The (Extended) Euclidean Algorithm - RECAP

The (Extended) Euclidean Algorithm - RECAP

Euclid of Alexandria \sim 300 BC.

Greatest Common Divisor / Euclidean Algorithm

Greatest Common Divisor

For integers a, b the greatest common divisor (GCD) of a and b is the largest positive integer d that divides both a and b.

Question: How to find the GCD of two numbers?

Euclidean Algorithm

Input: Integers a, b with $a \ge b \ge 0$.

Output: Integer *d* that is the greatest common divisor of *a* and *b*.

Recipe:

Find $q_1, r_1 \in \{0, 1, 2, ...\}$ such that: $a = q_1b + r_1$ and $r_1 < b$. Find $q_2, r_2 \in \{0, 1, 2, ...\}$ such that: $b = q_2r_1 + r_2$ and $r_2 < r_1$. **Continue:** Find $q_i, r_i \in \{0, 1, 2, ...\}$ s.t.: $r_{i-2} = q_i r_{i-1} + r_i$ and $r_i < r_{i-1}$ **until** $r_i = 0$. **Then:** $d = r_{i-1}$ (the second-last remainder) is the GCD between *a* and *b*.

Modular Inverse / Extended Euclidean Algorithm

Inverses mod p

Let x be an integer and p be a prime. The inverse of x mod p is defined as the number y mod p such that $x \cdot y = 1 \mod p$. Usually y is denoted as $y = x^{-1}$.

Question: How to find the inverse of x modulus p?

Extended Euclidean Algorithm

```
Input: Integer x and prime number p.
Output: Integer y mod p such that x \cdot y = 1 \mod p.
```

Recipe:

- **I** Compute the Euclidean Algorithm between *x* and *p*
- **2** Find an equation of the form $1 = r_{i-2} q_i r_{i-1}$.
- **Read** the equation 'reversely' and write each remainder as a combination of the previous reminders, until you reach an equation of the form $1 = x \cdot y + p \cdot m$.
- I The equation above modulus p reads: $x \cdot y = 1 \mod p$, thus y is the modular inverse of x modulus p

watchout: the EEA works also when p is not prime! You can use it to find the inverse of any $x \mod n$ (for general n) everytime x and n are coprime, i.e. GCD(x, n) = 1.