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Abstract BACKGROUND – A large percentage of the cost of rework can
be avoided by finding more faults earlier in a software test process. There-
fore, determination of which software test phases to focus improvement work
on, has considerable industrial interest. OBJECTIVE AND METHOD – We
evaluate a number of prediction techniques for predicting the number of faults
slipping through to unit, function, integration and system test phases of a
large industrial project. The objective is to quantify improvement potential in
different test phases by striving towards finding the faults in the right phase.
RESULTS – The results show that a range of techniques are found to be
useful in predicting the number of faults slipping through to the four test
phases, however, the group of search-based techniques (genetic programming
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(GP), gene expression programming (GEP), artificial immune recognition sys-
tem (AIRS) and particle swarm optimization based artificial neural network
(PSO-ANN)) consistently give better predictions, having a representation at
all of the test phases. Human predictions are consistently better at two of the
four test phases. CONCLUSIONS – We conclude that the human predictions
regarding the number of faults slipping through to various test phases can be
well supported by the use of search-based techniques. A combination of human
and an automated search mechanism like any of the search-based techniques
has the potential to provide improved prediction results.

Keywords Prediction, Empirical, Faults-slip-through, Search-based

1 Introduction and problem statement

Presence of a number of faults1 usually indicates an absence of software quality.
Software testing is the major fault-finding activity, therefore much research has
focused on making the software test process as efficient and as effective as pos-
sible. One way to improve the test process efficiency is to avoid unnecessary re-
work by finding more faults earlier. This argument is based on the premise that
the faults are cheaper to find and remove earlier in the software development
process (Boehm and Basili, 2001). Faults-slip-through (FST) metric (Damm
et al, 2006; Damm, 2007) is one way of providing quantified decision support
to reduce the effort spent on rework.

Faults-slip-through (FST) metric is used for determining whether a fault
slipped through the phase where it should have been found or not (Damm
et al, 2006; Damm, 2007). The term phase refers to any phase in a typical
software development life cycle (ISO/IEC 12207 (std, 2008) defines the differ-
ent software development phases). However the most interesting and industry-
supported applications of FST measurement are in the test phase of a software
development life cycle, because it is typically in this phase where the faults
are classified into their actual and expected identification phases.

The time between when a fault was inserted and found is commonly re-
ferred to as ‘fault latency’ (Hribar, 2008). Fig. 1 shows the difference between
fault latency and FST (Damm et al, 2006; Damm, 2007). As it is clear from
this figure, the FST measurement evaluates when it is cost efficient to find a
certain fault. To be able to specify this, the organization must first determine
what should be tested in which phase (Damm et al, 2006; Damm, 2007).

Studies on multiple projects executed within several different organizations
at Ericsson (Damm, 2007) showed that FST measurement has some promising
advantages:

1. FST can prioritize which phases and activities to improve.
2. The FST measurement approach can assess to which degree a process

achieves early and cost-effective software fault detection (one of the studies

1 According to IEEE Standard Glossary of Software Engineering Terminology (iee, 1990),
a fault is a manifestation of a human mistake.
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Figure 2.1: Example of Fault Latency and FST

found in which phase. To be able to specify this, the organization must first determine

what should be tested in which phase. Therefore, this can be seen as test strategy work.

Thus, experienced developers, testers and managers should be involved in the creation

of the definition. The results of the case study in Section 2.3 further exemplify how

to create such a definition. Table 2.1 provides a fictitious example of FST between

arbitrarily chosen development phases. The columns represent in which phase the

faults were found (phase found) and the rows represent where the faults should have

been found (phase belonging). For example, 25 of the faults that were found in function

test should have been found during unit test (e.g. through inspections or unit tests).

Further, the rightmost column summarizes the amount of faults that belonged to each

phase whereas the bottom row summarizes the amount of faults that were found in each

phase. For example, 49 faults belonged to the unit test phase whereas most of the faults

were found in function test (50).

2.2.2 Average Fault Cost

When having all the faults categorized, the next step is to estimate the cost of finding

faults in different phases. Several studies have shown that the cost of finding and

fixing faults increases more and more the longer they remain in a product (Boehm

49

Fig. 1 Difference between fault latency and FST.

indicated that it is possible to obtain good indications of the quality of the
test process already when 20–30% of the faults have been found).

Fig. 2 shows an example snippet of a faults-slip-through matrix showing
the faults slipping through to later phases. The columns in Fig. 2 represent
the phases in which the faults were found (Found During) whereas the rows
represent the phases where the faults should have been found (Expected fault
identification phase). For example, 56 of the faults that were found in the
function test should have been found during the unit test.

 

Report Name: Fault Slip Through Analysis Project: FST M570 Start Date: 2009-06-22 End Date: 2009-12-13 Customer Delivery: 2009-12-22

FST Measurement Tool
 

FST Matrix

Found During:

 

Expected fault 

identification phase: Review Unit Test Function Test Integration Test System Test Acceptance Test

Customer 

Identified Total

Output 

Slippage%

Review 15 25 86 25 30 2 1 184 47

Unit Test  19 56 15 19 1 0 110 25

Function Test   33 4 4 0 0 41 2

Integration Test    8 11 0 0 19 3

System Test     4 0 1 5 0

Acceptence Test      1 0 1 0

Total 15 44 175 52 68 4 2 360  

Input Slippage % 0 57 81 85 94 75 100 0  

 

Review Unit Test Function Test Integration Test System Test Acceptance Test Customer 

Identified

Total

Incorrect data 76 1 8 25 1 0 0 0 111 24%

 

Review

Unit Test

Function Test

Integration Test

System Test

Acceptance Test

Customer Identified

System Design Review, Module Design Review, Code Review

HW Development, System Simulation, Module Test

Function Test, Interoperability development test

Integration of modules to functions, Integration Test

System Test, IOT, Delivery Test

Type Approval

Customization, Customer Acceptance, Operator Identified, Customer Identified

Fig. 2 An example FST matrix.

Apart from the studies done by Damm (Damm et al, 2006; Damm, 2007),
there are other studies on successful industrial implementation of FST mea-
surements. Two such cases are the FST implementations at Ericsson Nikola
Tesla (Hribar, 2008; Ž. Antolić, 2007). They started collecting FST measure-
ments in all development projects from the middle of the year 2006. The results
were encouraging with a decrease of fault-slippage to customers, improvements
of test configurations and improvements of test cases used in the verification
phase of the projects.

Considering the initial successful results of implementing FST measure-
ment across different organizations within Ericsson, our industrial partner be-
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came interested in investigating how to use FST measurement to provide addi-
tional decision support for project management. For example, Staron and Med-
ing (Staron and Meding, 2008) highlight that the prediction of the number of
faults slipping through can be a refinement to their proposed approach for pre-
dicting the number of defects in the defect database. Similarly Damm (Damm,
2007) highlight that FST measurement can potentially be used as a support
tool in software fault predictions. This additional decision support is to make
the software development more predictable (Rakitin, 2001).

The number of faults found by the test team impacts whether or not a
project would be completed on schedule and with a certain quality. The project
manager has to balance the resources, not only for fixing the identified faults,
but also to implement any new functionality. This balance has to be distributed
correctly on a weekly or a monthly basis. Any failure to achieve this balance
would mean that either the project team is late with the project delivery or
the team resources are kept under-utilized.

In this paper, we focus on predicting the number of faults slipping through
to different test phases, multiple weeks in advance (a quantitative modeling
task). We compare a variety of prediction techniques2. Since there is a general
lack of empirical evaluation of expert judgement (Tomaszewski et al, 2007;
Catal and Diri, 2009) and due to the fact that predictions regarding software
quality are based on expert judgements at our organization, and we would
argue in industry in general, we specifically compare human expert predictions
with these techniques. Thus the motivation of doing this study is to:

– avoid predictable pitfalls like effort/schedule over-runs, under-utilization
of resources and a large percentage of rework.

