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In the presence of a number of algorithms for classi¯cation and prediction in software engin-

eering, there is a need to have a systematic way of assessing their performances. The per-
formance assessment is typically done by some form of partitioning or resampling of the original

data to alleviate biased estimation. For predictive and classi¯cation studies in software en-

gineering, there is a lack of a de¯nitive advice on the most appropriate resampling method to

use. This is seen as one of the contributing factors for not being able to draw general conclusions
on what modeling technique or set of predictor variables are the most appropriate. Furthermore,

the use of a variety of resampling methods make it impossible to perform any formal meta-

analysis of the primary study results. Therefore, it is desirable to examine the in°uence of
various resampling methods and to quantify possible di®erences.Objective and method: This

study empirically compares ¯ve common resampling methods (hold-out validation, repeated

random sub-sampling, 10-fold cross-validation, leave-one-out cross-validation and non-

parametric bootstrapping) using 8 publicly available data sets with genetic programming (GP)
and multiple linear regression (MLR) as software quality classi¯cation approaches. Location of

(PF, PD) pairs in the ROC (receiver operating characteristics) space and area under an ROC curve

(AUC) are used as accuracy indicators. Results: The results show that in terms of the location

of (PF, PD) pairs in the ROC space, bootstrapping results are in the preferred region for 3 of the
8 data sets for GP and for 4 of the 8 data sets for MLR. Based on the AUC measure, there are no

signi¯cant di®erences between the di®erent resampling methods using GP and MLR. Con-

clusion: There can be certain data set properties responsible for insigni¯cant di®erences

between the resampling methods based on AUC. These include imbalanced data sets, insig-
ni¯cant predictor variables and high-dimensional data sets. With the current selection of data

sets and classi¯cation techniques, bootstrapping is a preferred method based on the location of

(PF, PD) pair data in the ROC space. Hold-out validation is not a good choice for compara-
tively smaller data sets, where leave-one-out cross-validation (LOOCV) performs better. For

comparatively larger data sets, 10-fold cross-validation performs better than LOOCV.

Keywords: Resampling methods; genetic programming; multiple regression; prediction;

classi¯cation.
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1. Introduction

Di®erent dependent variables of interest have been the target of predictive studies in

software engineering. Software quality classi¯cation is one such domain which con-

cerns classifying software modules as either fault-prone (fp) or non-fault prone (nfp).

A fault prone module is one in which the number of faults are higher than a selected

threshold. Such a classi¯cation of software modules potentially has an e®ect on

overall software quality since fault-prone modules are candidates for further re-

liability enhancement. Supervised learning algorithms from machine learning lit-

erature represent one of the relatively newer approaches for software quality

classi¯cation whereby an induction algorithm builds a classi¯er from a given data set.

Examples of such studies include applications of arti¯cial neural networks, e.g. [15],

classi¯cation and regression trees CART, e.g. [16], support vector machines, e.g. [37]

and evolutionary computation, e.g. [24, 1].

With the availability of numerous techniques for constructing classi¯cation

models, an important task in quality classi¯cation is appropriate model selection and

evaluation. There are several key questions to answer in achieving this task, e.g.,

(1) What resampling method to use?

(2) What prediction accuracy measure to use?

(3) What statistical tests to use to compare the results?

While each of these questions are important, the focus of this study is to answer

the choice of a resampling method to use. Speci¯cally, we attempt to investigate

which resampling method performs better while using genetic programming and

multiple linear regression as software classi¯cation techniques.

It is common in machine learning that a portion of a data set is used to test the

performance of the trained classi¯er. With limited data, di®erent resampling

methods are used to assess a model's generalizability. The choice of a resampling

method is an important element in an overall model selection procedure that has

attracted little investigation. With lack of convergence across various software

classi¯cation models, the researchers have highlighted the need for greater use of

public data sets, appropriate accuracy indicators and statistical testing procedures;

but the choice of a resampling method is surprisingly less emphasized in the past.

However increasing concern to investigate the choice of resampling methods is now

being raised. Myrtveit et al. [28] and Lessmann et al. [23] highlighted the need to

examine the in°uence of resampling methods and to quantify possible di®erences.

Kitchenham and Mendes [18] pointed at the importance of explicitly stating the

resampling method chosen:

\Another important issue is whether to compare with predictions based on

the entire data set or predictions based on dividing the data into training

and testing data sets. Most researchers agree that the latter technique is

better, but if we use anything other than a simple leave-one-out procedures

results are not auditable unless the speci¯c data set partitions are de¯ned."
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Further highlighting the need of multiple training sets, Kirsopp and Shepperd [17]

came to the conclusion:

\The major conclusion of this paper is, however, that it is dangerous to

make inferences concerning the accuracy of prediction systems based on a

small number of sampled training sets."

