
Analysis of Requirements Volatility during Software Development Life Cycle

N Nurmuliani, Didar Zowghi, Sue Fowell

Faculty of Information Technology

University of Technology, Sydney

P O Box 123 Broadway

NSW 2007, Australia

{nur, didar, sfowell}@it.uts.edu.au

Abstract

Investigating the factors that drive requirements

change is an important prerequisite for understanding

the nature of requirements volatility. This increased
understanding will improve the process of

requirements change management.

This paper mainly focuses on change analysis to
identify and characterize the causes of requirements

volatility. We apply a causal analysis method on

change request data to develop a taxonomy of change.
This taxonomy allows us to identify and trace the

problems, reasons and sources of changes. Adopting

an industrial case study approach, our findings reveal
that the main causes of requirements volatility were

changes in customer needs (or market demands),

developers’ increased understanding of the products,
and changes in the organization policy. During the

development process, we also examined the extent of
requirements volatility and discovered that the rate of

volatility was high at the time of requirements

specification completion and while functional
specification reviews were conducted.

Keywords: requirements volatility, taxonomy of
change, causal analysis

1. Introduction

Despite advances in Software Engineering over the

past 30 years, most large and complex software

projects still experience numerous changes during their

life cycle. These changes are inevitable and driven by

several factors including constant changes in software

and system requirements, business goals, market

demand, work environment and government regulation

[1].

Software development is a dynamic process. This

often causes software requirements to change while

development is still in progress. If these changes to

software requirements are frequent then they may

produce significant project uncertainty. Requirements

change has been reported as one of the main factors

that cause a project to be challenged [2, 3]. This

indicates that managing requirements change still

remains a challenging problem in software

development.

Although the intention is for software requirements

specifications to be captured and formed correctly in

the initial stage of development, requirements

inevitably change throughout system development and

maintenance process. As a consequence, we need to

identify a better approach to manage the impacts of

continuously changing requirements. We believe that

identifying and understanding the underlying causes of

requirements change is the first step towards better and

effective management requirements change in this

rapidly changing environment

In this paper we present a qualitative method to

characterize and evaluate requirements change

problems throughout system development process. We

apply this method to analyse requirements change

management process in a large multi-site software

development company. This leads us to develop a

taxonomy that can be used as an approach to classify

requirements change and to identify the causes of these

changes. The results improve our knowledge and

understanding of requirements volatility. This

increased understanding will improve the process of

requirements change management.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Technology Sydney. Downloaded on February 19, 2009 at 03:55 from IEEE Xplore. Restrictions apply.

In the next section we present the background of

requirements volatility study. We then briefly describe

the organisation where this case study was conducted

in section 3. In section 4 we present our data analysis

framework and illustrate the procedures for conducting

causal analysis of requirements volatility. We present

the details of our findings in section 5 and we conclude

this paper with discussion and future work.

2. Background

Requirements volatility (RV) is generally

considered as an undesirable property. It has the

potential to produce adverse impacts on the software

development process [4]. Previous studies have

identified that requirements volatility causes major

difficulties during development. For example, a field

study conducted by Curtis et al [2] indicates that

requirements volatility is one of the major problems

faced by most organisations in the software industry.

Boehm and Papaccio [5] have observed that

requirements volatility is an important and neglected

factor that can cause software cost overrun. Other

requirements volatility problems have been identified

such as unstable or changing requirements during

elicitation process [6] and during maintenance process

[7].

Requirements volatility is also a common

phenomenon that is present in most software

development projects. However, very little research

has been published on the identification of

requirements volatility problems and the strategies to

manage its impact on software development projects.

Recent empirical studies have investigated the impact

of requirements volatility on the software project

schedule during maintenance [7], on software defect

density during code and testing phases [8], on

development effort [9] and on software project

performance [10]. These studies indicate that

requirements volatility is an important issue in system

development and maintenance process.

While the existence of requirements volatility

cannot be ignored, there is still a need to improve our

understanding of requirements volatility problems in

order to better manage its impacts. The first step to

achieving this goal is to characterize and evaluate the

problems of requirements change (i.e. reasons and

sources of changes). Only then the causes of

requirements volatility can be identified.

Harker and Eason [11] suggested that classifying

requirements changes is one of the important factors

that need to be considered in managing requirements

change. They distinguished between stable and volatile

requirements (emergent, consequential, mutable,

adaptive, and migration). Classifying changes will help

software developers to analyse each type of change

according to its origin and assess its impact on

software development process and product. Other

studies [12, 13] also suggested that a classification of

change is a scientific step to improve our ability in

understanding requirements evolution.

