of a GP system 
In the remainder of this paper, we take a pragmatic 
view of genetic programming. We consider it a tech- 
nique for searching a space of programs and view it as 
a ‘black box’ with three sets of parameters: parameters 
defining the program space to be searched (program 
space parameters (PSPs)); parameters defining details 
about the search (search parameters (SPs)); and param- 
eters of the evaluation environment (evaluation param- 
eters (EPs)). 

The PSPs include parameters defining the terminal 
and function sets and the structure of the programs. 
These parameters define a space of all possible pro- 
grams adhering to the specified structure and applying 
the specified functions to the specified terminals. 

The SPs affect only the result, i.e. effectiveness, of 
the searches in the space of programs defined by the 
PSPs. Examples of SPs are the number of programs in 
the population and the probability that a program 
should be mutated. 

The EPs define, for example, the number and nature 
of test cases to be used in evaluation. The strategy for 
evaluation is also viewed as a parameter. An example 
of a strategy would be to let the test cases change dur- 
ing evolution to test the programs on difficult input 
values. 

It is worth noting that this black-box view frees us 
from considering only genetic programming. We can 
consider other algorithms searching a user-definable 
program space or other algorithms that generate pro- 
grams. Possible substitutions for GP  could be program 
induction methods or other machine learning algo- 
rithms studied in the area of artificial intelligence. 
Diversity could be found by varying the algorithm 
used. 
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3 Software diversity with genetic programming 

The output from a run of a GP  system is a population 
of programs that are solutions to the problem stated in 
the fitness function implemented in the evaluation envi- 
ronment. The solutions are of differing quality: some 
programs may solve the problem perfectly, others may 
not even be near solving a single instance of the prob- 
lem. and in between are programs with differing rates 
of success. The diversity in this population can be 
exploited [ 121. However, the amount of diversity availa- 
ble in the population after a GP  run will be limited, as 
populations tend to converge to a solution. One way to 
overcome this may be to rerun the system with the 
same parameter settings. GP  is a stochastic search 
process, and two runs with the same parameters can 
produce different results. 

Diversity may also be achieved by altering parameter 
values between different runs of the GP  system. If we 
change the search parameters of a GP  system, the 
search may end in different areas of the search space of 
programs. Furthermore, if we change the program 
space to be searched by altering the PSPs, we will 
obtain programs using different functions and termi- 
nals and adhering to a different structure. Diversity 
may also be achieved by changing the parameters of 
the evaluation environment. Thus, we propose that 
diverse software versions are developed by running, re- 
running and varying parameters of a genetic program- 
ming system tailored to the specification for the ver- 
sion(s). 

Table 1: Phases of proposed procedure for developing 
diverse programs by varying parameters of a genetic 
programming system 

Phase Description 

1 Evaluation 
environment 

2 Parameters to  vary 

3 Parameter values 

4 Parameter 
com binations 

5 Generate programs 

6 Test programs 

7 Choose programs 

design fitness function f rom software 
specification; implement fitness 
function in  an evaluation environment 

choose which parameters of GP 
system and evaluation environment 
shall be varied 

choose parameter values to vary 
between 

choose combinations of parameter 
values to  use in  different runs 

run GP system for each combination of  
parameter values 

test program versions that have been 
generated; calculate measures of 
diversity 

choose combination of programs that 
gives lowest total failure probabil ityfor 
software fault-tolerance structure to be 
used 

3. I Procedure for developing diverse 
programs with genetic programming 
Table 1 outlines the seven different phases in the proce- 
dure we propose. We start by developing an environ- 
ment to evaluate the quality of programs (phase l), i.e. 
how well they adhere to the requirements stated in the 
specification. Thus, upon entering phase 1, we need to 
have a specification at hand. Next, we need to choose 
which parameters to vary, which values to vary them 
between and which combinations of parameter values 
to run with the GP  system. This is done in phases 2, 3 
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and 4, respectively. Research is needed to evaluate 
which parameters most affect the diversity. The princi- 
ple for the choice of values should be to include build- 
ing blocks, i.e. functions and termi.nals, that are 
thought to be needed to develop a solutior. Careful 
consideration must be made so that the divemity is not 
limited. There are large numbers of parameters of a GP  
system, most of which can take multiple valum, and so 
the number of combinations of parameter values is 
vast. We propose that a systematic exploratioi of these 
different combinations should be tried. Statist cal meth- 
ods for the design and analysis of experiment:., such as, 
for example, fractional factorials described ir, [13], are 
needed to this end. 