Kitchenham et al. [19] also highlighted that a variety of resampling techniques

used by di®erent studies is one of the reasons that impedes a formal meta-analysis of

the primary study results:

\Some studies used independent holdout samples; others used di®erent

types of cross validation (e.g. 3-fold, 20-fold, leave-one-out cross vali-

dation)…These di®erences made it impossible to perform any formal

meta-analysis of the primary study results."

A recent systematic review comparing genetic programming (GP) with other

methods of predictive studies [3] indicate that for studies applying GP for software

fault prediction and software reliability growth modeling, it is not always clear which

resampling method is used. This shows that while use of resampling methods is an

unsettled matter in predictive studies in software engineering in general, it requires

even more investigation when using GP as a prediction technique. In addition to GP,

we add a baseline approach (multiple linear regression) to investigate the impact of

resampling methods on classi¯cation accuracy. We therefore seek an answer to the

following research question in this paper:

RQ: How do di®erent resampling methods compare with respect to predicting fault-

prone software components using genetic programming (GP) and multiple

linear regression (MLR)?

The e®ect of resampling methods on GP evolution has been sporadically discussed

in research but not in a manner as in this study. Ross [33] studied the e®ects of

randomly sampled training data on program evolution in GP. The study concluded

that GP performance is better when the samples are more representative of the

target behavior. The study did not empirically evaluate di®erent resampling

methods but highlighted a need of doing so:

\The e®ects of re-sampling are not as clear, and further work is required to

study the relationship between re-sampling rates and GP performance."

In this study, we use GP and MLR as a software quality classi¯cation approach

and evaluate the in°uence of di®erent resampling methods on the outcome of soft-

ware quality classi¯cation. We present an extensive comparison between ¯ve com-

mon resampling methods: hold-out validation, repeated random sub-sampling, 10-

fold cross-validation, leave-one-out cross-validation and non-parametric boot-

strapping using eight di®erent publicly available data sets.
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The rest of this paper is organized as follows: Section 2 presents relevant related

studies. Section 3 presents the study design including an introduction to the di®erent

resampling methods used, an introduction to classi¯cation techniques used, the data

sets used, performance estimation of classi¯cation accuracy and the experimental

setup. The results are presented in Sec. 4, and discussed in Sec. 5. Validity issues

make up Sec. 6 while conclusions appear in Sec. 7.

2. Related Work

Few comparisons of standard resampling methods have been performed in software

engineering. Mittas and Angelis [26] used permutation tests and bootstrap to

construct con¯dence intervals for the di®erence in accuracy measures for software

cost prediction using regression and estimation by analogy. The emphasis of their

study was not to ¯nd the best model but rather to recommend a systematic com-

parison of models using statistical hypothesis testing. Kirsopp and Shepperd [17]

analyzed the in°uence of the number of training sets for software e®ort prediction

using case-based prediction on two data sets. They evaluated the hold-out pro-

cedure and demonstrated that results may be misleading unless at least 5 di®erent

training sets, and preferable more than 20, are used. Green and Ohlsson [12] used

arti¯cial neural network ensembles to compare 5� 5 fold cross-validation, 25-fold

bootstrap and 25-fold hold-out using three cut-o®s (0:25; 0:50 and 0.75). They

showed that 5� 5 fold cross-validation and hold-out with cut-o®s 0.25 and

0.50 are the best resampling strategies for estimating the true performance

of ANN ensembles. Kohavi [20] experimented with C4:5 and Naive-Bayesian

classi¯er using 6 real-world data sets to compare 0.632 bootstrap and k-fold cross-

validation with di®erent values of k. They concluded that 10-fold strati¯ed cross-

validation is the best method for the data sets used. A study by Scha®er [34]

concluded that on average 10-fold cross-validation strategy outperforms C4:5 de-

cision trees and back-propagation neural networks. Molinaro et al. [27] used four

classi¯cation algorithms (linear discriminant analysis, diagonal discriminant

analysis, nearest neighbor and classi¯cation and regression trees (CART)) to

compare di®erent resampling methods. Among several conclusions, one of them

was that leave-one-out cross-validation and 10-fold cross-validation had the

smallest bias for diagonal discriminant analysis, nearest neighbor, CART and

linear discriminant analysis.

While other references to resampling methods may be found in the literature, we

have focussed above on more recent ones and their use in comparative studies.

3. Study Design

In this section we present an introduction to resampling methods, an introduction to

GP and MLR, the data sets used, performance estimation of classi¯cation accuracy

and the experimental setup.