Few studies have discussed and highlighted issues

that relate to the causes of requirements volatility.

Christel and Kang [6] indicate that requirements

volatility is one of the main problems during the

requirements elicitation process. The problem is

triggered by continuous change in users’ needs,

disagreement among customers or stakeholders on

agreed requirements, and changes in organization goals

and policies. Other studies have mentioned

contributing factors to requirements change, such as

developers’ knowledge of the application and business,

competitors’ products changes in technologies, poor

communication between users, customers,

stakeholders, and developers contributing to

requirements change during system development [2,

14].

There is limited empirical research about

requirements volatility. The concept is still not well

defined in the literature. In this study we define

requirements volatility as: the tendency of

requirements to change over time in response to the

evolving needs of customers, stakeholders,
organisation, and work environment. The operational

definition of requirements volatility can be represented

as: the ratio of requirements change (addition,
deletion, and modification) to the total number of

requirements for a given period of time.

3. Case Study Context

The case study was carried out at Global

Development Systems (GDS)1. GDS is an ISO 9001

certified software development company that belongs

to an international multi-site organization with

headquarters and marketing divisions in USA. It is an

engineering lab that develops product line software.

The software produced is characterized by the delivery

of a series of releases. Each release is around

8000KLOC, development time of between 12-18

months, with approximately 180 full time developers

involved. The product is an enterprise software, of

which customers are themselves developers using the

system for developing software. Requirements for new

releases are requests for enhancements to the product

and they are gathered from multiple sources:

1

The company and product names are fictitious to preserve

confidentiality.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Technology Sydney. Downloaded on February 19, 2009 at 03:55 from IEEE Xplore. Restrictions apply.

Market needs (representing current customers

needs and market directions representing potential

for future customers)

Product strategy requirements (representing

technology and engineering direction of the product

in line with the organizational strategy)

At GDS, key stakeholder groups are scattered

across several continents. The product strategy is

directed from the US, where the Product and Program

Management group is located across four sites. The

development group is located in three Australian and

one New Zealand sites, and customers are grouped in

five large market segments across five continents. In

addressing the geographical distribution of customers

worldwide, the organization maintains on-site field

support centres, to provide services to the diverse

market segments.

The purpose of this paper is to identify and

characterize requirements volatility problems and its

underlying causes during the system development life

cycle. Our unit of analysis to achieve this study

objective is based on a single project. This paper

presents our findings from one of the software releases.

A waterfall model is applied to develop this release.

During system development, all changes to products

are documented and recorded in the project database.

These activities enable us to inspect the documents and

conduct an empirical analysis.

4. Research Approach

A single case study design with a single unit

analysis (i.e. one project) in an industrial setting (GDS)

was applied to investigate the problem of requirements

volatility during software development. This approach

is appropriate for the researcher to conduct in-depth

investigation the situation of a typical project in the

real software industry environment [15]

A historical change database was used to analyse

the nature of requirements change. Change requests

data were collected from one project release within

GDS organisation. A total 0f 78 change request was

collected during the last six months of the project

duration (16 months).

4.1. Analysis Method

The purpose of our analysis was to identify and

understand the problems relating to changing

requirements during the software development process

and their underlying causes. Our analysis is based on

descriptive and qualitative methods.

Descriptive analysis provides rich information for

understanding the requirements volatility problems as

well as related aspects such as organizational policy,

customer needs and product changes. Qualitative

methods are employed to analyse the collected data

and to evaluate the change process.

Change Request

Forms

Release

Documents

Interviews

data

Change

Taxonomy

Causes of

Change

ch
ar

ac
te

riz
at

io
n

identification

Change Analysis

Process Evaluation

Deductive Inferences

Inductive Inferences

Stage 2

Stage 1
Stage 3

Figure 1. Data analysis framework

The data analysis framework we present in this paper is

adapted from the general approach of Briand et al [16].

This method is used to determine the causes of

requirements volatility and its related aspects. Figure 1

illustrates our data analysis process, which is a

combination of both inductive and deductive

inferences. Our approach will be described in the next

section.

4.2. Causal Analysis of Requirements Volatility

The analysis process began by collecting change

request data. The change request documents were

collected, screened, and analysed. This paper focuses

specifically on the analysis of change requests that

related to requirements change. Our data analysis

framework (as described in Figure 1) comprises three

stages:

Stage 1: Understanding the changes

We considered three main sources of evidence to

perform causal analysis of requirements volatility:

Change Request (CR) forms, other release documents

(i.e. requirements specification document, the

configuration management plan, and software product

documents), and interview data.

