SCRUM & XP —
Methodologies & Practices

Robert Feldt, 2012-03-19
Agile Dev Processes, Chalmers

Definitions

Continuous
inspection

List of Increment of
requirements functionality

Why Scrum?

We need to do a better job of change management. We had too many outside distractions.
We need customer feedback during the iterative development approach we're taking.

The users gave us a huge list of requirements. We knew we weren't going to be able to
deliver everything they wanted.

Development took place in focused chaos, and there was no one to go to with questions.
We need a way to structure the chaos somehow, because all NBOs must deal with that.
We have been used to thinking in terms of years for development; now we have to turn out

products in months.

We're chasing an emerging market. It changes weekly.

We wasted a lot of time estimating and developing test plans for features that we never
developed.

We should have cancelled this project earlier. It took almost two years to recognize that.
We need well-defined phases and someone who is close enough to see progress and deter-
mine what we can check off.

[Rising2000]

History of SCRUM

1986 - Hirotaka Takeuchi and lkujiro Nonaka described a new
holistic approach that increases speed and flexibility in commercial
new product development

1991 - DeGrace and Stahl referred to this approach as SCRUM, a
rugby term mentioned in the article by Takeuchi and Nonaka

Early 1990s, Ken Schwaber used an approach that led to Scrum at
his company, Advanced Development Methods

At the same time, Jeff Sutherland, John Scumniotales, and Jeff
McKenna developed a similar approach at Easel Corporation and
were the first to call it Scrum

1995 Sutherland and Schwaber jointly presented a paper describing
Scrum at OOPSLA '95 in Austin, TX, its first public appearance

2001, Schwaber teamed up with Mike Beedle to describe the
method in the book Agile Software Development with Scrum.

Defined Process Control vs. Empirical
Process Control

* Laying out a process that repeatedly will
produce acceptable quality output is called
defined process control

 When defined process control cannot be
achieved because of the complexity of the
intermediate activities, something called
empirical process control has to be employed

e Defined Process control (“non-agile”)

- Planning heavy

- Assumes (more) static environment

- Longer iterations

- Change Management intensive

- Typical pre-study heavy

- Assumes good estimations (and as we know... estimations are
negotiations)...

- Process and Management = Control over Actual work (often
seen as bureaucratic)

* Empirical Process control (Agile)

Change is reality
Shorter iterations

Problem vs. solution space (empowering the
developers)

Just-enough (management, documentation etc)
Self organizing teams

Continous “customer” interaction
NOT UNPLANNED rather adaptive

XP

etc

Feature Driven
Development

Handling complexity

Cost of review,
review = Stand-up

Large teams

documentation meetings (daily’ Self organizing

Reviews and
learning
Pigs and

Chickens / Technlcal Do what you
Short iterations complexity want, but need

(sprint) Builds (fail fast, to do
Customer? Requirements Whaihadll) Distribution

Complexity

Complexity

Sprint

overhead

Traditional Waterfall Approach

Analysis Develop Deploy
O O O O C
Design Test

Agile Approach

Deploy Deploy Deploy

Most Agile methodologies have similar concepts

SCRUM = What is the Process?

Sprint Backlog:
List of

requirements

(Selected
Product) Sprint
Backlog

Product Backlog:
emerging, prioritized
requirements

<] >
p v 4\ VISION: Anticipated

ROI, releases,
milestones

Roles

Pigs — Involved in the project

e Product owner

e Represents interests of everyone with a stake in the project and resulting
system

e Responsible for initial/ongoing funding, initial overall requirements, ROI
objectives, release plans

e Scrum master
e responsible for the Scrum process

e teaching Scrum to everyone involved in the project, for implementing Scrum so
that it fits within an organization’s culture and still delivers the expected
benefits for ensuring that everyone follows Scrum rules and practices.

e Scrum team
e Self-managing, self-organizing, and cross-functional, and they are responsible
for figuring out how to turn a list of requirements into an increment of
functionality

Chickens —interested in the project

e Stakeholders
e Users

Artifacts

e What are the aims and objectives of the planned
product

e Which markets to cover,
e Which competitors to compete,
e What is product’s differentiation etc

Artifacts (Cont...)

