
Software Reuse Research: Status and Future
William B. Frakes and Kyo Kang

Abstract—This paper briefly summarizes software reuse research, discusses major research contributions and unsolved problems,

provides pointers to key publications, and introduces four papers selected from The Eighth International Conference on Software

Reuse (ICSR8).

Index Terms—Software reuse, domain engineering, research, metrics, architectures, generators, finance.

�

1 INTRODUCTION

THIS paper briefly summarizes software reuse research,
discusses major research contributions and unsolved

problems, provides pointers to key publications, and
introduces four papers from The Eighth International
Conference on Software Reuse (ICSR8) selected on the
recommendations of conference reviewers and attendees.

We have been helped in writing this paper by responses
to a brief survey of longtime reuse researchers and
practitioners who were asked four questions:

1. What are the top three contributions from reuse
research?

2. What are the top three remaining problems for reuse
research?

3. What are the top three references in your area of
reuse research?

4. Anything else you would suggest for inclusion?

Their responses varied widely, both by topic and what they
considered important. Despite this variability certain
common themes emerged, and we will discuss these in
greater detail.

We begin with some basic definitions. Software reuse is
the use of existing software or software knowledge to
construct new software. Reusable assets can be either
reusable software or software knowledge. Reusability is a
property of a software asset that indicates its probability of
reuse.

Software reuse’s purpose is to improve software quality
and productivity. Reusability is one of the “illities” or
major software quality factors. Software reuse is of interest
because people want to build systems that are bigger and
more complex, more reliable, less expensive and that are
delivered on time. They have found traditional software
engineering methods inadequate, and feel that software
reuse can provide a better way of doing software
engineering.

A key idea in software reuse is domain engineering (aka
product line engineering). The basic insight is that most

software systems are not new. Rather they are variants of
systems that have already been built. Most organizations
build software systems within a few business lines, called
domains, repeatedly building system variants within those
domains. This insight can be leveraged to improve the
quality and productivity of the software production
process.

2 HISTORY

Software reuse has been practiced since programming
began. Reuse as a distinct field of study in software
engineering, however, is often traced to Doug Mcilroy’s
paper which proposed basing the software industry on
reusable components. Other significant early reuse research
developments include Parnas’ idea of program families and
Neighbors’ introduction of the concepts of domain and
domain analysis.

Active areas of reuse research in the past twenty years
include reuse libraries, domain engineering methods and
tools, reuse design, design patterns, domain specific soft-
ware architecture, componentry, generators, measurement
and experimentation, and business and finance. Important
ideas emerging from this period include systematic reuse,
reuse design principles such as the three C’s model, module
interconnection languages, commonality/variability analy-
sis, variation point, and various approaches to domain
specific generators.

While these areas comprise the core of reuse research,
software reuse research and practice has deep and complex
interactions with other areas of computer science and
software engineering. For example, though its developers
did not consider themselves as doing reuse research per se,
reuse was clearly a key design goal of the Unix program-
ming environment. The C language was designed to be
small and augmented with standard libraries of reusable
functions. Shell programming languages are based on
reusable filter programs that are combined via a module
interconnection language—data pipes. The C++ language
was also designed to encourage reuse as described in [1].

Other areas of computer science research of key
relevance to reuse are abstract datatypes and object oriented
methods, programming language theory, software architec-
tures, compilers, software development process models,
metrics and experimentation, and organizational theory.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 7, JULY 2005 529

. W.B. Frakes is with the Computer Science Department, Virginia Tech,
Falls Church, VA. E-mail: wfrakes@vt.edu.

. K. Kang is with the Department of Computer Science and Engineering,
Pohang University of Science and Technology, San 31 Hyoja-Dong,
Pohang, 790-784, Korea. E-mail: kck@postech.ac.kr.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

3 BUSINESS AND FINANCE

The ultimate purpose of domain engineering and systema-
tic software reuse is to improve the quality of the products

and services that a company provides and, thereby,
maximize profits. It is easy to lose sight of this goal when

considering the technical challenges of software reuse and
yet, software reuse will only succeed if it makes good

business sense. Capital can be expended by an organization
in many ways to maximize return to shareholders. Software

reuse will only be chosen if a good case can be made that it
is the best alternative choice for use of capital.