In the next phase (phase 5), the chosen combinations 
of parameter values are supplied to the GP  sjstem that 
is run to produce the programs. From each run, the 
best, several or all of the developed program versions 
can be kept for later testing. If the program generation 
is not successful, iteration back to phases 2 3 and 4 
may be necessary. Upon leaving phase 5, we have a 
pool of programs. 

Running a GP system is an automatic process that 
does not need any human intervention, a rd  so the 
number of programs developed can be large. If we are 
to use the programs in a specific software fhult-toler- 
ance scheme, such as an N-version system, we need to 
choose which programs in the pool to use iphase 7). 
Calculating measures of diversity, such as the correla- 
tion measures in [4] or the failure diversity measure in 
[3], may be useful in this task. The measures can be cal- 
culated from the test data in phase 6. 

In [4], systematic approaches to makirig design 
choices when employing design diversity w :re intro- 
duced. If we hypothesise that our choices of parameter 
values are analogous to these design choices, the find- 
ings in [4] can be used to choose among the combina- 
tions of parameter values. A particular set of design 
choices is called a design methodology in [4], and, if we 
take our analogy even further, our GP  approach would 
enable us to try a large number of design methodolo- 
gies in the same setting. However, it is unclear whether 
the use of GP or a common evaluation en-iironment 
limits the diversity to be explored, such that the varia- 
tions in design methodologies are only n-inor. An 
experiment to evaluate this is described in Sec tion 4. 

3.2 Cost of using genetic programming 
Developing one program version in G P  is an mtomatic 
process. It needs a great deal of processing power but 
can be speeded up by using parallel computers. The 
evaluation of individuals in a GP  populaticn can be 
made in parallel, and different runs can be made in 
parallel. Compared with a traditional approach to 
design diversity, such as NVP, the cost of development 
will probably be low: NVP uses human software devel- 
opers, whereas GP  uses processors. This implies that 
using GP  would decrease the cost of developing an N -  
version system. The initial cost for the GP  approach 
may be higher, however, we may need to try parameter 
combinations that we have not pre-specified, and it is 
unclear how the verification and maintenance costs 
compare with a traditional approach. 

When using GP, we design and implement an evalua- 
tion environment from the specification and choose 
which G P  parameters to vary and which valu8:s to vary 
between. With the NVP process, this preparation phase 
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includes administrative tasks such as choosing the 
design teams, distributing information to them and 
managing their work. An additional cost in the GP 
approach is converting the developed versions to a for- 
mat suitable for execution. The internal representation 
in the GP system must be converted to binaries for the 
target machine. However, this cost can be expected to 
be low as it can be automated. 

The cost issue is further complicated if we take verifi- 
cation and maintenance into account. It is unclear how 
the verification costs of the two approaches compare. 
The programs developed with G P  are generally difficult 
for humans to read and cannot be debugged in the 
ordinary sense. The programs may need to be rein- 
serted into the GP system and further developed. 
Another approach may be to re-run development but 
emphasise requirements of the program differently. 
Similar approaches can be used when maintenance is 
performed on the N-version system, owing to, for 
example, changing requirements. 

3.3 Applicability of genetic programming 
We stress that there are serious deficiencies in the theo- 
retical knowledge about genetic programming. The 
research field is only a few years old, and the technique 
has been applied mostly to toy problems. There is a 
feeling in the evolutionary computation community 
that it is time to 'step up' and attack real problems, but 
there is a risk that G P  will not scale up to more com- 
plex tasks. The applicability of our proposed approach 
is directly tied to the applicability of GP. If GP cannot 
be scaled up to larger problems, neither can our pro- 
posed approach. 

At its current level of maturity, G P  is probably best 
suited to small and isolated program components, such 
as simple controllers, even though this somewhat con- 
tradicts the reason for using software diversity in the 
first place. The success criteria for control algorithms 
can be more easily described than, for example, desk- 
top applications, as their effects are apparent in the 
physical world (or in a simulation). Furthermore, G P  
can be applied even if the underlying control algo- 
rithms are poorly understood, or not even theoretically 
known. If we can implement our requirements in an 
evaluation environment, G P  can be applied. 

When the proposed approach is used, it is crucial 
that the evaluation environment is free from errors. As 
the environment is used to evaluate all programs devel- 
oped, it is a single point of failure in our development 
process. This is analogous to the role of the specifica- 
tion in NVP. 