Product Backlog

e Definition: The requirements for the system or product being
developed by the project(s) are listed in the Product Backlog.
Responsible: Product Owner for the contents, prioritization, and
availability of the Product Backlog.

e Properties:
e Never complete
e Merely an initial estimate of the requirements

e Evolves as the product and the environment in which it will be
used evolves

e Dynamic - management constantly changes it to identify what
the product needs to be appropriate, competitive, and useful.

e Exists as long as a product exists

Artifacts (Cont...)

Sprint Backlog

e Definition: defines the work, or tasks, that a Team defines for
turning the Product Backlog it selected for that Sprint into an
increment of potentially shippable product functionality

e Responsible: The Team compiles an initial list of these tasks in
the second part of the Sprint planning meeting

e Properties:

e Should contain tasks such that each task takes roughly 4 to 16
hours to finish

e Tasks longer than 4 to 16 hours are considered mere
placeholders for tasks that haven’t yet been appropriately
defined

e Only the Team can change it
e Highly visible, real time picture of the current Sprint

Artifacts (Cont...)

Burndown Chart

e Definition: shows the amount of work remaining across time

e Responsible: The Team compiles an initial list of these tasks in
the second part of the Sprint planning meeting

e Properties:

e Excellent way of visualizing the correlation between the
amount of work remaining at any point in time and the
progress of the project Team(s) in reducing this work

e Allows to “what if” the project by adding and removing
functionality from the release to get a more acceptable date
or extend the date to include more functionality

e Only the Team can change it
e Highly visible, real time picture of the current Sprint

Days work

remaining

100

Yo}
o

(o)
o

~N
o

2]
o

(%)
o

N
o

w
o

N
o

[any
o

o

Artifacts (Cont...)

1st Release

Sprints

== 1]st Release

Product
Sprint Review Increment

Project S

Initiation Planning

Sprint
Retrospective

Project Initiation

Product Vision

* might be vague at first, perhaps stated in market terms rather than system
terms, but becomes clearer as the project moves forward

Product Backlog

e |ist of functional and nonfunctional requirements that, when turned into
functionality, will deliver this vision

e Prioritized so that the items most likely to generate value are top priority

Release Plan

e Based on the product backlog and prioritized items

Sprint Team

e Product owner
e Scrum master
e The Team

Project Initiation (Cont...)

Team Formation

e Introductions and backgrounds

e Team name

e Team room and daily Scrum time/place

e Development process for making product backlog done

e Definition of “Done” for product and Sprint Backlog items
e Rules of development

e Rules of etiquette, and

e Training in conflict resolution

Sprint Planning Meeting — Part 1

Purpose: Commit to Product Backlog for the next Sprint

e Calculate The Team capacity. Every resource is 100%
allocated less 10% for forward looking Product Backlog
analysis and 10% for severity 1 issues

e Commit to Product Owner as much backlog as the Team
believes it can turn into a “Done” increment in the Sprint

Sprint Planning Meeting — Part 2

Purpose: the Team plans out the Sprint

e Self managing teams requiring a tentative plan to start the
Sprint

e Tasks that compose this plan are placed in a Sprint Backlog

Sprint

Daily Scrum: the team gets together for a 15-minute
meeting

Each member answers

e What have you done on this project since the last Daily Scrum meeting?

e What do you plan on doing on this project between now and the next
Daily Scrum meeting?

e What impediments stand in the way of you meeting your commitments to
this Sprint and this project

e |t is the inspect and adapt process control for the Team

e The 3 questions provide the information the Team needs (inspect) to
adjust its work to meet its commitments

Sprint (cont...)