206 W. Afzal, R. Torkar & R. Feldt

May 15, 2012 2:29:03pm WSPC/117-IJSEKE 1240003
FA1



3.1. Resampling methods

Resampling is an important concept in inferential statistics. It is used to draw a large

number of samples from the original one and thus to reach an approximation of the

underlying theoretical distribution. It is based on repeated sampling within the same

data set [41].

Resampling is especially important for the validity of software engineering pre-

dictive studies since software engineering data sets are scarce and data limited. This

has to do with di±culties in getting large data sets due to the data being con¯dential

or where the data simply is too rudimentary in nature [2].

We examine the two most common resampling methods: cross-validation (repe-

ated random sub-sampling, leave-one-out cross-validation and 10-fold cross vali-

dation) and bootstrapping. We also compare the split-sample or the hold-out method

which acts as a baseline and an obvious split choice [39]. Due to space constraints, we

refer the reader to a more detailed discussion on these methods in [7, 8, 36].

3.2. Techniques used

We used two techniques in this study: genetic programming (GP) and multiple linear

regression (MLR). The parameter settings for the GP algorithm are given in Table 1.

The GP programs were evaluated according to the sum of absolute di®erences

between the obtained and expected results in all ¯tness cases,
Pn

i¼1 jei � e�i j, where ei
is the actual classi¯cation, e�i is the estimated classi¯cation and n is the size of the

data set used to train the GP models.

3.3. Public domain data sets

The data sets used in this study are taken from the PROMISE data repository [4]

which is a collection of data sets freely available for performing predictive studies in

software engineering. Speci¯cally we make use of 8 data sets from the PROMISE

repository namely AR6, AR1, PC1 req, JM1 req, CM1 req, AR3, AR4 and AR5.

Table 1. GP control parameters.

Control parameter Value

Population size 30

Number of generations 100

Termination condition 100 generations

Function set fþ;�; �; sin; cos; logg
Terminal set fxg
Tree initialization ramped half-and-half

Initial maximum number of nodes 28

Maximum number of nodes after genetic operations 512
Genetic operators crossover, mutation, reproduction

Probabilities of crossover, mutation, reproduction 0.8, 0.1, 0.1

Selection method lexictour
Elitism replace
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The reader is referred to PROMISE website [4] for a detailed information about

these data sets.

3.4. Performance estimation of classi¯cation accuracy

We restrict ourselves to evaluate the performance of binary classi¯ers which cat-

egorizes instances or software modules as being either fault-prone (fp) or non-fault

prone (nfp). We are interested in predicting whether or not a module contains any

fault, rather than the total number of faults.

We use the area under the receiver operating characteristic (ROC) curve (AUC)

and the location of (PF, PD) pairs in the ROC space as a measure of classi¯cation

performance for the di®erent resampling methods. As such, if we can divide the ROC

space into four regions as shown in Fig. 1, the only region with practical value for

software engineers is region A with acceptable PD and PF values. The regions B;C

and D represent poor classi¯cation performance and hence are of little to no interest

to software engineers [25].

3.5. Experimental setup

For each sample of an individual data set for each resampling method (except

LOOCV), the GP and MLR are run 10 times. The best GP individual and the best

MLR equation from the 10 runs are chosen for each sample of an individual data set.

The sample statistics (AUC, PF, PD) were calculated for each of these best results

and then averaged.

For LOOCV, running GP and MLR 10 times for each sample of an individual

data set was not feasible due to high computational times, therefore GP and MLR

were run once for each leave-one out sample of a particular data set. The sample

statistics (AUC, PF, PD) from each leave-one-out samples were then averaged.
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Fig. 1. Four regions in the ROC space.
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For hold-out validation, each data set is randomly split into a training set (2/3 of

the data) and a testing set (1/3 of the data).

4. Results

In this section we present the results of the empirical comparison in terms of (PF,

PD) pair data in the ROC space and the AUC. All the results are based on the AUC,

PF and PD values that represent the average over all the sub-samples (except for the

hold-out validation where we have a single split of data).

4.1. AR6 data set

Table 2 shows the (PF, PD) pairs for the AR6 data set for each of the resampling

methods. The corresponding location of these pairs in the ROC space is shown in

Figs. 2(a) and 2(b). In the case of GP, for all the resampling methods, the (PF, PD)

pairs are in the region C of the ROC space but hold-out and bootstrap resampling

methods tend to have comparatively higher PD and lower PF values which is

desirable. In the case of MLR, none of the resampling methods have the (PF, PD)

pairs in the preferred region of the ROC space.