Based on the information contained in the change

request forms, we identified problems related to each

change. These include: description of the change,

reasons for changes (why factor), types of change

(addition, deletion, and modification), impacts of

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Technology Sydney. Downloaded on February 19, 2009 at 03:55 from IEEE Xplore. Restrictions apply.

change on software products or documents (what

factor), effort estimate, elapsed time, and the person

who requests the change. This stage represents the

main part of the causal analysis process to characterize

the causes of requirements change.

In the inspection of the change request forms, we

often needed to crosscheck the content of the change

form with other related release documents, such as

requirements specification, requirements database, and

software product documents. The purpose of this

activity is to confirm our evaluation and triangulate our

findings.

The other source of the change analysis process

involves interviews with key figures in the project. Our

aim being to capture information that was not available

in the change request form. Interviews were conducted

and tape-recorded with Project Managers, Senior

Managers, and Engineering Managers or Technical

Leads. The interviews were transcribed and the

transcripts were examined as part of our data analysis

process.

Stage 2: Change Analysis and Process Evaluation

The collected information described in the Stage 1,

were then transferred into spreadsheets. Each change

request form was carefully examined. The collected

information, such as description of change

(requirements change), origin/sources of change, type

of requirements (high or low requirements), reason for

change, types of change (addition, deletion, and

modification), impacted documents, the time when it is

raised, and full interval time to process the change, are

the main information that were quantitatively analysed.

These analyses lead us to better understand the nature

of requirements change, its attributes, and its driving

factors. This process of analysis required several

iterations and the classification of changes were

derived inductively.

While analysing the change request forms, we also

evaluated the company’s process of change

management.

Stage 3: Taxonomy Development

Based on the information collected (Stage 2) and

our observations, we defined a taxonomy for

categorizing requirements change. Our preliminary

taxonomy classifies changing requirements based on

general types of change, reasons for change, and the

change origin. Mapping the changes to the defined

taxonomy helps us to determine the causes of

requirements volatility. The purpose of this is to

improve our knowledge and to better understand the

change process and its related activities.

5. Findings

In this section we present our findings in terms of

the change process model, the change request arrival

rate, the requirements volatility measure, and a

taxonomy of requirements change. Finally, we discuss

the limitations of the current change management

process and causes of requirements volatility.

5.1. Change Process Model

We studied the change management process that

was defined by this organization to communicate and

manage changes during software product development.

This study provided an opportunity to identify

problems and to improve the change process.

In this organization, the change management

process is driven by change request forms. This

represents the locus of information on any change to be

made on baseline documents. The change request form

is used to request any changes that might impact the

project schedule. The change request can be either

reports of problems (i.e. bug reports), requests for

changes to requirements (addition, deletion, and

modification), functionality enhancement requests, or

changes to project schedule. This process is the

responsibility of a project manager throughout the

development life cycle.

We outlined our findings below for the four main

phases of the change request process.

Phase 1: Change Request Initialisation

This is the initial phase of the change process

where any project engineer or development team

members can submit a proposed change and enter the

change request (CR) into project database. This phase

involves five main activities, which include: identify

problem, analyse problem, describe the rationales of

the proposed change, perform impact analysis, and fill

in change request form.

Phase 2: Change Request Validation and

Evaluation

The purpose of this phase is to validate the change

request form in terms of the detailed description of the

proposed change, its impact on schedule, and the

required reviews and approvers to review the change

request. The Project Manager is responsible for

moderating and managing the change request process.

In special circumstances, the project manager solicits

and coordinates a discussion with other engineering

managers to obtain more information about the impact

of the proposed change. When the validation is

complete, the project manager circulates the request

form to the reviewers and approvers (as stated in the

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Technology Sydney. Downloaded on February 19, 2009 at 03:55 from IEEE Xplore. Restrictions apply.

project configuration management plan) through email.

They review the change request in terms of the

nature/clarity of proposed change, its impact on project

schedule, reasonableness and feasibility of the

proposed change.

Phase 3: Change Implementation

This phase starts when the proposed change has

been accepted and approved and the change becomes

part of the system development. The Project Manager

assigns related engineers to implement the change.

Communication and coordination among project

members is very important because it allows them to

trace the change across the impacted products. It is left

up to the Project Manager and team members to trace

the change.

Phase 4: Change Verification

The objective of this phase is to verify that the

change was made correctly. The Verifier (i.e. project

manager or quality assurance team) performs

verification tasks. If the verification is successful, the

initial change request is closed. If it is not successful,

the project manager will be notified. In this

circumstance, the implemented change needs to be

investigated further and change request remains open.

