
Thesis for the Degree of Doctor of Philosophy

Be More and Be Merry:

Enhancing Data and User
Authentication in Collaborative

Settings

Elena Pagnin

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2018

Be More and Be Merry: Enhancing Data and User Authen-
tication in Collaborative Settings
Elena Pagnin
ISBN: 978-91-7597-774-4
Series number: 4455

Copyright c⃝ Elena Pagnin, 2018.

Technical report 157D
ISSN0346-718X

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31-772 10 53

Author e-mail: elenap@chalmers.se, pagnin.elena@gmail.com

Printed by Chalmers Reproservice
Gothenburg, Sweden 2018

Abstract

Cryptography is the science and art of keeping information secret to un-intended
parties. But, how can we determine who is an intended party and who is not?
Authentication is the branch of cryptography that aims at confirming the source of
data or at proving the identity of a person. This Ph.D. thesis is a study of different
ways to perform cryptographic authentication of data and users.

The main contributions are contained in the six papers included in this thesis and
cover the following research areas: (i) homomorphic authentication; (ii) server-aided
verification of signatures; (iii) distance-bounding authentication; and (iv) biometric
authentication. The investigation flow is towards collaborative settings, that is,
application scenarios where different and mutually distrustful entities work jointly
for a common goal. The results presented in this thesis allow for secure and efficient
authentication when more entities are involved, thus the title “be more and be
merry”.

Concretely, the first two papers in the collection are on homomorphic authenticators
and provide an in-depth study on how to enhance existing primitives with multi-
key functionalities. In particular, the papers extend homomorphic signatures and
homomorphic message authentication codes to support computations on data au-
thenticated using different secret keys. The third paper explores signer anonymity
in the area of server-aided verification and provides new secure constructions. The
fourth paper is in the area of distance-bounding authentication and describes a
generic method to make existing protocols not only authenticate direct-neighbors,
but also entities located two-hop away. The last two papers investigate the leakage
of information that affects a special family of biometric authentication systems and
how to combine verifiable computation techniques with biometric authentication in
order to mitigate known attacks.

Keywords: Homomorphic Signatures, Server-Aided Verification, Verifiable Com-
putation, Distance-Bounding Authentication Protocols, Biometric Authentication.

List of Publications

This Ph.D. thesis comprises a collection of six scientific articles devoted to explor-
ing data and user authentication in different settings. References to these papers
will be made using the associated Latin letters. The settings considered in this
thesis are: authentication of computations on signed data (Paper A and Paper
B); lightweight verification of data authenticity (Paper C); distance-bounding au-
thentication (Paper D); and biometric authentication (Paper E and Paper F).
The aforementioned articles are published at the following venues:

Paper A [39] Multi-Key Homomorphic Authenticators. D. Fiore, A. Mitrokotsa,
L. Nizzardo, and E. Pagnin. In the 22nd International Conference on the
Theory and Application of Cryptology and Information Security (asiacrypt),
2016.

Paper B [40] Matrioska: A Compiler for Multi-Key Homomorphic Signatures. D.
Fiore and E. Pagnin. In the 11th Conference on Security and Cryptography
for Networks (scn), 2018.

Paper C [72] Anonymous Single-Round Server-Aided Verification of Signatures.
E. Pagnin, A. Mitrokotsa, and K. Tanaka. In the 5th International Confer-
ence on Cryptology and Information Security (latincrypt), 2017.

Paper D [86] Two-hop Distance-Bounding Protocols: Keep your Friends Close.
A. Yang, E. Pagnin, A. Mitrokotsa, G. Hancke, and D. S. Wong. In IEEE
Transactions on Mobile Computing (17:7), 2018.

Paper E [68] On the Leakage of Information in Biometric Authentication. E.
Pagnin, C. Dimitrakakis, A. Abidin, and A. Mitrokotsa. In the 15th Inter-
national Conference on Cryptology in India (indocrypt), 2014.

Paper F [70] Revisiting Yasuda et al.’s Biometric Authentication Protocol: Are
you Private Enough? E. Pagnin, J. Liu, and A. Mitrokotsa. In the 16th
International Conference on Cryptology and Network Security (cans), 2017.

