
Empir Software Eng (2010) 15:654–693
DOI 10.1007/s10664-010-9136-6

The effect of moving from a plan-driven
to an incremental software development
approach with agile practices
An industrial case study

Kai Petersen · Claes Wohlin

Published online: 10 July 2010
© Springer Science+Business Media, LLC 2010
Editor: Forrest Shull

Abstract So far, only few in-depth studies focused on the direct comparison of
process models in general, and between plan-driven and incremental/agile ap-
proaches in particular. That is, it is not made explicit what the effect is of moving from
one model to another model. Furthermore, there is limited evidence on advantages
and issues encountered in agile software development, this is specifically true in the
context of large-scale development. The objective of the paper is to investigate how
the perception of bottlenecks, unnecessary work, and rework (from hereon referred
to as issues) changes when migrating from a plan-driven to an incremental software
development approach with agile practices (flexible product backlog, face-to-face
interaction, and frequent integration), and how commonly perceived these practices
are across different systems and development roles. The context in which the
objective should be achieved is large-scale development with a market-driven focus.
The selection of the context was based on the observation in related work that mostly
small software development projects were investigated and that the investigation was
focused on one agile model (eXtreme programming). A case study was conducted
at a development site of Ericsson AB, located in Sweden in the end of 2007. In
total 33 interviews were conducted in order to investigate the perceived change
when migrating from plan-driven to incremental and agile software development,
the interviews being the primary source of evidence. For triangulation purposes
measurements collected by Ericsson were considered, the measurements relating
to unnecessary work (amount of discarded requirements) and rework (data on
testing efficiency and maintenance effort). Triangulation in this context means that
the measurements were used to confirm the perceived changes with an additional
data source. In total 64 issues were identified, 24 being of general nature and the
remaining 40 being local and therefore unique to individual’s opinions or a specific

K. Petersen (B) · C. Wohlin
Blekinge Institute of Technology, 372 25 Ronneby, Sweden
e-mail: kai.petersen@bth.se

C. Wohlin
e-mail: claes.wohlin@bth.se

Empir Software Eng (2010) 15:654–693 655

system. The most common ones were documented and analyzed in detail. The
commonality refers to how many persons in different roles and across the systems
studied have mentioned the issues for each of the process models. The majority of the
most common issues relates to plan-driven development. We also identified common
issues remaining for agile after the migration, which were related to testing lead-time,
test coverage, software release, and coordination overhead. Improvements were
identified as many issues commonly raised for the plan-driven approach were not
raised anymore for the incremental and agile approach. It is concluded that the recent
introduction (start in 2005 with the study being conducted in the end of 2007) of
incremental and agile practices brings added values in comparison to the plan-driven
approach, which is evident from the absence of critical issues that are encountered in
plan-driven development.

Keywords Incremental · Agile · Plan-driven · Case study · Migration

1 Introduction

As software has become a major success factor in software products the competition
has increased. In consequence, the software industry aims at shorter lead times to
gain a first-move advantage and to fulfill the current needs of the customer. However,
the needs of the customers in terms of functions and quality constantly evolve leading
to high requirements volatility which requires the software companies to be highly
flexible. Therefore, more and more software companies started to adopt incremental
and agile methods and the number of recent empirical studies on agile methods have
increased (for example Svensson and Höst 2005; Karlström and Runeson 2005, and
Benediktsson et al. 2006).

Due to the increased importance and interest in agility of software development
a systematic review (Dybå and Dingsøyr 2008) summarized the results of empirical
studies on agile methods. According to the systematic review there is a clear need
for exploratory qualitative studies. In particular, we need to better understand
the impact of the change from traditional (plan-driven) development models (like
waterfall, Rational Unified Process (RUP) or V-model) to more agile methods.
Furthermore, the review identified research methodological quality problems that
frequently occurred in the studies. For example, methods were not well described,
the data was biased, and reliability and validity of the results were not always
addressed. The review also shows that the main focus of studies was on XP, and that
the settings studied are quite small in terms of the number of team members. Overall,
this suggests a clear need to further investigate agile and incremental methods
using sound empirical methods. Specifically, to understand the impact of migrating
to incremental and agile methods requires the comparison of agile with other
approaches in different contexts. For example, how does plan-driven development
perform in comparison to agile and incremental development in different domains
(telecommunication, embedded systems and information systems) and different
system complexities (small scale, medium scale, and large scale)?

In order to address this research gap, we conducted a case study investigating
the effect of moving from plan-driven development to an approach employing
incremental and agile practices. The effect was captured in terms of advantages and

656 Empir Software Eng (2010) 15:654–693

issues for the situation before and after the migration. The case being studied was
a development site of Ericsson AB, Sweden. The plan-driven approach was used
at Ericsson for several years. Due to industry benchmarks and thereby identified
performance issues (e.g. related to lead-times) Ericsson first adopted incremental
practices starting in the middle of 2005. Agile practices (flexible product-backlog,
face-to-face interaction, and frequent integration) were added in late 2006 and early
2007. Overall, we will show that Ericsson’s model shares practices with incremental
development, Extreme Programming (XP), and Scrum.

The case study was conducted in the last quarter of 2007 where incremental prac-
tices were adopted to a large part and about 50% of the Scrum and XP practices have
been implemented. We conducted 33 interviews with representatives of different
roles in Ericsson to capture the advantages and issues with the two development
approaches. That is, we identified issues/advantages in plan-driven development,
and how the issues/advantages have changed after migrating to incremental/agile
practices. Document analysis was used to complement the interviews. Furthermore,
quantitative data collected by Ericsson was used to identify confirmative and con-
tradicting information to the qualitative data. The quantitative data (performance
measures) included requirements waste in terms of share of implemented require-
ments and software quality. The case study research design was strongly inspired by
the guidelines provided in Yin (2002). Furthermore, we used the guidelines provided
specifically in a software engineering context by Runeson and Höst (2009).

The contributions of the paper and case study are:

– Illustrate an industrial approach of using incremental and agile practices and a
comparison of the industrial model with models discussed in literature (e.g., XP,
Scrum, and incremental development) to be able to generalize the results.

– Identify and gain an in-depth understanding of the most important issues in
relation to process performance in plan-driven development and the process
used after introducing incremental and agile practices at Ericsson. The out-
comes of the situation before (plan-driven approach) and after the migration
(incremental/agile approach) were compared and discussed. This information
was captured through interviews, and thus illustrates the perception of the effect
of the migration.

– Provide process performance measurements on the development approaches as
an additional source of evidence to support or contradict the primary evidence
in the form of qualitative findings from the interviews.

The remainder of the paper is structured as follows. Section 2 presents related
work. Thereafter, Section 3 illustrates the development processes used at Ericsson
and compares them to known models from literature. Section 4 describes the
research design. The analysis of the data is divided into one qualitative (Section 5)
and one quantitative (Section 6) part. Based on the analysis, the results are discussed
in Section 7. Section 8 concludes the paper.

2 Related Work

Studies have investigated the advantages and disadvantages of plan-driven and agile
processes. However, few studies present a comparison of the models in general, and

Empir Software Eng (2010) 15:654–693 657

the effect of moving from one model to the other. This section summarizes the results
of existing empirical studies on both process models, presenting a list of advantages
and disadvantages for each of them. The description of studies related to plan-driven
development is not split into advantages and disadvantages as few advantages have
been reported in literature.

2.1 Plan-Driven Development

Plan-driven development includes development approaches such as the waterfall
model, the Rational Unified Process (RUP), and the V-model. All plan-driven
approaches share the following characteristics (cf. Hirsch 2005): the desired func-
tions / properties of the software need to be specified beforehand; a detailed plan
is constructed from the start till the end of the project; requirements are specified
in high detail and a rigor change request process is implemented afterwards; the
architecture and design specification has to be complete before implementation
begins; programming work is only concentrated in the programming phase; testing
is done in the end of the project; quality assurance is handled in a formal way.

Waterfall Challenges with waterfall development (as a representative for plan-
driven approaches) have been studied and factors for the failures of the waterfall
approach have been identified in empirical research. The main factor identified is
the management of a large scope, i.e. requirements cannot be managed well and has
been identified as the main reason for failure (cf. Thomas 2001; Jarzombek 1999;
Johnson 2002). Consequences have been that the customers’ current needs are not
addressed by the end of the project (Jarzombek 1999), resulting in that many of the
features implemented are not used (Johnson 2002). Additionally, there is a problem
in integrating the overall system in the end and testing it (Jones 1995). A study of
400 waterfall projects has shown that only a small portion of the developed code has
actually been deployed or used. The reasons for this are the change of needs and
the lack of opportunity to clarify misunderstandings. This is caused by the lack of
opportunity for the customer to provide feedback on the system (Cohen et al. 2001).

RUP The RUP process was investigated in a case study mainly based on interviews
(Hanssen et al. 2005). The study was conducted in the context of small software
companies. The study identified positive as well as negative factors related to
the use of RUP. Advantages of the process are: the clear definition of roles; the
importance of having a supportive process; good checklists provided by templates
and role definitions. Disadvantages of the process are: the process is too extensive for
small projects (very high agreement between interviewees); the process is missing a
common standard of use; RUP is hard to learn and requires high level of knowledge;
a too strong emphasis is put on the programming phase. Heijstek and Chaudron
(2008) investigated the effort distribution of different projects using RUP. They
found that poor quality in one phase has significant impact on the efforts related
to rework in later phases. Thus, balancing effort in a way to avoid poor quality (e.g.
more resources in the design phase to avoid quality problems later) is important.
V-model: We were not able to identify industrial case studies focusing on the V-
model, though it was part of an experiment comparing different process models (see
Section 2.3). Plan-driven approaches are still relevant today as they are widely used

658 Empir Software Eng (2010) 15:654–693

in practice as recognized in many research articles (c.f. Raccoon 1997; Beck 1999;
Laplante and Neill 2004; Dai and Guo 2007)). The case company of this study used
the approach till 2005, and there are still new research publications on plan-driven
approaches (cf. Hanssen et al. 2005; Heijstek and Chaudron 2008; Petersen et al.
2009).

2.2 Incremental and Agile Development

Dybå and Dingsøyr (2008) conducted an exhaustive systematic review on agile
practices and identified a set of relevant literature describing the limitations and
benefits of using agile methods. According to the systematic review a majority of
the relevant related work focuses on XP (76% of 36 relevant articles). The following
positive and negative factors have been identified in the review.

Positive factors Agile methods help to facilitate better communication and feed-
back due to small iterations and customer interaction (cf. Svensson and Höst 2005;
Karlström and Runeson 2005; Bahli and Abou-Zeid 2005). Furthermore, the benefit
of communication helps to transfer knowledge (Bahli and Abou-Zeid 2005). Agile
methods further propose to have the customer on-site. This is perceived as valuable
by developers as they can get frequent feedback (Tessem 2003; Svensson and Höst
2005; Karlström and Runeson 2005), and the customers appreciate being on-site
as this provides them with control over processes and projects (Ilieva et al. 2004).
An additional benefit is the regular feedback on development progress provided to
customers (Ilieva et al. 2004). From a work-environment perspective agile projects
are perceived as comfortable as they can be characterized as respectful, trustful, and
help preserving quality of working life (Mannaro et al. 2004).