In summary, our analysis identified the following

limitations in the change management process: a lack

of information about the rationales of the proposed

change, the impact analysis of the proposed change has

not been performed completely, and the change

implementation process is controlled manually.

5.2. Change Request Arrival Rate

This section describes our findings in the change

process analysis: the arrival rate of change requests

(overall) over time and change requests against

requirements throughout the project life cycle.

The arrival rate of overall change requests during

development life cycle is presented in Figure 2. There

are two legends illustrated in the Figure 2: overall

change requests and change requests against

requirements. The average rate is relatively low,

approximately between two and three change requests

submitted per week. In fact, the number of change

requests reflects the number of request for

requirements change.

Over the course of the project (16 months), a total

of 78 change requests were submitted. Most of these

requests (86%) were related to product changes, which

include changes to requirements specification,

functional specification, and software product

specification. The rest of the change requests (14%)

were related to process/plan changes, which include

changes to the project development plan and test plan.

Design

Code and SIT

SAT and Field Test

Requirements Analysis

0

2

4

6

8

10

12

14

16

C
h

a
n

g
e

 R
e

q
u

e
s
t

J
a

n
-0

2

F
e

b
-0

2

M
a

r-
0

2

A
p

r-
0

2

M
a

y
-0

2

J
u

n
-0

2

J
u

l-
0

2

A
u

g
-0

2

S
e

p
-0

2

O
c
t-

0
2

N
o

v
-0

2

D
e

c
-0

2

J
a

n
-0

3

F
e

b
-0

3

M
a

r-
0

3

Change Request (CR) CRs against Requirements

Figure 2. Change requests arrival rate

The rate of change requests increased sharply from

March to April 2002 when requirements analysis and

documents reviews (i.e. requirements specification,

feature proposal, and functional specification) were

being completed. During this period, most of the

requests resulted in additions and deletions of

requirements. This is not surprising, since the

developers or engineers received feedback from

requirements and functional specification reviews. The

arrival of change requests decreased as the project was

getting closer to the end of its lifecycle. However the

rate of change requests increased again during the end

of detailed design review and system integration

testing. The majority of change requests during this

period related to functional and design specification

changes, as the developers gained more knowledge

about the product.

5.3. Measuring Requirements Volatility

Since we were only interested in analysing the

volatility of requirements, the focus of the analysis was

on the change requests that related to changes in

requirements and other changes to the software product

that affect requirements specification. This section

presents our quantitative analysis on the change request

data. The objective here is to quantify the extent of

requirements volatility throughout system development

life cycle.

The measure of requirements volatility is defined as

the ratio of the number of requirements change (i.e.

addition, deletion, and modification) to the total

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Technology Sydney. Downloaded on February 19, 2009 at 03:55 from IEEE Xplore. Restrictions apply.

number of requirements for a certain period of time

(i.e. development phase).

Out of 78 change requests, 42 requests were related

to changing requirements. These change requests were

carefully examined and evaluated. As a result, we have

identified the total number of requirements change

throughout the development life cycle and calculated

the requirements volatility measure.

Design

Code and SIT

SAT and Field Test

Requirements Analysis

6.90

16.85

4.44

6.45

4.83

1.02 0.68
0.000.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Apr-02 May-02 Jun-02 Jul-02 Aug-02 Sep-02 Oct-02 Nov-02

R
e
q
u
ir
e
m

e
n
ts

 V
o
la

ti
lit

y
 (

%
)

Figure 3. Requirements volatility during
development life cycle

The level of requirements volatility at each stage of

product development is illustrated in Figure 3. The

volatility rate varied across the stages of development

and is consistent with the arrival rate of change

requests. The overall rate of volatility is 6%, which is

considered tolerable. The only high peak (16.85%)

was at the end of requirements analysis stage and at the

beginning of the design stage. The requirements

volatility measure can be viewed as an indicator of

how stable requirements are in the system.

Our analysis (as illustrated in Figure 3) indicates

that requirements volatility was high at the end of

requirements analysis (May 2002). This means that a

lot of changes to software requirements occurred in the

period when requirements specification reviews were

being completed. The volatility decreased sharply in

June 2002, however it increased slightly again in July

2002 (at the end of design phase). Then the volatility of

requirements decreased steadily at the end of system

integration testing and this continued towards the end

of the development life cycle.

5.4. Taxonomy of Requirements Change

As part of our analysis, we developed a taxonomy

to assist us in understanding the requirements volatility

problems. We believe this taxonomy will also allow

practitioners or project managers to characterise

change requests and improve the change process.

Our taxonomy of requirements change consists of

three components: Change Type, Reason, and Origin.