– provide better decision-support to the project manager so that faults are
prevented early in the software development process.

– prioritize which phases and activities to improve.

The quantitative data modeling make use of several independent variables
at the project level, i.e., variables depicting work status, testing progress status
and fault-inflow. The dependent variables of interest is then the number of
faults slipping through to various test phases, predicted multiple weeks in
advance.

Hence, we are interested in answering the following research questions:

RQ.1 How do different techniques compare in FST prediction performance?
RQ.2 Can other techniques better predict the number of faults slipping through

to different test phases than human expert judgement?

2 statistical techniques (multiple regression, pace regression), tree-structured techniques
(M5P, REPTree), nearest neighbor techniques (K-Star, K-nearest neighbor), ensemble tech-
niques (bagging and rotation forest), machine-learning techniques (support vector machines
and back-propagation artificial neural networks), search-based techniques (genetic program-
ming, artificial immune recognition systems, particle-swarm optimization based artificial
neural networks and gene-expression programming) and expert judgement
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The data used in the quantitative data modeling comes from large and
complex software projects from the telecommunications industry, as our ob-
jective is to come up with results that are representative of real industrial use.
Also large-scale projects offer different kinds of challenges, e.g., the factors
affecting the projects are diverse and many, data is distributed across different
systems and success is dependent on the effort of many resources. Moreover, a
large project constitutes a less predictable environment and there is a lack of
research on how to use predictive models in such an environment (Jørgensen
et al, 2000).

We also would like to mention that this study is an extended version of the
authors’ earlier conference manuscript (Afzal et al, 2010) where only a limited
number of techniques were compared with no evaluation of expert judgement.

The rest of the paper is organized as follows. Section 2 summarizes the
related work. Section 3 describes the study context, variables selection, the
test phases under consideration, the performance evaluation measures and
the techniques used. Section 4 presents a quantitative evaluation of various
techniques for the prediction task. The results from the quantitative evaluation
of different models are discussed in Section 5 while the study validity threats
are given in Section 6. The paper is concluded in Section 7 while Appendix A
outlines the parameter settings for the different techniques.

2 Related work

Due to the definition of software quality in many different ways, previous
studies have focused on predicting different but related dependent variables of
interest; examples include predicting for defect density (Nagappan and Ball,
2005; Mohagheghi et al, 2004), software defect content estimation (Briand
et al, 2000; Weyuker et al, 2010), fault-proneness (Lessmann et al, 2008; Ar-
isholm et al, 2010) and software reliability prediction in terms of time-to-
failure (Lyu, 1996). In addition, several independent variables have been used
to predict the above dependent variables of interest; examples include predic-
tion using size and complexity metrics (Gyimothy et al, 2005), testing met-
rics (Veevers and Marshall, 1994; Tomaszewski et al, 2007) and organizational
metrics (Nagappan et al, 2008). The actual prediction is performed using a
variety of approaches, and can broadly be classified into statistical regression
techniques, machine learning approaches and mixed algorithms (Challagulla
et al, 2005). Increasingly, evolutionary and bio–inspired approaches are being
used for software quality classification (Liu et al, 2010; Afzal and Torkar, 2008)
while expert judgement is used in very few studies (Tomaszewski et al, 2007;
Zhong et al, 2004).

For a more detailed overview of related work on software fault prediction
studies, the reader is referred to (Tian, 2004; Fenton and Neil, 1999; Catal and
Diri, 2009; Wagner, 2006; Runeson et al, 2006).

This study is different from the above software quality evaluation studies.
First, the dependent variable of interest for the quantitative data modeling
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is the number of faults slipping through to various test phases, with the aim
of taking corrective actions for avoiding unnecessary rework late in software
testing. Second, the independent variables of interest for the quantitative data
modeling are diverse and at the project level, i.e., variables depicting work sta-
tus, testing progress status and fault-inflow (shown later in Table 1). A similar
set of variables were used in a study by Staron and Meding (Staron and Med-
ing, 2008), but predicted weekly defect inflow and used different techniques.
Third, for the sake of comparison, we include a variety of carefully selected
techniques, representing both commonly used and newer approaches.

Together this means our study is broader and more industrially relevant
than previous studies.

3 Study plan

This section describes the context, independent/dependent variables for the
prediction model, the research method, the predictive performance measures
and the techniques used for quantitative data modeling.

3.1 Study context

As given in Section 1, our context is large and complex software projects in the
telecommunications industry. Our subject company develops mobile platforms
and wireless semiconductors. The projects are aimed at developing platforms
introducing new radio access technologies written using the C programming
language. The average number of persons involved in these projects is approx-
imately 250. Since the project are from a similar domain, the data from one of
the projects is used as a baseline to train the models while the data from the
second project is used to evaluate the models’ results. We have data from 45
weeks of the baseline project to train the models while we evaluate the results
on data from 15 weeks of an on-going project. Fig. 3 shows the number of
faults occurring per week for the training and the testing set.

The management of these projects follow the company’s general project
model called PROPS (PROfessional Project Steering). PROPS is based on
the concepts of tollgates, milestones, steering points and check-points to man-
age and control project deliverables. Tollgates represent long-term business
decisions while milestones are predefined events representing intermediate ob-
jectives at the operating work level. The monitoring of these milestones is an
important element of the project management model. Steering points are de-
fined to coordinate multiple parallel platform projects, e.g., handling priorities
between different platform projects. The checkpoints are defined in the devel-
opment process to define the work status in a process. Multiple checkpoints
might have to be passed for reaching a certain milestone. Fig. 4 shows an
abstract level view of these concepts.

At the operative work level, the software development is structured around
work packages. These works packages are defined during the project planning
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(b) Testing set.

Fig. 3 Number of fault occurrences per week for the training set and the testing set.

phase. The work packages are defined to implement change requests or a subset
of a use-case, thus the definition of work packages is driven by the functionality
to be developed. An essential feature of work packages is that it allows for
simultaneous work on different modules of the project at the same time by
multiple teams.

Since different modules might get affected by developing a single work
package, therefore it is difficult to obtain consistent metrics at the module
level. The structure of a project into work packages present an obvious choice of
selecting variables for the prediction models since the metrics at work package
level are stable and entails a more intuitive meaning for the employees at the
subject company.

Fig. 5 gives an overview of how a given project is divided into work packages
that affects multiple modules. There are three sub-systems shown in Fig. 5
namely A, B and C. The division of an overall system into sub-systems is driven
by design and architectural constraints. The modules belonging to the three
sub-systems are named as (A1, A2), (B1, B2) and (C1, C2, C3) respectively.
The overall project is divided into a number of work packages which are named
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MS 

SP 

Fig. 4 PROPS concepts used in the subject company; TG, SP, MS, ChP are short for
tollgate, steering point, milestone and checkpoint respectively.

in Fig. 5 as WP1, WP2,. . .,WPn. Since changes can be made to multiple
modules when developing a single work package, this is shown as dashed arrow
lines. The division of a project into work packages is more definitive with clear
boundaries, therefore this division is shown as solid arrow lines. The Fig. 5
also show the checkpoints, steering points and the tollgates that are meant to
manage and control project deliverables.

3.2 Variables selection

At our subject company the work status of various work packages is grouped
using a graphical integration plan (GIP) document. The GIP maps the work
packages’ status over multiple time-lines that might indicate different phases of
software testing or overall project progress. There are different status rankings
of the work packages, e.g., number of work packages planned to be delivered
for system integration testing. A snippet of a GIP is shown in Fig. 6.

The variables of interest in this study are divided into four sets (Table 1),
i.e., fault-inflow, status rankings of work packages, faults-slip-through and test
case progress. A description of these four sets of variables is given below.