Negative factors Well known problems are that architecture does not have enough
focus in agile development (cf. McBreen 2003; Stephens and Rosenberg 2003) and
that agile development does not scale well (Cohen et al. 2004). An important
concept is continuous testing and integration. Though, realizing continuous testing
requires much effort as creating an integrated test environment is hard for different
platforms and system dependencies (Svensson and Höst 2005). Furthermore, testing
is a bottleneck in agile projects for safety critical systems, the reason being that
testing had to be done very often and at the same time exhaustively due to that
a safety critical system was developed (Wils et al. 2006). On the team level team
members have to be highly qualified (Merisalo-Rantanen et al. 2005). With regard
to on-site customers a few advantages have been mentioned. The downside for
on-site customers is that they have to commit for the whole development process
which requires their commitment over a long time period and puts them under stress
(Martin et al. 2004).

Petersen and Wohlin (2009a) compared issues and advantages identified in lit-
erature with an industrial case. The source of the information was the interviews
conducted in this study, but the paper focused on a detailed analysis of the agile
situation, and its comparison with the literature. The main finding was that agile
practices lead to advantages in one part of the development process, and at the same
time raises new challenges and issues in another part. Furthermore, the need for a

Empir Software Eng (2010) 15:654–693 659

research framework for agile methods has been identified to describe the context
and characteristics of the processes studied.

2.3 Empirical Studies on Comparison of Models

In waterfall development the requirements are specified upfront, even the require-
ments that are not implemented later (due to change). The introduction of an incre-
mental approach reduces the impact of change requests on a project. Furthermore,
the increments can be delivered to the customer more frequently demonstrating
what has been achieved. This also makes the value of the product visible to the
customer early in development (Dagnino et al. 2004). Furthermore, several studies
indicate that agile companies are more customer centric and generally have better
relationships to their customers. This has a positive impact on customer satisfaction
(Ceschi et al. 2005; Sillitti et al. 2005). However, a drawback of agile development
is that team members are not as easily interchangeable as in waterfall-oriented
development (Baskerville et al. 2003).

Studies reported significant productivity gains of 42% (Ilieva et al. 2004), 46%
(Layman et al. 2004), and up to 337% (Benediktsson et al. 2006). The study
reporting a productivity gain (LOC/Effort) of 337% (Benediktsson et al. 2006) was
a multi-project experiment with 55 computer science students. The students applied
different models (V-Model representing traditional development, incremental and
evolutionary models, and XP). Regarding time consumption, the results show that
XP saves time on requirements, but requires more time for verification and val-
idation. In coding, no major time differences were discovered. The huge gain in
productivity was due to more code developed. However, it is important to mention
that this does not imply that the team delivered more functionality. Ilieva et al.
(2004) measured productivity for each iteration and compared the productivity of
a baseline project (characterized as heavyweight and documentation driven) with
an XP project. The productivity gains are the highest for the first two of three
iterations. However, the last iteration did not lead to gains as only bug fixing and
modifications were requested in this iteration. This required considerable effort, but
no new code was developed. Layman et al. (2004) compared two releases with each
other, one developed with traditional methods and one using XP. The results show
improvement in programmer productivity by 46%. However, as pointed out in the
study the increase on productivity can also be influenced by the gained experience
during the development of the first release. Even though the study in this paper does
not focuses on productivity, the observations in the productivity studies showed a
significant positive effect of an introduction of agile development, and hence are
reported here. With regard to quality (Layman et al. 2004) reported positive effects
of the introduction with regard to reduction in the number of defects discovered. The
number of defects pre-release (i.e. discovered defects through verification activities
conducted by the development organization) was reduced by 65% and the number
of defects post-release (i.e. discovered defects by the customer) was reduced by 35%.

Given the results of the related work it becomes apparent that benefits reported
were not identified starting from a baseline, i.e. the situation before the introduction
of agile was not clear. Hence, little is known about the effect of moving from a plan-
driven to an incremental and agile approach. Furthermore, the focus of studies has
been on eXtreme programming (XP) and the rigor of the studies was considered

660 Empir Software Eng (2010) 15:654–693

as very low (Dybå and Dingsøyr 2008). Hence, the related work strengthens the
need for further empirical studies investigating incremental and agile software
development. Furthermore, evaluating the baseline situation is important to judge
the improvements achieved through the migration. In response to the research gap
this study investigates the baseline situation to judge the effect of the migration
towards the incremental and agile approach.

3 The Plan-Driven and Agile Models at Ericsson

Before presenting the actual case study the process models that are compared with
each other have to be introduced and understood first.

3.1 Plan-Driven Approach

The plan-driven model that was used at Ericsson implemented the main char-
acteristics of plan-driven approaches as summarized by Hirsch (2005). The main
process steps were requirements engineering, design and implementation, testing,
release, and maintenance. At each step a state-gate model was used to assure the
quality of the software artifacts passed on to the next phase, i.e. software artifacts
produced have to pass through a quality door. The gathered customers’ needs
collected from the market by so-called market units were on a high abstraction
level and therefore needed to be specified in detail to be used as input to design
and development. Requirements were stored in a requirements repository. From the
repository, requirements were selected that should be implemented in a main project.
Such a project lasted from one up to two years and ended with the completion of
one major release. Quality checks related to the requirements phase were whether
the requirements have been understood, agreed on, and documented. In addition
it was determined whether the product scope adhered to the business strategy,
and whether the relevant stakeholders for the requirements were identified. The
architecture design and the implementation of the source code was subjected to a
quality check with regard to architecture evaluation and adherence to specification,
and whether the time-line and effort deviated from the targets. In the testing phase
the quality door determined whether the functional and quality requirements have
been fulfilled in the test (e.g. performance, load balancing, installation and stability).
It was also checked whether the hand-over of the product to the customer was
defined according to company guidelines. In the release phase the product was
packaged, which included programming of build instructions. They were used to
enable and disable features to be able to tailor the system to specific customer needs.
The documentation also contains whether the customer accepted the outcome, and
whether the final result was delivered meeting the time and effort restrictions.

When changes occurred in form of a change request (CR), requirements had to be
changed and thus became obsolete. Therefore, all downstream work products related
to these requirements, like design or already implemented code, had to be changed as
well. Late in the process, this led to a considerable amount of rework (Tomaszewski
2006) and prolonged lead-times. Furthermore, software development has not only to
cope with changes in needs that are valid for the whole customer base, but also with
customer specific needs. If the customer specific needs were considered as of high

Empir Software Eng (2010) 15:654–693 661

priority, a customer adaptation project was initiated which took the last available
version of the product as input. In response to these challenges Ericsson recognized
the need for a more agile and flexible process leading to the stepwise introduction of
incremental and agile practices, as described in the following subsections.

Further details on the plan-driven approach employed at Ericsson (i.e. the base-
line situation) can be found in Petersen et al. (2009).

3.2 Development Approach Using Incremental and Agile Practices

The used at Ericsson after the migration is shown in Fig. 1. The process relied on a
set of company specific practices that have been introduced. The numbers (1 to 5) in
Fig. 1 map to the enumeration of the following practices:

1. Product Backlog: The packaging of requirements for projects was driven by re-
quirement priorities. Requirements with the highest priorities were selected and
packaged to be implemented. Another criterion for the selection of requirements
was that they fit well together and thus could be implemented in one coherent
project.

2. Anatomy Plan: Furthermore, an anatomy plan was created, based on the depen-
dencies between the parts of the system being implemented in each project. The
dependencies were a result of system architecture, technical issues and require-
ments dependencies. The anatomy plan resulted in a number of baselines called
latest system versions (LSV) that needed to be developed. It also determined

R1

R2

R3

R4

R5

 Anatomy Plan

 Prioritized
Requirement Stack

Time

SP1

SP2
SP3

SP4

 Small Project Time-Line

 LSV

LSV Test LSV Test LSV Test

 Potential Release

Fig. 1 Development process

662 Empir Software Eng (2010) 15:654–693

the content of each LSV and the point in time when a LSV was supposed to
be completed. The anatomy plan captured dependencies between features (e.g.
one feature had to be ready before another one was implemented) and technical
dependencies. Technical dependencies are critical in the telecommunication
domain as platforms and communication protocols change. For example, if a
version of the software ran on one protocol version it could not be integrated
with the new protocol version. Therefore, besides the prioritization in the
product backlog the anatomy plan provided important input on the order in
which projects were run, and when increments could be integrated and tested.

3. Small Teams and Time-line: The requirements packages were implemented by
small teams in short projects lasting approximately three month. The duration of
the project determined the number of requirements selected for a requirement
package. Each project included all phases of development, from pre-study to
testing. As emphasized in the figure, when planning the order in which the
projects were executed the prioritization as well as technical dependencies on
the architecture level had to be taken into consideration. Furthermore, the figure
shows that an interaction between requirements and architecture took place.

4. Use of Latest System Version: If a project was integrated with the last baseline
of the system, a new baseline was created (referred to as LSV). Therefore, only
one baseline existed at one point in time, helping to reduce the effort for product
maintenance. The LSV can also be considered as a container where the results of
the projects (including software and documentation) are put together. When the
results of the projects had been integrated a system test took place in the LSV,
referred to as LSV test. When in time a test should be conducted was defined
by testing cycles and for each testing cycle it was defined which projects should
drop within the next cycle. Comparing the work done on team level with the work
done in the LSV one can say that on the project level the goal was to focus on the
development of the requirements packages while the LSV focused on the overall
system where the results of the projects were integrated. With the completion of
the LSV the system was ready for release.

5. Decoupling Development from Customer Release: If every release would have
been pushed on the market, there would be too many releases in use by cus-
tomers needing support. In order to avoid this, not every LSV was to be released,
but it had to be of sufficient quality to be possible to release to customers. LSVs
not released to the customer were referred to as potential releases (see practice
5 in Fig. 1). The release project in itself was responsible for making the product
commercially available and to package it in the way that the system could be
released.

The transition from the plan-driven to an incremental approach with additional
agile practices has been done stepwise. The implementation of the incremental
process formed the basis for the introduction of additional agile practices. Therefore,
it was essential to establish the practices small teams, LSV, and product backlog
together in the first step. This enabled the teams to deliver continuously from a
product backlog towards a baseline for testing (LSV). With this basic process in place
the second step could be implemented, i.e. the teams moving towards an agile way
of working through continuous reflection and improvement, and frequent face to
face interactions through stand-up meetings. Furthermore, the introduction of the
last system version optional releases were enabled. In the future Ericsson plans to

Empir Software Eng (2010) 15:654–693 663

further extend the agile way of working by introducing additional practices, such as
test driven development, requirements formulated as user stories, refactoring, low
dependency architecture.

3.3 Comparison with General Process Models

Ericsson’s process model was created based on practices applied in general incre-
mental and agile process models. To be able to generalize the results of this study, the
characteristics of the incremental and agile model used at Ericsson (C) were mapped
to the existing models of incremental and iterative development (ID), Extreme
programming (XP), and Scrum (SC). That is, if the application of a specific practice
leads to problems in the model investigated in this case study, it might also cause
problems in models applying the same principle. Table 1 (created based on the
information provided in Larman (2003) who provides a description of the general
models) shows that 4 out of 4 incremental principles are fulfilled which means that
lessons learned in this study are generalizable to ID. Furthermore, the model used at
Ericsson shares 5 out of 12 principles with XP and 6 out of 10 principles with Scrum.

Ericsson’s model realizes the principles shared with ID, XP and Scrum as follows:

– Iterations and Increments: Each new LSV was an increment of the product.
Projects were conducted in an iterative manner where a set of the projects’
increments was dropped to the LSV.

– Internal and External Releases: Software products delivered and tested in the
LSV could be potentially delivered to the market. Instead of delivering to the
market, they could also be used as an input to the next internally or externally
used increment.