Business related reuse research has identified organiza-

tional structure to support corporate reuse programs, staged
process models for reuse adoption, and models for estimat-

ing return on investment from a reuse program. More recent
work has extended the return on investment analysis to

include benefits from strategic market position [2].
Important problems remaining in this area include:

. Sustaining reuse programs.

. Tech transfer.

. Reuse and corporate strategy.

. Organizational issues.

. Process focus.

We will now discuss some of these issues.

3.1 Process Focus

Implementing a reuse program in a corporate environment

requires a decision about when and where a capital
investment is to be made. Development of reusable assets

often requires a capital investment and there should be a
strategic decision as to whether investment will be made

proactively or reactively.
Proactive investment for software reuse is like the

waterfall approach in conventional software engineering.

The target domain or product line is analyzed, architectures
for the domain are defined, then reusable assets are

designed and implemented taking foreseeable product
variations into account. This approach tends to require a

large upfront investment, and returns on investment can
only be seen when products are developed and maintained.

This approach might be suited to organizations that can
predict their product line requirements well into the future

and that have the time and resources for a long develop-
ment cycle. There is an investment risk with this approach if

product line requirements deviate from the projections. The
cost for evolving reusable assets and retrofitting products

with new assets can be high.
Reactive investment is an incremental approach to asset

building. One develops reusable assets as reuse opportu-

nities arise while developing products. A subdomain with a
clear problem boundary and projected requirements varia-

tions might be a good candidate. This approach is
advantageous in that the asset development costs can be

distributed over several products and no upfront large
capital investment is necessary. However, if there is no

sound architectural basis for the products in a domain, this
approach can be costly as existing products may continu-

ously have to be reengineered when assets are developed.

This approach works in situations where the requirements
for product variations cannot be predicted well in advance.

Another approach proposed by Charles Kruger, called
the extractive model, stays in between the proactive and
reactive approaches [3]. The extractive approach reuses one
or more existing software products for the product line’s
initial baseline. This approach can be effective for an
organization that has accumulated development experi-
ences and artifacts in a domain but wants to quickly
transition from conventional to software product line
engineering. When accumulated expertise is used properly,
this approach may not require a large capital investment.

3.2 Organizational Issues

There are two types of commonly observed organizational
approaches to establishing a reuse program: centralized and
distributed asset development.

The centralized approach typically has an organizational
unit dedicated to developing, distributing, maintaining,
and, often, providing training about reusable assets. The
unit has responsibilities to analyze commonalities and
variabilities of applications within the product line that
have been developed or that will be developed in the
future. The unit also develops standard architectures and
reusable assets, and then makes them available to develop-
ment projects. The unit maintains these assets and, often,
also supports customization. The cost of this organizational
unit is amortized across projects within the product line.

Some of the advantages of this approach are that 1) the
product line-wide engineering vision can be shared among
the projects easily, 2) development knowledge and corpo-
rate expertise can be utilized efficiently across projects, and
3) assets can be managed systematically. There are also
disadvantages with this approach. This approach often
requires a large upfront capital investment to create an
organizational unit dedicated to implementing a reuse
program and it takes time to see a return on investment.
Also, experts may have to be pulled away from on-going
projects to create a centralized core expert group, which
may face strong resistance from project managers. There-
fore, to be successful, there must be a strong commitment
from upper management.

3.3 Distributed, Collaborative

With the distributed approach, a reuse program is
implemented collaboratively by projects in the same
product line. Each project has a responsibility to contribute
reusable assets to other participating projects and, therefore,
asset development and support responsibilities are distrib-
uted among projects.

The obvious advantages of this approach are that 1) there
is less overhead cost as there is no need to create a separate
organizational unit, and 2) asset development costs are
distributed among projects. No large up-front investment is
necessary.

Some of the disadvantages are that 1) it may be difficult
to coordinate asset development responsibilities if there is
no common vision for the reuse program; 2) even if there is a
shared vision among projects, it may not be easy for a given
project to provide a component that meets the needs of other
projects; and 3) there must be a convincing cost/benefit

530 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 7, JULY 2005

model to solicit active participation. There is a danger that
projects may be willing to use other’s products, but will be
reluctant to make investments for others.