During the project life cycle there are certain status rankings related to
the work packages (shown under the category of ‘status rankings of WPs’ in
Table 1) that influence fault-inflow, i.e., the number of faults found in the
consecutive project weeks. The information on these status rankings is also
conveniently extracted from the GIP which is a general planning document
at the company. Another important set of variables for our prediction models
is the actual test case (TC) progress data, shown under the category of ‘TC
progress’ in Table 1, which have a more direct influence on the fault-inflow.
The information on the number of test cases planned and executed at differ-
ent test phases is readily available from an automated report generation tool
that uses data from an internally developed system for fault logging. These
variables, along with the status rankings of the work packages, influence the



Title Suppressed Due to Excessive Length 9

Customer requirements

Project

WP1 WP2 WP3 WP4 WP5 WPn----------Work packages (WPs)

Sub-system A

Sub-system B

Sub-system C

Modules

Modules

Modules

A1

C1 C2

A2

B1

C3

B2

Time-line

Checkpoints

Milestones/
Steering points 

Tollgates

Sub-system

Work package

Module

Checkpoint

Steering point

Tollgate

Fig. 5 Division of requirements into work packages and modules (work model), thereby
achieving tollgates, milestones/steering points and checkpoints (management model).

Table 1 Variables of interest for the prediction models.

No. Description Abbreviation Category
1 Fault-inflow F. inflow Fault-inflow
2 No. of work packages planned for system integration No. WP. PL. SI Status rankings of WPs
3 No. of work packages delivered to system integration No. WP. DEL. SI
4 No. of work packages tested by system integration No. WP Tested. SI
5 No. of faults slipping through to all of the test phases No. FST FST
6 No. of faults slipping through to the unit test FST-Unit
7 No. of faults slipping through to the function test FST-Func
8 No. of faults slipping through to the integration test FST-Integ
9 No. of faults slipping through to the system test FST-Sys
10 No. of system test cases planned No. System. TCs. PL TC progress
11 No. of system test cases executed No. System. TCs. Exec.
12 No. of interoperability test cases planned No. IOT TCs. PL
13 No. of interoperability test cases executed No. IOT TCs. Exec.
14 No. of network signaling test cases planned No. NS TCs. PL
15 No. of network signaling test cases executed No. NS TCs. Exec.

fault-inflow; so we monitor the fault-inflow as another variable for our predic-
tion models. Another set of variables representing the output is the number of
faults that slipped-through to the unit, function, integration and system test
phases, indicated under the category ‘FST’ in Table 1. We also recorded the
accumulated number of faults slipping through to all the test phases. All of
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Fig. 6 The graphical integration plan showing the status of various work packages over
multiple time-lines.

the above measurements were collected at the subject company on a weekly
basis.

3.3 Test phases under consideration

Software testing is usually performed at different levels, i.e., at the level of
a single module, a group of such modules or a complete system (swe, 2004).
These different levels are termed as test phases in our subject company there-
fore we stick to calling them test phases throughout the paper. The purpose
of different test phases, as defined at our subject company, is given below:

– Unit: To find faults in module internal functional behavior e.g., memory
leaks.

– Function: To find faults in functional behavior involving multiple modules.
– Integration: To find configuration, merge and portability faults.
– System: To find faults in system functions, performance and concurrency.

Some of these earlier test levels are composed of constituent test activities
that jointly make up the higher-order test levels. The following is the division
of test levels (i.e., unit, function, integration and system) into constituent
activities at our subject company:

– Unit: Hardware development, module test.
– Function: Function test.
– Integration: Integration of modules to functions, integration test.
– System: System test, delivery test.

Our focus is then to predict the number of faults slipping through to each
of these test phases.
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3.4 Performance evaluation measures and prediction techniques

The evaluation of predictive performance of various techniques is done using
measures of predictive accuracy and goodness of fit.

– The predictive accuracy of different techniques is compared using absolute
residuals (i.e., |actual-predicted|) (Pickard et al, 1999; Kitchenham et al,
2001; Shepperd et al, 2000).

– The goodness of fit of the results from different techniques is assessed
using the two-sample two-sided Kolmogorov-Smirnov (K-S) test. For the
K-S test we use α = 0.05 and if the K-S statistic J is greater or equal than
the critical value Jα, we infer that the two samples did not have the same
probability distribution and hence do not represent significant goodness of
fit.

We consider a technique better based on the following criteria:

– If technique A performs statistically significantly better than technique
B for both predictive accuracy and goodness of fit, then technique A is
declared as better.

– If no statistically significant differences are found between techniques A
and B for predictive accuracy, but technique B has statistically signifi-
cant goodness of fit in comparison with technique A, then technique B is
declared as better.

– If no statistically significant differences are found between techniques A
and B for goodness of fit, but technique B has statistically significant
predictive accuracy in comparison with technique A, then technique B is
declared as better.

The above mentioned evaluation procedure is an example of multi-criteria
based evaluation system, a concept similar to the one presented by Lavesson
et al. in (Lavesson and Davidsson, 2008).

A brief description of each of the different techniques used in this study
appears in Table 2. The detailed description of these techniques can be found in
specific references that are given against each brief description. The techniques
used can be categorized broadly into two types: prediction techniques not
involving a human expert and predictions made by a human expert. There are
a number of techniques that can be used for predictions that do not need a
human expert. We have used established techniques (such as nearest neighbor,
statistical and tree-structured techniques) as well as novel techniques that have
not been used much (such as ensemble and search-based techniques).

4 Analysis and interpretation

This section describes the quantitative analysis helping us answer our research
questions.
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Table 2 Prediction techniques used in this study.

Prediction technique Brief overview
Statistical techniques
Multiple regression (MR), Pace re-
gression (PR)

MR is an extension of simple least-square regression for more than one indepen-
dent (predictor) variables to estimate the values of the dependent (criterion)
variable. More information on MR is available in (Kachigan, 1982). PR decom-
poses an initially estimated model (the ordinary least square estimator) into
statistically independent dimensional models. These dimensional models are
then used to obtain an estimate of the true effects in each individual dimen-
sion. More details on PR in (Wang, 2000).

Tree-structured techniques
M5P, REPTree M5P is tree-induction for regression models. A decision tree induction algorithm

is used to build a tree, but instead of maximizing the information gain at each
inner node, a splitting criterion is used that minimizes the intra-subset variation
in the class values down each branch. More information on M5P is available
in (Wang and Witten, 1996). REPTree builds a decision/regression tree using
the information gain/variance and prunes it using reduced-error pruning with
back-fitting. More information on REPTree is available in Weka documentation
at (Weka documentation, 2010).

Nearest neighbor techniques
K-Star (K*), K-nearest neighbor
(Knn)

Both K* and Knn techniques are analogy-based methods which considers K
most similar examples for performing classification. The similarity is measured
in K* using an entropy-based distance function (more information in (Cleary
and Trigg, 1995) while an euclidean distance is used in knn (more information
in (Aha et al, 1991))

Ensemble techniques
Bagging, rotation forest (RF) Ensemble techniques include several base leaners and a voting procedure is used

for final classification and an average for a numeric prediction. Bagging gener-
ates multiple versions of a predictor and an aggregated average over versions
give a numeric outcome. More information in (Breiman, 1996). RF splits the
feature set into k-subsets and principal component analysis is applied to each
subset. K-axis rotation forms new features for the base-learner. More informa-
tion in (Rodriguez et al, 2006).