(a) GP (b) MLR

Fig. 2. (PF, PD) pair data for the AR6 data set in the ROC space for GP and MLR. HO, RRSS, 10-fold,
LOOCV, bootstrap are short for hold-out validation, repeated random sub-sampling, 10-fold cross-

validation, leave-one-out cross-validation and non-parametric bootstrapping.

Table 2. (PF, PD) pair data for the AR6 data set.

GP MLR

PD PF PD PF

Hold-out validation 0.33 0.06 0.21 0.04

Repeated random sub-sampling validation 0.10 0.40 0.05 0.55
10-fold cross-validation 0 0.01 0.07 0.09

Leave-one-out cross-validation 0.13 0.01 0.25 0.08

Bootstrapping 0.16 0.04 0.2 0.15
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4.2. AR1 data set

Table 3 shows the (PF, PD) pairs for the AR1 data set for each of the resampling

methods. The corresponding location of these pairs in the ROC space is shown in

Figs. 3(a) and 3(b). Again as with data set AR6, for GP, all the resampling methods

have (PF, PD) pairs in the region C while bootstrap tends to have only a slightly

better PF and PD values. For MLR, for all the resampling methods, the (PF, PD)

pairs are in the region C of the ROC space which is undesirable.

4.3. AR3 data set

Table 4 shows the (PF, PD) pairs for the AR3 data set for each of the resampling

methods. The corresponding location of these pairs in the ROC space is shown in

Figs. 4(a) and 4(b). For GP, three resampling methods (hold-out, LOOCV and

repeated random sub-sampling) have (PF, PD) pairs in the region C while bootstrap

and 10-fold are in the preferred region A. For MLR, among all the resampling

methods, bootstrapping and 10-fold CV have the (PF, PD) pairs in the desirable

region A of the ROC space.

(a) GP (b) MLR

Fig. 3. (PF, PD) pair data for the AR1 data set in the ROC space for GP and MLR. HO, RRSS, 10-fold,
LOOCV, bootstrap are short for hold-out validation, repeated random sub-sampling, 10-fold cross-

validation, leave-one-out cross-validation and non-parametric bootstrapping.

Table 3. (PF, PD) pair data for the AR1 data set.

GP MLR

PD PF PD PF

Hold-out validation 0 0 0.05 0.08

Repeated random sub-sampling validation 0 0.05 0.03 0.1
10-fold cross-validation 0 0 0.15 0.04

Leave-one-out cross-validation 0 0 0.03 0.06

Bootstrapping 0.07 0.08 0.09 0.08
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4.4. AR4 data set

Table 5 shows the (PF, PD) pairs for the AR4 data set for each of the resampling

methods. The corresponding location of these pairs in the ROC space is shown in

Figs. 5(a) and 5(b). For GP, all of the resampling methods, except bootstrap, have

(PF, PD) pairs in the region C. Bootstrap is in the preferred regionA. For MLR, only

bootstrap has the (PF, PD) pair in the preferred region A of the ROC space.

4.5. AR5 data set

Table 6 shows the (PF, PD) pairs for the AR5 data set for each of the resampling

methods. The corresponding location of these pairs in the ROC space is shown in

Figs. 6(a) and 6(b). For GP, all of the resampling methods, except repeated random

sub-sampling, have (PF, PD) pairs in the region C. Repeated random sub-sampling

is in the preferred region A. For MLR, only repeated random sub-sampling has the

(PF, PD) pair in the preferred region A of the ROC space.

(a) GP (b) MLR

Fig. 4. (PF, PD) pair data for the AR3 data set in the ROC space for GP and MLR. HO, RRSS, 10-fold,
LOOCV, bootstrap are short for hold-out validation, repeated random sub-sampling, 10-fold cross-

validation, leave-one-out cross-validation and non-parametric bootstrapping.

Table 4. (PF, PD) pair data for the AR3 data.

GP MLR

PD PF PD PF

Hold-out validation 0.33 0 0.25 0.15

Repeated random sub-sampling validation 0.15 0.29 0.20 0.15
10-fold cross-validation 1 0 0.78 0.08

Leave-one-out cross-validation 0.24 0.17 0.33 0.10

Bootstrapping 1 0 0.89 0.05
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4.6. PC1 req data set

Table 7 shows the (PF, PD) pairs for the PC1 req data set for each of the resampling

methods. The corresponding location of these pairs in the ROC space is shown in

Figs. 7(a) and 7(b). For GP, the only method not in region C is bootstrap with (PF,

PD) pair of ð0; 0:62Þ that places it in region A. For MLR, bootstrap has the (PF, PD)

pair in the preferred region A of the ROC space.

Table 5. (PF, PD) pair data for the AR4 data set.