– Time Boxing: Time boxing means that projects have a pre-defined duration with
a fixed deadline. In Ericsson’s model the time box was set to approximately three
month. Furthermore, the LSV cycles determined when a project had to finish and
drop its components to the LSV.

– No Change to Started Projects: If a feature was selected and the implementation
realizing the feature has been started then it was completed.

Table 1 Comparison with
general process models
(practices identified using
Larman 2003)

Principle ID XP SC C

Iterations and increments
√ √ √ √

Internal and external releases
√ √

Time boxing
√ √ √ √

No change of started projects
√ √ √

On-site customer
√ √

Frequent face-to-face interaction
√ √ √

Self-organizing teams
√ √

Empirical process
√ √

Sustainable discipline
√

Flexible product backlog
√ √ √

Fast decision making
√

Frequent integration
√ √ √

Simplicity of design
√

Refactoring
√

Team code ownership
√

664 Empir Software Eng (2010) 15:654–693

– Frequent Face-to-Face Interaction: Projects were realized in small teams sitting
together, the teams consisting of six or seven persons including the team leader.
Each team consisted of people fulfilling different roles. Furthermore, frequent
team meetings were conducted in the form of stand-up meetings as used in Scrum.

– Flexible Product Backlog: A prioritized requirements list where the highest
prioritized requirements were taken from the top and implemented first was
one of the core principles of company’s model of development. The product
backlog could be continuously re-prioritized based on market-changes allowing
for flexibility.

– Frequent Integration: Within each LSV cycle the results from different projects
were integrated and tested. As the cycles have fixed time frames frequent
integration was assured.

Overall it was visible that the model shares all principles with ID and realizes
approximately half of the XP and Scrum principles. Agile software development
literature points to why the principles used at Ericsson should increase the agility,
i.e. the ability of the company to respond to changing requirements. The main
source of agility was the prioritized requirements list, which was very similar to the
flexible product backlog in Scrum (Schwaber 2004). Hence, the development was
flexible when the needs of the customers change as the backlog was continuously re-
prioritized. Furthermore, new features were selected from the backlog continuously
and are integrated frequently, which means that one can deliver less functionality
more frequently, which provides flexibility and the opportunity for adaptive planning
(Schwaber 2004; Larman 2003; Koch 2005). This is very much in line with agile saying
that the primary measure of progress is working software and that the software
should be useful (Larman 2003). In contrast, waterfall development would define
the whole requirements list upfront and integrate the implementation in the end and
hence working software would not be produced continuously (Petersen et al. 2009).
Consequently requirements become obsolete as they are only delivered together
creating very long lead-times. The need for change in the backlog was communicated
through market units as the process was market-driven without a specific customer,
but a large number of potential customers. Requirements engineers and system
experts then discuss the change that is needed. The primary method for prioritizing
the requirements was to have a ranked list. We acknowledge that not all agile
practices of a specific model were fulfilled. However, due to the specific nature of the
development at Ericsson (market-driven with unknown customers and large-scale
products) the practitioners made the decision to select practices they considered to
be most beneficial in their specific context.

4 Case Study Design

4.1 Study Context

It is of importance to describe the context in order to aid in the generalizability of the
study results (cf. Petersen and Wohlin 2009b). Ericsson is one of the major telecom-
munication companies in the world offering products and services in this domain
including charging solutions for mobile phones, multimedia solutions and network

Empir Software Eng (2010) 15:654–693 665

Table 2 Context elements

Context element Description

Maturity All systems older than 5 years
Size Large-scale system with more than 5,000,000 LOC overall
Domain Telecommunication and multimedia solution
Market Highly dynamic and customized market
Process On the principle level incremental process with additional agile

practices
Certification ISO 9001:2000
Requirements Market-driven process, i.e. requirements were collected by market

engineering units from large customer base. Actual customers that will buy
the product are to a large extent unknown while developing.
Requirements handed over to development unit and were
available to development and implementation in form of a
prioritized backlog.

Requirements Requirements written in natural language on two abstractions,
documentation high level requirements and detailed requirements for

development teams (in both development approaches).
Requirements Requirements proprietary tool for managing requirements on

tracking product level (i.e. across projects). Requirements database is
can be searched and requirements have been tagged with
multiple attributes (e.g. source, target release)

Practices Iterations and increments, internal and external releases, time
boxing, no change of started projects, frequent face to face
interaction, product backlog, frequent integration (see Table 1)

Incremental and Stepwise implementation of incremental and agile practices
agile maturity started in 2005.

Testing practices Unit and component test (Tools: Purify, JUnit), Application
and tools and integration test verifying if components work together

(JUnit, TTCN3), LSV test verifying load and stability, load
balancing, stability and upgradability, compatibility, and
security (TTCN3). Unit tests were conducted by the persons
writing the code to be unit tested, while the LSV test is done by
testing experts.

Defect tracking Company-proprietary tool capturing where defects were found and
should have been found, status in defect analysis process, etc.

Team-size Six to seven team members.
Size of development unit Approx. 500 people in research and development.
Distribution Systems investigated were developed locally.

solutions. The company is ISO 9001:2000 certified. The development of Ericsson
is market-driven and characterized by a frequently changing market. Furthermore,
the market demands highly customized solutions (for example customizations for
specific countries). Further details regarding the context of the study are shown in
Table 2.

4.2 Research Questions and Propositions

In this study, we aimed at answering the following research questions:

– RQ1: What issues in terms of bottlenecks, unnecessary work, and rework were
perceived before and after the migration from plan-driven to incremental and agile

666 Empir Software Eng (2010) 15:654–693

practices? The first research question is the basis for further improvement of the
process models.

– RQ2: How commonly perceived are the issues (bottlenecks, unnecessary work,
and rework) for the each of the development approaches and in comparison to
each other? The second research questions aims at capturing the effect of the
change from a plan-driven to an incremental process with agile practices by
determining the change in how commonly perceived the issues were in each of
the approaches.

– RQ3: Does the quantitative performance data (requirements waste and data on
software quality) support or contradict the qualitative f indings in RQ1 or RQ2?
Collecting these measures provides quantitative measures on the actual change
in process performance at Ericsson, thus being able to serve as an additional
source of evidence as support for the qualitative analysis.

Based on the research questions, research propositions are formulated. Study
propositions point the researcher into a direction where to look for evidence in order
to answer the research questions of the case study (Yin 2002). A proposition is similar
to a hypotheses, stating what the expecting outcome of the study is. The following
propositions are made for this case study:

– Proposition 1 (related to RQ1): Dif ferent issues are mentioned by the interviewees
for the process models. Literature reports problems specific for plan-driven
and agile development (see Section 2). Thus, we assume to also find different
problems before and after the migration.

– Proposition 2 (related to RQ2 and RQ3): The qualitative and quantitative data
shows improvements when using agile and incremental practices. The agile and
incremental model used at Ericsson was specifically designed to avoid problems
that the organization was facing when using a plan-driven approach. For exam-
ple, too long durations in the requirements phase leading to a vast amount of
requirements changes prior to development. Therefore, we hypothesize that 1)
the issues raised for the incremental/agile way of working are less commonly
perceived than those raised for the plan-driven approach, and 2) there is an
improvement regarding performance measures with the introduction of the new
practices.

In order to answer the research questions and evaluate the propositions, one of
Ericsson’s development sites was selected as a case. The case and units of analysis
are described in more detail in the following section.

4.3 Case Selection and Units of Analysis

The case selection allows to gain insights into issues related to process performance
in the situation where a large scale system is developed within a frequently changing
environment. This can be used as input to identify issues that need to be addressed
in large scale development to develop a flexible process, as flexibility and short time
to market are essential requirements posed on the process in our study context.

As the process models presented earlier were used company-wide, the processes
investigated can be considered as representative for the whole development site
as well as company-wide. Within the studied system, three different subsystem
components were studied which represent the units of analysis (subsystem 1 to 3).

Empir Software Eng (2010) 15:654–693 667

Table 3 Units of analysis Language Size (LOC) No. persons

Overall system >5,000,000 –
Subsystem 1 C++ 300,000 43
Subsystem 2 C++ 850,000 53
Subsystem 3 Java 24,000 17
Apache C++ 220,000 90

A subsystem was a large system component of the overall system. Table 3 provides
information of the system complexity in lines of code (LOC) and number of persons
involved. The LOC measure only included code produced at Ericsson (i.e., third-
party frameworks and libraries are excluded). Furthermore, as a comparison to the
Ericsson systems, the size measure in LOC for the open source product Apache web
server (largest web server available) is shown as well, the LOC being counted in the
same way.

The figures show that the systems were quite large, all together more than 20
times larger than the Apache web server. To study the processes of the subsystems,
a number of people were interviewed and the measures for each subsystem were
collected. The distribution of interviewees and the data collection procedures are
explained in the following.

4.4 Data Collection Procedures

The data was collected from different sources, following the approach of trian-
gulation. The first source driving the qualitative analysis was a set of interviews.
The second source was process documentation and presentations on the progress
of introducing incremental and agile practices. The third source were performance
measures collected by Ericsson. This section explains the data collection procedures
for each source in detail.

4.4.1 Selection of Interviewees

The interviewees were selected so that the overall development life cycle were
covered, from requirements to testing and product packaging. Furthermore, each
role in the development process should be represented by at least two persons if
possible. That is, these persons fill out the role as their primary responsibility. Only
interviewees with process experience were selected. Prior to the main part of the
interview the interviewees were asked regarding their experience. We asked for the
duration the interviewees have been working at Ericsson, and the experience with
the old process model (plan-driven) and the new process model with the use of
incremental and agile practices. The experience was captured by asking for activities
that support good knowledge with regard to the process model, such as study of
documentation, discussion with colleagues, seminar and workshops, and the actual
use in one or more projects. The average duration of the interviewees working at
the studied company was 9.4 years. Only two persons interviewed worked less than
two years at Ericsson. Ten persons had at least 10 years of experience working
at Ericsson. This indicates that the interviewees had very good knowledge of the
domain and the company’s processes. They were very familiar with the old process
model with regard to all learning activities mentioned before. With regard to the

668 Empir Software Eng (2010) 15:654–693

new process model trainings have been given to the all interviewees. In addition,
the new process model was widely discussed in the corridors which supported the
spread of knowledge about it. Eighteen of the interviewees already completed at
least one project with the new development approach, for the remaining interviewees
projects using the new approach were currently ongoing, i.e. they were in a transition
phase. Overall, the result of the experience questionnaire showed good knowledge
and awareness of the processes, which was also visible in their answers.

The selection process of interviewees was done using the following steps:

1. A complete list of people available for each subsystem was provided by manage-
ment, not including newly employed personal not familiar with the processes.

2. At least two persons from each role were randomly selected from the list. The
more persons were available for one role the more persons were selected.

3. The selected interviewees received an e-mail explaining why they had been
selected for the study. Furthermore, the mail contained information of the
purpose of the study and an invitation for the interview. Overall, 44 persons had
been contacted of which 33 accepted the invitation.

The distribution of people between different primary responsibilities and the
three subsystems (S1–S3) is shown in Table 4. The roles are divided into Require-
ments, Project Management, Implementation, Quality Assurance, and Life Cycle
Management.

– Requirements: This group is concerned with the decision of what to develop and
includes people from strategic product management, technical managers and
system managers. Their responsibility is to document high-level requirements
and detailing them for design and development. Roles involved in this group are
product managers and system managers specifying detailed requirements.