What does it mean when a team member

e Code adheres to the standard

e |s clean

e Has been refactored

e Has been unit tested

e Has been checked in

e Has been built

e Has had a suite of unit tests applied to it

Sprint Review

e Team presents what was developed during the
Sprint to the Product Owner and any other
stakeholders who want to attend

e Collaborative work session to inspect and adapt:
the most current Product Backlog and the
functionality increment are for inspection, the
adaptation is the modified Product Backlog

SCRUM means Visibility

Visibility of Progress, Process and Sociology

Daily SCRUM: to feel the tone, attitude, and
progress of a Sprint

Sprint review meeting: monthly insight into
whether the project is creating valuable
functionality, as well as the quality and
capabilities of that functionality

Product Backlog: details a project’s requirements
and lists them in order of priority

Formal reports: end of each Sprint, static
snapshot of the project’s progress

Scrum Retrospective

e Scrum master encourages the Team to revise,
within the Scrum process framework and
practices, its development process to make it
more effective and enjoyable for the next Sprint

Do not forget

e Should be time-boxed to 1-3 hours

e While discussing issues the Team figures out
itself how to address the issues

Scrum Team Leader comments

m Give it time to get started before expecting big results. It gets better as the
team gains experience.

B Tasks for a sprint must be well quantified and achievable within the sprint time
period. Determine the sprint time by considering the tasks it contains.

B Tasks for sprints must be assigned to one individual. If the task is shared, give
one person the primary responsibility.

B Sprint tasks might include all design-cycle phases. We set goals related to fu-
ture product releases in addition to current development activity.

B Scrum meetings need not be daily. Two or three times a week works for us.

M The Scrum master must have the skill to run a short, tightly focused meeting.

m Stick to the topics of the sprint. It's very easy to get off topic and extend what
was supposed to be a 10 to 15 minute meeting into a half-hour or more.

B Some people are not very good at planning their workload. Sprint goals are
an effective tool for keeping people on track and aware of expectations.

B ['ve noticed an increase in volunteerism within the team. They're taking an in-
terest in each other’s tasks and are more ready to help each other out.

m The best part of Scrum meetings has been the problem resolution and clearing
of obstacles. The meetings let the team take advantage of the group’s experi-
ence and ideas.

[Rising2000]

Figure A. A-Team’s team leader comments.

Scrum Effects

Att arbeta med Scrum:

Paverkan pa arbetslag, kommunikation och social miljo

Stefan Hedberg

Scrum Effects

Abstract

Systems development methods has always been an important part of the systems
development process. It affects not only the product, but also the organization itself. Today
more and more companies are abandoning the more rigid traditional methods for the more
flexible agile ones. A transition like this is bound to affect the product and the organization,
but in what ways? Is it a difficult transition to make, and how does it affect social
environment and dynamics? Does it change how people communicate information to each
other? This study was conducted at a local branch of a larger international IT-company.
The company had recently switched from a traditional waterfall method to the agile
method Scrum. The study’s aim was to see if and how this transition caused any changes in
the way that the company develops their artifacts. A characteristic for Scrum is that people
collaborate in small self-organizing teams. How 1is this affecting the social structures and
the relationships between individuals? The study is of qualitative nature, where semi-
structured interviews were conducted with people from the different Scrum teams. The
study has shown that this kind of transition takes time, but that people are positive towards
its benefits. The fact that individuals are no longer isolated with their own task, but are
instead working closely together with their team members has led to, perhaps less, but
better and more accurate products. To be in a tight team with a common goal has also
made people more content with their social exchange and work situation, which positively
affects moral. The physical closeness to the team has led to improvements in the
communication and collaboration between teammembers. However it has also had the
effect that the communication and collaboration with the other teams have deteriorated,
due to the teams having differing ways of working, differing norms and differing goals.

eXtreme Programming

* Introduced by Ward Cunningham, Kent Beck,
and Ron Jeffries.

« XP is what it says, an extreme way of
developing software.
— If a practice is good, then do it all the time.

— If a practice causes problems with project agility,
then don't do it.

eXtreme Programming

Team = 3-10 programmers + 1 customer
lteration => tested & directly useful code

Req = User story, written on index cards
Estimate dev time / story, prio on value

Dev starts with discussion with expert user
Programmers work in pairs

Unit tests passes at each check-in

Stand-up meeting daily: Done? Planned? Hinders?
lteration review: Well? Improve? => Wall list

XP practices

Whole Team (Customer Team Member, on-site customer)
Small releases (Short cycles)

Continuous Integration

Test-Driven development (Testing)
Customer tests (Acceptance Tests, Testing)
Pair Programming

Collective Code Ownership

Coding standards

Sustainable Pace (40-hour week)

The Planning Game

Simple Design

Design Improvement (Refactoring)
Metaphor

Whole Team

A.K.A: Customer Team Member, on-site
customer

« Everybody involved in the project works
together as ONE team.