4 Description of experiment 

We have used a genetic programming system to 
develop 80 program variants from the same specifica- 
tion. The programs were developed automatically by a 
custom-developed system running on a SUN Enterprise 
10000 with the Sun Solaris OS and Java Development 
Kit 1.2. The GP system was run five times for 16 dif- 
ferent settings of parameters. The resulting 80 pro- 
grams were subjected to the same 10 000 test cases, and 
their failure behaviour was analysed to assess the diver- 
sity of the programs. Fig. 1 shows a diagram of the 
experiment environment. Below we describe the target 
system, the G P  system, the design of the experiment 
and the testing procedure. A more thorough descrip- 
tion is given in [14]. 
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4. I Target system 
The target system is designed to arrest aircraft on a 
runway. Incoming aircraft attach to a cable, and the 
system applies pressure on two drums of tape attached 
to the cable. A computer that determines the break 
pressure to be applied controls the system. By dynami- 
cally adapting the pressure to the energy of the incom- 
ing aeroplane, the program should make the aircraft 
come to a smooth stop. The requirements on a system 
like this can be found in [15]. The system has been used 
in other research at our department, and a simulator 
simulating aircraft with different mass and velocity is 
available. The system is more fully described in [16]. 

The main function of the system is to brake aircraft 
smoothly, without exceeding the limits of the braking 
system, the structural integrity of the aircraft or the 
pilot in the aircraft. The system should cope with 
aircraft with maximum energy of 8.81 x lo7 J and 
mass and velocity in the range 4000-25OOOkg and 
30-100mss', respectively. More formally, the program 
should [Note 11 (with name of corresponding failure 
class given in parentheses) 

stop aircraft at, or as close as possible to, a target 
distance 

stop the aircraft before the critical length of the tape 
(335m) in the system (overrun) 

not impose a force on the cable or tape of more than 
360 kN (cable) 

not impose a retarding force on the pilot corre- 
sponding to more than 2.8g (retardation) 

not impose a retarding force exceeding the structural 
limit of the aircraft, given for a number of different 
masses and velocities in [15] (hookforce) 
The programs are allowed to use floating point num- 
bers in the calculations. They are invoked for each 10m 
of cable and calculate the break pressure, for the fol- 
lowing 10 m, given the current amount of rolled out 
cable and angular velocity of the tape drum. 

An existing simulator of the system has been 
imported from C to Java. It implements a simple 
mechanical model of the aeroplane and braking system 
and calculates the position, retardation, forces and 
velocities in the system. It does not model the inertia in 
Note 1: Our system adopts the requirements of [l5], with the addition of 
the allowed ranges for mass and velocity and a critical length of 335m, 
950 feet in [15]) 
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the hydraulic system or oscillatory movement of the 
aircraft due to elasticity in the tape. The simulator has 
been set to simulate braking with a time step of 
62.5 ms. 

4.2 Genetic programming system 
Our development system is built on top of the GPSys 
genetic programming system, written in Java by Adhil 
Quereshi at University College, London. The programs 
in this system are function trees that are interpreted 
when used in braking the aircraft. During evolution, 
GPSys invokes the simulator to evaluate the fitness of 
programs. Values from the simulation are used to 
assign penalty values to the four fitness criteria. The 
penalties are assigned in a non-linear fashion, with high 
values when the program fails on the criteria. For the 
overrun criterion: 

if the stop position of the aircraft is larger than the 
critical length of the system, a basic penalty is assigned; 
the basic penalty was chosen as 80% of the maximum 
penalty for the criterion. 

a guiding penalty is assigned if the velocity of the 
aircraft is larger than zero on the critical length; this is 
to distinguish programs that almost succeeded in brak- 
ing the aircraft from programs that have not even tried 
and ‘guides’ the programs in the direction of good per- 
formance; the basic penalty was chosen as 20% of the 
maximum penalty for the criterion. 

if the aircraft comes to a halt, a linear penalty is 
assigned; it diminishes from its maximum value at posi- 
tion 0 up to the target distance and then increases up 
to its maximum again at the critical length; this is to 

ensure that a halt position close to the target distance 
will give the program a low penalty, the maximum 
amount of linear penalty is a parameter of the system 
but should be much smaller than 80‘%1. 

The penalties for the other criteria are assigned in a 
similar manner. For more details, consult [14]. The 
penalty values on the four criteria are summc:d to give 
the total fitness for the test case. The total fitr ess of the 
program is the sum of the fitnesses on al l  the test cases. 
A perfect program would obtain a fitnes,s valu: of zero. 