4 MEASUREMENT AND EXPERIMENTATION

If software reuse is to be based on science and engineering,
it must be treated as an empirical discipline. The develop-
ment of concepts such as reuse and reusability has naturally
led to questions of how to measure them, and of how to run
experiments to establish their impact on quality and
productivity. Metrics have been defined for many areas of
software reuse [4]. These include classification models of
types of reuse, reuse library metrics, cost benefit models,
maturity assessment models, amount of reuse metrics,
failure modes models, and reusability assessment models.
A software metric is a quantifiable measurement of an
attribute of a software product or process. A model is a
stated relationship among metric variables. Experimenta-
tion is the process of establishing the effect of one set of
variables on another.

Experiments in software reuse have included studies of
indexing methods for reusable components and correla-
tional studies of the relationship between reuse, quality,
and productivity. Much data on the effect of reuse on
important variables such as cost of software production,
time to market, and project completion time has also been
reported, though these studies tend to be quasi-experi-
mental. Such studies have the typical problems of field
studies in trying to control the internal validity of the
experiments. Measurement and experimentation of reuse
and domain engineering is one area where much more
work is needed.

5 COMPONENTRY

The broad interest in component-based software engineer-
ing has resulted in several component development,
integration and deployment technologies. Most noted of
these are Object Management Group (OMG)’s Common
Object Request Broker Architecture (CORBA) Component
Model (CCM), Sun’s Enterprise JavaBeans (EJB), and
Microsoft’s Component Object Model (COM+).

CORBA CCM allows integration and invocation of
distributed components without concern for object location,
programming language, operating system, communication
protocol, or hardware platform. Concerns that cut across
components, such as transaction handling, security, persis-
tent state management, and event notification, are sup-
ported by CORBA Object Services (COS).

EJB along with Java Remote Method Invocation (RMI)
provides, as with CORBA, a platform for developing,
integrating, and deploying distributed components. EJB
provides an environment for handling complex features of
distributed components such as transaction management,
connection pooling, state management, and multithreading.
This technology depends on the Java language but it
achieves platform independence through the language.
EJB, together with J2EE and Java servlets, provides a
middleware platform for developing Web applications.

COM+ provides runtime services, such as transaction
management, synchronization, threading, and object pool-
ing, for developing distributed applications on Microsoft’s
Windows platform. While permitting integration of binary
components written in any language, COM, that works
under COM+, requires them to obey the rules of COM
component identity, lifetime and binary layout, and writing
the plumbing code to create a COM component. .NET frees
one from having to obey all these rules and write extra code
and allows development of applications accessing distrib-
uted systems on internal corporate networks or the Internet.

These technologies are still evolving, but they provide
important middleware platforms on which reusable com-
ponents can be developed, applications can be created
integrating these components, and applications thus created
can run.

Each of the technologies discussed above supports a set
of features, or concerns, such as security, that cut across a
number of components. Aspect oriented programming
supports implementation of these cross-cutting concerns,
called aspects, and integration of these into functional
components.

6 DOMAIN ENGINEERING

(PRODUCT LINE ENGINEERING)

Technologies for high software productivity through
domain engineering started to appear in early 1980s, but,
application of these technologies in industrial settings and
stories of successes have only been reported recently. One
such report is the paper by Van Ommering in this issue. The
paper in this issue by Moon et al. discusses an approach to
the important problem of handling requirements for
systems in a product line.

In this section, we briefly review several domain
engineering (aka product line engineering) approaches
reported in recent publications. The technologies reviewed
in this section fall largely into two categories: process and
technique. FAST defines a product line engineering process
model. All others are development techniques but these
techniques compliment each other in that DARE focuses on
extracting information from existing code and documents to
help analysts create domain models, FORM focuses on the
commonality and variability analysis of the features of
applications in a product line to use as a foundation for
creating architectures and components, KobrA defines both
processes and techniques for developing components and
integrating them to create applications, and Koala has a
component focus and provides a mechanism for integrating
components. PLUS provides UML extensions to support
product line engineering. Each of these technologies is
summarized below.