* Everybody on the team works in the same
room. (Open Workspace)

* One member of this team is the customer, or
the customer representative.

Pair Programming

 All program code is written by two
programmers working together; a
programming pair.

* Working in this manner can have a number of
positive effects:

— Better code Quality

— Fun way of working

— Information spreading
— Skills spreading

Test-Driven development

A.K.A: Unit tests,

esting

* No single line of code is ever written,
without first writing a test that tests it.

e All tests are written in a test framework like
JUnit so they become fully automated.

Customer tests

A.K.A: Acceptance Tests, Testing

* The customer (or the one representing the
customer) writes tests that verifies that the
program fulfills his/her needs

Continuous Integration

» Daily build
— A working new version of the complete
software is released internally every night.

 Continuous build

— A new version of the complete software is
build as soon as some functionality is added,
removed or modified.

Collective Code Ownership

» All programmers are responsible for all code.

* You can change any code you like, and the
minute you check in your code somebody
else can change it.

* You should not take pride in and
responsibility for the quality of the code you

written yourself but rather for the complete
program.

Sustainable Pace

A.K.A: 40-hour week

* Work pace should be constant throughout
the project and at such a level that people
do not drain their energy reserves.

« QOvertime is not allowed two weeks in a
rOWw.

Simple design

* Never have a more complex design than is
needed for the current state of the
implementation.

* Make design decisions when you have to,
not up front.

Design Improvement

A.K.A: Refactoring

« Always try to find ways of improving the design

» Since design is not made up front it needs
constant attention in order to not end up with a
program looking like a snake pit.

« Strive for minimal, simple, comprehensive code.

Metaphor

* Try to find one or a few metaphors for your
program.

* The metaphors should aid In
communicating design decisions and
intends.

* The most well known software metaphor is
the desktop metaphor.

Coding standards

* In order to have a code base that is
readable and understandable by
everybody the team should use the same

coding style.

Small releases

A.K.A: Short cycles

« The software is frequently released and deployed to the customer.

 The time for each release is planned ahead and are never allowed

to slip. The functionality delivered with the release can however be
changed right up to the end.

« Atypical XP project has a new release every 3 months.

« Each release is then divided into 1-2 week iterations.

Extra material

Sprint(Cont...)

What is required ?

eSource control

e Continuous integration
e Unit testing

eFeature testing

Product Backlog Maintenance

Agile at ICST

ICST2011 kﬁu

Fourth IEEE International Conference on
Software Testing, Verification and Validation

Berlin, March 21-25, 2011

ertified Agile Tester

Pragmatic, Soft Skills Focused, Industry Supported

Can ¢
be certified?

Concept

We are well aware that agile team members shy away from standardized
trainings and exams as they seem to be opposing the agile philosophy.

However, agile projects are no free agents; they need structure and disci-
pline as well as a common language and methods. Since the individuals in
a team are the key element of agile projects, they heavily rely on a consen-
sus on their daily work methods to be successful.

All the above was considered during the long and careful process of de-
veloping a certification framework that is agile and not static. The exam to
certify the tester also had to capture the essential skills for agile coopera-
tion. Hence a whole new approach was developed together with the expe-
rienced input of a number of renowned industry partners.

www.agile-tester.org

The Training

All Days: Daily Scrum and Soft Skills Assessment

Day 1: History and Terminology: Agile Manifesto, Principles and Methods
Day 2: Planning and Requirements

Day 3: Testing and Retrospectives

Day 4: Test Driven Development, Test Automation and Non-Functional
Day 5: Practical Assessment and Written Exam

Training Provider

your training provider at
training provider by contacting

Yes!