Other articles published during my Ph.D., but not included in this thesis, are:

[67] HIKE: Walking the Privacy Trail. E. Pagnin, C. Brunetta, and P. Picazo-
Sánchez. In the 17th International Conference on Cryptology and Network
Security (cans), 2018.

[74] HB+DB: Distance-Bounding Meets Human Based Authentication. E. Pagnin,
A. Yang, Q. Hu, G. Hancke, and A. Mitrokotsa. In Future Generation Com-
puter Systems, 2018.

[71] Privacy-Preserving Biometric Authentication: Challenges and Directions. E.
Pagnin and A. Mitrokotsa. In Security and Communication Networks, 2017.

[69] Using Distance-Bounding Protocols to Securely Verify the Proximity of Two-
hop Neighbours. E. Pagnin, G. Hancke, and A. Mitrokotsa. In IEEE Com-
munications Letters, 2015.

[73] HB+DB, Mitigating Man-in-the-Middle Attacks against HB+ with Distance-
Bounding. E. Pagnin, A. Yang, G. Hancke, and A. Mitrokotsa. In ACM
Security & Privacy in Wireless and Mobile Networks (wisec), 2015.

[4] Attacks on Privacy-Preserving Biometric Authentication. A. Abidin, E. Pagnin,
and A. Mitrokotsa. In the 19th Nordic Conference on Secure IT Systems
(nordsec), 2014.

Acknowledgements

Der är lätt att vara efterklok.

Elena Pagnin

First and foremost, I want to thank my advisor Andrei Sabelfeld, who took over the
supervision of my Ph.D. studies in media res and steadily supported me. Your joy
and enthusiasm for research lit up my path in its darkest hour and made me regain
passion for academic work. I also wish to express my deep gratitude and respect
to my co-supervisor, mentor and guide Dario Fiore. It has been an honor to work
with you, to learn from you and to have your valuable advice. I could not imagine
having a better mentor than you. Besides my supervisors, I would like to thank
David Sands, who kindly agreed to become my Ph.D. examiner. Your knowledge
and experience were fundamental to set the quality bar of my research.

Next, a spacial thanks goes to Bart Preneel for accepting to be my Ph.D. oppo-
nent. You made me rediscover the pleasure of pen-and-paper feedback, including
human-based handwriting decryption. I also gratefully acknowledge the grading
committee members: Claudio Orlandi, Damien Vergnaud and Martin Hell for their
positive and encouraging comments on this thesis.

My Ph.D. studies have been sprinkled with long research visits and several con-
ferences. Adding-up, I have been working away from Sweden for over one year!
Nonetheless, in the last period I found two good reasons for doing research within
Chalmers: Carlo Brunetta, Pablo Picazo-Sánchez and his little son Óliver (they
count as one entity). I will cherish the memories of our morning ‘Kaffe?’ messages,
leading to long ‘coffee breaks’ that inevitably turned into lively research discus-
sions. I am happy I met both of you. I am deeply grateful for our friendship and
for the constructive camaraderie we have when working together. I would also like
to mention another co-author and friend: Cristina Onete, who has my gratitude for
opening my mind to new, exciting research horizons despite my initial reluctance. I
admire your immense knowledge, passion, enthusiasm and helpfulness. It is always
a pleasure to hard work with you, even when it leads to long-lasting discussions
via Skype! My sincere thanks go also to Aysajan Abidin, Luca Nizzardo, Keisuke

Tanaka and Gerard Hancke for our fruitful collaborations.

Looking back at these last four years, there are still people within Chalmers whom
I owe acknowledgement. Olaf Landsiedel, for our open exchange of opinions behind
closed doors. Wolfgang Ahrendt, for shedding light on my ethical dilemmas. Agneta
Nilsson and Mary Sheeran, for lending me their ears and guiding me to a better
life. I can not thank you enough for what you did for me. Tomas Olovsson, for
his help, support and especially the countless hours spent together trying to figure
out positive solutions to negative situations. And last but not least at Chalmers,
I want to say tack to all the secretaries of the Computer Science and Engineering
Department who every day do an amazing work keeping all the paperwork running.
I have never met such a devote, efficient and kind stuff. In particular, my thanks go
to Eva Axelsson, Marianne Pleen-Schreiber, Elisabeth Kegel Andreasson, Rebecca
Cyren, Anneli Andersson and Tiina Rankanen.