– Project Planning: People in this group plan the time-line of software develop-
ment from both technical and project management perspectives. This includes
system managers being aware of the anatomy plan, as well as line and project
managers who have to commit resources.

– Implementation: Here, the architecture is defined and the actual implementation
of the system takes place. Developers writing code also unit test their code.

– Quality Assurance: Quality assurance is responsible for testing the software and
reviewing documentation. This group primarily contains expert testers having
responsibility for the LSV.

– Life Cycle Management: This includes all activities supporting the overall devel-
opment process, like configuration management, maintenance and support, and
packaging and making the product available on the market.

Table 4 Distribution of
interviewees between primary
responsibilities and units of
analysis

S1 S2 S3 Total

Requirements 2 1 1 4
Project planning 3 2 1 6
Implementation 3 2 1 6
Quality assurance 4 3 – 7
Life cycle management 6 4 – 10
Total 18 12 3 33

Empir Software Eng (2010) 15:654–693 669

4.4.2 Interview Design

The design of the interview consisted of five parts, the duration of the interviews was
one hour. In the first part of the interview, an introduction of the study’s goals was
provided. Furthermore, the interviewees were informed why they had been selected
for the interview. It was also made clear that they were selected randomly from
a list of people, and that everything they say would be treated confidentially. In
the second part, the interviewees were asked for their experience and background
regarding work at Ericsson in general, and experience with the plan-driven and
incremental/agile development approaches in particular. Therefore, the interviewees
filled in a questionnaire rating their experience with the two process models. There-
after, the actual issues were collected through a semi-structured interview, asking for
issues that could be characterized as bottlenecks, avoidable rework and unnecessary
work (for descriptions see Table 5). Asking for those areas stimulated the discussion
by helping the interviewee to look at issues from different perspectives and thus
allowing to collect many relevant issues. We asked for issues regarding the plan-
driven approach and the approach with incremental and agile practices.

The interviewees should always state the cause of the issue and where the
symptoms of the issue became visible in the process. During the course of the
interview, follow-up questions were asked when interesting issues surfaces during the
course of the interview. All interviews were recorded and transcribed. The interview
protocol can be found in Appendix A.

4.4.3 Process Documentation

Ericsson provided process documentation to their employees, as well as presenta-
tions on the process for training purposes. This documentation was used to facilitate
a good understanding of the process in the organization (see Section 3). Furthermore,
presentations given at meetings were collected which showed the progress and first
results of the introduction of incremental and agile practices from the management
perspective. In addition to that, the documentation provided information of prob-
lems with plan-driven development, which led Ericsson to the decision of migrating.
Overall the documentation served two main purposes: (1) Help the interviewer to
gain an initial understanding of how the processes work prior to the interview. In
addition, the interviewer needed to become familiar with the terminology used at

Table 5 Questions for issue elicitation

Area Description

Bottlenecks Bottlenecks are single components hindering the performance of the
overall development process. A cause for a bottleneck is the low
capacity offered by the component (Anderson 2003).

Unnecessary work We understand unnecessary work as activities that do not contribute to the
creation of customer value. In lean development, this is referred to as
producing waste (Anderson 2003; Poppendieck and Poppendieck 2003).

Avoidable rework Rework can be avoided when doing things completely, consistently and
correctly (Fairley and Willshire 2005). For example, having the right
test strategy to discover faults as early as possible (Damm et al. 2006;
Damm and Lundberg 2007).

670 Empir Software Eng (2010) 15:654–693

Ericsson, which was also well supported by documentation; (2) To extract context
information relevant for this study.

4.4.4 Performance Measures

Ericsson collected a number of performance measures on their development
processes and projects. The performance measures were identified at the company to
provide an indication of performance changes after introducing the incremental and
agile practices. The measurements were selected based on availability and usefulness
for this study.

– Requirements waste and change requests: Requirements waste means that re-
quirements are elicited, documented and verified, but they are not implemented.
The analysis focused on the ratio of implemented requirements in comparison to
wasted requirements. Furthermore, the change requests per requirement were
analyzed. Requirements waste and change requests indicate whether Ericsson in-
creases its ability to develop requirements in a timely manner after the customer
need was raised. If there are fewer change requests and less discarded require-
ments then this is an indicator for that the current market needs are fulfilled in
a better way. The information for waste and change requests was attributed to
the plan-driven and incremental development model through releases, i.e. it was
known which releases used the purely plan-driven process, and which releases
used the new incremental process with additional agile practices.

– Quality Data: The change in software quality was analyzed through fault-slip
through and maintenance effort. Fault-slip-through Damm et al. (2006) shows
how many faults were identified in the LSV which should have been found
earlier. In order to be able to measure the fault-slip-through a testing strategy has
to be developed. The strategy needs to document which type of fault should be
detected in a specific phase (e.g. performance related issues should be detected
in system test, buffer overflows should be detected in unit testing and static code
analysis, etc.) and when they were actually detected. That way one can determine
how many faults should have been detected before a specific quality assurance
phase. In this case study the quality of basic test and function test conducted
before integration and system test was measured. For example, a fault-slip of x%
in the system testing phase means that x% of all faults discovered in this phase
should have been found in earlier phases (e.g. function testing). The data source
for the fault-slip through measurements was the defect tracking system employed
at the company, which was introduced in Table 2. The maintenance effort was a
an indicator of the overall quality of the product released on the market. Quality
data was considered as quality is an important aspect of the market Ericsson
operates in. For telecommunication operators performance and availability are
particularly important quality characteristics.

4.5 Data Analysis

The data analysis was done in six different steps, as shown in Fig. 2. The first four
activities led to a set of issues related to process performance in both development
approaches. The first author transcribed all interviews resulting in more than 30

Empir Software Eng (2010) 15:654–693 671

Fig. 2 Data analysis process
for qualitative data

Determine

Steps to
Identify
Factors

Factor
Importance

Factor
Validation

Identify
Support for

Factors

Review of
Factors in

Workshops

Mapping of
Factors

Clustering of
Raw Data

(Mindmap

Derivation of
Factors from

Raw Data

Factors)

Factor
Summary

and
Comparison

hours of interview data. Thereafter, the author conducted the first four steps over
a three month period based on the transcriptions.

1. Clustering of Raw Data: The statements from each interviewee were mapped to
process phases, the role of the interviewee, and the process model they refer
to (i.e. either plan-driven or incremental/agile development). The information
was maintained using a matrix. For each statement the identity-number of the
interviewee was documented as well to assure traceability.

2. Derivation of Issues from Raw Data: As the raw data contained detailed ex-
planations using company specific terminology the data was summarized and
reformulated by deriving issues from the clustered data. Each issue was shortly
described in one or two sentences. The result was a quite high number of issues
in each group, as the issues were on different abstraction levels.

3. Mapping of Issues: The issues were grouped based on their relation to each
other, and their abstraction level. For example, issues that negatively affect the
coverage of the system by test cases were grouped within one branch called “low
test coverage”. The grouping was documented in the form of a mind map. Issues
with higher abstraction level were closer to the center of the mind map than
issues with lower abstraction level.

4. Issue Summary and Comparison: The issues on the highest abstraction level were
summarized in the form of short statements and used for further analysis (as
presented in the Sections 5 and 6).

An example of the analysis steps is illustrated in Appendix B.
Furthermore, the last two activities were concerned with validating the list of

issues and determining the importance of the issues within the organization.

5. Validation of Issues: The fifth step was the validation of the derived issues. The
authors and three representatives from Ericsson participated in a workshop to
review the issues. All representatives from Ericsson had an in-depth knowledge

672 Empir Software Eng (2010) 15:654–693

of both process models. The validation was done by randomly selecting issues
and each of the representatives of Ericsson reviewed the steps of issue derivation
outlined before. There was no disagreement on the interpretation of the raw data
and the issues derived. Furthermore, all participants of the workshop reviewed
the final list of issues, only having small improvement suggestions on how to
formulate the issues. That is, the list of issues could be considered of high
quality.

6. Weight of Issues: The sixth step aimed at identifying the most commonly
perceived issues with regard to the approaches (plan-driven and incremental/
agile). As we asked the interviewees to state three bottlenecks/ unnecessary
works/ reworks for each of the models we were able to determine which issues
mentioned were most commonly perceived. For example, if an interviewee
identified an issue as critical for plan-driven, but not for the approach using
incremental and agile practices, this is an indication for an improvement of the
issue. We explicitly asked the interviewees for the situation before and after the
migration, and used follow-up questions whenever it was unclear whether an
issue was only considered important for one of the process models. In order to
determine which issues were the most common, the data was first divided into
global and local issues. The division in global and local issues was defined as
follows:

– Global Issues: Global issues were stated by interviewees representing more
than one role and representing more than one subsystem component (i.e.,
they were spread across the units of analysis).

– Local Issues: Local issues were stated by one or several interviewees repre-
senting one role or one subsystem component.

To systematize the global issues, four different subgroups were defined. The
main objective of the grouping was to structure the responses based on the
number of interviewees mentioning each issue. It was hence a way of assigning
some weight to each issue based on the responses. The following four subgroups
were defined:

– General Issues: More than 1/3 of the interviewees mentioned the issue.
– Very Common Issues: More than 1/5 of the interviewees mentioned the issue.
– Common Issues: More than 1/10 of the interviewees mentioned the issue.
– Other Issues: Less than 1/10 of the interviewees mentioned the issue, but it

was still mentioned by more than one person representing different roles or
different subsystem components.

In addition to that, the interviewees explicitly talked about inferences with
regard to improvements that they have recognized after introducing incremental
and agile practices. The improvements were grouped into commonly perceived
and observation. One should observe that the threshold for commonly perceived
improvements was much lower compared to the above thresholds, and fewer
groups were formulated. This was due to that we did not explicitly ask for
the improvements as the interviews focused on issues determining how the
commonality of issues changed after migration. However, in several cases the
interviewee also talked about the actual differences between the situation before
and after the migration and hence the improvements perceived when moving

Empir Software Eng (2010) 15:654–693 673

from a plan-driven approach to the use of incremental and agile practices. Thus,
the improvements perceived were only divided into two groups:

– Commonly perceived: More than 1/10 of the interviewees representing more
than one subsystem component mentioned the issue.

– Observation: Less than 1/10 of the interviewees mentioned the issue.

It should be observed that local issues also could be of high importance. However,
they may be perceived as local since the issue is not visible outside a certain phase,
although major problems inside a phase were communicated to others. Thus, it is
believed that the main issues influencing process performance are captured in the
global issues.

4.6 Threats to Validity

Research based on empirical studies does have threats, and hence so does the case
study in this paper. However, the success of an empirical study is to a large extent
based on early identification of threats and hence allowing for actions to be taken to
mitigate or at least minimize the threats to the findings. Threats to case studies can
be found in for example (Yin 2002), and threats in a software engineering context is
discussed in for example (Wohlin et al. 2000). The threats to validity can be divided
into four types: construct validity, internal validity, external validity and reliability
(or conclusion validity). Construct validity is concerned with obtaining the right
measures for the concept being studies. Internal validity is primarily for explanatory
and causal studies, where the objective is to establish a causal relationship. External
validity is about generalizability to determine to which context the findings in a study
can be generalized. Finally, reliability is concerned with repetition or replication, and
in particular that the same result would be found if re-doing the study in the same
setting.

4.6.1 Construct Validity

The following threats were identified and the corresponding actions were taken:

– Selection of people: The results are highly dependent on the people being
interviewed. To obtain the best possible sample, the selection of people was done
by people having worked at Ericsson for a long time and hence knowing people
in the organization very well.