Machine-learning techniques
Support vector machines (SVM),
back-propagation artificial neural
networks (ANN)

Support vector regression uses a SVM algorithm for numeric prediction. SVM
algorithms classify data points by finding an optimal linear separator which
possess the largest margin between it and the one set of data points on one
side and the other set of examples on the other. The largest separator is found
by solving a quadratic programming optimization problem. The data points
closest to the separator are called support vectors (Russell and Norvig, 2003).
For regression, the basic idea is to discard the deviations up to a user specified
parameter ∈ (Witten and Frank, 2005). Apart from specifying ∈, the upper limit
C on the absolute value of the weights associated with each data point has to
be enforced (known as capacity control). The development of artificial neural
networks is inspired by the interconnections of biological neurons (Russell and
Norvig, 2003). These neurons, also called nodes or units, are connected by direct
links. These links are associated with numeric weights which shows both the
strength and sign of the connection (Russell and Norvig, 2003). Each neuron
computes the weighted sum of its input, applies an activation (step or transfer)
function to this sum and generates output, which is passed on to other neurons.

Search-based techniques
Genetic programming (GP), gene
expression programming (GEP),
artificial immune recognition sys-
tems (AIRS), particle swarm op-
timization based artificial neural
network (PSO-ANN)

Search-based techniques model a problem in terms of an evaluation function and
then uses a search technique to minimize or maximize that function. GP evolves
tree-structured mathematical programs (called individuals) that are evaluated
in a recursive manner. Diversity is introduced in programs through the opera-
tors of cross-over, mutation and reproduction. A solution is designated as the
best solution after some iterations (generations) that maximize/minimize an
evaluation function. More information about GP can be found in (Poli et al,
2008). In GEP, the individuals making-up the search space (called population)
are encoded as linear strings of fixed length that are later expressed as nonlinear
expression trees of different sizes and shapes. More information about GEP can
be found in (Ferreira, 2001). AIRS is inspired by the processes of vertebrate
immune system, specifically how B and T lymphocytes improve their response
to antigens over time (called affinity maturation). The details of the different
steps of the AIRS algorithm can be found in (Watkins et al, 2004). PSO-ANN
uses a particle swarm optimization (PSO) algorithm for training an ANN. PSO
is inspired by the coordinated search of food by a swarm of birds. A swarm
of particles move through a multidimensional search space for finding global
optimum. Trelea (Trelea, 2003) proposed several improvements to a basic PSO,
called Trelea I and Trelea II depending upon the values of parameters. The
PSO version Trelea II is used in this study. More information on PSO-ANN is
available at (Jha et al, 2009).

Expert judgement
Expert judgement An estimate/prediction is based on the experience of one or more people who are

familiar with the development of software applications similar to that currently
being predicted (Hughes, 1996). The expert in this study has 20 years of work
experience and currently holds the designation of systems verification process
leader at our subject organization.
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4.1 Analyzing dependencies among variables

Before applying the specific techniques for prediction, we analyzed the depen-
dencies among variables (see Table 1) using scatter plots. We were especially
interested in visualizing:

– the relationship between the measures of status rankings of work packages.
– the relationship between the measures of test case progress.
– fault-inflow vs. the rest of the measures related to status rankings of work

packages and test case progress.

The pair-wise scatter plots of the above attributes showed a tendency of
non-linear relationship. Two of these scatter plots are shown in Fig. 7 for fault-
inflow vs. number of faults slipping through all of the test phases (Fig. 7(a))
and fault-inflow vs. number of work packages tested by system integration (Fig.
7(b)).
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(a) Scatter plot for fault-inflow vs. number of
faults slipping through all of the test phases.
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(b) Scatter plot for fault-inflow vs. number of
work packages tested by system integration.

Fig. 7 Example scatter plots for fault-inflow vs. number of faults slipping through all of
the test phases and fault-inflow vs. number of work packages tested by system integration.

After getting a sense of the relationships among the variables, we used
kernel principal component analysis (KPCA) (Canu et al, 2005) to reduce the
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Table 3 The loadings and explained variance from four principal components.

Variance
ex-
plained

Variable loadings. The variable names use abbreviations given in Table 1

F. in-
flow

No.
WP.
PL. SI

No.
WP.
DEL.
SI

No.
WP
Tested.
SI

No.
FST

No.
Sys-
tem.
TCs.
PL

No. Sys-
tem.
TCs.
Exec.

No. IOT
TCs. PL

No.
IOT
TCs.
Exec.

No. NS
TCs.
PL

No. NS
TCs.
Exec.

Component
1

51.61% 0.60 0.02 0.01 0.09 0.38 0.61 0.34 0.02 0.02 0 0

Component
2

31.07% 0.75 -0.02 0.01 0.13 -0.01 -0.57 -0.32 0.03 0.03 0 0

Component
3

9.88% -0.29 0.01 0 0.52 0.75 -0.20 -0.11 0.11 0.12 0 0

Component
4

4.64% 0 0 0.02 0.83 -0.50 0.19 0 -0.07 -0.07 0 0

number of independent variables to a smaller set that would still capture the
original information in terms of explained variance in the data set. The role
of original variables in determining the new factors (principal components) is
determined by loading factors. Variables with high loadings contribute more
in explaining the variance. The results of applying the Gaussian kernel, KPCA
(Table 3) showed that the first four components explained 97% of the variabil-
ity in the data set. We did not include the faults-slip-through measures in the
KPCA since these are the attributes we are interested in predicting. In each of
the four components, all the variables contributed with different loadings, with
the exception of two, namely number of network signaling test cases planned
and number of network signaling test cases executed. Hence, we excluded these
two variables and use the rest for predicting the faults-slip-through in different
test phases.

Specifically, for predicting the faults-slippage to unit test, we use the fault-
inflow, work-package status rankings and test case progress metrics. For pre-
dicting the faults-slippage to subsequent test phases we also include the faults-
slippage for the proceeding test phase; for instance when predicting the faults-
slip-through at the function test phase, we also use the faults-slip-through
at unit test phase as an independent variable along with fault inflow, work-
package status rankings and test case progress metrics.

The model training and testing procedure along with the parameter set-
tings for different techniques is given in detail in Appendix A.

4.2 Performance evaluation of techniques for FST prediction

Next we present the results of the performance of different techniques in pre-
dicting FST for each test phase, that would help us to answer RQ.1. As given
in Section 3.4, we evaluate the prediction performance using the measures for
predictive accuracy and goodness of fit.

The common analysis procedure to follow is to compare the box-plots
of the absolute residuals for different prediction techniques. But since box-
plots cannot confirm whether one prediction technique is significantly better
than another, we use a statistical test (parametric or a non-parametric test—
depending upon whether the assumptions of the test are satisfied) for testing
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the equality of population medians among groups of prediction techniques.
Upon the rejection of the null hypothesis of equal population medians, a mul-
tiple comparisons (post-hoc) test is performed on the group medians to deter-
mine which means differ. Finally, we proceed with assessing the goodness of
fit using the K-S test described in Section 3.4.

4.2.1 Prediction of FST at the unit test phase

The box-plots of absolute residuals for predicting FST at the unit test phase
for different techniques is shown in Fig. 8(a). The box-plot having the median
value close to the 0 mark on the y-axis (shown as a dotted horizontal line in
Fig. 8(a)) and a smaller spread of the distribution indicate better predictive
accuracy. Keeping in view these two properties of the box-plots, there seems
to be only a marginal difference in the residual box-plots of PR, M5P, Knn,
Bagging, GEP and PSO-ANN. AIRS has a median at the 0 mark but shows
larger spread in comparison with other techniques. The human/expert pre-
diction also shows a larger spread but smaller than AIRS. Two outliers for
the human prediction are extreme as compared to the one extreme outlier
for PSO-ANN. Predictions from MR, SVM and ANN appear to be farther
away from the 0 mark on the y-axis, an indication that the predictions are not
closely matching the actual FST values.