A heartfelt mention goes to my friends, including Cecilia, Guilhem, Inari, Irene,
Iulia, Jeff, Marta, Mica l, Thomas, Valentina, Wouter. You have been there when
needed throughout all of these years, independently of where on Earth I was. Thank
you for the many cooking sessions, board game evenings, hikes, saunas, fikas, proof-
readings, sailings, fermentation parties and traditional Scandinavian activities such
as midsommar fireplaces and berry picking. Above all, I am glad our paths have
crossed and we have walked together along the way.

Loving thanks go to my sambo Hedvig Maria Jonsson, for her truthful support,
encouragement and endless patient during the last half of my Ph.D. You managed
to give me a constant motivation for going back to Sweden and made me start liking
this Nordic country. Thank you for being part of my life, and for being stubborn ♡

I reserve the final thanks for the people without whom I most probably would not be
where and who I am now: Frédérique Oggier, Mariuccia Paoletti, Marc Stöttinger,
Arianna Pagnin, Annamaria Borgato, Lorenzo Pagnin and Aikaterini Mitrokotsa. I
hope you can be proud and feel part of my achievement.

Contents

I Thesis Summary

Introduction . 13
The Cryptographers’ World . 13
The Main Security Goals of Cryptography . 14
Why Authentication? . 15
Thesis Overview. 15

Background . 17
Homomorphic Signatures . 17
Server-Aided Verification of Signatures . 18
Distance-Bounding Authentication Protocols . 20
Biometric Authentication Protocols . 21

Summary of Papers and Contributions . 23
Multi-Key Homomorphic Authenticators . 23
Matrioska: A Compiler for Multi-Key Homomorphic Signatures 24
Anonymous Server-Aided Verification of Signatures 25
Two-hop Distance-Bounding Protocols: Keep your Friends Close 25
On the Leakage of Information in Biometric Authentication 26
Revisiting Yasuda et al.’s Biometric Authentication Protocol: Are you Pri-

vate Enough? . 27

Conclusions and Outlook . 29

II Collection of Papers

Paper A: Multi-Key Homomorphic Authenticators 41

Paper B: Matrioska: A Compiler for Multi-Key Homomorphic Signatures . . 73

Paper C: Anonymous Single-Round Server-Aided Verification 103

Paper D: Two-hop Distance-Bounding Protocols: Keep your Friends Close 125

Paper E: On the Leakage of Information in Biometric Authentication 153

Paper F: Revisiting Yasuda et al.’s Biometric Authentication Protocol: Are
you Private Enough? . 171

7

List of Abbreviations

BAP: Biometric Authentication Protocol.

DBAP: Distance-Bounding Authentication Protocol.

FHS: Fully Homomorphic Signature (Scheme).

HA: Homomorphic Authenticator.

HS: Homomorphic Signature (Scheme).

MAC: Message Authentication Code.

MK-HA: Multi-Key Homomorphic Authenticator.

NP: Non-deterministic Polynomial time.

Ph.D.: Doctor of Philosophy (from the Latin Philosophiae Doctor).

RFID: Radio Frequency IDentification.

SAV: Server-Aided Verification.

SNARK: Short Non-interactive ARgument of Knowledge.

9

Part I

Thesis Summary

11

Introduction

Man is by nature a social animal; an individual who is
unsocial naturally and not accidentally is either beneath

our notice or more than human.

Aristotle, Politics

The social nature of human beings renders communicating and storing information
two essential needs for surviving. Knowing where to go, who people are, asking for
clarifications and providing instructions is something we do everyday. In developed
countries, the society has taken a digital approach: people ‘talk’ to each other
in chats, e-mails or video-calls; and save information they want to ‘remember’ on
smartphones or cloud back-ups. The migration to digital platforms has increased the
demand for digital interaction and storage methods that achieve features similar to
or better than face-to-face conversations and personal memory. Common concerns
are: how can we be sure of the identity of our digital interlocutor, does someone
else know what we are talking about; or what guarantees the stored data are always
available to us only and not modified without us noticing? Cryptography addresses
these and more concerns by keeping information secret to un-intended receivers and
allowing secure communication in the presence of untrusted parties [47].

