
Towards a Framework for Specifying Software
Robustness Requirements based on Patterns

Ali Shahrokni and Robert Feldt

Department of Computer Science & Engineering
Chalmers University of Technology

{nimli, robert.feldt}@chalmers.se

Abstract. [Context and motivation] With increasing use of soft-
ware, quality attributes grow in relative importance. Robustness is a
software quality attribute that has not received enough attention in re-
quirements engineering even though it is essential, in particular for em-
bedded and real-time systems. [Question/Problem] A lack of struc-
tured methods on how to specify robustness requirements generally has
resulted in incomplete specification and verification of this attribute
and thus potentially a lower quality. Currently, the quality of robust-
ness specification is mainly dependent on stakeholder experience and
varies wildly between companies and projects. [Principal idea/results]
Methods targeting other non-functional properties such as safety and
performance suggest that certain patterns occur in specification of re-
quirements, regardless of project and company context. Our initial anal-
ysis with industrial partners suggests robustness requirements from dif-
ferent projects and contexts, if specified at all, follow the same rule.
[Contribution] By identifying and gathering these commonalities into
patterns we present a framework, ROAST, for specification of robust-
ness requirements. ROAST gives clear guidelines on how to elicit and
benchmark robustness requirements for software on different levels of
abstraction.

1 Introduction

With software becoming more commonplace in society and with continued in-
vestments on finding better ways to produce it the maturity of both customers’
requirements and our ability to fulfill them increases. Often, this leads to an in-
creased focus on non-functional requirements and quality characteristics, such as
performance, design and usability. But there is also less of a tolerance for faults
and failures; by coming more reliant on software our society also increasingly
requires it to be reliable and robust. Robustness as a software quality attribute
(QA) is defined as [1]: ”The degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environmental conditions.”

The industrial project which is referred to in this paper is the development
of a robust embedded software platform for running internal and third party
telematics services [2]. The platform and services in this context need to be



2

dependable in presence of erroneous input. Avoiding disturbance to a service
or the platform by other services is another essential property. Considering the
industrial context, robustness is interpreted as stability in presence of erroneous
input and execution stability in presence of stressful environment created by
external services or modules.

Robustness requirement specification is relatively unexplored in the academic
literature. Much has happened in the software engineering field since the few
papers that focus on robustness specification have been published [3]. However,
There are common grounds between robustness and other more explored QA
that can help understanding robustness better. Statements, requirements and
checklists found in the literature about safety, security and dependability re-
quirements can in some cases be applied to robustness too. This fact has been
used to acquire a framework for robustness requirement (RR) specification in
this paper. This commonality depends on the fact that lack of robustness is in
most cases experienced and manifested as lack of other QAs or even functionality
in the system. According to Lutz and Newmann [4,5], by including requirements
for robustness or ”defensive design” in the specifications many safety-related er-
rors can be avoided. In this study Lutz shows that the majority of safety-related
software errors in Voyager and Galileo spacecraft were interface(robustness) and
functional errors.

Many failures associated with requirements are due to incompleteness [3].
This fact has motivated this study and act as a guideline to create a relevant
framework that helps improving the quality of requirement specification process
and ensures better completeness of the set of requirements.

In this paper we propose a framework called ROAST for specifying RR. This
framework is the result of gathering data from different industrial and academic
sources and applying it to the industrial project mentioned earlier. During the
process a number of gaps in the existing work in the field of RR specification
were identified. ROAST is the result of these steps and it can be used as a guide
for RR specification and testing.

2 The ROAST framework

In this section the framework ROAST for eliciting RR and aligning specification
and testing of RR is shortly described. ROAST is based on identifying patterns
for specification of robustness at different abstraction levels. As mentioned ear-
lier, robustness is not a strictly defined term and can refer to both low-level
(interface and input validation, failure handling) and high-level (service degra-
dation, availability, reliability and dependability) requirement types.

There are three main ideas behind the method: (a) specification levels, (b)
requirement patterns, and (c) alignment from requirements to testing. The first
2 parts are shortly described in this paper and the alignment from requirements
to testing will be discussed in future publications.