To test for any statistically significant differences in the models’ residuals,
the non-parametric Kruskal-Wallis test was used to examine any statistical
differences between the residuals and to confirm the trend observed from the
box-plots. The skewness in the residual box-plots for some techniques mo-
tivated the use of the non-parametric test. The result of the Kruskal-Wallis
test (p = 3.2e−14) suggested that it is possible to reject the null hypothesis
of all samples being drawn from the same population at significance level,
α = 0.05. This is to suggest that at least one sample median is significantly
different from the others. In order to determine which pairs are significantly
different, we apply a multiple comparisons test (Tuckey-Kramer, α = 0.05).
The results of the multiple comparisons are displayed using a graph given in
Fig. 8(b). The mean of each prediction technique is represented by a circle
while the straight lines on both sides of the circle represents an interval. The
means of two prediction techniques are significantly different if their intervals
are disjoint and are not significantly different if their intervals overlap. For
illustrative purposes, Fig. 8(b) shows vertical dotted lines for MR. There are
two other techniques (SVM and ANN) where either of these two dotted lines
cut through their intervals, showing that the means for MR, SVM and ANN
are not significantly different. It is interesting to observe that there is only
a single technique (AIRS) whose mean is significantly different (and better)
than all these three techniques (i.e., MR, SVM and ANN). There are, how-
ever, no significant pair-wise differences between the means of AIRS and rest
of the techniques (i.e., PR, M5P, REPTree, K*, Knn, Bagging, RF, GP, GEP,
PSO-ANN, Human). Human predictions, on the other hand, are significantly
different and better than two of the least accurate techniques (MR, ANN).
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(a) Box-plots of the residuals for each technique in
predicting FST at the unit test phase.
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(b) Results of the multiple comparisons test with
α = 0.05 (The vertical dotted lines indicating that
12 techniques have mean ranks significantly different
from MR).

Fig. 8 Results showing box plots of absolute residuals and multiple comparisons of the
absolute residuals between all techniques at the unit test phase.

The K-S test result for measuring the goodness of fit for predictions from
each technique relative to the actual FST at the unit test phase appear in
Table 4. The techniques having statistically significant goodness of fit are
shown in bold (AIRS and Human). Fig. 9 shows the plot of AIRS, human and
actual FST at the unit test phase. The statistically significant goodness of fit
for AIRS and human can be attributed to the exact match of actual FST data
on 9 out of 15 instances for AIRS and 5 out of 15 instances for the human.
However, the human prediction is off by large values in the last three weeks
that can also be seen as extreme outliers in Fig. 8(a).

In summary, in terms of predictive accuracy, AIRS showed significantly
different absolute residuals in comparison with the three least performing tech-
niques for predicting FST at the unit test phase. But then there were found no
significant differences between the absolute residuals of AIRS and rest of the 11
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Table 4 Two-sample two sided K-S test results for predicting FST at the unit test phase
with critical value J0.05 = 0.5.

K-S test statistic, J
MR PR M5P REPTree K* Knn SVM ANN Bagging RF GP GEP AIRS PSO-ANN Human
1 0.60 0.60 0.93 0.53 0.80 0.87 1 0.80 0.93 0.53 0.80 0.27 0.73 0.33
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Fig. 9 Plot of the predicted vs. the actual FST values at the unit test phase for techniques
having significant goodness of fit.

techniques. Human predictions showed significantly different absolute residu-
als in comparison with the two least performing techniques for predicting FST
at the unit test phase. For goodness of fit, AIRS and human predictions were
found to be statistically significant, though the human predictions resulted in
extreme values later in the prediction period.

4.2.2 Prediction of FST at the function test phase

The box-plots of absolute residuals for predicting FST at the function test
phase for different techniques is shown in Fig. 10(a). We can observe that
there is a greater spread of distribution for each of the techniques as compared
with those at the unit test phase. The box-plots for each of the techniques are
also farther away from the 0 mark on the y-axis, with PSO-ANN and SVM
having the median closet of all to the 0 mark on the y-axis. Human and MR
prediction shows the greatest spread of distributions while the box-plots of
PR, M5P, K*, Knn and Bagging show only a marginal difference. The result
of the Kruskal-Wallis test (p = 1.6e−11) at α = 0.05 suggested that at least
one sample median is significantly different from the others. Subsequently, the
results of the multiple comparisons test (Tuckey-Kramer, α = 0.05) appear
in Fig. 10(b). The absolute residuals of MR and human are not significantly
different (as their intervals overlap), a confirmation of the trend observed from
the box-plots. Two of the better techniques having lower medians are SVM
and PSO-ANN. There are no significant differences between the two. Also
there are no significant pair-wise differences between SVM and each one of:
PR, M5P, REPTree, K*, Knn, Bagging, GP, GEP.
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(a) Box-plots of the residuals for each technique in
predicting FST at the function test phase.
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(b) Results of the multiple comparisons test with
α = 0.05 (The vertical dotted lines indicating that
6 techniques have mean ranks significantly different
from MR).

Fig. 10 Results showing box plots of absolute residuals and multiple comparisons of the
absolute residuals between all techniques at the function test phase.

Table 5 Two-sample two sided K-S test results for predicting FST at the function test
phase with critical value J0.05 = 0.5.

K-S test statistic, J
MR PR M5P REPTree K* Knn SVM ANN Bagging RF GP GEP AIRS PSO-ANN Human
1 0.93 0.93 0.73 0.93 0.93 0.4 1 0.80 0.93 0.93 0.93 0.93 0.4 0.73

The K-S test result for measuring the goodness of fit for predictions from
each technique relative to the actual FST at the function test phase appear
in Table 5. SVM and PSO-ANN show statistically significant goodness of fit.
Fig. 11 shows the line plots of SVM and PSO-ANN with the actual FST at
the function test phase. SVM appears to behave in Fig. 11 since there are no
high peaks showing outliers (as is the case with PSO-ANN in Week 11).

In summary, in terms of predictive accuracy, residual box-plots indicate
that SVM and PSO-ANN are better at predicting FST at the function test
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Fig. 11 Plot of the predicted vs. the actual FST values at the function test phase for
techniques having significant goodness of fit.

phase but there are no significant differences found with the majority of the
other techniques. Also MR and human predictions are significantly worse than
seemingly better SVM and PSO-ANN. SVM and PSO-ANN also show statis-
tically significant goodness of fit in comparison with other techniques.

4.2.3 Prediction of FST at the integration test phase

The box-plots of absolute residuals for predicting FST at the integration test
phase for different techniques is shown in Fig12(a). We can observe that there
is a smaller spread of distribution for each technique as compared with the box-
plots for function test. An exception is ANN whose box-plot is more spread
out than other techniques. In terms of the median being close to the 0 mark
on the y-axis, Bagging and GP appear to be promising, though there seem
to be only marginal differences in comparison with PR, M5P, REPTree and
PSO-ANN. GEP and human each shows two extreme outliers. The result of the
Kruskal-Wallis test (p = 1.7e−5) at α = 0.05 suggested that at least one sample
median is significantly different from the others. Subsequently, the results of
the multiple comparisons test (Tuckey-Kramer, α = 0.05) appear in Fig. 12(b).
The mean rank for MR is not significantly different than the ones for SVM,
ANN and the human. GP has the mean rank that is significantly different than
MR and ANN, the two least performing techniques. However, there are not
any pair-wise significant differences between the absolute residuals for GP and
each one of: PR, M5P, REPTree, K*, Knn, SVM, Bagging, RF, GEP, AIRS,
PSO-ANN and Human.

The K-S test result for measuring the goodness of fit for predictions from
each technique relative to the actual FST at the integration test phase appear
in Table 6. Bagging, GP, AIRS and human predictions show statistically sig-
nificant goodness of fit. Fig. 13 show the line plots of Bagging, GP, AIRS and
the human predictions.
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(a) Box-plots of the residuals for each technique in
predicting FST at the integration test phase.
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(b) Results of the multiple comparisons test with
α = 0.05 (The vertical dotted lines indicating that
eleven techniques have mean ranks significantly differ-
ent from MR).