4.3 Testing procedure 
After each run of the G P  system, the best program is 
evaluated on 10000 test cases, evenly spread over the 
range of valid masses and velocities. Dividing the range 
of allowed mass into 100 locations 212.12kg apart, 
generates these test cases. For each mass, a maximum 
velocity is calculated, so that the resulting energy does 
not exceed the 8.81 x lo7 J specified in [lS]. ‘The range 
(30, maximum velocity for this mass) is divided into 
100 velocities, and a total of 100 x 100 = 10000 test 
cases result. 

4.4 Experimental design 
The discussion in [17] argued that the progiam space 
defining parameters (PSPs) should have the largest 
effect on the diversity of the resulting progiams. The 
parameters of the evaluation environment (El’s) should 
also have an effect, whereas the search parameters 
(SPs) may primarily affect the effectiveness of the G P  
system. In accordance with this, we have chosen to 
vary four PSPs, three EPs and one SP. Many. of these 
parameters can take multiple values, giving rise to an 

Table 2: Description of parameters varied in experiment and their levels 

Factors Levels Type Description Anticipated effect/Motivation 

A -1 PSP no effect. for comparison of values during waking 

1 the statement If, and operators LE, And and Not can be 
used in programs 

the functions Sinus and Exp can be used in  the programs 

B -1 PSP no effect. for oscillatory and/or damping behaviour 

1 
C -1 PSP the average velocity, average retardation and index to  for structural diversity; average velocity 

1 the angular velocity, current t ime since start of braking, they can be in programs 
current checkpoint can be used in  programs 

previous angular velocity and time of previous checkpoint 
can be used in  programs 

and retardation are pre-calculated before 

-~ 
D -1 PSP programs cannot use any subroutines For greater program complexity without 

1 two subroutines (automatically defined functions) can be 
used in program; they are evolved in same manner as rest 
of program 

need for One long program 

~ _ _ _ _  
E -1 EP maximum penalty on retardation failure criterion is 1000.0 force programs to find solutions i hat 

1 maximum penalty on retardation failure criterion is 2000.0. solve retardation criterion with higher 
priority than other criteria 

F -1 EP linear penalties are not used without linear penalties, fitness only 
expresses ‘amount‘ Of failure; 
performance on non-failure aspects 
is not measured 

G -1 EP 25 test cases uniformly spread over range of possible uniform spreading of test cases ’samples‘ 
all parts of possible input cases; random 
spreading can give both easier ar d more 
difficult test cases 

-____ 

1 linear penalties are used, and maximum penalty of 30.0 is 
assigned to each failure criterion 

-~ 

values for mass and velocity are used to evaluate fitness 
during evolution 

25 test cases chosen randomly for each run of the GP 
system are used to evaluate fitness during evolution 

1 

-~ 
H -1 SP probability of mutation is 0.05 initial experiments indicated that high 

1 probability of mutation is 0.6 values might be beneficial 
~ ~ 
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enormous number of combinations. To make a study 
feasible, we have confined the parameters to two levels, 
represented by -1 and 1. The parameters and their lev- 
els are listed in Table 2. All other parameters of the 
system were held constant during the experiment. Each 
run used 1000 programs in the population and ran for 
200 generations. 

The result of a GP run is not deterministic, and we 
need replicated runs for each setting of the parameters. 
The number of unique settings of eight two-valued 
parameters is 256, but we used a 2(8-4) fractional facto- 
rial of resolution IV to reduce this to 16 [13, 151. The 
settings of the parameters are shown in Table 3. Once 
the order in which to run the 80 experiments had been 
randomised, the experiment was started. The system 
ran the 80 runs over the course of five days, without 
any human intervention. 

Table 3: Fractional factorial design of experiment with 
levels for the parameters at each setting 

Setting A E =  F =  G =  H =  
B*C*D A*C*D A*B*C A*B*D 

1 -1 -1 -1 -1 -1 -1 -1 -1 

2 1 -1 -1 -1 -1 1 1 1 

3 -1 1 -1 -1 1 -1 1 1 

4 1 1 -1 -1 1 1 -1 -1 

5 -1 -1 1 -1 1 1 1 -1 

6 1 -1 1 -1 1 -1 -1 1 

7 -1 1 1 -1 -1 1 -1 1 

8 1 1 1 -1 -1 -1 1 -1 

9 -1 -1 -1 1 1 1 -1 1 

10 1 -1 -1 1 1 -1 1 -1 

11 -1 1 -1 1 -1 1 1 -1 

12 1 1 -1 1 -1 -1 -1 1 

13 -1 -1 1 1 -1 -1 1 1 
14 1 -1 1 1 -1 1 -1 -1 

15 -1 1 1 1 1 -1 -1 -1 

16 1 1 1 1 1  1 1 1 

Table 4: Number of failures for each of 80 versions, aver- 
age and average success probability for each setting of 
parameters 