Like many NFRs, RR are often summative in nature. This means that they
specify general attributes of the developed system and not specific attributes for



3

specific, ‘local’ situations. For example, while a functional requirement (FR) for
a certain feature of a telematics system (‘system should support being updated
with applications during runtime’) can be judged by considering if that specific
feature is present or not, a RR (‘system should be stable at all times, it cannot
shut down because of erroneous inputs or components’) requires testing of a large
number of different system executions. So while a FR talks about one specific
situation, or a definite sub-set of situations, a RR summarizes aspects of the
expected system behavior for a multitude of situations.

To make RRs testable they need to be refined into specific behaviors that
should (positive) or should never happen (negative). Early in the development
of a software system users or developers may not be able to provide all details
needed to pinpoint such a behavior (or non-behavior). However, it would be a
mistake not to capture more general RRs. Our method thus describes different
information items in a full specification of a robustness behavior and describes
different levels in detailing them. This is similar to the Performance Refinement
and Evolution Model (PREM) as described by [6,7], but specific to robustness
instead of performance requirements. The different levels can be used to judge
the maturity of specifying a requirement or as a specific goal to strive for.

Since RR are often summative, i.e. valid for multiple different system sit-
uations, they are also more likely, than specific functional requirements, to be
similar for different systems. We can exploit this similarity to make our method
both more effective (help achieve a higher quality) and efficient (help lower costs).
By creating a library of common specification patterns for robustness, industrial
practitioners can start their work from that library. Thus they need not develop
the requirements from scratch and can use the pattern to guide the writing of a
specific requirement. This can both increase quality and decrease time in devel-
oping the requirements. Our approach and the pattern template we use is based
on the requirements patterns for embedded systems developed by Konrad and
Cheng, that are in turn based on the design patterns book [8, 9].

The verification of different robustness behaviors should be aligned with the
RR. Based on the level of requirement and the pattern the requirement is based
on different verification methods are applicable and relevant. We make these
links explicit in order to simplify the verification and testing process. Note that
the verification method that is relevant for a certain pattern at a certain level
may not actually be a testing pattern. For pattern levels that are not quantifiable
or testable, the verification method may be a checklist or similar technique.

Figure 1 gives an overview of the method we propose, and shows both the
levels, robustness areas with patterns and attached verification methods. In the
following we describe each part in more detail.

2.1 Robustness Requirements Levels

To have a similar model for RR as presented in [7], we need to identify the factors
that can affect robustness. These factors are generally not the same as the ones
affecting performance. We also need to specify these factors in more detail for
them to be useful for practitioners. Since these factors might be simulated at



4

many different levels of fidelity it is important to realize that level 2 is rather a
continuum of lower or higher fidelity approximations of level 3. We also use our
patterns to clarify different ways for quantifying qualitative requirements.One
important such quantification is transforming a qualitative requirement for the
system as a whole into a local variant specific to certain components and/or
sub-systems. We have introduced named levels for these two different types of
qualitative requirement types.

Figure 1 shows these different levels of a requirement in a diagram. The two
main axis of this model are ‘Specificity’ and ‘Realism’. The former increases when
we detail the scope of the requirement, from a global, system-wide requirement
to be localized to a component or sub-system. It also increases when we quantify
how and to what degree the requirement is to be fulfilled. The ‘Realism’ axis
increases when we mimic the realism of the factors that affects system execution
and its robustness. When we do no or little specification of these factors the
requirement is a RR-3 requirement, i.e. specific but not realistically specified. As
we describe the factors more realistically we increase realism into a RR-4. We
can strive to reach RR-5 by using real-world values and workloads in describing
the factors.

Fig. 1. Robustness Requirements Levels and Typical Refinement

2.2 Robustness Specification Patterns

Konrad and Cheng introduced requirements patterns for embedded systems [8].
They modify the original template introduced by Gamma et al by adding infor-
mation items for ‘Constraints’, ‘Behavior’ and ‘Design Patterns’ and by deleting



5

the ‘Implementation’ and ‘Sample Code’ items. The focus for Konrad and Cheng
is to specify the connection from requirements to the design as specified in UML
diagrams. Even though this can be a worthy goal also for our method in the
long-term we would rather keep design alternatives out of the robustness pat-
terns. Primarily because multiple different designs will be able to support RR;
pre-specifying the allowed solutions would be too restrictive for developers. The
connection from the patterns to verification and test methods that we propose
is more natural since each requirement will typically need to be tested and each
verification activity should be motivated by some requirement. We have thus
modified the template by Konrad and Cheng to reflect this difference in pur-
pose. A pattern captures a whole family of related requirements but that can
vary according to our levels.