Fig. 12 Results showing box plots of absolute residuals and multiple comparisons of the
absolute residuals between all techniques at the integration test phase.

Table 6 Two-sample two sided K-S test results for predicting FST at the integration test
phase with critical value J0.05 = 0.5.

K-S test statistic, J
MR PR M5P REPTree K* Knn SVM ANN Bagging RF GP GEP AIRS PSO-ANN Human
0.73 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.40 0.60 0.33 0.60 0.27 0.60 0.27

In summary, in terms of predictive accuracy, MR and ANN appear to
be the two least performing techniques for predicting FST at the integration
test phase, while there were no statistically significant differences between the
majority of the techniques. Bagging, GP, AIRS and human predictions show
statistically significant goodness of fit in comparison with other techniques.
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(a) Plot of the actual vs. predicted FST values (AIRS
and Bagging) at the integration test phase.
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(b) Plot of the actual vs. predicted FST values (Hu-
man and GP) at the integration test phase.

Fig. 13 Plot of the predicted vs. the actual FST values at the integration test phase for
techniques having significant goodness of fit.

4.2.4 Prediction of FST at the system test phase

The box-plots of absolute residuals for predicting FST at the system test phase
for different techniques is shown in Fig. 14(a). We can observe that there are
certain techniques that appear to do better. These are PR, RF and GP. The
box-plots of these three techniques have medians closer to the 0 mark on the
y-axis, with GP being the closest. GP also show the smallest distribution as
compared with PR and RF. For the rest of the techniques, there is a greater
variance in their box-plots with outliers. MR, Knn, AIRS and human box-
plots seem to be worse, both in terms of the position of the median and the
spread of the distribution. The result of the Kruskal-Wallis test (p = 5.6e−7)
at α = 0.05 suggested that at least one sample median is significantly different
from the others. Subsequently, the results of the multiple comparisons test
(Tuckey-Kramer, α = 0.05) appear in Fig. 14(b). The technique with smallest
mean rank is GP and there are no pair-wise significant differences between GP
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(a) Box-plots of the residuals for each technique in
predicting FST at the system test phase.
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(b) Results of the multiple comparisons test with
α = 0.05 (The vertical dotted lines indicating that
3 techniques have mean ranks significantly different
from MR).

Fig. 14 Results showing box plots of absolute residuals and multiple comparisons of the
absolute residuals between all techniques at the system test phase.

and any of the techniques: PR, Bagging, RF and PSO-ANN. This finding also
confirms the trend from the box-plots. MR is the worst performing technique
and there are no pair-wise significant differences between MR and any of the
techniques: M5P, REPTree, K*, Knn, SVM, ANN, Bagging, GEP, AIRS, PSO-
ANN and Human.

The K-S test result for measuring the goodness of fit for predictions from
each technique relative to the actual FST at the system test phase appear in
Table 7. PR, GP and PSO-ANN show statistically significant goodness of fit.
Fig. 15 shows the line plots of PR, GP, PSO-ANN with the actual FST at the
system test phase.

In summary, in terms of predictive accuracy, GP, PR, Bagging, RF and
PSO-ANN perform better than the other techniques for predicting FST at
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Table 7 Two-sample two sided K-S test results for predicting FST at the system test phase
with critical value J0.05 = 0.5.

K-S test statistic, J
MR PR M5P REPTree K* Knn SVM ANN Bagging RF GP GEP AIRS PSO-ANN Human
0.67 0.40 0.73 0.93 0.93 0.80 0.87 0.47 0.93 0.67 0.20 0.80 0.73 0.40 0.60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−2

0

2

4

6

8

10

12

14

Weeks

FS
T

PSO−ANN
Actual

(a) Plot of the actual vs. predicted FST values (PSO-
ANN) at the system test phase.
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(b) Plot of the actual vs. predicted FST values (GP
and PR) at the system test phase.

Fig. 15 Plot of the predicted vs. the actual FST values at the system test phase for tech-
niques having significant goodness of fit.

the system test phase. PR, GP and PSO-ANN show statistically significant
goodness of fit in comparison with other techniques.

4.3 Performance evaluation of human expert judgement vs. other techniques
for FST prediction

The analysis done in the previous Section 4.2 would also allow us to answer the
RQ.2 that questions if other techniques better predict FST than human expert



24 Wasif Afzal et al.

judgement. We now analyze the performance of human expert judgement vs.
other techniques for FST prediction at each of the four test phases.

4.3.1 Prediction of FST at the unit test phase

Fig. 8(b) shows the results of the multiple comparisons test (Tuckey-Kramer,
α = 0.05) for FST prediction at the unit test phase. Two techniques have their
means significantly different (and worse) than the human expert judgement.
These techniques are MR and ANN. Otherwise, there are no significant pair-
wise differences between the means of human expert judgement and rest of
the techniques.

In terms of goodness of fit, Table 4 shows that AIRS and human expert
judgement have statistically significant goodness of fit in comparison with
other techniques.

4.3.2 Prediction of FST at the function test phase

Fig. 10(b) shows the results of the multiple comparisons test (Tuckey-Kramer,
α = 0.05) for FST prediction at the function test phase. Three techniques
have their means significantly different (and better) than the human expert
judgement. These techniques are PSO-ANN, SVM and Knn. Otherwise, there
are no significant pair-wise differences between the means of human expert
judgement and the rest of the techniques.

In terms of goodness of fit, Table 5 shows that human expert judgement
have no significant goodness of fit in comparison with SVM and PSO-ANN.

4.3.3 Prediction of FST at the integration test phase

Fig. 12(b) shows the results of the multiple comparisons test (Tuckey-Kramer,
α = 0.05) for FST prediction at the integration test phase. No technique has
its mean significantly different than the human expert judgement.

In terms of goodness of fit, Table 6 shows that Bagging, GP, AIRS and
human expert judgement have significant goodness of fit in comparison with
rest of the techniques.

4.3.4 Prediction of FST at the system test phase

Fig. 14(b) shows the results of the multiple comparisons test (Tuckey-Kramer,
α = 0.05) for FST prediction at the system test phase. GP has its mean
significantly different (and better) than the human expert judgement.

In terms of goodness of fit, Table 7 shows that GP and PSO-ANN have
significant goodness of fit in comparison with rest of the techniques.

Table 8 sums up which techniques are or are not better than human expert
judgement in predicting FST at unit, function, integration and system test
phases. The dark grey cells in the Table 8 refers to techniques that are equally
good in predicting FST with the human expert judgement. The light grey cells
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Table 8 A summary of techniques that are or are not better than human experts predicting
FST at unit, function, integration and system test phases.

Human expert judgement
vs.

MR PR M5P REPTree K* Knn SVM ANN Bagging RF GP GEP AIRS PSO-ANN
Unit

Function
Integration

System

indicate that the techniques are inferior with respect to the human judgement
and the dark grey cells. The white cells indicate that these techniques are
better than human expert judgement in predicting FST.

5 Discussion

One of the basic objectives of doing measurements is monitoring of activities so
that action can be taken as early as possible to control the final outcome. With
this objective in focus, FST metrics work towards the goal of minimization
of avoidable rework by finding faults where they are most cost-effective to
find. Early prediction of FST at different test phases is an important decision
support to the development team whereby advance notification of improvement
potential can be made.

