Secret Sharing & Secure Multi Party Computation - RECAP

Secret Sharing & SMPC - RECAP

Disclaimer

This is a *very quick* recap, very result-oriented! I 'fly over' many important aspects of Secret Sharing and Secure Muliparty Computation.

Recap aim: show how to use MPC to compute the sum of two secret values

Roadmap:

- Recall what MPC is about.
- **2** Recall what Secret Sharing is about.
- **3** Example of how Shamir Secret Sharing Scheme works.
- Example of how to use Shamir SSS to do MPC.

Disclaimer 2

The example is 'small' and 'quick' but not secure (can you tell why?). Its only purpose it to show how things work in a simple context.

Multiparty Computation

In a Multiparty Computation Protocol there are:

- *n* participants P_1, \cdots, P_n ,
- *n* inputs *x_i* (one for each participant P_i),
- a function f that the participants want to evaluate on all the inputs (i.e. the goal is to compute $y = f(x_1, \dots, x_n)$).

Essential Properties

- **Correctness:** the correct value of y is computed; and
- **Privacy:** y is the only new information that is released (i.e. P_i shall not learn the input x_j for of participant P_j if $j \neq i$)

Attacks goals

The attacker aim is either to *learn private information* (e.g. the inputs x_i) or to *cause incorrect computations* (output a value $y^* \neq y = f(x_1, ..., x_n)$).

Question: How to keep input private in MPC? Use Secret Sharing Methods.

Secret Sharing Schemes

A secret-sharing scheme usually involves:

- a dealer D who has a secret s,
- *n* parties P_1, \ldots, P_n .

A secret-sharing scheme is a method by which the dealer distributes shares of s to the n parties such a way that:

(1) any subset of k + 1 parties can reconstruct the secret from its shares and

(2) any subset of k parties cannot retrieve any partial information on the secret s.

Shamir's Secret Sharing Scheme

Shamir's Secret Sharing Scheme

In order to share a secret $s \in \mathbb{Z}_p$ among *n* parties in such a way that any subset of k + 1 party can recover *s*, but no subset of *k* succeeds in retreiving the secret, a Dealer D performs the following steps:

I select k random values $a_i \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and construct the polynomial

$$f(x) = s + a_1 x + a_2 x^2 + \ldots + a_k x^k \in \mathbb{Z}_p[x]$$

2 evaluate f on the points i = 1, 2, ..., n, and send to the *i*-th participant P_i its share $f_i = f(i) \in \mathbb{Z}_p$

Note 1: the secret s = f(0) is the constant term of f.

Note 2: the above procedure holds for any field (not only \mathbb{Z}_{ρ}), in particular you can follow this recipe also on \mathbb{R} .

Shamir's Secret Sharing Scheme

Question: How to recover the secret *s* from the f_i s?

Lagrange Interpolation

For any polynomial $f(x) \in \mathbb{Z}_p[x]$ of degree k it holds that

 $f(x) = f(1)\delta_1(x) + f(2)\delta_2(x) + \ldots + f(k+1)\delta_{k+1}(x) \in \mathbb{Z}_p[x]$

where the $\delta_i(x) \in \mathbb{Z}_p[x]$ are the degree-k interpolation polynomials defined as:

$$\delta_i(x) = \prod_{j=1, j \neq i}^{k+1} rac{x-j}{i-j} \; .$$

Note: the $\delta_i(x)$ only depend on $i, j \in \{1, 2, ..., n\}$ and not on the polynomial f.

Therefore any set of k + 1 parties can compute s = f(0) if all parties jointly compute the Lagrange interpolation.

Secure Multiparty Computation - Example

Secure Multiparty Computation - Example

Setting: two dealers, D₁ and D₂, have each one share (s_1 and s_2 respectively) and want to securely compute $s_1 + s_2$.

Recipe:

- **1** D_i uses Shamir's SSS to share s_i among *n* parties
- **2** each party P_i holds two shares, f_i from D_1 and g_i from D_2 .
- **g** each party P_i locally computes $s(i) = f_i + g_i = f(i) + g(i) = (f + g)(i)$.
- **2** any subset of k + 1 parties now can jointly compute $s_1 + s_2$: by using Lagrange interpolation between the s(i). I.e. the parties compute h(x) = (f + g)(x) from the values s(i) and the interpolation polynomials $\delta_i(x)$, the final result is $h(0) = s_1 + s_2$.

Numerical Example

 D_1 's secret is $s_1 = 3$

polynomial for secret sharing: $f(x) = 3 + 2x - x^2$

shares (among 3 participants): $f_1 = f(1) = 4, f_2 = f(2) = 3, f(3) = 0$

 D_2 's secret is $s_2 = -1$

polynomial for secret sharing: $g(x) = -1 + x + x^2$

shares (among 3 participants): $g_1 = g(1) = 1, g_2 = g(2) = 5, g_3 = g(3) = 11$

Numerical Example

Local addition of the shares:

$$\begin{array}{l} \mathsf{P}_1:\mathsf{h}(1)=\mathsf{f}_1+\mathsf{g}_1=\mathsf{5}\;,\\ \mathsf{P}_2:\mathsf{h}(2)=\mathsf{f}_2+\mathsf{g}_2=\mathsf{8}\;,\\ \mathsf{P}_1:\mathsf{h}(3)=\mathsf{f}_3+\mathsf{g}_3=\mathsf{11}\;. \end{array}$$

Lagrange interpolation:

$$\begin{split} \delta_1(x) &= \frac{x-2}{1-2} \cdot \frac{x-3}{1-3} = \frac{x^2-5x+6}{2},\\ \delta_2(x) &= \frac{x-1}{2-1} \cdot \frac{x-3}{2-3} = -(x^2-4x+3),\\ \delta_3(x) &= \frac{x-1}{3-1} \cdot \frac{x-2}{3-2} = \frac{x^2-3x+2}{2}. \end{split}$$

Thus:
$$h(x) = \sum_{i=1}^{3} h(i)\delta_i(x) = 3x + 2$$

And $h(0) = s_1 + s_2 = 2$.

