
Public Key Encryption - RECAP

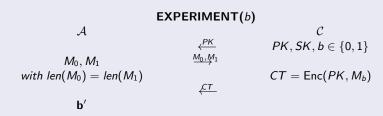
Public Key Encryption - RECAP

Public key encryption

Definition: PKE

A public-key encryption system is a **triple** of algorithms (KeyGen, Enc, Dec) with the following properties:

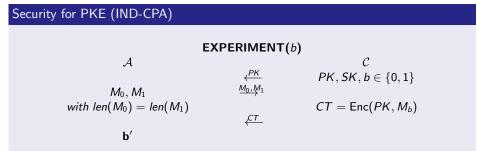
- KeyGen(λ): randomised algorithm outputs a key pair (PK, SK). λ is a security parameter.
- Enc(PK, m) : randomised algorithm that takes $m \in M$ and outputs $c \in C$.
- **Dec**(SK, c) : **deterministic** algorithm that takes $c \in C$ and outputs $m \in M$ or \bot


Consistency: $\forall (PK, SK)$ output of KeyGen it holds that

$$\forall m \in M$$
: Dec(SK, Enc(PK, m)) = m

Security of PKE (IND-CPA)

The **security** of a PKE system essentially says that having the public key PK and a cipher text CT but not the secret key SK, it is *hard* to find out what is the encrypted message M (corresponding to CT).


Security for PKE (IND-CPA)

If b' = b then A wins the security game (i.e. the encryption scheme is **not** secure against indistinguishability against chosen plain text attack). If $b' \neq b$, A has lost the security game (i.e. the scheme is secure).

Security of PKE (IND-CPA)

The **security** of a PKE system essentially says that having the public key PK and a cipher text CT but not the secret key SK, it is *hard* to find out what is the encrypted message M (corresponding to CT).

Formal Definition - **IND-CPA** : A public-key encryption system E = (KeyGen, Enc, Dec) is semantically secure (IND-CPA) if for all efficient adversaries A:

$$\mathsf{Adv}[\mathcal{A}, E] = \left| \mathsf{Pr}[\mathsf{EXP}(0) = 1] - \mathsf{Pr}[\mathsf{EXP}(1) = 1] \right| < \mathsf{negligible}$$

Security of PKE (IND-CCA)

Chosen Cipher text **security** states that an adversary \mathcal{A} should not be able to recover information about a the plain text message even if \mathcal{A} can see the plain text corresponding to many cipher texts.

Security for PKE (IND-CCA)

	EXPERIMENT(b)	
\mathcal{A}		$\mathcal C$
	$\stackrel{PK}{\underbrace{C_i}}$	$\mathit{PK}, \mathit{SK}, \mathit{b} \in \{0,1\}$
CCA1: <i>C</i> _{<i>i</i>}	$\xrightarrow{c_i}$	
$i=1,\ldots,q$		$M_i = \operatorname{Dec}(SK, C_i)$
	$\overleftarrow{M_i}$	
CPA challenge:		
M_0, M_1	$\underline{M}_0, \underline{M}_1$	
with $len(M_0) = len(M_1)$		$CT = Enc(PK, M_b)$
	<i>∠T</i>	
CCA2 : <i>C</i> _{<i>i</i>}	$\xrightarrow{C_i}$	
$i=1,\ldots,q$		$M_i = \text{Dec}(SK, C_i)$
$C_i \neq CT$	$\stackrel{M_i}{\leftarrow}$	
b′		

Security of PKE (IND-CCA)

Chosen Cipher text **security** states that an adversary \mathcal{A} should not be able to recover information about a the plain text message even if \mathcal{A} can see the plain text corresponding to many cipher texts.

Security for PKE (CCA)

If b' = b then A wins the security game (i.e. the encryption scheme is **not** secure against chosen cipher text attack). If $b' \neq b$, A has lost the security game (i.e. the scheme is secure).

Formal Definition - IND-CPA : A public-key encryption system E = (KeyGen, Enc, Dec) CCA secure if for all efficient adversaries A:

$$\operatorname{Adv}[\mathcal{A}, E] = \left| \operatorname{Pr}[EXP(0) = 1] - \operatorname{Pr}[EXP(1) = 1] \right| < \operatorname{negligible}$$