In this paper we investigated two research questions outlined in Section 1.
RQ.1 investigated the use of a variety of techniques for predicting FST in unit,
function, integration and system test phases. The results are evaluated for
predictive accuracy (through absolute residuals) and goodness of fit (through
the Kolmogorov-Smirnov test). A range of techniques are found to be useful in
predicting FST for different test phases (both in terms of predictive accuracy
and goodness of fit). RQ.2 is concerning a more specific research question that
compared human expert judgement with other techniques. The results of this
comparison indicate that expert human judgement is better than majority of
the techniques at unit and integration test but are far off at function and
system test. Hence, human predictions regarding FST lack some consistency.
There are indications that a smaller group of techniques might be consistently
better in predicting at all the test phases. Following is the list of techniques
performing better at various test phases for predicting FST in our study:

1. Unit test – AIRS and human.
2. Function test – SVM and PSO-ANN.
3. Integration test – Bagging, GP, AIRS, human.
4. System test – PR, GP, PSO-ANN.

A trend that can be observed from this list of comparatively better techniques
is that there is a representation of search-based techniques in predicting FST
at each test phase.

– AIRS is consistently better at – Unit and integration test.
– PSO-ANN is consistently better at – function and system test
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– GP is consistently better at – integration and system test.

The search-based techniques have certain merits, one or more of which
might be responsible for outperforming the other group of techniques:

– The search-based techniques are better able to cope with ill-defined, partial
and messy input data (Harman, 2010). GP is able to perform well where
the interrelationships among the relevant variables are unknown or poorly
understood (Poli et al, 2008). According to Poli et al. (Poli et al, 2008),
“[GP] has proved successful where the appli- cation is new or otherwise
not well understood. It can help discover which variables and operations
are important; provide novel solutions to individual problems; unveil un-
expected relationships among variables; and, sometimes GP can discover
new concepts that can then be applied in a wide variety of circumstances.”
Evolutionary algorithms have also been applied successfully to problems
where there are high correlations between variables, i.e, the choice of one
variable may change the meaning or quality of another (Blickle, 1996).

– GP is particularly good at providing small programs that are nearly correct
and predictive models are not exceptionally long (Harman, 2010). Accord-
ing to Poli et al. (Poli et al, 2008),“[. . .] evolutionary algorithms tend to
work best in domains where close approximations are both possible and ac-
ceptable.” Search-based techniques can produce very transparent solutions,
in the sense that they can make explicit the weight and contribution of each
variable in the resulting solutions.

– Being non-parametric approaches, the structure of the end solution is not
pre-conceived. This is particularly important for the usability of search-
based techniques, i.e., the techniques used for prediction should be able
to determine the form of relationship between inputs and outputs rather
than that the technique is dependent on the user providing the form of the
relationship.

– Search-based techniques are entirely data driven approaches and do not
include any assumptions about the distribution of the data in its formula-
tion. For example, GP models are independent of any assumptions about
the stochastic behavior of the software failure process and the nature of
software faults (Afzal, 2009).

The results also argue that there is value in the use of other techniques like
human predictions, SVM, Bagging and PR, it is just that these are not as
consistent as the search-based techniques.

Another interesting outcome of this study is the performance of search-
based techniques (and other better performing techniques) outside their re-
spective training ranges, i.e., the predictions are evaluated for 15 weeks of an
on-going project after being trained on another baseline project data. This is
to say that the over-fitting is within acceptable limits, and this is particularly
encouraging considering the fact that we are dealing with large projects where
the degree of variability in fault occurrences can be large. This issue is also
related to the amount of data available for training the different techniques
which, in case of large projects, is typically available.
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Another important aspect of the results is that human predictions were
among the better techniques for predicting FST at unit and integration test.
In our view, this is also an important outcome and shows that expert opinions
perhaps need more consideration that is largely been ignored in empirical
studies of software fault predictions (Tomaszewski et al, 2007; Catal and Diri,
2009). We, therefore, agree with the conclusion of Hughes (Hughes, 1996)
that expert judgement should be supported by the use of other techniques
rather than displacing it. Search-based techniques seem to be an ideal decision-
support tool for two reasons:

1. They have performed consistently better than other techniques (Section 4.2).
2. Search-based techniques, as part of the more general field of search-based

software engineering (SBSE) (Harman and Jones, 2001; Harman, 2007), is
inherently concerned with improving not with proving (Harman, 2010).

As such it is likely that human-guided semi-automated search might help get a
reasonable solution that incorporates human judgement in the search process.
This human-guided search is commonly referred to as ‘human-in-the-loop’ or
‘interactive evolution’ (Harman, 2010) and is a promising area of future re-
search. The incorporation of human feedback in the automated search can
possibly account for some of the extreme fluctuations in the solely human
predictions that are observed for predicting FST at unit and integration test.

We also believe that the selection of predictor variables that are easy to
gather (e.g., the project level metrics at the subject company in this study)
and that do not conflict with the development life cycle have better chances
of industry acceptance. There is evidence to support that general process level
metrics are more accurate than code/structural metrics (Arisholm et al, 2010).
A recent study by Afzal (Afzal, 2010) has shown that the use of number of
faults-slip-through to/from various test phases are able to provide good results
for finding fault-prone modules at integration and system test phases. However
this subject requires further research.

We have also come to realize that the calculation of simple residuals and
goodness of fit tests along with statistical testing procedures are a sound way
to secure empirical findings where the outcome of interest is numeric rather
than binary. An assessment of the qualitative features can then be undertaken
as an industrial survey to complement the initial empirical findings.

While working on-site at the subject organization for this research, we
realized several organizational factors that influence the success of such a
decision-support. Managerial support and an established organizational cul-
ture of quantitative decision-making allowed us to gain easy access to data
repositories and relevant documentation. Moreover, collection of faults-slip-
through data and association of that data to modules, was made possible using
automated tool support that greatly reduced the time for data collection and
ensured data integrity.
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6 Empirical validity evaluation

We adopted a case study approach in evaluating various techniques for predict-
ing FST in four test phases. A controlled experiment was deemed not practical
since too many human factors potentially affect fault occurrences.

What follows next is our presentation of the various threats to validity
of our study: Construct validity. Our choice of selecting project level metrics
(Table 1) instead of structural code metrics was influenced by multiple factors.
First, metrics relevant to work packages (Section 3.1) have an intuitive appeal
for the employees at the subject company where they can relate FST to the
proportion of effort invested. Secondly, the existence of a module in multiple
work packages made it difficult to obtain consistent metrics at the component
level. Thirdly, the intent of this study is to use project level metrics that are
readily available and hence reduces the cost of doing such predictions. In addi-
tion, the case study is performed in the same development organization having
the identical application domain, so the two projects in focus are characterized
by the same set of metrics. Internal validity. A potential threat to the internal
validity is that the FST data did not consider the severity level of faults, rather
treated all faults equally. As for the prediction techniques, the best we could
do was to experiment with a variety of parameter values. But we acknowl-
edge that the obtained results could be improved by better optimizing the
parameters. External validity. The quantitative data modeling was performed
on data from a specific company while the questionnaire was filled out by an
expert having 20 years of work experience and currently holds the designation
of systems verification process leader at our subject organization. The ques-
tionnaire was filled to provide expert estimations of FST metric and consisted
of all relevant independent variables. The expert then used these independent
variables to provide estimated values. In order to reduce bias arising from the
design of the questionnaire, the researchers encouraged the expert for asking
questions to clarify any ambiguities. We have tried to present the context and
the processes to the extent possible for fellow researchers to generalize our
results. We are also encouraged by the fact that the companies are enterprise-
size and have development centers world-wide that follow similar practices.
It is therefore likely that the results of this study are useful for them too. A
threat to the external validity is that we cannot publicize our industrial data
sets due to proprietary concerns. However, the transformed representation of
the data can be made available if requested. Conclusion validity. We were con-
scious in using the right statistical test, basing our selection on whether the
assumptions of the test were met or not. We used a significance level of 0.05,
which is a commonly used significance level for hypothesis testing (Juristo and
Moreno, 2001); however, facing some criticism lately (Ioannidis, 2005).
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7 Conclusion

In this paper, we have presented an extensive empirical evaluation of various
techniques for predicting the number of faults slipping through to the four test
phases of unit, function, integration and system.