Change Types, is the first component of the taxonomy

to classify the change requests in terms of:

Requirements Addition; adding new

requirements into the system being developed,

Requirements Deletion; deleting or removing

existing requirements from the system,

Requirements Modification; modifying or

rewording requirements text.

Reason, this component relates to the categorization of

the change in term of the reason or rationales behind

the proposed changes. Our classification for the

Reason of change is as follows;

Defect Fixing: - changes to correct defects that

arise from previous releases

Missing requirements: - requirements were not

captured during the initial product definition or

discovered after detailed design analysis

Functionality Enhancement: - maintaining or

managing functionality for the product releases,

e.g. technical upgrade, functionality upgrade, etc.

Product Strategy: - change that related technical

engineering and instigated by Marketing group

Design Improvement: - changes that are triggered

by improved knowledge of the developers about

the product, action items from review documents

(i.e. functional specification, design specification)

Scope Reduction: - removing functionality or

reducing amount of work due to lack of resources

Redundant Functionality: - unnecessary

functionality or functionality that already exists or

can be replaced by other existing functions

Obsolete Functionality: - functionality that no

longer required for the current release or has no

value for the potential users

Erroneous Requirements: - Incorrect or wrong

requirements

Resolving Conflicts: changes that triggered by

functionality conflicts that exist in the system

Clarifying Requirements: - rewording

requirements text for clarification

Origin, is the source of the proposed change, that is,

where it originated from. The sources or requirements

change could be from: Defect Reports, Engineering’s

Call, Project Management Consideration, Marketing

Group, Developer’s Detailed Analysis, Design Review

Feedback, Technical Team Discussion, Functional

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Technology Sydney. Downloaded on February 19, 2009 at 03:55 from IEEE Xplore. Restrictions apply.

Specification Review, Feature Proposal Review, and

Customer-Support Discussions.

The list of these taxonomy attributes was derived

from the change request forms. This taxonomy is our

deductive inferences that we used to classify the 42

change requests.

As we mentioned earlier the change request form is

a vital element to communicate changes on product

deliverables across the project team. Each change

request form does not necessarily contain a single

change, it could contain multiple changes that require

multiple different actions.

Out of 78 change request forms, we identified 42

change requests that related to changing requirements.

We classified these 42 CR according to the three

components defined above. We further analysed the

data to identify single and multiple change requests. As

a result, five (12%) multiple change requests and 37

(88%) single change requests were identified. It should

be noted that the taxonomy was developed based only

on single change types and multiple changes described

in the next section are not included in the development

of the taxonomy.

Change Request with Multiple-changes

Multiple change requests were found to be any of

these three combinations: ‘addition and deletion,

‘addition and modification’, or ‘deletion and

modification’ requests (the order is not significant).

Only one of the multiple change requests was of

‘addition and deletion’ combination type. This request

was aimed at removing a requirement for a particular

operating system that was not supported by third party

software in the current release under development. As

a consequence of this deletion, a new requirement had

to be added to provide an alternative operating system

that supported this release. This change request was

raised as a result of functional specification review.

A multiple change request of ‘addition and

modification’ combination type was aimed to modify

(reword) several requirements due to changes in screen

capabilities. As a result of these modifications, new

requirements were needed to enable two sub-features

exchange the screens definition. This change request

was raised as an action from the detailed design

reviews.

The last multiple change request we identified is of

‘deletion and modification’ combination type. The

changes involved were as follows:

(1) An obsolete requirement was deleted resulting in

modification of several requirements to resolve

functionality conflicts. This was raised as a result of

technical team discussions

(2) An obsolete requirement was deleted resulting in

modification of an existing requirement to address

specification changes in data transfer mechanism. This

was raised as a result of feature proposal review

(3) A redundant (those that are not necessary or already

existed in the previous release), requirement was

deleted, resulting in modification of an existing

requirement (reword text) for clarity. This multiple

change was raised as results of functional specification

review

Change Request with Single-change

We classified the 37 (88%) change requests into the

three general change types of requirements addition,

deletion, and modification. We further classified the

data according to the reason category of the changes.

Then we linked the changes to their origin or sources.

Mapping the change data to the defined taxonomy

attributes enabled us to answer questions of this type:

“what are the types of the proposed changes?”; “why is

the change needed?”; and “where does the change

originate from?”. This classification and the

relationship of the three components above lead us to

better understand the changes and their underlying

causes. The following graphs (Figure 4-6) illustrate the

relationship of change request attributes resulting from

our taxonomy. The numbers on each arrow in these

diagrams refer to the number of change requests

related to the reason categories or origins.