Setting A B C D E Average psucc' % 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

1083 

591 

893 

2205 

588 

80 1 

499 

998 

3164 

1200 

809 

1726 

81 1 

392 

1108 

2946 

708 

2100 

1275 

2694 

670 

559 

697 

586 

2429 

1433 

1432 

755 

996 

1177 

1053 

1111 

813 

648 

888 

1644 

1657 

965 

575 

1479 

3609 

1212 

1140 

1782 

852 

2240 

630 

1005 

1327 

1746 

1016 

2639 

559 

753 

1054 

767 

2374 

1063 

870 

2255 

754 

1026 

2388 

827 

1475 

83 1 

1150 

1240 

1159 

2968 

985 

713 

2408 

2112 

1027 

1789 

1578 

942 

560 

954 

1081.2 

1183.2 

1044.4 

2084 

926.6 

1209.2 

762 

908.6 

2793.2 

1404 

1055.6 

1661.4 

998.2 

1155.4 

11 47.8 

1368.6 

89.19 

88.17 

89.56 

79.16 

90.73 

87.91 

92.38 

90.91 

72.07 

85.96 

89.44 

83.39 

90.02 

88.45 

88.52 

86.31 
~ 
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5 Experimental results 

For each test case executed, a trace of the braking of 
the aeroplane is returned from the simulator. Four val- 
ues are extracted from this trace to classify the behav- 
iour of the program: halt distance of the aircraft, 
maximum force in the cable, maximum retardation 
force on the hook, and maximum retardation during 
the braking. These values correspond to the four fitness 
criteria above. We record a failure for a particular ver- 
sion on a particular test case if any value exceeds its 
limits. Failure is indicated by one (I) ,  and success is 
indicated by zero (0), and these binary values are col- 
lected into a failure behaviour vector giving the failure 
behaviour on a particular test case. 

The quality of the 80 programs varies highly. Table 4 
shows the observed failure rates of the versions. The 
average number of failures is 1298.96 (probability of 
success P,,,, = 87.01'%), with a standard deviation of 
712.89 failures. The best program failed on 392 test 
cases (P,,,, = 96.08%), and the worst failed on 3609 
(P,,,c = 63.91%). The top ten performing programs are 
shown in bold face in Table 4. The average number of 
failures among them is 553.90 (P,,,, = 94.46%), with a 
standard deviation of 65.93 failures. 

number of versions failing 
Fig. 2 Probubility qfjuilure of n versions for randomly chosen input 

Many programs failed on the same test case. Fig. 2 
shows the probability that n of the 80 versions fail on a 
randomly chosen test case among the 10000 test cases. 
There are no test cases for which all programs fail, but 
many test cases seem to be troublesome for the pro- 
grams. For example, there are 22 test cases on which 79 
of the programs fail, and 24 test cases on which 78 fail. 
This indicates that some test cases are more difficult 
than others. The variability in difficulty is shown in a 
contour plot in Fig. 3 .  Darker areas show regions 
where more programs fail. 

The structural diversity of the programs varies. A 
simple measure of this diversity was recorded: the size 
of the program trees. The average size is 100.2 nodes in 
the tree, with a standard deviation of 82.87. The maxi- 
mum size is 459, and the minimum size is 17. No corre- 
lation was found between the size of the programs and 
the number of failures they exhibited (correlation coef- 
ficient 0.05). The average size of the top ten programs 
is 84.8, with a standard deviation of 46.07. The maxi- 
mum size is 185, and the minimum is 38. 
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I 

increasing mass -----+ 
Fig.3 Test case dijjiccultj 

6 Evaluation of results 

In the following, we evaluate the failure diversity, test 
case difficulty variability and performance of three-ver- 
sion systems constructed from the programs. The fail- 
ure diversity is evaluated between the individual 
programs and between the different methods defined 
by our 16 different settings of parameters. A statistical 
test is performed to evaluate whether varying the 
parameters of the system generates diversity. 

6. I Failure diversity 
Different measures of diversity have been proposed in 
the literature. In [4], Littlewood and Miller propose 
that the amount of diversity between two design meth- 
ods should be measured using the correlation coeffi- 
cient of the joint distribution of their failures. Their 
measure is theoretical, as it should be applied for all 
input cases and programs that can be developed with 
the methods. We have used it in the same way that Lit- 
tlewood and Miller use it in their examples: by disre- 
garding difficult issues of statistical sampling [4]. 
Another failure diversity measure was used in [3]. It is 
defined as the number of distinct failures divided by 
the total number of failures, and below we denote it 
LFD. 