GP MLR

PD PF PD PF

Hold-out validation 0.14 0.03 0.20 0.09

Repeated random sub-sampling validation 0.4 0.17 0.37 0.25
10-fold cross-validation 0 0 0.06 0.04

Leave-one-out cross-validation 0 0 0.09 0.45

Bootstrapping 1 0 0.89 0.05

(a) GP (b) MLR

Fig. 5. (PF, PD) pair data for the AR4 data set in the ROC space for GP and MLR. HO, RRSS, 10-fold,
LOOCV, bootstrap are short for hold-out validation, repeated random sub-sampling, 10-fold cross-

validation, leave-one-out cross-validation and non-parametric bootstrapping.

Table 6. (PF, PD) pair data for the AR5 data set.

GP MLR

PD PF PD PF

Hold-out validation 0.17 0.17 0.20 0.25

Repeated random sub-sampling validation 1 0 0.75 0.05

10-fold cross-validation 0.33 0 0.40 0.09
Leave-one-out cross-validation 0 0 0.08 0.10

Bootstrapping 0.33 0 0.25 0.08
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(a) GP (b) MLR

Fig. 7. (PF, PD) pair data for the PC1 req data set in the ROC space for GP and MLR. HO, RRSS, 10-
fold, LOOCV, bootstrap are short for hold-out validation, repeated random sub-sampling, 10-fold cross-

validation, leave-one-out cross-validation and non-parametric bootstrapping.

(a) GP (b) MLR

Fig. 6. (PF, PD) pair data for the AR5 data set in the ROC space for GP and MLR. HO, RRSS, 10-fold,

LOOCV, bootstrap are short for hold-out validation, repeated random sub-sampling, 10-fold cross-

validation, leave-one-out cross-validation and non-parametric bootstrapping.

Table 7. (PF, PD) pair data for the PC1 req data set.

GP MLR

PD PF PD PF

Hold-out validation 0 0 0.05 0.03

Repeated random sub-sampling validation 0.21 0.35 0.15 0.40
10-fold cross-validation 0.25 0.16 0.15 0.24

Leave-one-out cross-validation 0.39 0.24 0.45 0.33

Bootstrapping 0.62 0 0.66 0.07
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4.7. JM1 req data set

Table 8 shows the (PF, PD) pairs for the JM1 req data set for each of the resampling

methods. The corresponding location of these pairs in the ROC space is shown in

Figs. 8(a) and 8(b). For GP, this time we see a wider spread of (PF, PD) pairs in the

ROC space with repeated random sub-sampling validation having the (PF, PD) pair

located in region A. Both hold-out validation and bootstrapping have high (PF, PD)

values and are thus consequently placed in region B. For MLR, only bootstrap has

the (PF, PD) pair in the preferred region A of the ROC space.

4.8. CM1 req data set

Table 9 shows the (PF, PD) pairs for the CM1 req data set for each of the resampling

methods. The corresponding location of these pairs in the ROC space is shown in

Figs. 9(a) and 9(b). For GP, we see here the concentration of (PF, PD) pairs within

two regions of the ROC space. For 10-fold cross-validation and leave-one-out cross-

validation, the (PF, PD) pairs lie in region A while for the rest of the resampling

(a) GP (b) MLR

Fig. 8. (PF, PD) pair data for the JM1 req data set in the ROC space for GP and MLR. HO, RRSS, 10-
fold, LOOCV, bootstrap are short for hold-out validation, repeated random sub-sampling, 10-fold cross-

validation, leave-one-out cross-validation and non-parametric bootstrapping.

Table 8. (PF, PD) pair data for the JM1 req data set.

GP MLR

PD PF PD PF

Hold-out validation 1 1 0.75 0.89

Repeated random sub-sampling validation 0.54 0.46 0.44 0.49
10-fold cross-validation 0.47 0.47 0.35 0.49

Leave-one-out cross-validation 0.50 0.43 0.44 0.54

Bootstrapping 0.58 0.58 0.67 0.48
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methods the (PF, PD) pairs are in region B. For MLR, LOOCV and 10-fold CV are

in the preferred region A of the ROC space.

4.9. AUC statistics

Table 10 shows the empirical comparisons among the resampling methods in terms of

mean AUC values for GP. The resampling methods providing the best AUC for a

particular data set is highlighted in bold face. Bootstrapping results in higher AUC

values for 3 data sets (AR1, AR5 and PC1 req) while 10-fold cross-validation and

leave-one-out cross-validation results in the highest AUC value for two data sets each.