Figure 4 indicates that the main reasons for adding

new requirements were related to improving the

design, “functionality enhancement”, and “product

strategy”. The other reasons encountered were:

“missing requirements” and “fixing defects” from the

previous release. These changes originated mainly

from developers/engineers’ detailed analysis, feedback

from design specification review, marketing group

requests, and project management consideration.

Requirements

Addition

Defect

Fixing
Missing

Requirements
Functionality

Enhancement
Product

Strategy

Design

Improvement

Defect

Report
Engineer

ing's Call

Project

Management

Consideration

Marketing

Group

Developer's

Detailed

Analysis

Design

Review/

Feedback

Change

Type

Reason

Category

Origin

CR=21

2 2
6 3

8

2 1

1
3

2 31 3

2

3

Figure 4. Graphical illustration for requirements
addition classification

Adding new requirements in this product release

was aligned with the organization’s business goals,

where functionality enhancement and introducing new

functionality are the main concern.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Technology Sydney. Downloaded on February 19, 2009 at 03:55 from IEEE Xplore. Restrictions apply.

The main reasons for requirements deletion during

system development life cycle were to remove

‘obsolete functionality” and “requirements

redundancy”. The other reasons included “erroneous

requirements”, “scope reduction”, and “design

improvement”. Removing functionality or deleting

requirements were originated from marketing group,

feedback from design review, and project management

consideration. The detailed relationship of these

changes is illustrated in Figure 5. In the case of scope

reduction, often project management had to consider

reducing the amount of work due to lack of resources.

Requirements

Deletion

Erroneous

Requirements

Obsolete

Functionality
Design

Improvement
Redundant

Functionality

Scope

Reduction

Technical Team

Discussion

Project

Management

Consideration

Marketing

Group

Developer's

Detailed

Analysis

Design

Review/

Feedback

Change

Type

Reason

Category

Origin

CR=8

1 3
1 2

1

1 1

2
1

1

2

Figure 5. Graphical illustration for requirements
deletion classification

The last type of changes is requirements

modification, which involves mostly rewording

requirements text for clarity and it does not necessarily

change the meaning of requirements itself. The main

reasons for requirements modifications during system

development were to: “clarifying requirements” and

“design improvement”. The other two reasons for

modifications were: “product strategy” and resolving

conflicts”. The origin of these modifications were

mainly from technical team discussions and marketing

group requests. The result of our taxonomy on

requirements modifications is illustrated in Figure 6.

Requirements

Modification

Clarifying

Requirements
Product

Strategy
Design

Improvement
Resolving

Conflicts

Technical

Team

Discussion

Functional

Specification

Review

Marketing

Group

Developer's

Detailed

Analysis

Feature

Proposal

Review

Change

Type

Reason

Category

Origin

CR=8

3 1 3 1

1 1 1
1

1

2

Customer-

Support

Discussion

1

Figure 6. Graphical illustration for requirements
modification classification

5.5. Causes of Requirements Volatility

The results of our taxonomy on the change request

data provided useful insight to help us draw

conclusions about the causes of requirements volatility.

It is clearly shown in the three diagrams above that a

particular change type has a particular purpose or

reason as a result of a specific activity. After carefully

examining and analysing the taxonomy of

requirements changes in this case study, we identified

the root causes of requirements volatility. Three main

causes of requirements volatility during system

development are:

(1) Changes in market demands, which is a

reflection of changes in customer needs

(2) Developers’ increased understanding of product

domain, which can be explained by most of the

requests for design refinements originating from design

reviews, technical discussions, and developer detailed

analysis, and

(3) Organizational considerations, which is most

likely related to the business goals and policy, such as

functionality enhancements, product strategy, or scope

reduction.

Although our findings regarding the causes of RV

is not very surprising and more or less aligns with what

is speculated in the literature in various forms, we feel

that it increases our understanding of the nature of

requirements volatility. Furthermore, this detailed

analysis of RV and its causes are very valuable to GDS

and other software development organizations that

wish to undertake an analysis of their requirements

changes.

6. Discussion

The analysis of change request data in GDS has

allowed us to develop a comprehensive taxonomy of

requirements changes. The main source of our data

analysis has been the Change Request forms. The CR

form in GDS is currently used primarily as an

operational tool to allow managers track and

communicate changes to software. Our analysis has

resulted in an increased understanding of the role that

CR forms can and should play in project management.

Our study has led us to believe that there are other

more important usages of the CR forms that are not

currently being considered by most software

development organizations such as GDS.