6. I .  1 Between programs: The diversity measures 
were calculated pairwise for all 80 programs. The mini- 
mum correlation [Note 21 was -0.2123, and, of the 3160 
correlations, 193 (6.11%) were below zero. The maxi- 
mum LFD was 0.9894. This is encouraging, as low cor- 
relations and high failure diversity indicate that taking 

Note 2: Calculated as the correlation between the failure behaviour vec- 
tors; this is a special case of the Littlewood and Miller correlation meas- 
ure, when there is only one version in each method 
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a vote among versions can mask the effects of failures. 
However, if we consider only the top ten programs, the 
picture is different. The lowest pairwise correlation 
found is 0.5495, and the highest pairwisc, LFD is 
0.5965. 

6.1.2 Between methods: We have calculated the 
120 inter-method correlations, where each set1 ing of the 
parameters of the GP system is considered a unique 
method. The majority of the correlations are high, but 
11 are below 0.20, and two are negative. This was sur- 
prising and indicates that the variability of difficulty of 
the test cases can be overcome and the program ver- 
sions can show better than independent failure behav- 
iour. However, the majority of methods involved in the 
lowest inter-method correlations are the ones having 
the highest average failure rate. Thus, even f we pick 
programs for N-version systems from methods showing 
low correlation, the failure rate of the system will prob- 
ably not equal that of the top performing programs. 

6.1.3 Inter-method against intra-method diver- 
sity: To evaluate whether diversity can be obtained by 
altering the parameters of the GP system, we wanted to 
assess whether there is more diversity between versions 
in different methods than within the same method. To 
this end, we used the following procedure: 

randomly choose one method and two distinct pro- 
grams (A, and A2) from it 

randomly choose a program not in A and :all it B, 
compare the diversity between A ,  and A:! with the 

diversity between A, and B,. If the latter is hrger than 
the former, the outcome of the test is called positive. 
Under the null hypothesis that there is no dil’ference in 
diversity between the versions due to the different 
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methods used, the number of positive outcomes when 
the above procedure is repeated should be binomially 
distributed, with n = the number of repetitions of the 
test a n d p  = 0.5. 

For each of the two diversity measures, we per- 
formed 2400 test procedures. For the correlation meas- 
ure, 1534 positive outcomes were recorded and, for the 
failure diversity measure, 1524 positive outcomes were 
recorded. The null hypothesis could be rejected at the 
0.01 level for both of the diversity measures (both with 
p-value < 10-lo), and we favour the hypothesis that the 
failure diversity is larger between versions developed 
with different settings of the GP parameters than 
between versions with the same settings. 

The top ten programs do not make up a sufficient 
data record on which to perform this hypothesis test- 
ing. Instead, the procedure was applied on the 11 meth- 
ods with an average failure rate below the total average 
[Note 31. In 2400 repetitions of the procedure, 1350 
(1310 with the failure diversity measure of Lyu et al.) 
positive outcomes were recorded. Thus, the null 
hypothesis could still be rejected at the 0.01 level (p = 
4.97 x 10-lo a n d p  = 3.85 x respectively). 

6.2 Test case difficulty variability 
Detailed study of the test case difficulty variability 
shown in Fig. 3 reveals that there are three main areas 
of difficulty. Visually, these areas are located in the 
upper left corner, in equidistant clusters in the centre 
and in the upper right corner, respectively. 

For the upper left corner, where aircraft have high 
velocity and low mass, the programs generally fail on 
the retardation criteria. It seems plausible to assume 
that these failures arise because the programs do not 
properly measure and/or use a notion of the mass of 
the incoming aircraft in their control algorithm. The 
failures in the centre area are mainly due to failure on 
the hookforce criteria. The requirements in [15] stated 
the maximum allowed hookforce for certain points 
with specified mass and velocity. The clusters of failing 
programs seen in the centre of Fig. 3 are located below 
(lower velocity) and to the left (lower mass) of these 
points. These are the areas where the energy of the air- 
craft is at a maximum for the requirement of maximum 
hookforce. In this light the clusters can almost be 
expected to appear. The failures in the upper right cor- 
ner are made up of failures on the hookforce and halt- 
distance criteria. The former can be explained by the 
same reasoning as above and the latter arises because 
the energies of the aircraft take on their largest values 
this area. If the programs do not exert a high enough 
brake pressure at the start of braking they will not 
have time to brake the aircraft before the critical 
length. 