6.1 DARE

DARE, domain analysis and reuse environment, is a
method and toolset for doing domain engineering [5]. One
of the major research goals of DARE was to explore how
much of domain analysis can be based on a repeatable
process and how much can be automated. The DARE
process draws on three sources of information: code,
documents, and expert knowledge as the basis for domain

FRAKES AND KANG: SOFTWARE REUSE RESEARCH: STATUS AND FUTURE 531

models. Information extracted from these three sources is
used to build domain models such as facet tables and
templates, feature tables, and generic architectures. All
information and models are stored in a domain book.
DARE has been used successfully in industry, for
example, to support the building of text and database
systems at Oracle [6].

6.2 FAST

Lucent Technologies introduced Family-Oriented Abstrac-
tion, Specification, and Translation (FAST) method in 1999
[7]. FAST defines a pattern of engineering processes that are
commonly used in product line engineering. FAST consists
of three subprocesses: domain qualification (DQ), domain
engineering (DE), and application engineering (AE). DQ
identifies a product line worthy of investment, DE develops
product line assets and environments, and AE develops
products rapidly by using the product line assets.

FAST focuses on the processes for product line engineer-
ing and it has been applied to the product line of
telecommunication infrastructure and systems at Lucent
Technology.

6.3 FORM

Feature-Oriented Reuse Method (FORM) was developed at
Pohang University of Science and Technology (POSTECH)
[8] and is an extension of the Feature-Oriented Domain
Analysis (FODA) method [9]. FORM is a systematic method
that looks for and captures commonalties and variabilities
of a product line in terms of “features.” These analysis
results are used to develop product line architectures and
components. The model that captures the commonalties
and variabilities is called a feature model. It is used to
support both engineering of reusable product line assets
and development of products using the assets.

This method has been applied to several industrial
application domains, including electronic bulletin board
systems, PBX, elevator control systems, yard inventory
systems, and manufacturing process control systems, to
create product line software engineering environments and
software assets [10]. FORM includes techniques and tools
for product line engineering but has a loose process
structure.

6.4 KobrA

Fraunhofer IESE has been developing the KobrA method, a

component based product line engineering approach with

UML. KobrA is an abbreviation of Komponentbasierte

Anwendungsentwicklung and means a component-based

application development method [11]. KobrA provides an

approach to developing generic assets that can accommo-

date variations of a product line through framework

engineering. The framework engineering starts with de-

signing a context under which products of a product line

will be used. The context includes information on the scope,

commonality, and variability of the product line. Then,

product line requirements are analyzed and the Komponent

(i.e., KobrA component) specifications are developed. Based

on the specifications, the Komponent realizations, which

describe the design that satisfies the requirements, are

developed. KobrA also provides a decision model that

constrains the selection of variations for the valid config-

uration of products. KobrA includes both processes and

techniques for product line engineering.

6.5 PLUS

Product Line UML-Based Software Engineering (PLUS)

extends the UML-based modeling methods for single

systems development to support software product lines

[12]. PLUS provides various modeling techniques and

notations for product line engineering. First, for the

software product line requirements engineering activity,

use case modeling and feature modeling are provided.

Second, for the software product line analysis activity, static

modeling, dynamic interaction modeling, dynamic state

machine modeling, and feature/class dependency model-

ing are introduced. Last, for the software product line

design activity, software architecture patterns and compo-

nent-based software design are proposed. PLUS extends

UML by integrating various product line engineering

techniques to support UML-based product line engineering.

6.6 Koala

Koala, developed at Philips Corp. for analysis of embedded

software in the domain of electrical home appliances, is an

architecture description language [13] for product lines.

Koala is a descendant of Darwin [14] and is designed based

on the experience of applying Darwin to television software

systems. In Koala, diversity interfaces and switches are

provided for handling product variations. The diversity

interfaces can be used to handle the internal diversity of

components and the switch can be used to route connec-

tions between interfaces. When a component provides some

extra functions, the access to these functions can be defined

as optional interfaces. This enables the optimization of the

code at compile time. Koala is a component-based product

line engineering method with tools for integrating compo-

nents both at compile-time and at runtime.