The change request forms, if they contain

appropriate information, could be used to contribute to

more strategic levels of decision making within the

organization. As illustrated in the previous sections,

aggregated change request information can be used to

assess the nature of requirements volatility.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Technology Sydney. Downloaded on February 19, 2009 at 03:55 from IEEE Xplore. Restrictions apply.

Furthermore, a taxonomy such as the one developed in

this paper could be used as a strategic tool to assist

project managers in their planning, risk assessment,

prediction of effort and cost estimation. For example, if

practitioners capture impact analysis data in the change

request forms, this information could be used to

estimate the effort needed to implement the change

more accurately. This is especially effective in

developing product line software where the main

baseline features remain stable from one release to the

other and effort estimates of changes could be carried

over from one release to the next with minor

modifications.

Although the organization in this case study has

implemented change management practices over the

last few years, our findings reveal that some activities

are still in need of minor improvement.

When we examined the change request forms we

discovered that they had little information about the

rationale or reasons for the proposed change. The

information was inadequate to analyse the importance

of the change to be made. We believe this kind

information is necessary if we are to analyse problems

effectively and understand the proposed changes.

There was no formal impact analysis performed

due to inability to predict the potential impact of the

change on other related areas. Therefore, it is very

difficult for GDS to estimate effort needed to

implement the changes at this time. Impact analysis is

not a simple task to perform in a large software project.

However the benefits of impact analysis are well

known in requirements management.

As a result of our case study, some

recommendations have been made to GDS

management for improving the change request form

content as well as the change management process.

7. Conclusions and Future Work

In this paper we have presented the causal analysis

of requirements change based on a case study in an

industrial setting. The main contributions of this study

are twofold. Firstly, a qualitative method for

characterizing and evaluating requirements change

problems has been developed. This method is

described in detail and therefore could potentially be

used by other researchers and practitioners in their own

environment to identify causes and reasons for

requirements changes. Secondly, the analysis of data

from change request forms has led us to better

understand the nature of requirements volatility during

the software development lifecycle and to the

development of a comprehensive taxonomy of

requirements changes. We have identified the root

causes of requirements volatility in a specific project at

GDS and been able to offer recommendations on how

to improve change management process.

This study is subject to a number of limitations.

First, we have conducted a single case study approach.

Future work will be undertaken to gather more

information about the problem of requirements

volatility in other companies. Secondly, our analysis

has led us to develop taxonomy of requirements

changes in the specific project. This taxonomy needs to

be validated. Subsequent stages of this work will

investigate the effectiveness of the taxonomy and its

benefits in practice from practitioners’ perspectives.

This study represents the first phase in a long-term

investigation of the phenomenon of requirements

volatility and is one of a number of longitudinal

investigations currently being undertaken. It helps to

set the scene for what is planned to follow. The

findings of this case study have provided valuable

insight about the dynamic behaviour of software

requirements from the beginning of the systems

development until the end of the project. The next

stage of the research involves developing a model of

requirements volatility, its causes and impacts. This

model will allow us to identify and develop a set of

strategies to manage the impacts of requirements

volatility during software development life cycle.

Acknowledgements

We would like to thank all the participants from GDS

organisation and the management for their continued

support of our research.

References

[1] E. J. Barry, T. Mukhopadhyay, and S. A. Slaughter,

"Software Project Duration and Effort: An Empirical Study,"

Information Technology and Management, vol. 3, 1-2, pp.

113-136, 2002.

[2] B. Curtis, H. Krasner, and N. Iscoe, "A Field Study of the

Software Design Process for Large Systems," Comunications

of the ACM, vol. 31, 11, pp. 1268-1287, 1988.

[3] The Standish Group, "CHAOS: A Recipe for Success,"

1998.

[4] D. Zowghi, R. Offen, and N. Nurmuliani, "The Impact of

Requirements Volatility on Software Development

Lifecycle," presented at the International Conference on

Software, Theory and Practice (ICS2000), Beijing, China,

2000.

[5] B. W. Boehm and P. N. Papaccio, "Understanding and

Controlling Software Cost," IEEE Transactions on Software

Engineering, vol. 14, 10, pp. 1462-1477, 1998.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Technology Sydney. Downloaded on February 19, 2009 at 03:55 from IEEE Xplore. Restrictions apply.

[6] M. Christel and K. Kang, "Issues in Requirements

Elicitation," Carnegie Mellon University, Pittsburgh

TR.CMU/SEI-92-TR-12, September 1992.

[7] G. Stark, A. Skillicorn, and R. Ameele, "An Examination

of the Effects of Requirements Changes on Software

Maintenance Releases," Journal of Software Maintenance:

Research and Practice, vol. 11, pp. 293-309, 1999.