6.3 3-version systems constructed from the 
programs 
We constructed 3-version systems from our programs. 
The majority vote between the failure behaviours of the 
programs was taken as the outcome if voting had been 
applied during the brakings. We believe that this is a 
worst-case scenario, but have not investigated it fur- 
ther, If voting is applied in the checkpoints during the 
braking failures that occur at different points in time 
might be masked. For example, this would happen if 
Drogram 1 exceeds the maximum allowed retardation 
Note 3: Hence, methods 4, 9, 10, 12 and 16 were excluded 
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early in the braking but after that performs well and 
program 2 have the opposite behaviour (good perform- 
ance early, failing in the end). With our post-run voting 
the behaviour of the system would be deemed a failure 
regardless of the fact that actual voting at the check- 
points would mask the failures. 

We considered all 120 possible N-version systems 
consisting of three programs taken from the top ten 
programs. In 41(34.17%) of them the failure rate of the 
system was lower than the minimum failure rate of the 
individual programs. The best improvement found, 
compared to the minimum failure rate of the individual 
programs in the system, was a decrease from 559 to 
444 failures (20.57%). 

7 Discussion and conclusions 

We have proposed a procedure for developing diverse 
software versions and have shown that the versions can 
be forced to be diverse by varying parameters to the 
genetic programming algorithm used to develop the 
programs. The low levels of inter-method diversity 
found between some settings of the parameters were 
surprising. It indicates that voting in an N-versions sys- 
tem could mask individual program failures. However, 
the methods giving the lowest correlations are also the 
ones with the highest failure rates, and the correlation 
cannot be exploited to give failure rates lower than the 
top performing programs. The diversity levels found in 
the top performing programs were much lower. Fur- 
ther analysis will be conducted to find out if the poor 
performance can be said to cause the high diversity. 

The observed behaviour might be explained by the 
special nature of the target system. It shows a high 
level of input case difficulty variability, which is known 
to limit the amount of exploitable diversity [4]. The dif- 
ficulty arises from the fact that higher energies put 
more stress on the system. Whether this amount of 
input case variability is typical is not known. Further 
experiments with other target systems could shed light 
on this issue. 

In our experiments, we have varied eight parameters 
of the GP system. It is possible that different choices of 
parameters and their values would give different 
results. For example, the apparent problem of the pro- 
grams to brake light aircraft with high velocities may 
be overcome by letting them use an indexed memory, 
making comparisons between values at different check- 
points possible. 

Further analysis of the experimental data should 
focus on revealing the effects of different parameters on 
the failure rate and diversity of the generated pro- 
grams. The fractional factorial experimental design we 
have employed is well suited to this end. The diversity 
may also be limited by choices we made for the basic 
system design. For example, better results may be 
achieved if the programs calculate the break pressure 
more frequently during braking. This would probably 
require a smaller time step in the simulation and lead 
to higher performance demands during program devel- 
opment. We will investigate tools for compiling the 
experimental environment to native machine code. The 
increase in performance will allow larger populations 
and longer runs of the GP system, possibly resulting in 
better program performance. 

Our classification of a failure can be considered 
worst-case. When comparing the failure behaviour of 
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programs, we do not compare each failure criterion 
individually. Thus, diversity in the way the programs 
fail is not accounted for, even though it could be 
exploited in a system employing fault masking. Our 
failure classification does not take the time aspect of 
the program behaviour into account. A situation can 
easily be envisioned where two programs both exceed 
the maximum allowed hook force but at different 
times. This faulty behaviour could be masked by an N- 
version system. It would be interesting actually to con- 
struct N-version systems from our programs and evalu- 
ate their failure behaviour. 

Further experimentation with the existing system will 
be conducted, as it mainly amounts to initiating runs 
and collecting and analysing data; the development of 
the programs requires no human activity. Having large 
numbers of software versions that adhere to the same 
specification may prove an important step in under- 
standing software diversity and its limitations. The 
approach described in this paper is not limited to 
genetic programming. It can be used with other tech- 
niques for program generation or induction to obtain 
more sources of diversity. It would be interesting to 
extend our work and compare different techniques of 
this kind. 

Investigating how new computational models, such 
as evolutionary computation, affect and can be used in 
the field of software reliability and fault tolerance is 
interesting and generates many ideas. We believe that a 
well of inspiration for building reliable computing sys- 
tems can be found by studying nature and biological 
organisms, as suggested in [18]. 