The Cryptographers’ World

My parents’ generation grew up having face-to-face as the most common way to
communicate. For them it was clear who they were talking to and where and when
the conversation was taking place. Thus, my parents could easily adjust the content
and style of the conversation according to the circumstance. If they had to discuss
something private or secret, they would ask to meet in a remote location, or in a
place surrounded by people that had no interest in their secret. They would use
letters or wired telephones to contact people who were far-away. In the first case,
they would not know whether the letter reached its destination until they received
a response (and recognized the sender’s handwriting); in the second case, they were
extremely suspicious on who was listening inside the telephone line, but still they
were happy they could recognize the interlocutor by hearing their voice. Important
information was either learned by heart or written on a piece of paper they would
hide somewhere safe to make sure no-one would access it.

My generation is quite different. We were born with modern computers and
digital technologies. We are used to asynchronous communications via e-mail and
to instant messaging in social networks. Our most common way of communicating is
in virtual environments. In particular, we almost never see or hear our interlocutors

14 Thesis summary

♫

REALITY
?

THE CRYPTOGRAPHERS’ WORLD

EveMallory BobAlice

Figure 1: Quirky representation of some differences between the real - and the cryp-
tographers’ (perception of the) world.

in real time and have no way to determine when and where a piece of information is
delivered or received. Regarding sensitive data, we may try to learn it by heart, but
it is so much easier and handier to store it on our smartphones, computers or directly
in the cloud! Therefore, in contrast to my parents, I find it very hard to know for
sure who I am writing to, to adjust the content and style of my conversations or to
make sure no-one can find my secret data. However, I would still like to have the
same guarantees as my parents had. This is what cryptography tries to achieve.

In a nutshell, the cryptographer’s world is looking at our digital world with some
privacy-paranoid glasses, as figuratively depicted in Figure 1. In cryptography, the
talking entity magically becomes Alice and has an urge to communicate highly sen-
sitive information to another person, named Bob, who is located far, far away from
her. Everyone around them turns into an evil being, Eve or Mallory according to
the story, and is suspiciously interested in the content of Alice and Bob’s conversa-
tion. This setting is formalized in the concept of communication over an insecure
channel.

Investigating how paranoid the cryptographers’ world can be is a Ph.D. on its
own and falls outside the scope of this thesis. During my Ph.D., I regarded the
cryptographers’ view of the world as fascinating and immersed myself in it with the
objective to develop some tools that would render it a brighter reality. To this aim,
I collect in this thesis new proposals for data and user authentication. Concretely,
the presented contributions can be used to ensure Alice that she is talking to Bob
and not to Eve, and that her data have not been modified by Mallory.

The Main Security Goals of Cryptography

Cryptographic primitives and protocols are designed to maintain a desired set of
security goals even under attempts at making them deviate from the expected func-
tionality. We briefly describe the two most common security goals in the paragraphs
below [81] assuming that an entity called Alice wants to communicate with another
entity called Bob in the presence of an undesired party called, generically, the ad-
versary.

Confidentiality. This is the main idea people associate to the term “Cryptog-
raphy”. In a nutshell, if a cryptographic scheme or protocol achieves confidentiality
it means that Alice is able to send messages to Bob in such a way that only Bob
can read the messages and no adversary is able to see the actual content of their
communication. Encryption is the queen cryptographic primitive for confidentiality.

Introduction 15

Authentication. This property can refer to both data and user authentica-
tion. In the case of user authentication, this functionality ensures that a certain
person, e.g., Alice, is who she claims to be. For message authentication, the goal
is to provide some additional information that guarantees to Bob that the mes-
sage he received was originated by Alice. In particular, no undesired third party
should be able to impersonate Alice. Digital signatures and Message Authentica-
tion Codes (MAC) are the two knights cryptographic primitives that grant data
authentication. Regarding user authentication, in this thesis we consider the case
of distance-bounding and biometric protocols.

Confidentiality and authentication are the two main security goals of cryptogra-
phy, however, there are other useful functionalities that cryptographic primitives
and protocols can guarantee, such as: integrity [9], non-repudiation [27], controlled
malleability [44], redactability [24], delegation [61], attribute-based confidentiality
[50], proofs of knowledge [76], availability and proofs of work [55], and more. This
Ph.D. thesis focuses on authentication and data integrity.