[8] Y. Malaiya and J. Denton, "Requirements Volatility and

Defect Density," presented at the 10th International

Symposium on Software Reliability Engineering, Boca

Raton, Florida, 1999.

[9] D. Pfahl and K. Lebsanft, "Using Simulation to Analyse

the Impact of Software Requirements Volatility on Project

Performance," Information and Software Technology, vol.

42, pp. 1001-1008, 2000.

[10 D. Zowghi and N. Nurmuliani, "A Study of the Impact of

Requirements Volatility on Software Project Performance,"

presented at the 9th Asia-Pacific Software Engineering

Conference, Gold Coast, Australia, 2002.

[11] S. D. P. Harker and K. D. Eason, "The Change and

Evolution of Requirements as a Challenge to the Practice of

Software Engineering," presented at Proceeding of IEEE

International Symposium on Requirements Engineering,

1993.

[12] W. Lam and V. Shankararaman, "Managing Change in

Software Development Using a Process Improvement

Approach," presented at IEEE Euromicro Conference, 1998.

[13] D. Rowe, J. Leaney, and D. Lowe, "Defining Systems

Evolvability - a Taxonomy of change," presented at

International Conference and Workshop on Engineering

Computer Based Systems, Jerusalem, Israel, 1998.

[14] J. Chudge and D. Fulton, "Trust and Co-operation in

System Development: Applying Responsibility Modelling to

the Problem of Changing Requirements," IEEE, Software

Engineering Journal, vol. 11, 3, pp. 193-204, 1996.

[15] R. K. Yin, Applications of Case Study Research, vol. 34:

Sage Publications, 1993.

[16] L. C. Briand, V. R. Basili, and Y. Kim, "A Change

Analysis Process to Characterise Software Maintenance

Projects," presented at International Conference on Software

Maintenance, 1994.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: University of Technology Sydney. Downloaded on February 19, 2009 at 03:55 from IEEE Xplore. Restrictions apply.

P~O(~~DI"G~

2004 ~U~T~~U~"

l~-lC .nP~ll 2004
m.tl.QOU~H.t, .nUST~.nll.n

Sponsored by
Australian Computer Society (ACS)
and ••••
Engineers Australia ~
acting through The Joint Board of the ACS and Engineers Australia •

AUSTRALIAN
COMPUTER
SOCIETY

ENGINEERS
AUSTRAUA

PROCEEDINGS

2004 AUSTRALIAN SOFTWARE
ENGINEERING CONFERENCE

ASWEC2004

13-16 APRIL 2004

MELBOURNE, AUSTRALIA

SPONSORED BY

AUSTRALIAN COMPUTER SOCIETY (ACS)

AND

ENGINEERS AUSTRALIA

ACTING THROUGH

THE JOINT BOARD OF THE ACS AND ENGINEERS AUSTRALIA

EDITED BY

PAUL STROOPER

IEEE~

COMPUTER
SOCIETY•Los Alamitos, California

Washington. Brussels. Tokyo

Copyright © 2004 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may
photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume
that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is
paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE
Service Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page.
They reflect the authors' opinions and, in the interests of timely dissemination, are published as presented
and without change. Their inclusion in this publication does not necessarily constitute endorsement by the
editors, the IEEE Computer Society, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Order Number P2089
ISBl'!"0~7695-2089-8

ISSN 1530~803

Additional copies may be ordered from:

IEEE Computer Society
Customer Service Center

10662 Los Vaqueros Circle
P.O. Box 3014

Los Alamitos, CA 90720-1314
Tel: + 1 800 272 6657
Fax: + 1 7148214641

http://computer.orglcspress
csbooks@computer.org

IEEE Service Center
445 Hoes Lane
P.O. Box 1331

Piscataway, NJ 08855-1331
Tel: + 1 732981 0060
Fax: + 1 7329819667

http://shop.ieee.orglstorel
customer-service@ieee.org

IEEE Computer Society
AsialPacific Office

Watanabe Bldg., 1-4-2
Minami-Aoyama

Minato-ku, Tokyo 107-0062
JAPAN

Tel: + 81 334083118
Fax: + 81 3 3408 3553

tokyo.ofc@computer.org

Individual paper REPRINTS may be ordered at: reprints@computer.org

Editorial production by Frances Titsworth
Cover art production by Joseph Daigle

Printed in the United States of America by The Printing House

IEEE~

COMPUTER
SOCIETY

+IEEE

http://computer.orglcspress
mailto:csbooks@computer.org
http://shop.ieee.orglstorel
mailto:customer-service@ieee.org
mailto:tokyo.ofc@computer.org
mailto:reprints@computer.org