Some of the patterns in ROAST are similar to the ones introduced by Lutz
[4] which account for the majority of safety-related errors Galileo and Voyager
However, when working on a platform in the presence of many services, with
little runtime control, it is essential to predict not only how the system can be
affected through interfaces but even how it behaves when sharing resources with
other services. The 14 identified robustness patterns are presented in table 1
where IS is Input Stability, ES Execution Stability and M stands for Means to
achieve robustness:

Table 1. Robustness Specification Patterns

N Pattern Category

1 Specified response to out-of-range and invalid inputs IS

2 Specified response to timeout and latency IS

3 Specified Response to input with unexpected timing IS

4 High input frequency IS

5 Lost events IS

6 High output frequency IS

7 Input before or during startup, after or during shut down IS

8 Error recovery delays IS

9 Graceful degradation M

10 All modes and modules reachable M

11 run-time memory access in presence of other modules and services ES

12 Processor access in presence of other modules and services ES

13 Persistent memory access in presence of other modules and services ES

14 Network access in presence of other modules and services ES

The patterns presented in this section are partly elicited by studying ear-
lier requirement documents from similar projects and partly through expertise
provided by the participants in the project who are mainly experienced people



6

in the field of requirement engineering. Earlier academic work presented above
helped us complete and reformulate already identified patterns.

3 Conclusion

The state of the art and practice concerning robustness requirements and testing
is rather immature compared to that of other quality attributes. The proposed
framework, ROAST, is a unified framework for how to interpret robustness and
specify and verify robustness requirements.

ROAST follows a requirement as it often evolves from a high level require-
ment to a set of verifiable and concrete requirements. Therefore ROAST consists
of different levels of specification that follow the most typical requirement speci-
fication phases practiced in the industry. As presented in ROAST, requirements
engineering process tends to start from high level requirements and break them
down into more specific and measurable ones. Therefore, ROAST can be incor-
porated into the activities of most companies with minimal change to the rest
of the process. The commonality often seen between robustness requirements
in different projects is captured in patterns. For different patterns and levels
different verification methods will be more or less useful.

Initial evaluation of ROAST has been carried out in an industrial setting.
Preliminary results are promising and show that the resulting requirements are
more complete and more likely to be verifiable. Further evaluation is underway.

References

1. IEEE Computer Society, “Ieee standard glossary of software engineering terminol-
ogy,” IEEE, Tech. Rep. Std. 610.12-1990, 1990.

2. A. Shahrokni, R. Feldt, F. Petterson, and A. Back, “Robustness verification chal-
lenges in automotive telematics software,” in SEKE, 2009, pp. 460–465.

3. M. Jaffe and N. Leveson, “Completeness, robustness, and safety in real-time software
requirements specification,” in Proceedings of the 11th international conference on
Software engineering. ACM New York, NY, USA, 1989, pp. 302–311.

4. R. R. Lutz, “Targeting safety-related errors during software requirements analysis,”
Journal of Systems and Software, vol. 34, no. 3, pp. 223 – 230, 1996.

5. P. Newmann, “The computer-related risk of the year: weak links and correlated
events,” in Computer Assurance, 1991. COMPASS ’91, Systems Integrity, Software
Safety and Process Security. Proceedings of the Sixth Annual Conference on, Jun
1991, pp. 5–8.

6. C.-W. Ho, M. Johnson, and L. W. E. Maximilien, “On agile performance require-
ments specification and testing,” in Agile Conference 2006. IEEE, 2006, pp. 46–52.

7. C.-W. Ho, “Performance requirements improvement with an evolutionary model,”
PhD in Software Engineering, North Carolina State University, 2008.

8. S. Konrad and B. H. C. Cheng, “Requirements patterns for embedded systems,” in
Proceedings of the IEEE Joint International Conference on Requirements Engineer-
ing (RE02), Essen, Germany, September 2002.

9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Boston, MA:
Addison-Wesley, January 1995.