– Reactive bias: There is a risk that the presence of a researcher influences the
outcome. This is not perceived as a large risk given a long term collaboration
between Ericsson and the university. Furthermore, the main author is also
employed at Ericsson and not viewed as an external researcher. However, as the
new model was strongly supported by management the interviews are likely to be
biased towards the new model to reflect the political drift. In order to reduce this
threat, the interviewees were informed that they had been randomly selected.
Furthermore, anonymity of the individuals’ responses was guaranteed.

– Correct data interview: The questions of the interviewer may be misunderstood
or the data may be misinterpreted. To avoid this threat, several actions have
been taken. First of all, pre-tests were conducted regarding the interviews to
ensure a correct interpretation of the questions. Furthermore, all interviews were

674 Empir Software Eng (2010) 15:654–693

taped allowing the researcher to listen to the interview again if some parts were
misunderstood or unclear.

– Correct data measurements: The data sources for requirements waste, faults,
and maintenance effort were summarized by Ericsson and the process of data
collection and the data sources were not made available to the researchers.
In consequence, there is a validity threat regarding potential problems of the
rigor of the data collection. In addition, the interpretation of the data is limited
due to the high abstraction of the measurements. Hence, the data can only be
used as an additional data source for triangulation purposes in order to support
the (main) qualitative findings, but not to make inferences such as to which
quantified improvement is possible due to the introduction of incremental and
agile practices.

4.6.2 Internal Validity

– Confounding factors inf luencing measurements: There is a risk that changes in
the performance measurements reported are not solely due to the employment
of incremental and agile practices, but also due to confounding factors. As
the studied company is a complex organization we were not able to rule out
confounding factors as an influence on the measurement outcome. In addition
one person involved in reporting the measurements were asked about possible
confounding factors, such as major difference in the products, or a change in
personnel. The response was that the products compared had similar complexity
and that the products were developed by the same work-force. The person
believed that changes in the measurements can, at least partly, be attributed to
the migration. However, it is important to point out that the main outcome of the
study is the qualitative data from the interviews and that the quantitative data
was consulted as an additional data-source to identify whether the quantitative
data contradicts the qualitative data, which was not the case.

– Ability to make inferences about improvements (qualitative data): Another threat
to internal validity is that the instrument and analysis did not capture the change
due to the migration. However, this threat was reduced by explicitly asking
for the situation before and after the migration. In addition, the interviewer
asked follow-up questions whenever it was unclear whether an issue was only
considered important for one of the process models by the interviewee, or
whether the issue was equally relevant to both development approaches. Hence,
this threat to validity is considered being under control.

4.6.3 External Validity

– Process models: It is impossible to collect data for a general process, i.e., as
described in the literature. Both the plan-driven and the new approach using
incremental and agile practices were adaptations of general processes presented
in the literature. This is obvious when it comes to the incremental and agile
practices, but it is the same for the plan-driven model. It is after all a specific
instantiation of the generally described plan-driven model. The incremental
and agile approach is a little more complicated in the mapping to the general
process models since it was inspired by two different approaches: incremental
development and agile development. To ensure that the findings are not only

Empir Software Eng (2010) 15:654–693 675

relevant for these instantiations, care has been taken to carefully describe the
context of the study. Furthermore, Table 1 illustrates which practices from the
general process models have been employed at Ericsson. As the instantiated
model and the general process models share practices lessens learned in this
study are of relevance for the general process models as well.

– A specif ic company: A potential threat is of course that the actual case study
has been conducted within one company. It has been impossible to conduct a
similar study at another company. This type of in-depth study requires a lot of
effort and that the research is embedded into the organization, which has made
it impossible to approach more than one company. To minimize the influence of
the study being conducted at one company, the objective is to map the findings
from Ericsson specific processes and issues to general processes and higher level
issues. This allows others to learn from the findings and to understand how the
results map to another specific context.

4.6.4 Reliability

– Interpretation of data: There is always a risk that the outcome of the study is
affected by the interpretation of the researcher. To mitigate this threat, the study
has been designed so that data is collected from different sources, i.e., to conduct
triangulation to ensure the correctness of the findings. Another risk is that the
interpretation of the data is not traceable and very much depended on the
researcher conducting the analysis. To reduce the risk a workshop was conducted
with both authors of the paper and three company representatives being present
(see fifth step in the analysis process presented in Section 4.5). In the workshop
the steps of the researcher were repeated on a number of issues in order to
identify potential problems in the analysis steps and interpretations. The practi-
tioners as well as the authors of the paper agreed on the interpretation of the raw
data. Hence, the threat to the interpretation of data is considered under control.

4.6.5 Summary

In summary, the case study has been designed according to guidelines and tactics
provided in Yin (2002). Measures have been taken whenever possible to mitigate
the risks identified in the design. The objective has been to always work in two
dimensions: situation specific and general models. The former will in particular be
used when continuing the improvement work at Ericsson, where the findings will
drive the further improvement work. This is very much the industry view. The latter
represents more of an academic view where the intention has been to understand the
issues inhibiting process performance in different process models.

5 Qualitative Data Analysis

Section 4 explains the classification of issues into general and local. In total 64 issues
were identified of which 24 were of general nature and the remaining 40 were local
problems relating to experiences of individuals or specific subsystems. We focused
the detailed qualitative analysis on issues that received high weights in terms of
number of responses for each issue. That gave 13 issues for the detailed analysis

676 Empir Software Eng (2010) 15:654–693

of which 2 were considered general, 3 were considered very common and 8 were
considered common. An overview of the issues is provided in Table 6. In the column
“Classification” we stated the number of interviewees and the number of systems for
each issue in the brackets.

Commonly perceived improvements are shown in Table 7. The table shows the ID,
commonality, process model (either plan-driven = PD or incremental/agile = IA),
and a description of the issue. The improvements explain why specific issues were not
that important anymore when using the incremental and agile practices introduced
at Ericsson. The general issue F01, for example, was mitigated by improvements
in requirements engineering (e.g., I02 and I03). A number of improvements on
verification were also identified (I04 and I05), which reduced the effect of issue F03
and F04. That is, the introduction of the new practices enabled early testing and

Table 6 Classification of identified issues

ID Classification Model Process area Description

F01 General (12/3) PD Requirements Requirements work was wasted
as documented and validated
requirements had to be discarded
or reworked.

F02 General (13/2) PD Verification Reduction of test coverage due to
limited testing time in the end.

F03 Very common PD Verification Amount of faults found increased
(10/2) with late testing.

F04 Very common PD Verification Faults found late in the process
(7/3) were hard and expensive to fix.

F05 Very common IA Verification LSV cycle times may extend
(7/2) lead-time for package deliveries

as if a package was not ready
or rejected by testing it had to
wait for the next cycle.

F06 Common (6/3) PD Requirements Too much documentation was
produced in requirements
engineering that was not used
in later stages of the process.

F07 Common (6/3) PD Design Design had free capacity due to
long requirements engineering
lead times.

F08 Common (4/3) PD Design Confusion on who implemented
which version of the requirements.

F09 Common (4/2) PD Maintenance High number of corrections for
faults reported by customers
were released.

F10 Common (4/2) PD Project mgt. Specialized competence focus and
lack of confidence.

F11 Common (4/3) IA Verification Low test coverage.
F12 Common (4/2) IA Release Release was involved too late in

the development process.
F13 Common (4/2) IA Project mgt. Management overhead due to a

high number of teams requiring
much coordination and
communication.

Empir Software Eng (2010) 15:654–693 677

Table 7 Commonly perceived improvements

ID Process area Description

I01 Requirements More stable requirements led to less rework.
I02 Requirements Everything that was started was implemented.
I03 Requirements Estimations were more precise.
I04 Verification Early fault detection and feedback from test.
I05 Verification The lead-time for testing was reduced.
I06 Project Mgt. Moving people together reduced the amount of documentation

that was not reused due to direct communication.

regular feedback to developers. Furthermore, improvement I06 positively influenced
the number of documentation which was raised as an important issue (F06). Overall,
the tables indicate that the mentioned improvements were in-line with the clas-
sification of issues related to process performance. In the following subsections a
detailed description of issues and improvements is provided.

5.1 General Issues

The most general issues were related to plan-driven development, one being related
to the requirements phase and one to the testing phase.

F01 Requirements change and rework: All requirements had to be ready before
the next phase starts. That means, when developing a highly complex system
the requirements gathering, specification and validation took a very long time.
Furthermore, it was hard to estimate the resources needed for a complex
system resulting in a too big scope. As interviewees pointed out “the problem
is that the capacity of the project is only that and that means that we need
to get all the requirements, discuss them, take them down, look at them and
then f it the people and the time frame that we will usually be given. And this
negotiation time that was the part that took so long time. It was always and
often frustrating.” Another interviewee added that “there is always a lot of
meetings and discussions and goes back and forth and nobody is putting the
foot down.” The long lead times of requirements engineering have negative
consequences. The market tended to change significantly in the considered
domain. In consequence, a high amount of requirements gathered became
obsolete or changed drastically which led to wasted effort as the discarded
requirements had been negotiated and validated before or requirements had
to be reworked. Requirements changes were caused by a lack of customer
communication (i.e., the customer was far away from the point of view of
the developers or system managers). In addition, misunderstandings were
more likely to happen, which result in changed requirements. Regarding the
reasons for inflexibility one interviewee added that “in the old model (plan-
driven) because its very strict to these tollgates (quality doors) and so on and the
requirement handling can be very complex because the process almost requires
to have all the requirements clearly def ined in the beginning and you should not
change them during the way, its not very f lexible.”

F02 Reduction of test coverage due to limited testing time in the end: Test coverage
in the plan-driven approach was low for multiple reasons. Testing was done

678 Empir Software Eng (2010) 15:654–693

late in the project and thus if there were delays before in development testing
had to be compromised as it was one of the last steps in development. As one
interviewee put it testing “takes a long time to get the requirements specif ication,
all the pre-phases, analysis and so on takes a lot of time, design starts too late
and also takes a lot of time, and then there is no time for testing in the end”.
Furthermore, too much had to be tested at once after the overall system had
been implemented. Due to the complexity of the overall system to verify in the
end, testers focused on the same parts of the system twice due to coordination
problems instead of covering different parts of the system.

5.2 Very Common Issues

Two important issues were identified in the plan-driven development (F03, F04):

F03 Amount of faults found increases with late testing: With late testing one does not
know the quality of the system until shortly before release. As testing was not
done continuously faults made in the beginning of the implementation were
still in the software product. Another issue that increased the number of faults
was limited communication between implementation and test. That is, testing
started verifying unfinished components of the system which led to a high
number of false positives as they did not know the status of the components.

F04 Faults found late in the process were hard and expensive to f ix: Late testing
resulted in faults hard to fix, which was especially true for faults rooted
in the architecture of the system. Changes to the architecture had a major
impact on the overall system and required considerable effort. One interviewee
reported from experience that “the risk when you start late is that you f ind
serious problems late in the project phases, and that have occurred a couple of
times always causing a lot of problems. Usually the problems I f ind are not
the problems you f ix in an afternoon, because they can be deep architectural
problems, overall capacity problems and stuf f like that which is sometimes very
hard to f ix. So I have always lobbied for having time for a pre-test even if not all
the functionality is there.”