7 PROGRAMMING LANGUAGES

The evolution of programming languages is tightly coupled

with reuse in two important ways. First, programming

languages have evolved to allow developers to use ever

larger grained programming constructs, from ones and

zeroes to assembly statements, subroutines, modules,

classes, frameworks, etc. Second, programming languages

have evolved to be closer to human language, more domain

focused, and therefore easier to use. Languages such as

Visual C++, Delphi, and Visual Basic clearly show the

influence of software reuse research. The paper on the

Fusion system by Weber et al. in this issue is a continuation

of the trend of making large grained domain specific

programming constructs, in this case business rules,

available in a form closer to the language used by workers

in the domain. Fusion also mixes declarative and algorith-

mic programming language approaches in a single system.
Systematic reuse via domain engineering is another step

in this direction. In systematic reuse, we consider how to

532 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 7, JULY 2005

codify and reuse subsystems and architectures. We attempt
to establish the required vocabulary for a given problem
area, apply it to the system building environment for that
domain, and, thereby, build higher quality systems more
productively.

Reuse research has contributed to the widespread
practice of design to interfaces, the practice of separating
interfaces from implementations, and to the common use of
off the shelf libraries of general components such as those
for C, C++, Java, and C#. Some research on restricting the
use of pointers in languages and better ways of handling
reference aliasing has also been active.

8 LIBRARIES

A reuse library consists of a repository for storing reusable
assets, a search interface that allows users to search for
assets in the repository, a representation method for the
assets, and facilities for change management and quality
assessment. Much research on reuse libraries has been done
as reported in the papers in the reuse roadmap. Key ideas
are the application of indexing methods such as free text
keyword and faceted classification to reusable components.

There has been disagreement in the reuse research
community about the importance of libraries for reuse.
However, failure modes analysis of the reuse process shows
that in order to be reused a component must be available,
findable, and understandable. A reuse library supports all
of these. The argument has also been made that most
component collections are small and, therefore, do not need
sophisticated library support. However, the emergence of
the World Wide Web as a defacto standard library of
reusable assets argues against this point of view.

Experiments on reuse libraries indicate that current
methods of component representation could be improved.
There is also a need for library environments that include
facilities for configuration management and that integrate
facilities for measurements such as usage and return on
investment. The paper by de Jonge in this issue discusses
how to handle the build process for reusable components.

9 ARCHITECTURES

Since the late 1980’s software architecture has been
recognized as an important consideration for reusing
software. Architectural decisions because they occur early

in the software lifecycle, have a strong impact on system
quality attributes. Architectural decisions are also difficult
to change late in the lifecycle.

Software architecture may be explored at different levels
of abstraction. Shaw explored various structural models
called architecture styles, that were commonly used in
software and then examined quality attributes related to
each style. At a lower level of abstraction than style, [15]
identified architectural patterns that commonly occur in
various design problem domains such as client-server
architectures, proxies, etc. In theory, these architecture
patterns can be defined by applying a combination of
architecture styles.

Using architecture patterns, reference architectures for
an application domain or a product line can be built. These
architectures embody application domain-specific seman-
tics and quality attributes inherited from the architecture
patterns. Application architectures may be created using
domain architectures. Examples of domain architectures are
reported in [16].

Platform architectures are middleware on/with which
applications and components for implementation of an
application can be developed. Examples of these are
CORBA, COM+, and J2EE. A platform architecture selected
for implementation of applications in a domain may
influence architectural decisions for a domain architecture.
For example, transaction management is supported by most
of platform architectures and a domain architecture may
use facilities provided by the platform architecture selected
for the domain.

The relationships between these concepts related to
architectures are summarized in Fig. 1.

10 GENERATIVE METHODS

An important approach to reuse and one tightly coupled to
the domain engineering process is generative reuse. Gen-
erative reuse is done by encoding domain knowledge and
relevant system building knowledge into a domain specific
application generator. New systems in the domain are
created by writing specifications for them in a domain
specific specification language. The generator then trans-
lates the specification into code for the new system in a
target language. The generation process can be completely
automated, or may require manual intervention.

FRAKES AND KANG: SOFTWARE REUSE RESEARCH: STATUS AND FUTURE 533

Fig. 1. Architecture Concepts.

Important contributions to generative reuse include the
development of the theory of metacompilers, also known as
application generator generators. These tools assist in the
development of domain specific application generators.

An important part of making domain engineering
repeatable is a clear mapping between the outputs of
domain analysis and the inputs required to build applica-
tion generators. Better integration of these two phases of
domain engineering will mean much improved environ-
ments for domain engineering.

