Secret Sharing \& SMPC - RECAP

Disclaimer

This is a very quick recap, very result-oriented! I 'fly over' many important aspects of Secret Sharing and Secure Muliparty Computation.

Recap aim: show how to use MPC to compute the sum of two secret values

Roadmap:

1 Recall what MPC is about.
2 Recall what Secret Sharing is about.
3 Example of how Shamir Secret Sharing Scheme works.
4 Example of how to use Shamir SSS to do MPC.

Disclaimer 2

The example is 'small' and 'quick' but not secure (can you tell why?). Its only purpose it to show how things work in a simple context.

Multiparty Computation

In a Multiparty Computation Protocol there are:
■ n participants P_{1}, \cdots, P_{n},

- n inputs x_{i} (one for each participant P_{i}),
- a function f that the participants want to evaluate on all the inputs (i.e. the goal is to compute $\left.y=f\left(x_{1}, \cdots, x_{n}\right)\right)$.

Essential Properties

1 Correctness: the correct value of y is computed; and
2 Privacy: y is the only new information that is released (i.e. P_{i} shall not learn the input x_{j} for of participant P_{j} if $j \neq i$)

Attacks goals

The attacker aim is either to learn private information (e.g. the inputs x_{i}) or to cause incorrect computations (output a value $y^{*} \neq y=f\left(x_{1}, \ldots, x_{n}\right)$).

Question: How to keep input private in MPC? Use Secret Sharing Methods.

Secret Sharing Schemes

A secret-sharing scheme usually involves:

- a dealer D who has a secret s ,
- n parties $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}$.

A secret-sharing scheme is a method by which the dealer distributes shares of s to the n parties such a way that:
(1) any subset of $k+1$ parties can reconstruct the secret from its shares and
(2) any subset of k parties cannot retrieve any partial information on the secret s.

Shamir's Secret Sharing Scheme

Shamir's Secret Sharing Scheme

In order to share a secret $s \in \mathbb{Z}_{p}$ among n parties in such a way that any subset of $k+1$ party can recover s, but no subset of k succeeds in retreiving the secret, a Dealer D performs the following steps:

1 select k random values $a_{i} \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}$ and construct the polynomial

$$
f(x)=s+a_{1} x+a_{2} x^{2}+\ldots+a_{k} x^{k} \in \mathbb{Z}_{p}[x]
$$

2 evaluate f on the points $i=1,2, \ldots, n$, and send to the i-th participant P_{i} its share $f_{i}=f(i) \in \mathbb{Z}_{p}$

Note 1: the secret $s=f(0)$ is the constant term of f.
Note 2: the above procedure holds for any field (not only \mathbb{Z}_{p}), in particular you can follow this recipe also on \mathbb{R}.

Shamir's Secret Sharing Scheme

Question: How to recover the secret s from the f_{i} ?

Lagrange Interpolation

For any polynomial $f(x) \in \mathbb{Z}_{p}[x]$ of degree k it holds that

$$
f(x)=f(1) \delta_{1}(x)+f(2) \delta_{2}(x)+\ldots+f(k+1) \delta_{k+1}(x) \in \mathbb{Z}_{p}[x]
$$

where the $\delta_{i}(x) \in \mathbb{Z}_{p}[x]$ are the degree- k interpolation polynomials defined as:

$$
\delta_{i}(x)=\prod_{j=1, j \neq i}^{k+1} \frac{x-j}{i-j}
$$

Note: the $\delta_{i}(x)$ only depend on $i, j \in\{1,2, \ldots, n\}$ and not on the polynomial f.

Therefore any set of $k+1$ parties can compute $s=f(0)$ if all parties jointly compute the Lagrange interpolation.

Secure Multiparty Computation - Example

Secure Multiparty Computation - Example

Setting: two dealers, D_{1} and D_{2}, have each one share (s_{1} and s_{2} respectively) and want to securely compute $s_{1}+s_{2}$.

Recipe:

$1 \mathrm{D}_{i}$ uses Shamir's SSS to share s_{i} among n parties
$\sqrt{2}$ each party P_{i} holds two shares, f_{i} from D_{1} and g_{i} from D_{2}.
3 each party P_{i} locally computes $s(i)=f_{i}+g_{i}=f(i)+g(i)=(f+g)(i)$.
4 any subset of $k+1$ parties now can jointly compute $s_{1}+s_{2}$: by using Lagrange interpolation between the $s(i)$. I.e. the parties compute $h(x)=(f+g)(x)$ from the values $s(i)$ and the interpolation polynomials $\delta_{i}(x)$, the final result is $h(0)=s_{1}+s_{2}$.

Numerical Example

D_{1} 's secret is $s_{1}=3$
polynomial for secret sharing:
$f(x)=3+2 x-x^{2}$
shares (among 3 participants):

$$
f_{1}=f(1)=4, f_{2}=f(2)=3, f(3)=0
$$

D_{2} 's secret is $s_{2}=-1$
polynomial for secret sharing:
$g(x)=-1+x+x^{2}$
shares (among 3 participants):
$g_{1}=g(1)=1, g_{2}=g(2)=5, g_{3}=g(3)=11$

Numerical Example

Local addition of the shares:

$\mathrm{P}_{1}: \mathrm{h}(1)=\mathrm{f}_{1}+\mathrm{g}_{1}=5$,
$P_{2}: h(2)=f_{2}+g_{2}=8$,
$P_{1}: h(3)=f_{3}+g_{3}=11$.

Lagrange interpolation:
$\delta_{1}(x)=\frac{x-2}{1-2} \cdot \frac{x-3}{1-3}=\frac{x^{2}-5 x+6}{2}$,
$\delta_{2}(x)=\frac{x-1}{2-1} \cdot \frac{x-3}{2-3}=-\left(x^{2}-4 x+3\right)$,
$\delta_{3}(x)=\frac{x-1}{3-1} \cdot \frac{x-2}{3-2}=\frac{x^{2}-3 x+2}{2}$.

Thus: $h(x)=\sum_{i=1}^{3} h(i) \delta_{i}(x)=3 x+2$
And $h(0)=s_{1}+s_{2}=2$.