Issue F05 is related to testing in the new approach using incremental and agile
practices:

F05 LSV cycle times may extend lead-time for package deliveries as if a package
is not ready or rejected by testing it had to wait for the next cycle: The lead-
time of testing was not optimized yet which extended the overall lead time
of the development process. An LSV was separated in cycles. Within one
cycle (time-window with a fixed end-date) the projects needed to drop their
completed component to the LSV. The LSV cycles (4 weeks) did not match
with the target dates of the availability of the product on the market. That
is, coordination between selling the product and developing the product was
complicated. The LSV concept also required a component to wait for another
complete LSV cycle if not delivered within the cycle it was supposed to be
delivered. Furthermore, if a package was rejected from the LSV due to quality
problems and could not be fixed and retested in time, it also had to wait for the
next cycle.

Empir Software Eng (2010) 15:654–693 679

5.3 Common Issues

The following important issues are related to plan-driven development:

F06 Documentation produced was not used: The interviewees emphasized that
quite a high number of documentation was produced in the requirements
phase, one interviewee added that “it (documentation) takes much ef fort
because it is not only that documents should be written, it should be reviewed,
then there should be a review protocol and a second round around the table.”
One of the reasons mentioned was bad reuse of documentation, which was
pointed out by another interviewee saying that “even though documentation
might be good for the quality it might not be good overall because much of
the documentation will not be reused or used at all.” Hence, the review of
requirements documents required a too high amount of documentation and
complex checklists.

F07 Design had free capacity due to long requirements engineering lead times:
The requirements lead-time in plan-driven development were quite long. The
reasons being that requirements had to be specified in too much detail, decision
making took a long time, or requirements resources were tied up because of
a too big scope. This had a negative impact on the utilization of personnel.
One interviewee nicely summarized the issue saying that “the whole waterfall
principle is not suited for such large projects with so many people involved
because half the workforce ends up working for the rest, and I guess thatŠs why
the projects were so long. Because you start of f with months of requirements
handling and during that time you have a number of developers more or less
doing nothing.”

F08 Confusion on who implements which version of the requirements: From a design
perspective, it was not always clear which version of the requirements should
be implemented and by whom. The cause of this problem was that work
often started on unfinished or unapproved requirements which had not been
properly base-lined.

F09 High number of corrections for faults reported by customers were released:
Support was required to release a high number of corrections on already
released software. This was due to the overall length of the plan-driven projects
resulting in very long release cycles. In consequence, the customers could not
wait for the corrections to be fixed for the next release, making corrections a
time-pressing issue.

F10 Specialized competence focus and lack of conf idence: The competence focus
of people in plan-driven development was narrowed, but specialized. This was
due to that people were clearly separated in their phases and disciplines, and
that knowledge was not well spread among them. Interesting was that not
only the specific competence focus was recognized as an issue, but also the
focus on confidence. One interviewee described the relevance of confidence
by saying “It is not only competence, it is also conf idence. Because you can be
very competent, but you are not conf ident you will not put your f inger down
and say this is the way we are going to do it, you might say it could be done
in this way, or in this way, or also in these two ways. This will not create a
productive way of working. Competence is one thing, conf idence is the other one
required.”

680 Empir Software Eng (2010) 15:654–693

Important issues in the use of incremental and agile practices are:

F11 Low test coverage: The reasons for low test coverage changed with the intro-
duction of the new practices and were mainly related to the LSV concept.
Quality testing takes too much time on the LSV level, the reason being that
there was a lack of powerful hardware available to developers to do quality
testing earlier. In consequence, there was a higher risk of finding faults late.
Furthermore, the interviewees had worries on the length of the projects as it
would be hard to squeeze everything into a three month project (including
developing configurations and business logic, testing etc.). In addition to that
test coverage was influenced negatively by a lack of independent verification
and validation. That is, developers and testers in one team were influencing
each other what to test. In consequence, the testing scope was reduced.

F12 Release personnel was involved too late in the development process: This means
that release personnel got the information required for packaging the product
after requirements, implementation and testing were finished. In consequence,
the scope of the product was not known to release and came as a surprise.
With regard to this observation one interviewee stated that “In release we
are supposed to combine everything and send it to the market, we were never
involved in the beginning. We can have problems with delivering everything
that we could have foreseen if we were involved early.” Furthermore, the
requirements were not written from a sales perspective, but mainly from a
technical perspective. This made it harder for release to create a product that
is appealing to the customer. During the interviews it was explicitly mentioned
that this situation has not changed with the migration.

F13 Management overhead due to a high number of teams requiring much coordi-
nation and communication: Many small projects working toward the same goal
required much coordination and management effort. This included planning of
the technical structure and matching it against a time-line for project planning.
Thus, project managers had much more responsibility in the new development
approach. Furthermore, there was one more level of management (more team
leaders) required for the coordination of the small teams. The interviewees
also had worries that the added level of management had problems to agree
on overall product behavior (hardware, application, performance, overall
capacity) which delayed decision making. Thus, decisions were not taken when
they were needed.

5.4 Comparison of Issues

Table 6 clearly shows that a majority of general problems was related to plan-driven
development. Furthermore, only one issue raised for the situation with incremental
and agile practices was considered very common (none was general), while four
issues for the plan-driven approach were considered general or very common. It is
hence clear that the change was perceived as having addressed some of the main
issues raised for the plan-driven approach. Having said this, it does not mean that the
new development approach is unproblematic. However, the problems are at least not
perceived as commonly as for plan-driven development. Furthermore, the problem
related to test coverage was still perceived as present, but the severity and nature of

Empir Software Eng (2010) 15:654–693 681

the issue has changed for the better. Additional detail on improvements and open
issues based on the comparison is provided in Section 7.

5.5 Commonly Perceived Improvements

The following improvements due to the introduction of incremental and agile
development practices were mentioned by the interviewees:

I01 More stable requirements led to less rework and changes: Requirements were
more stable as requirements coming into the project could be designed fast
due to that they were implemented in small coherent packages and projects.
That is, the time window was much smaller and the requirements were thus
not subjected to change to the same degree. Furthermore, the flexibility was
higher in terms of how to specify the requirements. For example, requirements
with very low priorities did not need to be specified in detail. If requirements
are just seen as the whole scope of the system, this distinction is not made (as is
the case in plan-driven development). Also, the communication and interaction
between design and requirements improved, allowing clarifying things and thus
implementing them correctly. This communication was improved, but not to
the degree as the communication between design and implementation had
been improved (see issues for test/ design). One interviewee summarized the
increased flexibility by saying that “within the new ways of working its easier to
steer around changes and problems if you notice something is wrong, its much
easier to change the scope and if you have change requests on a requirement, I
think its more easy.”

I02 Everything that is started is implemented: If a requirement was prioritized it
was implemented, the time of implementation depending on the position of the
requirement in the priority list. As one interviewee (requirements engineer)
reported, before a large part of all requirements engineering work was waste,
while now only approximately 10% of the work is wasted. In partuclar, the new
situation allows to complete tasks continuously with not being so dependend on
others to be ready, which was explained by one interviewee saying that “when
you talk about the waterfall you always end up in a situation where everybody
had to be ready before you continue with next task, but with the new method
what we see is that one activity is done, they can pick the next to do, they are not
supposed to do anything else.”

I03 Estimations are more precise: The effort can be estimated in a better way as
there were less requirements coming into the project, and the requirements
were more specific. Furthermore, the use of incremental and agile practices
contributed to more realistic estimations. With the plan-driven approach the
deadlines and effort estimates were unrealistic when being compared to the
requirements scope. When only estimating a part of the prioritized list (highest
priority requirements first), then the estimations became much more realistic.

I04 Early fault detection and feedback from test: Problems could be traced and
identified much easier as one component was rejected back to the project if
a problem occurs. The ability to reject an increment back to a development
team has advantages as pointed out by an interviewee stating the following:
“I know that it will be tougher for the design units to deliver the software to
testing in incremental and agile development than it was in waterfall because if

682 Empir Software Eng (2010) 15:654–693

they (design and implementation) don’t have the proper quality it (the increment)
will be rejected back to the design organization. This is good as it will put more
pressure on the design organization. It will be more visible, you can always say it
does not work, we can not take that. It will be more visible to people outside
(management).” Besides that, there was better focus on parts of the system
and feedback was provided much earlier. Furthermore, the understanding of
testing priorities was improved due to the explicit prioritization of features in
requirements engineering. These benefits were summarized by an interviewee
who pointed out that “testing is done on smaller areas, providing better focus.
Everything will improve because of the improved focus on feature level and the
improved focus of being able to come through an LSV cycle. We will catch
the need for rework earlier. The feedback loop will be shorter.” With that the
interviewee already points to the improvement in lead-time (I05).

I05 The lead-time for testing is reduced: Time of testers was used more efficiently
as in small teams, it was easier to oversee who does what. That is, different
people in a team did not do the same things twice anymore. Furthermore,
parallelization was possible as designers were located close to testers who could
do instant testing when some part of the subsystem had been finished.

I06 Moving people together reduced the amount of documentation: People worked
in cross-functional and small teams. As the teams were cross-functional less
documentation was required as it was replaced with direct communication.
That is, no handover items were required anymore as input from previous
phases because people were more involved in several phases now. The per-
ceived improvement with regard to communication was pointed out by one
interviewee saying that “now we are working in small teams with 6 people,
something like that. It is pretty much easier to communicate, we have these
daily meetings. Each one knows what the other one days just this day. The next
day we have a follow up meeting, this was done yesterday and I will proceed
it today. Might take a while to have those meetings because you have it each
day, but it is 15 minutes that is still very useful.”. Another interviewee talked
about walls being broken down between the design/implementation and testing
organization saying ”We have a better way of working between test and design
and they are working side by side so to say. We could do it even better and we
work side by side and take small steps. We look at what we test, we look at what
part we could start function test on and then we implement it. This wall is totally
broken now between our test and design organization.”

6 Quantitative Data Analysis

An overview of the quantitative data is used to confirm or contradict the findings of
the qualitative analysis. This section just presents the data, its implications together
with the qualitative results are discussed in Section 7.

6.1 Requirements Waste

Requirements are considered waste if they have been elicited, documented and
reviewed, but are not implemented. The absolute number and ratio of the number

Empir Software Eng (2010) 15:654–693 683

1856; 74%

649; 26%

73; 4%

1614; 96%

Implemented
Waste

Fig. 3 Requirements waste–plan-driven (left) vs. incremental and agile practices (right)

of requirements that were implemented and discarded are shown in Fig. 3. The data
includes two products as well as two generations of an additional product developed
at the studied development site.

Furthermore, the number of change requests per requirement decreased for the
same products. Change requests require adjustments and extensions to the require-
ments. After introducing incremental and agile practices, the number of change
requests per requirement decreased from 0.076 to 0.043. Thus, the requirements
became more stable.

6.2 Software Quality

Table 8 shows the fault-slip-through before and after the introduction of agile
and incremental practices. The system testing phase of plan-driven development
is comparable to the test on the LSV level in the new development approach. As
mentioned earlier, the fault-slip shows how many faults have been discovered in a
specific phase that should have been found earlier. In this case, in total 30 faults
should have been found before system test, and 20 faults should have been found
in before LSV testing. Comparing this with the overall amount of faults considered,
then 31% of faults slipped through earlier testing phases in plan-driven development,
and only 19% in the new development model.

Therefore, the data is an indication that the testing efficiency of functional testing
of the packages before delivered to the LSV and basic unit testing by programmers
has been improved.