Why Authentication?

More than forty years ago, Diffie and Hellman flagged that authentication was
perhaps the main barrier to the universal adoption of digital communications for
sensitive data (e.g., business transactions) and that it constituted the heart of any
system involving ‘contracts and billing’ [37]. These statements acted as a spring
for the development of (asymmetric) cryptographic tools for user authentication as
well as data authentication, integrity and non-repudiation.

My Ph.D. has authentication as main topic. The real reason for which I chose to
devote these years of my life to studying and (hopefully) contributing to the area
of authentication is that I believe that (public-key) encryption looses large part of
its usefulness if it is not combined with some sort of authentication. For instance,
if I had a sensitive conversation about my health condition, I would first make sure
that my interlocutor is my doctor –and not some impostor sending fake news to
me– and only secondly that the conversation is encrypted (thus intelligible only
to the doctor and me). Having reliable and secure authentication has become even
more relevant thanks to the technological development we have witnessed in the last
decades. Nowadays, authentication is a fundamental step in services such as on-
line banking, e-health, e-commerce, automatized border controls and many more.
My Ph.D. goal was therefore to get acquainted with known ways to achieve data
and user authentication, to propose new solutions and to extend existing ones to
collaborative scenarios, where multiple entities want to contribute to a joint cause.
The main results of my work are collected into this Ph.D. thesis.

Thesis Overview

This thesis collects the major results I obtained during my Ph.D. at Chalmers
University of Technology. The title be more and be merry captures the core idea of
my works: guaranteeing that certain cryptographic primitives and protocols remain
secure even in enhanced environments that involve a number of entities larger than
the standard one. This is the case of collaborative scenarios such as team-work
activity or sensor networks.

16 Thesis summary

The thesis is organized in two parts. The first part begins with a high-level intro-
duction, some background notions and a brief summary of the results. It concludes
with an outlook on directions for future work. The second part of the thesis is a
collection of six papers on data and user authentication in collaborative settings
including sharing computation on data, taking over specific tasks, or enabling com-
munication. Figure 2 displays connections among the published works I contributed
to during my Ph.D. and groups them by topic.

Distance-Bounding

Authentication

Digital

Signatures

Biometric

Authentication

[69]

[71]
[73]

[74]

[4]

[67]

Paper E
[68]

Paper F
[70]

Paper C
[72]

Paper B
[40]

Paper A
[39]

Paper D
[86]

Homomorphic

Encryption

Figure 2: Pie diagram of my publications during the Ph.D. Lines between papers
display logical connections among the results contained therein.

In detail, Paper A [39] and Paper B [40] provide ways for authenticating com-
putations on data generated by multiple users; Paper C [72] investigates how to
improve the efficiency and anonymity in settings where the verification of signatures
is offloaded to an untrusted server. Paper D [86] and [69] extend the notion of
distance-bounding to a collaborative setting by relying on an untrusted linker for
authenticating an out-of-reach entity. In the same research area, [73, 74] propose a
new authentication protocol that mitigates known attacks against the HB protocol
[58]. Paper E [68], Paper F [70] and [4, 71] address issues in biometric authen-
tication protocols. Finally, [67] is my most recent work and falls outside the wide
area of authentication. It considers the problem of privacy-preserving processing
of outsourced data in the context of user-customised services and develops a new
lightweight protocol for private and secure storage, computation and disclosure of
users’ data.

Background

Cryptography is about communication
in the presence of an adversary.

Goldwasser and Bellare [47]

This section provides high-level and concise introductions to the four main areas of
contributions of this thesis, namely: homomorphic signatures, server-aided verifica-
tion, distance bounding authentication and biometric authentication. The reader
is assumed to be familiar with basic concepts of public-key cryptography [47].

Homomorphic Signatures

Digital Signatures [18, 25, 48] enable the holder of a secret key to sign messages
in such a way that anyone in possession of the corresponding public verification
key can determine the validity of a given message-signature pair. For security, it
is required that the signature is unforgeable, i.e., no efficient adversary can forge a
valid signature (unless the adversary knows the secret key).