We find that a range of techniques are found to be useful in such a predic-
tion task, both in terms of predictive accuracy and goodness of fit. However,
the group of search-based techniques (genetic programming (GP), gene ex-
pression programming (GEP), artificial immune recognition system (AIRS)
and particle swarm optimization based artificial neural network (PSO-ANN))
consistently give better predictions, having a representation at all of the test
phases. Human predictions are also among the better techniques at two of the
four test phases. We conclude that human predictions can be supported well
by the use of search-based techniques and a mix of the two approaches has the
potential to provide improved results.

It is important to highlight that there might be additional evaluation cri-
teria that are important in addition to measuring the predictive accuracy and
the goodness of fit. A general multi-criteria based evaluation system is then
required that captures both the quantitative and the qualitative aspects of
such a prediction task. Future work will also investigate ways to incorporate
human judgement in the automated search mechanism.

There are some lessons learnt at the end of this study which might be
useful for decision-making in real-world industrial projects:

– The number of faults slipping through to various test phases can be de-
creased if improvement measures are taken in advance. To achieve this,
prediction of FST is an important decision-making tool.

– In large industrial projects, prediction of FST is possible using project-
level measurements such as fault-inflow, status ranking of work packages
and test case progress.

– The organization wanting to improve their software testing process need
to institutionalize a mechanism for recording data in a consistently correct
manner.

– A tool support that uses the recorded data and applies a number of tech-
niques to provide results to the software engineer will improve usability of
any prediction effort, including FST prediction.

– A tool support is also necessary to hide complex implementation details of
techniques and to ease parameter settings for end users.

– The software engineers need to be trained in the prediction task. Training
workshops need to be conducted which will not only increase awareness
about the potential benefits of FST prediction but will also help to discover
potentially new independent variables of interest.
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A Model training and testing procedure.

This section discusses the parameter settings that have been considered for different tech-
niques during model selection. These settings may be used for a future replication of this
study and to quantify the impact of changing the parameter settings, perhaps using different
data sets. As given in Section 3.1, we use data from 45 weeks of the baseline project to train
the models while the results are evaluated on the data from 15 weeks of an on-going project.
The experimental evaluation process is also summarized in Procedure 1.

Procedure 1 The model training and testing procedure.
Train: Training dataset of 45 weeks
Test: Testing dataset of 15 weeks
P: Set of parameter settings for each technique
T: Set of techniques
for each t in T do

for each p in P do
Model = BuildModel (Train, t, P[t])
ARE [t, p] = GetResult (Test, Model)
output ARE

end for
return parameter[min(ARE)]

end for
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
BuildModel (TrainingData, Technique, ParameterSet)
// Train the technique using training data with parameters
GetResult (TestData, Model)
// Compute ARE of the trained model on the Test data

The least-square multiple regression does not require selection of parameters, rather the
coefficients are determined from the training data. Different estimators implemented in the
WEKA machine learning tool (Hall et al, 2009) have been evaluated for pace regression,
that includes empirical Bayes, ordinary least square, Akaike’s information criterion (AIC)
and risk inflation criterion (RIC). The estimator giving the least ARE is selected as the best
pace regression model.

The M5P technique requires setting the minimum number of instances at a leaf node
and has been varied in the range [2, 4, . . . , 10] with pruning and smoothing. The model with
minimum ARE is retained. The REPTree technique requires setting the maximum depth
of the tree, the minimum total weight of the instances in a leaf, the minimum variance
proportion at a node required for splitting, the number of folds of data used for pruning
and the seed value used for randomizing the data. We have imposed no restriction on the
maximum depth of the tree while the minimum total weight of the instances in a leaf is
varied in the range [2,4, . . . , 10]. The minimum variance proportion at a node, the number
of folds of data used for pruning and the seed value used for randomization are kept constant
at their default values of 0.0010, 3 and 1 respectively.

The K* instance-based technique requires setting the blending parameter that has a
value between 0% and 100%. This parameter has been varied in the range of [0, 20, 40, . . . ,
100]. For k-NN, the number of neighbors has been varied in the range of [1, 3, 5, . . . , 15].

For SVM, two types of parameters have to be set by the user, i.e., values for the epsilon
parameter, ε and the regularization parameter, C. Setting the value of C near the range of
the output values has been found to be a successful heuristic. We therefore vary C within
the range [1, 3, . . . , 11]. The value of ε is varied in the range [0.001, 0.003] while the
kernel used is the radial basis function. Training an artificial neural network (ANN) requires
deciding on the number of layers and the number of nodes at each layer. We considered
the ANN architecture with 1 input layer, 2 hidden layers and 1 output layer. The number
of independent variables in the problem determined the number of input nodes. The two
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Table 9 GP control parameters.

Control parameter Value
Population size 50
Termination condition 2000 generations
Function set {+,−,∗,/,sin,cos,log,sqrt}
Tree initialization Ramped half-and-half

method
Probabilities of crossover,
mutation, reproduction

0.8, 0.1, 0.1

Selection method roulette-wheel

Table 10 GEP control parameters.

Control Parameter Value
Population size 50
Genes per chromosome 4
Gene head length 8
Termination condition 2000 generations
Functions {+,−,∗,/,sin,cos,log,sqrt}
Tree initialization Random
Mutation rate, Inversion rate, IS trans-
position rate, Root transposition rate,
Gene transposition rate, One-point re-
combination rate, Two-point recombi-
nation rate, Gene recombination rate

0.04, 0.1, 0.1, 0.1, 0.1,
0.3, 0.3, 0.1

Selection method roulette-wheel

hidden layers used a varied number of nodes in the range [1, 3, 5, 7], while the output layer
used a single node. The hyperbolic tangent sigmoid and linear transfer functions have been
used for the hidden and output nodes respectively. Finally the number of epochs used is 500
and the weights are updated using a learning rate of 0.3 and a momentum of 0.2.

Model selection for Bagging involves deciding upon the size of the bag as a percentage
of the training set size and the number of iterations to be performed. These two parameters
have been varied in the range [25, 50, 75, 100] and [5, 10, 15] respectively. The REPTree
technique is used as the base learner. For rotation forest, the number of iterations have been
varied in the range [5, 10, 15] and the base learner used is the REPTree technique.

GP requires setting a number of control parameters. Although the affect of changing
these control parameters on the end solution is still an active area of research, we nevertheless
experimented with different function and terminal sets. Initially we experimented with a
minimal set of functions and the terminal set containing the independent variable only.
We incrementally increased the function set with additional functions and later on also
complemented the terminal set with a random constant. The best model having the best
fitness was chosen from all the runs of the GP system with different variations of function and
terminal sets. The GP programs were evaluated according to the sum of absolute differences

between the obtained and expected results in all fitness cases,
Pn

i=1 | ei − e
′
i |, where ei is

the actual fault count data, e
′
i is the estimated value of the fault count data and n is the size

of the data set used to train the GP models. The control parameters that were chosen for
the GP system are shown in Table 9. For GEP, the solutions are evaluated for fitness using
mean squared error and the control parameters are shown in Table 10. The AIRS algorithm
also require setting a number of parameters. While it is not possible to experiment with
all the different combinations of these parameters, however the value of k for the majority
voting has been varied in the range [1, 3, 5, . . . , 15]. Rest of the parameters used were:
Affinity threshold = 0.2, clonal rate = 10, hypermutation rate = 2, mutation rate = 0.1,
stimulation value = 0.9 and total resources = 150. For PSO-ANN, the architecture similar
to the basic ANN is followed except that the weights are now optimized using PSO with the
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number of particles in the swarm set to 25 and the number of iterations varied in the range
[500, 1000, 15000, 2000]. The mean squared error is used as the fitness function.