Figure 4 shows the maintenance effort for products on the market. The mainte-
nance effort includes costs related to fixing faults that have been found and reported
by the customers. Thus, those faults should have been found earlier in testing.
The figure shows that the maintenance costs were constantly increasing when new
products were released on the market. Projecting the increase of costs in previous

Table 8 Fault slip before
system test / LSV

Test Number of faults Slippage (%)

System test (plan-driven) 30 31
LSV (incremental and agile) 20 19

684 Empir Software Eng (2010) 15:654–693

C
o

st
 (

in
 %

)

2002 2003 2004 2005 2006 2007 2008

Year

Maintenace Cost (Baseline)

Maintenance Cost Actual

Fig. 4 Maintenance effort

years into the future (dashed line showing the maintenance cost baseline) the costs
would be 40% higher than in the year 2005.

After introducing incremental and agile practices the actual cost (bold line) still
increased, but the slope of the curve was much smaller. In 2006, after the introduction
of incremental and agile practices has been further progressed a slight decrease in
maintenance cost is visible. Thus, this is an indication of improved quality assurance
which was visible in the fault-slip-through, but is also an indication for improvements
in the actual system testing.

7 Discussion

The discussion draws together the results from the qualitative and quantitative
analysis. It is divided in two parts, namely improvement areas and open issues. Open
issues are problems that still have to be addressed after the migration.

7.1 Improvement Areas

Release frequency The qualitative data showed that a higher release frequency is
possible due to building the product in increments using the LSV concept. However,
there is no conclusive evidence that the overall productivity of the development
has increased. That is, the same workforce does not produce the same amount of
software artifacts in shorter time than before. Instead, Ericsson is able to deliver
functionality more frequently which benefits the organization. Frequent releases
lead to earlier return on investments. In plan-driven development, a large up-front
investment is required which starts paying off when the overall development has been
completed.

Empir Software Eng (2010) 15:654–693 685

Reduction in waste A clear improvement can be seen in the reduction of waste,
shown in the qualitative analysis which is supported by the quantitative analysis.
Furthermore, the number of change requests have been reduced which is an indicator
for that the requirements are a better reflection of the customers’ needs than with
the plan-driven model. The benefits of this are also explicitly mentioned in the
qualitative data (see I01 in Section 5). Overall, improvements related to waste in
requirements can be considered essential as this type of waste has been identified as
one of the most crucial problems in plan-driven development (see F01 in Section 5).
A good reflection of the needs of the users in the requirements is also essential to
make sense of the improvement that everything that is started is implemented (see
I03 in Section 5). If the requirements would not be reflected in the current needs,
this implementation could be considered waste, even though it has been identified as
an improvement. Finally, the reduced scope in the new development approach helps
to have more accurate estimations (I06), meaning that the requirements scope is set
appropriately for each increment. Thus, it is less likely that requirements have to be
discarded due to inaccurate planning.

Software Quality Improvements The quantitative data shows improvement in early
testing done before system testing (LSV), reflected in a reduced fault-slip-through
in comparison to the plan-driven approach. Furthermore, the constantly rising
maintenance effort decreased after introducing incremental and agile practices, even
though there have not been any major tendencies for it to go below the level of 2005
(see Fig. 4). In the qualitative data, we identified one improvement raised in the
interviews. That is, testing has improved due to early fault detection and feedback
from test (see I03 in Section 5). Furthermore, if an increment is dropped to the LSV
for test one can trace which increments are of high or low quality and who is respon-
sible for them. Consequently, this creates incentives for teams to deliver high quality
as their work result is visibly linked to them. By testing early many verification
issues identified in plan-driven development can be addressed. These are reduction
of test coverage due to complex testing in the end (F02), increase of the number of
faults discovered with late testing (F03), and that problems are harder to fix when
discovered late (F02). The study shows that even though there has been improve-
ments in testing, very important and important issues relate to verification when
using incremental and agile practices, further discussed in the context of open issues.

Improved Communication The qualitative data suggests an improvement in com-
munication when moving people together (I06). This positively affects several is-
sues that have been identified for plan-driven development. Firstly, the amount of
documentation can be reduced because much of the documentation was related to
hand-overs between phases (F06). As a project team focuses on several phases now,
direct communication can replace parts of the documentation. Furthermore, in plan-
driven development the knowledge of people is very specialized and they is a lack of
confidence. This can be hindering in the beginning when moving from plan-driven to
incremental and agile practices as having small teams requires very broad knowledge
of the team members (see for example Merisalo-Rantanen et al. 2005). However, at
the same time face-to-face interaction helps team members to learn from each other
and gain insight and understanding of the overall development process (Svensson
and Höst 2005).

686 Empir Software Eng (2010) 15:654–693

The perceived improvements are further strengthened by the fact that incremental
and agile practices have not been employed for a long time at the studied companies.
The positive results already achieved are also important as a motivator and buy-in to
further progress with the agile implementation by adding further agile practices such
as test driven development or pair programming.

7.2 Open Issues

Based on the classification, the most important issues that remained after the
migration were related to verification, project management, and release planning.

Verif ication For verification, the improvement of reduced lead-times for testing
have been identified (I06). However, the issue relates to that the LSV cycle times
are not optimized and that there is room of improvement to shorten the lead-time of
testing, the issue being the only issue related to incremental and agile development
classified as very important. Thus, although the lead time is perceived to have
improved, it is still an area needing attention. Furthermore, the test coverage is con-
sidered a problem in both development models (see F02 for plan-driven development
and F11 in incremental and agile development), even though the classification shows
that it is less common for the latter development model. The descriptions of the
issues related to test coverage show that test coverage is a problem due to different
reasons in both development models. In plan-driven development, the test coverage
is reduced because too much has to be tested at once, and the testing time is always
compromised in the end of the plan-driven project. After introducing incremental
and agile practices though the problems are more specific: quality testing in the LSV
takes too much time; the project cycles are too short to squeeze everything into the
project; and there is a lack of independent verification for basic and component
testing. This still being a problem, it is less common in incremental and agile than
in plan-driven development. However, due to the explicitly identified problems in
testing it is clear that there is room for improvement to achieve more significant
improvements, e.g., by implementing test-driven development or increase the degree
of automated testing to speed up the testing process.

Management Overhead Due to the high number of teams, the work on the team
level gets more clear and simplistic with the new development approach. However,
many projects working toward the same goal have to be coordinated. As discussed
earlier (see F13 in Section 5) this requires much communication and planning
involving many different people. Therefore, this issue is specifically related to the
scalability of incremental and agile approaches. To address the issue, the first step
taken was the anatomy plan which helps to structure the system and dependencies.
This is used as input for deciding on the order of projects to build the increments.

Release Project The release project is responsible for bringing the product into a
shippable state. The release project is very specific for Ericsson as it is related to
building customizable solutions. That is, in the release project a tool has to be created
that allows the selection of features so that the product is customizable. As raised
in the earlier discussion (F12) people of the release project are involved too late
in the development process and thus the product is not viewed from a commercial

Empir Software Eng (2010) 15:654–693 687

perspective. Consequently, an action for improvement would be to integrate people
from the release project already in the requirements engineering phase.

7.3 Implications

The results of the case study indicate that it is beneficial for large-scale organization
using a plan-driven approach to introduce incremental and agile practices. In fact, the
study came to the surprising result that plan-driven development is not suitable for a
large-scale organization as it produces too much waste in development (specifically
in the requirements phase). The most pressing issues identified in the organization
were in-fact related to the plan-driven approach. On the other hand, important
improvements can be achieved by introducing incremental and agile practices. We
have shown that specific areas of improvements are reduction of waste and better
responsiveness to market changes. Furthermore, there are opportunities for faster
return of investment. However, the case study also shows that even though benefits
can be gained on the one hand, challenges are raised on the other hand. Areas that
specifically show room for improvements are testing and support for coordinating a
large number of development teams. The challenges are important to recognize and
address when further progressing with the agile implementation.

8 Conclusions and Future Work

This paper investigates the effect of introducing incremental and agile practices in
an organization that has been working in a plan-driven way. The study shows that
the most commonly perceived problems in the development models can be found
in plan-driven development, and introducing incremental and agile practices allows
to improve on these most common issues. Returning to the research questions and
propositions, we can conclude:

Issues Several issues were identified for both the plan-driven and the approach
using incremental and agile practices. However, more commonly perceived issues
across roles and systems were identified for the plan-driven approach.

General issues The two most commonly perceived issues overall were identified for
the plan-driven approach: 1) requirements change and rework; and 2) reduction of
test coverage due to limited test time at the end. Several other issues were identified
both approaches.

Performance measures It was only possible to collect two comparable performance
measures: waste in terms of investment in requirements never delivered and fault-
slip-through. Both these measures were in favor of the situation after introducing
incremental and agile practices.

Proposition 1 is partially true, i.e. both different and in some cases similar issues
were identified for the two models. Proposition 2 holds. Improvements in the
quantitative data have been observed and thereby supporting the primary evidence
reported for the qualitative data.

Thus, in summary the main improvements identified are 1) ability to increase
release frequency and shorten requirements lead-times; 2) significant reduction of

688 Empir Software Eng (2010) 15:654–693

waste and better reflection of the current customers’ needs measured as reduced
number of change requests; 3) improvements in software quality for basic testing
(unit and component testing) and overall system quality, and 4) improved commu-
nication which facilitates better understanding and allows to reduce documentation.
However, the use of incremental and agile practices raise a number of challenges at
the same time, which are: 1) needs for coordinating testing and increase test coverage;
2) support for coordinating a high number of teams and making decisions related to
planning time-lines for concurrent projects; and 3) integration of release projects in
the overall development process. In future work, more qualitative as well as quantita-
tive studies are needed to compare development models for large-scale development.

Appendix A: Interview Protocol

A.1 Introduction

– Explain the nature of the study to the respondent, telling how or through whom
he came to be selected:

– Goal of the study: Understanding hindering factors in the different develop-
ment models (traditional, streamline, streamline enhanced).

– What is done: Compare the different models against each other in terms of
bottlenecks, avoidable rework and unnecessary work.

– Benef it for the interviewee: Interview is the basis for further improving
the different models considering the different views of people within the
organization, gives interviewee the chance to contribute to the improvement
of the model they are supposed to apply in the future

– Give assurance that respondent will remain anonymous in any written reports
growing out of the study, and that his responses will be treated with strictest
confidence.

– Indicate that he may find some of the questions far-fetched, silly or difficult to
answer, for the reason that questions that are appropriate for one person are
not always appropriate for another. Since there are no right or wrong answers,
he is not to worry about these but to do as best he can with them. We are only
interested in his opinions and personal experiences.

– Interviewee is to feel perfectly free to interrupt, ask clarification of the inter-
viewer, criticize a line of questioning etc.

– Interviewer is to ask permission to tape record the interview, explaining why he
wishes to do this.

A.2 Warm-up and Experience

– What is your professional background (how long at the company, education)?
– What is your role within the development life-cycle at Ericsson (short descrip-

tion)? Include information such as department, discipline (there are a number
of pre-defined disciplines at the company for different development activities).
How long have you been working in this role?

– In which other disciplines have you been working and for how long?

Empir Software Eng (2010) 15:654–693 689

– What is your experience with traditional development and streamline develop-
ment? Select from the following options with multiple selections being possible
(has to be done once for each model):

– No previous experience
– Studied documentation
– Informal discussion with colleagues
– Seminar and group discussions
– Used in one project (started or completed)
– Used in several projects

A.3 Main Body of the Interview

A.3.1 Plan-Driven Development

The first question concerns bottlenecks.
Def inition provided to the interviewee: Bottlenecks is a phenomena that hinders the

performance or capacity of the entire development lifecycle due to a single component
causing it (=bottleneck). Bottlenecks are therefore a cause for reduction in throughput.