11 RELIABILITY AND SAFETY

Better system reliability is one of the goals of software
reuse. It is argued that reusable components, because of
more careful design and testing and broader and more
extensive usage, can be more reliable that one use
equivalents. If so, then it is further argued that using these
more reliable components in a system architecture can
increase the reliability of the system as a whole. Higher
system reliability via generative reuse is based on the idea
that replacing error prone human processes in software
development by automation can produce a more reliable
system. There are many open research questions in this area
that need to be addressed before these hypotheses can be
verified.

A topic related to reliability is software safety. Two
software safety failures have been attributed to reuse. In the
Therac-25 system, a software component carried over from
a previous version of the system caused the machine to
malfunction resulting in the loss of several lives [17]. In the
Ariane project, failure of a software component, caused the
loss of a rocket costing around half a billion dollars [18].

Of concern regarding reliability and safety of compo-
nents is emergent behavior, defined as system behavior that
cannot be predicted on the basis of the behavior of
components comprising the system. As components are
designed to be more autonomous and intelligent, unpre-
dictable system behavior based on component interactions
is an area of needed research.

12 FUTURE RESEARCH

Though significant progress has been made on software
reuse and domain engineering, many important problems
remain. One of these has to do with scalability which is the
problem of applying reuse and domain engineering
methods to very large systems. One important issue is
how to make best use of reusable components for systems
of this size. Another is how to do sufficient formal
specifications of architectures to support the automated
construction of very large systems. Reuse and domain
engineering methodologies also need to be wider spectrum,
that is applicable to a broader range of software domains.

Better representation mechanisms for all software assets,
including means for specification and verification, are
needed. Researchers point to the need for support and
enforcement of behavioral contract specifications for com-
ponents. This may be summarized as a movement from
design to interfaces to design by contract. They also argue for
better methods for specification and reasoning support for

popular component libraries, and for work on elimination
of reference semantics in industrial languages.

Another important problem is sustainability. There have
now been many industrial reuse programs. A current
problem is to find the means of sustaining reuse programs
on a long-term basis. One approach to this problem will be
determining how to make better links between reuse and
domain engineering and corporate strategy. Related to this
question is identifying what should be made reusable, that
is, which reusable corporate products and processes will
give the highest return on investment? Another is deter-
mining how to do better technology transfer; that is, how to
better support practitioners in the application of reuse and
domain engineering research. Needed for this is a deeper
understanding of when to use particular methods, based,
for example, on system size and business context. There is
also a need for a seamless integration between the models
output from domain analysis and the inputs needed to for
domain implementations such as components, domain
specific languages, and application generators.

As discussed above, safety and reliability issues are
important and must be adequately addressed if reuse is to
be a common practice. Another area of potentially interest-
ing research concerns the relationship of reuse and domain
engineering to newer software development processes such
as agile methods.

A key element in the success of reuse and domain
engineering is the ability to predict needed variabilities in
future assets. This is sometimes called the oracle hypoth-
esis. Richer means of specifying potential reuser needs is an
area needing research. This will involve a method for
clearly stating reuse contexts and assumptions.

There is a clear need for much more empirical work on
reuse and domain engineering. Research is needed to
identify and validate measures of reusability, including
good ways to estimate the number of potential reuses.

Industry studies have shown that education is a primary
factor in better reuse, yet there had been little systematic
study of how best to do reuse education. Certainly, both
academia and industry could improve educational prac-
tices. One way to do this and to facilitate better reuse
technology transfer would be better joint work between
industry and academia.

Currently, most reuse research focuses on creating and
integrating adaptable components at development or at
compile time. However, with the emergence of ubiquitous
computing, reuse technologies that can support adaptation
and reconfiguration of architectures and components at
runtime are in demand. One implication of this develop-
ment is that we somehow need to embed engineering
know-how into code so it can be applied while an
application is running. More research on self-adaptive
software, reconfigurable context-sensitive software, and
self-healing systems is needed.

Reuse research has been ongoing since the late 1960s and
domain engineering research since the 1980s. Much has
been accomplished, but there is still much to do before the
vision of better system building via reuse and domain
engineering is completely achieved.

534 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 7, JULY 2005

APPENDIX A

REUSE ROADMAP: A GUIDE TO THE LITERATURE OF

SOFTWARE REUSE AND DOMAIN ENGINEERING

These references have been selected to give researchers and
practitioners quick access to reuse and domain engineering
sources, not for their historical importance.