Bootstrapping AUC values suggest that it might be the most useful resampling

method but we need to test for any signi¯cant di®erences in the AUC values. This is

achieved by using the Kruskal�Wallis test which is a non-parametric alternative to

analysis of variance. It is used to test the null hypothesis H0 that k independent

samples are from identical populations. The p-value came out to be 0.63 and

therefore we cannot reject the null hypothesis (at � ¼ 0:05) that the samples are

from identical populations.

Table 9. (PF, PD) pair data for the CM1 req data set.

GP MLR

PD PF PD PF

Hold-out validation 1 1 0.75 0.88

Repeated random sub-sampling validation 1 1 0.79 0.83
10-fold cross-validation 1 0.33 0.77 0.25

Leave-one-out cross-validation 0.54 0.28 0.66 0.15

Bootstrapping 0.96 1 0.85 0.93

(a) GP (b) MLR

Fig. 9. (PF, PD) pair data for the CM1 req data set in the ROC space for GP and MLR. HO, RRSS, 10-

fold, LOOCV, bootstrap are short for hold-out validation, repeated random sub-sampling, 10-fold cross-

validation, leave-one-out cross-validation and non-parametric bootstrapping.
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Table 11 shows the empirical comparisons among the resampling methods in

terms of mean AUC values for MLR. The resampling methods providing the best

AUC for a particular data set is highlighted in bold face. Bootstrapping results in

higher AUC values for 3 data sets (AR3, AR5 and CM1 req) while 10-fold cross-

validation and leave-one-out cross-validation results in the highest AUC value for

two data sets each.

Again for MLR, bootstrapping AUC values suggest that it might be the most

useful resampling method but we need to test for any signi¯cant di®erences in the

AUC values. Using the Kruskal-Wallis test at � ¼ 0:05 the p-value turns out to be

0.08 which indicates that there is no signi¯cant di®erences between the AUC values

from di®erent resampling methods.

5. Analysis and Discussion

The results of the Wilcoxon rank sum tests represent an interesting outcome.

Although there are a few di®erences between the AUC values for the di®erent

resampling methods they, however, do not di®er signi¯cantly. There can be multiple

Table 10. Hold-out test set results of 5 resampling methods in terms of the
AUC for GP (RRSS is short for repeated random sub-sampling).

Resampling methods

Data set Hold-out RRSS 10-fold CV LOOCV Bootstrapping

AR1 0.5 0.48 0.5 0.49 0.53
AR3 0.60 0.5 0.54 0.67 0.60

AR4 0.55 0.54 0.65 0.60 0.55

AR5 0.5 0.66 0.60 0.54 0.67

AR6 0.63 0.46 0.49 0.59 0.56
PC1 req 0.5 0.5 0.5 0.53 0.55

JM1 req 0.5 0.57 0.75 0.53 0.49

CM1 req 0.5 0.52 0.42 0.61 0.5

Table 11. Hold-out test set results of 5 resampling methods in terms of the
AUC for MLR (RRSS is short for repeated random sub-sampling).

Resampling methods

Data set Hold-out RRSS 10-fold CV LOOCV Bootstrapping

AR1 0.44 0.49 0.50 0.55 0.53

AR3 0.50 0.56 0.53 0.59 0.61
AR4 0.59 0.60 0.62 0.55 0.57

AR5 0.5 0.46 0.52 0.51 0.55

AR6 0.53 0.56 0.5 0.59 0.54

PC1 req 0.49 0.52 0.50 0.49 0.51
JM1 req 0.52 0.5 0.63 0.61 0.53

CM1 req 0.49 0.53 0.51 0.67 0.71
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reasons for such an outcome and what we discuss here is intended to be suggestive

rather than de¯nitive:

Imbalanced data sets. Data sets having a high proportion of either fault-prone

or non-fault prone modules would be likely to have non-signi¯cant performance

outcomes no matter what resampling method is used. This is because the perform-

ance outcome of the dependent variable y"ffp j nfpg occurring most of the times

would dominate the classi¯cation.

In our study AR1 data set has 6.61% of records representing fault-prone while

CM1 req data set consists of 77.5% of records representing fault-prone. For JM1 req,

with 45.94% of records representing fault-prone (thus representing a more balanced

representation), 10-fold cross-validation is able to achieve an impressive AUC value

of 0.75 for GP. This reasoning is also supported by a study by Kohavi [20] who

recommends using strati¯cation i.e. the folds are strati¯ed so that they contain

approximately the same proportions of the labels as the original data set.

Learning from imbalanced data sets is a well-known problem in machine learning.

There are a number of proposed methods to resample the data in ways that diminish

the e®ect of class imbalance. Over-sampling methods involve creating data for the

minority class to reach a size close to that of the larger class while under-sampling

methods eliminate larger class members to match the size of the smaller class.