8 Acknowledgments 

The author wishes to acknowledge the contributions 
made by Marcus Rimen, Susanne Bolin, Martin Hiller, 
Jorgen Christmansson, Klas Hjelmgren and Jan Torin, 
whose thoughtful remarks improved the quality of this 
paper. The author strongly opposes the use of the 
knowledge or ideas in this paper for aggressive military 
applications. 

9 References 

1 AVIZIENIS, A., and CHEN. L.: ‘On the implementation of N-  
version programming for softwarc fault-tolerance dur.ng program 
execution’. Proceedings of COMPSAC-77, 1977, pp. 149-1 5 5  
KNIGHT. J.C.. and LEVESON. N.: ‘An exowimentkl evaluation 2 ~ ~~~~~~ 

of the assumption of independence in mu1ti;ersion programming’. 
IEEE Trans. Softw. Eng.,, 12, ( I ) ,  pp. 96-109 

3 LYU, M., CHEN, J-H., and AVIZIENIS, A.: ‘E>perience in 
metrics and measurements for N-version programmikg’, Int. J. 
Reliability, Quality & Safety Eng.,, 1 ,  ( I ) ,  pp. 41-62 
LITTLEWOOD. B.. and MILLER. D.R.: ‘Conceotu 11 modelline 4 
of coincident failures in multiversion software’, lEEE Tran.; 
Softw. Eng.,, 15, (12), pp. 1596-1614 
HATTON, L.: ‘N-version design versus one good veixion’, IEEE 5 
Sofiw.,, 14, (6), pp. 71-76 

6 KOZA. J.R.: ‘Genetic oroeramming - on the orogramming of 
computers by means of Aatiral selec6on’ (MIT P;es< Cambrage, 
Massachusetts, 1992) 
BACK, T., HAMMEL, U., and SCHWEFEL, H-P.: ‘Evolution- 
ary computation: comments on the history and cirrent state’, 
IEEE Truns. Evolut. Compui.,, 1, ( I ) ,  pp. 3-17 
KOZA, J.R.: Proceedings of second annual conference on Genciic 
programming, 13-16 July 1997, (Morgan Kaufmann, San Fran- 
sisco, California) 

9 NORDIN, P., and BANZHAF, W.: ‘Real time evolution of 
behaviour and a world model for a miniature robot iising genetic 
programming’. Technical Report 5/95, Department of Computer 
Science, University of Dortmund. 1995 

10 RYAN, C.O.: ‘Reducing premature convergence in :volutionary 
algorithms’. PhD dissertation, Computer Science Department, 
University College, Cork, 1996 

I I  BANZHAF, W., NORDIN, P., KELLER. R., 2nd FRAN- 
CONCE, F.: ‘Genetic programming - an introduction’ (Morgan 
Kaufmann, San Fransisco, California, 1998) 

12 ZHANG, B.-T., and JOUNG, J.-G.: ‘Enhancing robustness of 
genetic programming at the species level’. Proceedings of second 
annual conference on Gmrtic progrcmnzn7ing, Stanforc University, 
USA, July 1997, pp. 336-342 

13 BOX, G.E., HUNTER, W.G., and HUNTER, J.S.: ‘Statistics for 
experimenters - an introduction to design, data i nalysis and 
model building’ (John Wiley & Sons, New York, 1971) 

14 FELDT, R.: ‘An experiment on using genetic programming to 
generate multiple software variants‘. Technical Rcport 98-1 3, 
Department of Computer Engineering, Chalmers L.niversity of 
Technology, 1998 

15 US Air Force - 99: Military Specification: Aircraft Arresting Sys- 
tem BAK-12NE32A; Portable, Rotary Friction, MIIA-A-38202C, 
Notice 1, US Department of Defense, 1986 

16 CHRISTMANSSON, J.: ‘An exploration of models for software 
faults and errors’. PhD Dissertation, Deparrment cf Computer 
Engineering, Chalmers University of Technology, 1998 

17 FELDT, R.: ‘Generating multiple diverse software vt rsions using 
genetic programming’. Euromicro conference 1993, Vasteris, 
Sweden, August 1998, pp. 387-394 

18 AVIZIENIS, A.: ‘Building dependable systenis: how to keep up 
with complexity’. Special Issue from FTCS-25 Silver Jubilee, 
Pasadena, California. June 1995, pp. 6 1 5  

7 

8 

236 IEE Proc.-Softw., Vol. 145, No. 6, L’eceriibes I Y Y X  

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 27, 2010 at 23:01 from IEEE Xplore.  Restrictions apply. 