Consider the use case of a school database for students’ grades. To prevent students
from tampering with their results, each teacher uploads a grade together with a
signature (for the student and the grade). The unforgeability property ensures that
students cannot arbitrarily change their grades, however, it also limits the utility of
the database. For instance, if the school director wants to check the average of the
students’ grades on a certain subject, she would need to download all the grade-
signature pairs related to the subject, check the authenticity of each grade and
then compute the average on the (now certified) values. This procedure is quite
inconvenient, since the grades need to be checked before computing the average,
and has a high communication cost, due to the fact that all signed data need to be
downloaded. A more desirable solution would allow the school director to download
directly the average grade together with one signature attesting that the returned
value is the correct one according to the grades available in the school database,
and digitally signed by the legitimate teacher (see Figure 3). Such a scheme would
have somehow malleable signatures, i.e., signatures that support computation on
authenticated data. This kind of schemes are called homomorphic signatures.

(grade, signature)
average of grades?

(average, signature)

Figure 3: Application scenario for homomorphic signature schemes: a database of
signed grades.

18 Thesis summary

Homomorphic signature (HS) schemes [36] enable the holder of a secret key to sign
messages m1, . . . ,mn in such a way that anyone in possession of the corresponding
signatures σ1, . . . , σn and a function f can produce a valid signature σ for the
message y = f(m1, . . . ,mn). The key property of HS is succinctness: the size of the
evaluated signature σ should be smaller than the concatenation (σ1, . . . , σn) and
it is usually logarithmic in n, the number of messages. In homomorphic settings
the definition of unforgeability depends on the class of functions f supported by
the scheme. For schemes that support only linear functions on a vector space, e.g.,
[16], unforgeability states that the adversary should not be able to derive a correct
signature for a message (vector) which cannot be obtained as a linear combination
of previously honestly signed messages. If we applied the same reasoning to linearly
homomorphic signatures with messages in a field or to Fully Homomorphic Signature
schemes (FHS), e.g., [15, 49], we would end up with a useless definition: given a
pair (m,σ) it is possible to generate a valid signature σ′ for any message m′ =
f(m). Since f is any polynomial function, from a chosen m and its signature
σ one can compute signatures for any message in the whole message space. A
meaningful notion of unforgeability for FHS requires that the adversary should not
be able to derive a valid signature σ∗ for a value y∗ that is not the correct output
of f(m1, . . . ,mn) [43, 49]. This notion is achieved thanks to labelled programs
[43], as in FHS the signatures, the homomorphically evaluated signatures and the
verification procedure all depend on the labels.

The unforgeability intuitions given in this section are approximations of the core
meaning of the corresponding security notions. The formal definitions are quite
elaborate and include several sub-cases (types of forgeries). We refer the readers to
[16, 39, 49] for the details.

In the school database scenario, using FHS to sign the grades solves the problem
of computing statistics on the performance of students in each subject. However,
FHS does not directly allow to perform computations on grades signed by different
teachers, leaving open the following problem:

How can we authenticate homomorphic computation of functions that
involve data signed by different secret keys?

To achieve this property we need to make the signature scheme not only homo-
morphic on the messages, but also ‘flexible’ enough to accommodate computations
on data generated by different signers. The latter property is often referred to
as multi-key. In Paper A [39], we address the above question and formalize the
multi-key notion for FHS. Moreover, we provide concrete instantiations of schemes
that are multi-key and homomorphic. In Paper B [40] we go one step further and
investigate connections between single-key and multi-key homomorphic signatures.

Server-Aided Verification of Signatures
In the previous section, we mentioned how digital signature schemes have devel-
oped to support more and more advanced homomorphic properties. Computing on
signed data, however, is not the only line of development for signature schemes.
To cover the wide range of applications of this cryptographic primitive, other types
of schemes have been proposed such as: ring signatures [10, 21, 62], group signa-
tures [14, 29, 62, 63], blind signatures [2, 11, 28], attribute-based signatures [53, 65,
79], and structure preserving signatures [1, 63]. Despite the different aims, most
signature schemes are designed around strong and well-established cryptographic
assumptions that guarantee security at the cost of efficiency, especially in the veri-
fication process of signatures. There are three possible ways to enjoy both security