Question: What are three critical bottlenecks you experienced / you think are
present in the traditional way of working (plan-driven)?

When describing three bottlenecks, please focus on:

– Which product was developed?
– Where in the development process does the bottleneck occur?
– Why is it a bottleneck (ask for the cause)?
– How does the bottleneck affect the overall development lifecycle?

The following questions concern waste. When talking about waste, we distinguish
two types of waste we would like to investigate. These types of waste are unnecessary
work and avoidable rework. A definition for each type is presented to the interviewee.

Type 1—Avoidable Rework: Investigating avoidable rework helps us to answer:
“are we doing things right”? That is, if something has been done incorrectly, incom-
pletely or inconsistently then it needs to be corrected through reworked.

Question: What avoidable rework (three for each) has been done in the plan-
driven approach?

When describing the avoidable rework, please focus on:

– Which product was developed?
– Where in the development process is the avoidable rework done?
– What was done incorrectly, incompletely or inconsistently?
– Why is the rework avoidable?

Type 2—Unnecessary work: Investigating unnecessary work helps us to answer:
“are we doing the right things”? That is, unnecessary work has been conducted that
does not contribute to customer value. It is not avoidable rework, as it is not connected
to correcting things that have been done wrong.

Question: What is unnecessary work (three for each) done in the plan-driven approach?
When describing the unnecessary work, please focus on:

– Which product was developed?
– Where in the development process is the unnecessary work done?

690 Empir Software Eng (2010) 15:654–693

– Why is the unnecessary work executed?
– How is the unnecessary work used in the development?

A.3.2 Incremental and Agile Approach

After having identified the critical issues in plan-driven development we would like
to capture what the situation is after introducing the new incremental and agile
practices.

Note: In this part the same questions were asked as was the case for the plan-
driven approach, now focusing on the situation after migrating to the incremental
and agile approach.

A.4 Closing

Is there anything else you would like to add that you think is interesting in this
context, but not covered by the questions asked?

Appendix B: Example of the Qualitative Analysis

Figure 5 illustrates the analysis steps presented in the description of the research
methodology with an example of the identification of factor F01 shown in Table 6.

Fig. 5 Example of analysis illustrating the identification of factor F01

Empir Software Eng (2010) 15:654–693 691

References

Anderson DJ (2003) Agile management for software engineering: applying the theory of constraints
for business results (the coad series). Prentice Hall PTR, Englewood Cliffs

Bahli B, Abou-Zeid ES (2005) The role of knowledge creation in adopting xp programming model:
an empirical study. In: ITI 3rd international conference on information and communications
technology: enabling technologies for the new knowledge society

Baskerville R, Ramesh B, Levine L, Pries-Heje J, Slaughter S (2003) Is internet-speed software
development different? IEEE Softw 20(6):70–77

Beck K (1999) Embracing change with extreme programming. IEEE Comput 32(10):70–77
Benediktsson O, Dalcher D, Thorbergsson H (2006) Comparison of software development life

cycles: a multiproject experiment. IEE Proc Softw 153(3):323–332
Ceschi M, Sillitti A, Succi G, Panfilis SD (2005) Project management in plan-based and agile

companies. IEEE Softw 22(3):21–27
Cohen D, Larson G, Ware B (2001) Improving software investments through requirements valida-

tion. In: Proceedings of the 26th annual NASA Goddard software engineering workshop (SEW
2001). IEEE Computer Society, Washington, p 106

Cohen D, Lindvall M, Costa P (2004) An introduction to agile methods. In: Advances in computers.
Elsevier, Amsterdam

Dagnino A, Smiley K, Srikanth H, Antón AI, Williams LA (2004) Experiences in applying agile
software development practices in new product development. In: Proceedings of the IASTED
conference on software engineering and applications (IASTED-SEA 2004), pp 501–506

Dai L, Guo W (2007) Concurrent subsystem-component development model (cscdm) for developing
adaptive e-commerce systems. In: Proceedings of the international conference on computational
science and its applications (ICCSA 2007), pp 81–91

Damm LO, Lundberg L (2007) Company-wide implementation of metrics for early software fault
detection. In: Proceedings of the 9th international conference on software engineering (ICSE
2007), pp 560–570

Damm LO, Lundberg L, Wohlin C (2006) Faults-slip-through—a concept for measuring the
efficiency of the test process. Softw Process Improv Pract 11(1):47–59

Dybå T, Dingsøyr T (2008) Empirical studies of agile software development: a systematic review. Inf
Softw Technol 50(9–10):833–859

Fairley RE, Willshire MJ (2005) Iterative rework: the good, the bad, and the ugly. IEEE Comput
38(9):34–41

Hanssen GK, Westerheim H, Bjørnson FO (2005) Using rational unified process in an sme—a
case study. In: Proceedings of the 12th European conference on software process improvement
(EuroSPI 2005), pp 142–150

Heijstek W, Chaudron MRV (2008) Evaluating rup software development processes through visual-
ization of effort distribution. In: Proceedings of the 34th conference on software engineering and
advanced applications (SEAA 2008), pp 266–273

Hirsch M (2005) Moving from a plan driven culture to agile development. In: Proceedings of the 27th
international conference on software engineering (ICSE 2005), p 38

Ilieva S, Ivanov P, Stefanova E (2004) Analyses of an agile methodology implementation. In:
Proceedings of the 30th EUROMICRO conference (EUROMICRO 2004), pp 326–333

Jarzombek J (1999) The 5th annual jaws s3 proceedings
Johnson J (2002) Keynote speech: build only the features you need. In: Proceedings of the 4th inter-

national conference on extreme programming and agile processes in software engineering (XP 2002)
Jones C (1995) Patterns of software systems: failure and success. International Thomson Computer

Press, Boston
Karlström D, Runeson P (2005) Combining agile methods with stage-gate project management.

IEEE Softw 22(3):43–49
Koch AS (2005) Agile software development: evaluating the methods for your organization. Artech

House, Boston
Laplante PA, Neill CJ (2004) Opinion: the demise of the waterfall model is imminent. ACM Queue

1(10):10–15
Larman C (2003) Agile and iterative development: a manager’s guide. Pearson Education, Boston
Layman L, Williams LA, Cunningham L (2004) Exploring extreme programming in context: an

industrial case study. In: Proceedings of the agile development conference (ADC 2004), pp 32–41
Mannaro K, Melis M, Marchesi M (2004) Empirical analysis on the satisfaction of it employees com-

paring xp practices with other software development methodologies. In: Proceedings of the 5th
international conference on extreme programming and agile processes in software engineering
(XP 2005), pp 166–174

692 Empir Software Eng (2010) 15:654–693

Martin A, Biddle R, Noble J (2004) The xp customer role in practice: three studies. In: Agile
development conference, pp 42–54

McBreen P (2003) Questioning extreme programming. Pearson Education, Boston
Merisalo-Rantanen H, Tuunanen T, Rossi M (2005) Is extreme programming just old wine in new

bottles: a comparison of two cases. J Database Manage 16(4):41–61
Petersen K, Wohlin C (2009a) A comparison of issues and advantages in agile and incremental devel-

opment between state of the art and an industrial case. J Syst Softw 82(9):1479–1490
Petersen K, Wohlin C (2009b) Context in industrial software engineering research. In: Proceedings

of the 3rd international symposium on empirical software engineering and measurement (ESEM
2009), pp 401–404

Petersen K, Wohlin C, Baca D (2009) The waterfall model in large-scale development. In: Proceed-
ings of the 10th international conference on product focused software development and process
improvement (PROFES 2009), pp 386–400

Poppendieck M, Poppendieck T (2003) Lean software development: an agile toolkit (the agile
software development series). Addison-Wesley, Reading

Raccoon LBS (1997) Fifty years of progress in software engineering. SIGSOFT Softw Eng Notes
22(1):88–104. doi:10.1145/251759.251878

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software
engineering. Empir Softw Eng 14(2):131–164

Schwaber K (2004) Agile project management with Scrum. Microsoft Press, Redmond
Sillitti A, Ceschi M, Russo B, Succi G (2005) Managing uncertainty in requirements: a survey in

documentation-driven and agile companies. In: Proceedings of the 11th IEEE international
symposium on software metrics (METRICS 2005), p 17

Stephens M, Rosenberg D (2003) Extreme programming refactored: the case against XP. Apress, Berkeley
Svensson H, Höst M (2005) Introducing an agile process in a software maintenance and evolution

organization. In: Proceedings of the 9th European conference on software maintenance and
reengineering (CSMR 2005), pp 256–264

Tessem B (2003) Experiences in learning xp practices: a qualitative study. In: Proceedings of the 4th
international conference on extreme programming and agile processes in software engineering
(XP 2004), pp 131–137

Thomas M (2001) It projects sink or swim. In: British computer society review 2001
Tomaszewski P (2006) Software development productivity–evaluation and improvement for large

industrial projects. PhD thesis, Dept. of Systems and Software Engineering, Blekinge Institute
of Technology

Wils A, Baelen SV, Holvoet T, Vlaminck KD (2006) Agility in the avionics software world. In: XP,
pp 123–132

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslen A (2000) Experimentation in
software engineering: an introduction (international series in software engineering). Springer,
Heidelberg

Yin RK (2002) Case study research: design and methods, 3rd edn. In: Applied social research
methods series, vol 5. Prentice Hall, Englewood Cliffs

Kai Petersen is an industrial PhD student at Ericsson AB and Blekinge Institute of Technology.
He received his Master of Science in Software Engineering (M.Sc.) from Blekinge Institute of

http://doi.acm.org/10.1145/251759.251878

Empir Software Eng (2010) 15:654–693 693

Technology. Thereafter, he worked as a research assistant at University of Duisburg Essen, focusing
on software product-line engineering and service-oriented architecture. His current research inter-
ests are empirical software engineering, software process improvement, lean and agile development,
and software measurement.

Claes Wohlin is a professor of software engineering and the Pro Vice Chancellor of Blekinge
Institute of Technology, Sweden. He has previously held professor chairs at the universities in Lund
and Linköping. His research interests include empirical methods in software engineering, software
metrics, software quality, and requirements engineering. Wohlin received a PhD in communication
systems from Lund University. He is Editor-in-Chief of Information and Software Technology and
member of three other journal editorial boards. Claes Wohlin was the recipient of Telenor’s Nordic
Research Prize in 2004 for his achievements in software engineering and improvement of reliability
for telecommunication systems.

	The effect of moving from a plan-driven to an incremental software development approach with agile practices
	Abstract
	Introduction
	Related Work
	Plan-Driven Development
	Incremental and Agile Development
	Empirical Studies on Comparison of Models

	The Plan-Driven and Agile Models at Ericsson
	Plan-Driven Approach
	Development Approach Using Incremental and Agile Practices
	Comparison with General Process Models

	Case Study Design
	Study Context
	Research Questions and Propositions
	Case Selection and Units of Analysis
	Data Collection Procedures
	Selection of Interviewees
	Interview Design
	Process Documentation
	Performance Measures

	Data Analysis
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability
	Summary

	Qualitative Data Analysis
	General Issues
	Very Common Issues
	Common Issues
	Comparison of Issues
	Commonly Perceived Improvements

	Quantitative Data Analysis
	Requirements Waste
	Software Quality

	Discussion
	Improvement Areas
	Open Issues
	Implications

	Conclusions and Future Work
	Interview Protocol
	Introduction
	Warm-up and Experience
	Main Body of the Interview
	Plan-Driven Development
	Incremental and Agile Approach

	Closing

	Example of the Qualitative Analysis
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