A.1 Website

ReNews (http://frakes.cs.vt.edu/renews.html) is a Website
that provides software reuse and domain engineering
information including component sources, tool descrip-
tions, references to books and articles, and information on
workshops and conferences.

A.2 Conferences and Workshops

The main conference on software reuse and domain
engineering is the International Conference on Software
Reuse (ICSR). The latest, ICSR8, was held in Madrid in 2004.
The next is planned for Turin in the summer of 2006. Other
significant conferences on reuse have included SSR, the
WISR workshops, and SAVCBS. Information on these
events can be found on the ReNews website.

A.3 Architecture

M. Shaw and D. Garlan, Software Architecture: Perspectives on
an Emerging Discipline. Prentice Hall, 1996.

L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, second ed. Addison-Wesley, 2003.

R. Kazman, M. Klein, and P. Clements “ATAM: Method for
Architecture Evaluation,” CMU/SEI-2000-TR-004, Soft-
ware Eng. Inst., Carnegie Mellon Univ., Pittsburgh.
Penn., 2000.

A.4 Domain Engineering

P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

W. Frakes, R. Prieto-Diaz, and C. Fox “DARE: Domain
Analysis and Reuse Environment,” Annals of Software
Eng., vol. 5, pp. 125-141, 1998.

K.C. Kang et al., “Feature-Oriented Domain Analysis
(FODA) Feasibility Study,” Technical Report CMU/SEI-
90-TR-21, Software Eng. Inst., Carnegie Mellon Univ.,
Pittsburgh, Penn., 1990.

D.M. Weiss and C.T.R. Lai Software Product-Line Engineering:
A Family-Based Software Development Process. Addison-
Wesley, 1999.

A.5 Reuse Design

J. Sametinger, Software Engineering with Reusable Components.
New York, 1997.

C. Szyperski, D. Gruntz, and S. Murer, Component Software:
Beyond Object-Oriented Programming, second ed. Addi-
son-Wesley, 2002.

B.W. Weide, W.F. Ogden, and S.H. Zweben “Reusable
Software Components,” Advances in Computers, vol. 33,
M. Yovits, ed., pp. 1-65, 1991.

E. Gamma, R. Helm, J. Johnson, and J. Vlissides Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1995.

A.6 Reuse Libraries

W.B. Frakes and P. Gandel, “Representing Reusable Soft-
ware,” Information and Software Technology, vol. 32, no. 10,
pp. 47-54, 1990.

A. Mili, R. Mili, and R. Mittermeir, “A Survey of Software
Reuse Libraries,” Annals Software Eng., vol. 5, pp. 349-
414, 1998.

A.7 Generative Methods

T.J. Biggerstaff “A Perspective of Generative Reuse,” Annals
of Software Eng., vol. 5, pp. 169-226, 1998.

K. Czarnecki, and U.W. Eisenecker Generative Programming:
Methods, Tools, and Applications. ACM Press/Addison-
Wesley, 2000.

A.8 Programming Languages and Reuse

J. Bentley, “Little languages,” Comm. ACM, vol. 29, no. 8,
pp. 711-721.

B. Stroustrup “Language-Technical Aspects of Reuse,”
Fourth Int’l Conf. Software Reuse (ICSR ’96), pp. 11-19,
1996.

I. Jacobson, M. Griss, and P. Jonsson Software Reuse:
Architecture, Process, and Organization for Business Success.
Addison-Wesley, 1997.

A.9 Reuse Management and Economics

J. Favaro, K. Favaro, and P. Favaro, “Value Based Software
Reuse Investment,” Annals of Software Eng. vol. 5, pp. 5-
52, 1998.

W. Lim, Managing Software Reuse : A Comprehensive Guide to
Strategically Reengineering the Organization for Reusable
Components. Prentice Hall, July 1998.

A.10 Reuse Measurement

W. Frakes and C. Terry, “Software Reuse: Metrics and
Models,” ACM Computing Surveys, vol. 28, no. 2, pp. 415-
435, 1996.

J.S. Poulin,Measuring Software Reuse: Principles, Practices, and
Economic Models. Addison-Wesley, 1997.