The Exam

To become a Certified Agile Tester you have to succeed
in three different ways:

A social skills assessment on capacity for teamwork
An exam, which requires free answering = no multiple choice questions
A practical section where your testing skills are put to the test

Exam Provider
International Software Quality Institute

www.agile-tester.org

Factors Limiting Industrial Adoption of Test Driven Development:

A Systematic Review

Adnan Causevic, Daniel Sundmark, Sasikumar Punnekkat

Milardalen University, School of Innovation, Design and Engineering,
Visteras, Sweden

{adnan.causevic, daniel.sundmark, sasikumar.punnekkat} @mdh.se

Abstract — Test driven development (TDD) is one of the basic
practices of agile software development and both academia and
practitioners claim that TDD, to a certain extent, improves the
quality of the code produced by developers. However, recent
results suggest that this practice is not followed to the extent
preferred by industry. In order to pinpoint specific obstacles
limiting its industrial adoption we have conducted a systematic
literature review on empirical studies explicitly focusing on
TDD as well as indirectly addressing TDD. Our review has
identified seven limiting factors viz., increased development
time, insufficient TDD experience/knowledge, lack of upfront
design, domain and tool specific issues, lack of developer skill
in writing test cases, insufficient adherence to TDD protocol,
and legacy code. The results of this study is of special
importance to the testing community, since it outlines the
direction for further detailed scientific investigations as well as
highlights the requirement of guidelines to overcome these
limiting factors for successful industrial adoption of TDD.

Keywords: Test driven developmen; systematic review; agile
software development; unit testing; empirical studies.

in a particular organisation. The specific research question
we address in this paper is:

RQ: Which factors could potentially limit the industrial
adoption of TDD?

In order to identify such limiting factors, a systematic
literature review of empirical studies on TDD was
undertaken. Partly based on concerns of an insufficient
number of studies due to publication bias [3], the review was
not restricted to studies reporting on failure to implement
TDD. Instead, we decided to expand the scope of the study
and to systematically search for primary empirical studies of
TDD, including (1) studies where TDD was the main focus,
(2) studies where TDD was one of the investigated practices,
and (3) studies where TDD was used in the experimental
setting while investigating something else. In case any of the
studies reported issue(s) with any specific factors, this was
noted. By qualitatively and quantitatively analysing the
reported issues on TDD within the selected papers, we have
identified a number of limiting factors.

WHETRR

SCRUM?
Definitions

Outline (SCRUM part)

Defined
Process

History of Control vs.

SCRUM Empirical
Process
Control

SCRUM -
What is the
Process?

Artifacts in
SCRUM

Roles in
SCRUM

Stages in

SCRUM

Artifacts (Cont...)

Impediments List

e Definition: shows the hurdles in day to day
SCRUM team work

e Responsible: The Team compiles and maintains
the list of impediments and how to remove them

e Properties:

e Highly visible, real time picture of the issues
faced by the SCRUM teams

e Impediments brought into light daily
e The Team itself decides how to solve them

Velocity of SCRUM Team

* Velocity is a measurement of how much the
team gets done in an iteration

* Velocity is what actually got done in the last
iteration not what is planned

* Can be calculated at the end of each Sprint

with the features implemented vs. features
planned

Artifacts (Cont...)

Increment of Potentially Shippable Product

Functionality

e Definition: Scrum requires Teams to build an increment of
product functionality every Sprint

e Responsible: The Team
e Properties:
e Must be potentially shippable

e consist of thoroughly tested, well-structured, and well-written
code that has been built into an executable and that the user
operation of the functionality is documented, either in Help
files or in user documentation

e Only the Team can change it

e Highly visible, real time picture of the current Sprint

Tricks of the Trade

Consensus on “Done”

e Teach SCRUM team to manage itself

e Understand all aspects of what the team is doing and
frequently correlate its activities in order to deliver a
completed set of functionality

e To manage itself, a team must have a plan and report
against that plan

e Testing is not someone else’s problem, it’s the SCRUM
team problem

e Separately delineate testing activities in the Sprint
Backlog until the team understands the meaning of
the word “Done”