A study by Pelayo and Dick [30] show that over-sampling minority class examples

improved the classi¯cation accuracy using C4:5 decision-tree classi¯er. While

over-sampling methods might improve classi¯cation accuracy, one has to be mindful

that creation of \synthetic" data might lack in appeal for a real-world use of a

classi¯cation algorithm. Strati¯cation within the data set might be a more useful

alternative in this case.

Insigni¯cant predictor variables. In case of a weak relationship between the

predictor variables and the dependent variable, the performance outcomes are less

dependent on the resampling methods used since the potential of these resampling

methods would not be utilized optimally. The data sets PC1 req, JM1 req and

CM1 req contain requirement metrics which showed a weak relationship in classi-

fying fault-proneness in a study by Jiang et al.[14]. Therefore it is more likely that the

resampling methods perform non-signi¯cantly on these data sets. For data sets AR6

and AR1 containing code attributes, the relationship with fault-proneness is present

but is limited.

High dimensional data set. With data set having large features, feature selec-

tion is an important task. In this study the feature selection was not performed before

running the GP algorithm, primarily to exploit GP's own feature selection capa-

bility [21]. However with high feature space the e±ciency and e®ectiveness of GP

(like any other machine learning technique) can dramatically drop [31]. This

potentially minimizes the impact of a particular resampling method used.
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We may conclude from above reasonings that the nature of the data sets play an

important role in the classi¯cation which also has an in°uence on the performance of

the resampling methods. Secondly the selection of a non-deterministic algorithm like

GP is shown to have a minimal dependency on the resampling method chosen,

though this behavior is also related to the actual nature of the data sets as already

discussed above.

Moreover the sample size has an impact on the resampling methods. For com-

paratively smaller data sets (JM1 req, CM1 req) hold-out validation is clearly not a

good choice due to bias resulting from a reduced training set size, this result being in

agreement with the study by Green and Ohlsson [12]. LOOCV performs better in

smaller data sets due to the optimum use of the training data (0.53 and 0.61 AUC

values for JM1 req and CM1 req respectively for GP), while for larger data sets

(AR6, AR1, PC1 req) it is interesting to ¯nd that there is not much di®erence

between 10-fold cross-validation and LOOCV. Therefore 10-fold cross-validation

might be more preferable to LOOCV for larger data sets. Such a choice would also

guard against the potential large variance in the error estimate for LOOCV caused

by a evaluating against only a single point in the test set [32].

In terms of location of (PF, PD) pairs in the ROC space, bootstrapping appears to

be better placed. This indicates that bootstrapping should be considered as a

resampling method for classi¯cation studies. In the context of software e®ort pre-

diction studies, Kirsopp and Shepperd [17] argue that bootstrapping su®ers from the

disadvantage that resampling with replacement might not ¯t well with the real-

world use where there will not be multiple copies of the same project. This argument

however holds less for software fault prediction studies where certain independent

variables relate to fault-proneness rather than project-level outcome, therefore it is

more realistic to have multiple records of the same module within the scope of a

single project. Bootstrapping, however, su®ers from another potential drawback, i.e.

the training and the test sets are not completely disjunct which is argued by some

authors, e.g. [11], as an important consideration in defect prediction. It is still not

known if this is the reason for relatively good performance of bootstrapping and

should be investigated more.

In statistics, there are existing studies to show that bootstrapping o®ers signi¯-

cant improvements over cross-validation [10, 38]. It is ¯tting that the classi¯cation

studies in software engineering learn from these positive results. It is also important

that the use of bootstrapping (and its variants) are evaluated more for publicly

available software engineering data sets. The work of Mittas and Angelis [26] is in the

right direction and more such studies are required.

An important question to raise here is that whether or not are there di®erences in

resampling methods when other techniques are used? For linear regression, it is shown

in [5] that k-fold cross-validation performs better than LOOCV for model selection

and evaluation; while Bootstrap gave an edge in terms of model evaluation when

compared with cross-validation. Using decision trees and Naïve Bayes, Kohavi [20]

showed the favorability of 10-fold cross-validation. Green and Ohlsson [12] found out
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cross-validation and hold-out (cut-o® 0.25, 0.50) as being able to better estimate

the true performance of arti¯cial neural network ensembles. Our study did not ¯nd

10-fold cross-validation and LOOCV to be giving signi¯cantly better results in com-

parison with other resampling methods, but showed some promise in the use of

Bootstrap method. Perhaps more empirical studies involving di®erent variants of

Bootstrap and di®erent number of folds in k-fold cross-validation are required to reach

a con¯dent statement about the choice of resampling method, given di®erent classi-

¯cation techniques and data sets. Replication studies [29] hold promise in verifying

the generalizability of existing research.