ACKNOWLEDGMENTS

The guest editors would like to thank the reviewers of the
papers included in this special issue, the attendees who
helped select the papers, and the reuse researchers and
practitioners who responded to their survey: Sidney Bailin,
Young Cho, John Favaro, Wayne Lim, Ali Mili, Bruce
Weide, and David Weiss. They would also like to thank
Juan Llorens and Universidad Carlos III de Madrid for
hosting ICSR8.

REFERENCES

[1] B. Stroustrup, “Language-Technical Aspects of Reuse,” Proc.
Fourth Int’l Conf. Software Reuse (ICSR ’96), 1996.

[2] J. Favaro, K. Favaro, and P. Favaro, “Value Based Software Reuse
Investment,” Annals of Software Eng., vol. 5, pp. 5-52, 1998.

[3] C. Krueger, “Eliminating the Adoption Barrier,” IEEE Software,
pp. 29-31, July/Aug. 2002.

[4] W. Frakes and C. Terry, “Software Reuse: Metrics and Models,”
ACM Computing Surveys, vol. 28, pp. 415-435, 1996.

FRAKES AND KANG: SOFTWARE REUSE RESEARCH: STATUS AND FUTURE 535

[5] W. Frakes, R. Prieto-Diaz, and C. Fox, “DARE: Domain Analysis
and Reuse Environment,” Annals of Software Eng., vol. 5, pp. 125-
141, 1998.

[6] O. Alonso, “Generating Text Search Applications for Databases,”
IEEE Software, pp. 98-105, 2003.

[7] D.M. Weiss and C.T. R. Lai, Software Product-Line Engineering: A
Family-Based Software Development Process. Addison-Wesley, 1999.

[8] K.C. Kang, J. Lee, and P. Donohoe, “Feature-Oriented Product
Line Engineering,” IEEE Software, vol. 19, no. 4, pp. 58-65, July/
Aug. 2002.

[9] K.C. Kang et al., “Feature-Oriented Domain Analysis (FODA)
Feasibility Study,” Technical Report CMU/SEI-90-TR-21, Software
Eng. Inst., Carnegie Mellon Univ., Pittsburgh, Penn., 1990.

[10] K.C. Kang et al., “Feature-Oriented Product Line Software
Engineering: Principles and Guidelines ,” Domain Oriented Systems
Development: Perspectives and Practices, K. Itoh et al., eds., pp. 29-46,
2003.

[11] C. Atkinson et al., Component-Based Product Line Engineering with
UML. Addison-Wesley, 2002.

[12] H. Gomaa, Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Addison-Wesley,
2004.

[13] R. Ommering et al., “The Koala Component Model for Consumer
Electronics Software,” Computer, vol. 33, no. 3, pp. 78-85, Mar.
2000.

[14] J. Kramer et al., “Software Architecture Description,” Software
Architecture for Product Families: Principles and Practice, M. Jazayeri
et al., eds., pp. 31-64, 2000.

[15] F. Buschmann et al., Pattern-Oriented Software Architecture.
Chichester, UK; New York: Wiley, 1996.

[16] W. Tracz, “DSSA (Domain-Specific Software Architecture) Peda-
gogical Example,” ACM SIGSOFT Software Eng. Notes, vol. 20,
no. 3, pp. 49-62, July 1995.

[17] N. Leveson, Safeware: System Safety and Computers. Addison-
Wesley, 1995.

[18] B. Meyer, “.NET is Coming,” Computer, vol. 34, no. 8, pp. 92-97,
Aug. 2001.

William B. Frakes received the BLS degree
from the University of Louisville, the MS degree
from the University of Illinois at Urbana-Cham-
paign, and the MS and PhD degrees from
Syracuse University. He is an associate profes-
sor in the computer science department at
Virginia Tech. He chairs the IEEE TCSE
committee on software reuse, and is an associ-
ate editor of IEEE Transactions on Software
Engineering.

Kyo Kang received the PhD degree from the
University of Michigan in 1982. Since then, he
has worked as a visiting professor at the
University of Michigan and a member of techni-
cal staff at Bell Communications Research and
AT&T Bell Laboratories before joining the Soft-
ware Engineering Institute, Carnegie Mellon
University as a senior member. He is currently
a professor at the Pohang University of Science
and Technology in Korea. His areas of research

interest include software reuse, requirements engineering, and compu-
ter-aided software engineering.

536 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 7, JULY 2005