Background 19

and efficiency: (i) using a different hard problem to design a secure signature scheme,
(ii) trying to speed-up inefficient algorithms exploiting clever ways of computing the
necessary data, and (iii) off-loading heavy computations to a third party and effi-
ciently verifying the returned result. The latter approach falls into the server-aided
category of cryptographic schemes. Since in signatures schemes the large bulk of
computation is usually in the verification procedure, the main line of research is
for Server-Aided signature Verification (SAV) schemes [31, 45, 83, 85]. The aim of
such schemes is to reduce the gap between the computational cost of the signing
algorithm and the one of the verification algorithm in pairing-based schemes. There
exist also work on server-aided signature generation, however in this case the focus
is not on efficiency [8, 56].

Relying on a server to carry out expensive computations is a natural solution in
applications where resource-constrained devices are required to perform computa-
tions above the device capacity. From this point of view, server-aided verification
renders computationally heavy signatures accessible to a wide range of resource-
limited devices (e.g., smartcards, small-battery smartphones) without affecting the
device’s performance or battery life. The idea behind this solution is to replace the
verification algorithm of a signature scheme with an interactive protocol between
the computationally weak verifier and the computationally powerful but untrusted
server (see Figure 4).

(bid, signature)

accept / reject

compute

Figure 4: Application scenario for server-aided verification: signed auctions.

A bit more formally, SAV exploits the fact that the verification algorithm of any sig-
nature scheme can be split into two parts: a computationally expensive part (that
includes most of the operations performed for the verification) and a lightweight
equality-check part (see Figure 5). The aim is to replace the computationally ex-
pensive part with an interactive protocol that has the same functionality and is
more efficient (at least in terms of computational cost for the delegator-verifier).
Involving one more entity in the signature verification introduces new privacy and
security concerns.

Sign(sk,m) → σ

Verify(pk,m,σ) → 0/1

KeyGen(gp) → (pk, sk)

SetUp(1λ) → gpgp = BilinGroup

pk = g
sk
, sk ← Zp

σ = Hash(m)sk

e(σ, g) =? e(Hash(m), pk)

Figure 5: The BLS [17] signature scheme. The expensive computations in the
verification algorithm are highlighted with gray background. SAV schemes aim at
reducing the gap between the computational cost of Sign and Verify.

There have been some attempts to provide a formal security framework for server-
aided verification of signatures [31, 84, 85] and Paper C contributes to this line
by proposing a more realistic security model and new SAV schemes that achieve
stronger notions of security and privacy.

20 Thesis summary

Distance-Bounding Authentication Protocols

Distance-Bounding Authentication Protocols (DBAP) [5, 20] are two-party interac-
tive protocols that allow one entity (called the prover) to authenticate to a verifier
under the following conditions: (1) the prover is legitimate and (2) the prover
lies within a fixed radius from the verifier. The first condition is checked using
a challenge-response approach: the verifier sends a (usually one-bit) challenge c,
the prover computes the (usually one-bit) response r using a secret key and some
light-weight cryptographic tools. The second condition is checked by equipping
the verifier with a clock and measuring the time elapsed between sending c and
receiving r. To prove its proximity to the verifier, the prover computes its r im-
mediately after receiving c. To increase accuracy, DBAPs run a series of rapid
challenge-response exchanges between the verifier and the prover. Figure 6 depicts
the setting of DBAPs. In a nutshell, distance-bounding authentication protocols

Verifier Prover

c1

c2

cn

r2

r1

rn

.
.
.

Figure 6: Schematic explanation of distance-bounding authentication. The verifier
is a terminal for contact-less payments, the prover is a contact-less smartcard.

blend cryptographic primitives with timing tools to achieve accurate authentica-
tion. This dual nature is motivated by real world needs: DBAPs represent the best
mitigation against severe attacks such as the ones described below.