What we can summarize from this study is that there are some implications on

predictive studies in software engineering:

(1) We need to evaluate the use of bootstrapping more for software engineering data

sets. This is promising particularly for software fault prediction and software

quality classi¯cation studies where multiple copies of the same records do not

pose a threat for a real-world use.

(2) If Bootstrapping is not in contention, LOOCV is preferred for smaller data sets

and 10-fold cross-validation for larger data sets.

(3) For imbalanced data sets strati¯cation might improve the performance outcome

i.e. the folds are strati¯ed so that they contain approximately the same pro-

portions of the labels as the original data set.

(4) Using automated tool support it might be possible to report results using more

than one resampling methods.

(5) It is important to take into account the data set properties before making a

decision about a resampling method to select. Feature selection is one of the

important decision criteria.

6. Validity Evaluation

There can be di®erent threats to the validity of study results [40].

Conclusion validity is concerned with a statistical relationship between the treat-

ment and the outcome with a given signi¯cance. We used Kruskal-Wallis test at 0.05

signi¯cance level with a post-hoc test where we usedWilcoxon rank sum test with 0.05

signi¯cance level with Bonferroni correction. While it is assumed that the power of a

non-parametric test is less than its parametric counterpart,wewere not sure of the data

satisfying the assumptions of the parametric tests; therefore we resorted to the non-

parametric statistical tests. The data sets used are from di®erent domains and of

di®erent sizes; we believe that they represent a suitable heterogeneous mix.

Internal validity is concerned with a causal relationship between the treatment

and the outcome. GP is a non-deterministic algorithm and di®erent runs of the

algorithm may give di®erent results. Therefore, we followed a standard practice, i.e.

to run the GP algorithm multiple times for di®erent folds of the di®erent resampling

methods; the exception being the LOOCV where running GP multiple times was

deemed not feasible. The selection of resampling methods to compare was motivated
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by two factors: ¯rstly commonly used methods in software engineering predictive

studies and secondly other methods which have given good results in other domains

but not necessarily tried in software engineering to a large extent. The data sets used

are publicly available so that the validity of the study claims can be veri¯ed through

replication.

Construct validity is concerned with the relation between theory and observation.

While there are di®erent ways to compare di®erent resampling methods (e.g. bias,

variance, mean square error to name a few), we chose the ones described in Sec. 3.4

after taking into account the possible drawbacks with prior approaches. Moreover,

although bootstrapping might have an edge with respect to the location of (PF, PD)

pairs in the ROC space, one should be mindful that bootstrapping is known not to

perform well for some methodologies like empirical decision trees [20] and arti¯cial

neural network ensembles [12] for being excessively optimistic.

External validity is concerned with generalization of the results. While other

learning algorithms could have been selected our primary motive was not to compare

di®erent algorithms for classi¯cation accuracy but to compare the di®erent resam-

pling methods.

7. Conclusion

In this study we have reported an extensive empirical comparison of ¯ve resampling

methods using GP and MLR as classi¯ers over eight public domain software data

sets from the PROMISE data repository. We used AUC and the location of (PF, PD)

pairs in the ROC space as accuracy indicators and used statistical testing procedures

for contrasting di®erent resampling methods.

Using (PF, PD) pair data across eight data sets, bootstrapping gave results in the

preferred region of the ROC space for three data sets with GP and for four data sets

with MLR, indicating that bootstrapping should be considered as a resampling

method of choice in predictive studies in software engineering. However, where the

statistical comparison of individual resampling methods is concerned, based on AUC,

there were no signi¯cant di®erences. We then highlight the possible reasoning of such

an outcome, attributed to imbalanced data sets, insigni¯cant predictor variables and

high-dimensional data sets. Hold-out validation performs less satisfactorily for

comparatively smaller data sets where LOOCV performs better due to optimal use of

the training data. For comparatively larger data sets 10-fold cross-validation is a

better choice as compared to LOOCV.

Some interesting areas of future work can be undertaken as an extension of this

study:

(1) To investigate the outcome of di®erent variants of bootstrapping for di®erent

software engineering data sets.

(2) Resampling methods are known to have complications when applied to time-

series data, something that remains relatively less explored [35, 22].
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(3) Another interesting area is to study the impact of di®erent settings of GP par-

ameters [9, 6] versus the resampling methods so that one can assess how much

variability in the outcome can be attributed to each factor.

(4) According to [13], it is important to consider the variance of di®erent resampling

methods.

(5) It is important to investigate the computational costs of di®erent resampling

methods.

(6) Strati¯ed sampling needs to be compared with other traditional resampling

methods in this paper.
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