Contact-less debit-cards, credit-cards and smartcards in general were designed to
bring together security and usability. The chip present in contact-less cards is able
to carry out quite sophisticated cryptographic computations once it is brought to
life by a magnetic field. In order to authorize the card functionality (e.g., small fi-
nancial transactions) cardholders need to simply wave the card in front of a terminal
machine (e.g., point-of-sale). Within a few seconds the smartcard and the terminal
communicate with each other and determine whether the functionality (e.g., pay-
ment) was successful or not. Unfortunately, the most common contact-less EMV1

payment protocols (Visa’s payWave and MasterCard’s PayPass) have flaws and
have been shown vulnerable to relay attacks [13, 30, 38] that can be performed
even with smartphones [66]. Such attacks may lead to undesirable consequences
including changing the amount being charged or the party to be paid. For instance,
a businessman seated in a café with his contact-less credit card ‘safely’ put in his
pocket, may be the victim of an attack where an antenna bridges the communication
between a contact-less terminal in the jewellery shop next to the café and the busi-
nessman’s card. By relaying the communication through the antenna, the attacker
in the shop may be able to pay the jewellery with the businessman’s money! Similar

1EMV stands for Europay, MasterCard, and Visa.

Background 21

attacks have been setup to amplify the communication range of RFID car-keys and
unlock cars, while the keys were not in their physical proximity [41].

Relay attacks are a special family of man-in-the-middle attacks where the attacker
bridges communications between two parties (the victims). Concretely, the relay-
attacker is in communication with both parties and merely relays messages between
the victims without manipulating them or even necessarily reading them. What
makes relay attacks so dangerous is that in order to tamper with the protocol
the adversary does not need to know the details of the protocol or to break the
underlying cryptographic functions, it simply relays messages. A quaint example
of relay attack is the little girl playing against two chess masters [33]. All the little
girl needs to do is to challenge two Grandmasters at postal chess and relay moves
between them. Without knowing the rules of the game, the little girl will win (or
have a tie) in one of the two games.

The only way to distinguish a response that is being relayed from one that is
directly sent by the card to the terminal is to measure how long it takes for the
response to reach the terminal. As contact-less communication happens at most
at the speed of light, accurate clocks would be able to detect a time difference
that corresponds to half a meter space [20]. Therefore, a protocol that combines
light-weight cryptographic functions with physical time measurements represents
the natural solution against relay attacks. The keyed cryptographic functions are
used in a challenge-response framework to authenticate the prover (e.g., a contact-
less smartcard) while the recorded round-trip-times of the communication provide
an upper-bound on the maximal distance between the prover and the verifier (e.g.,
contact-less card reader). These are exactly the characteristics of distance-bounding
protocols.

Brands and Chaum’s seminal work on distance-bounding [20] was followed by a
long series of proposals [19, 51, 59, 74]. Paper D [86] provides the first formal
framework to describe the main classes of existing distance-bounding protocols and
also puts forward a general method to extend traditional prover-verifier protocols to
the three-participant setting of prover-linker-verifier (two-hop distance estimation).

Biometric Authentication Protocols

While distance-bounding protocols authenticate a user (the prover) via a device she
holds, biometric-based authentication relies solely on the user’s human features.
Biometric Authentication Protocols (BAP) allow quick, accurate and user-friendly
authentication of people. In a nutshell, all you need to do is to provide the system
with one biometric trait (e.g., your fingerprint or iris scan) and from that point
on the system is able to recognize you. In general, biometric traits are distinctive
characteristics that are measurable and identify (almost) uniquely each individual.
Therefore by measuring a fresh biometric template and comparing it with a refer-
ence, the system can recognize people and reject impostors claiming to be someone
they are not. Common biometric credentials are: fingerprint [88], iris [35], and face
shape [78].

Figure 7 provides a high-level intuition of the main aspects of biometric authen-
tication. To give a concrete example, consider an access gate to a military facility.
The gate is equipped with a sensor that scans the soldiers’ iris. The iris scan
transforms the biometric trait into a digital credential that is compared to a stored
biometric template for the soldier. Access will be granted only after the person has
been recognized as an authorized soldier in the military facility.

22 Thesis summary

trait

identity

b
′

b

ID

?ID

∆

Figure 7: Schematic explanation of how biometric authentication works. The user
provides a biometric trait and an identity. The sensor extracts from the trait a
biometric template b′ for identity ID. The system retrieves the reference template
b corresponding to ID and performs a matching process. If b is close enough to b′

(i.e., ∆ is small) the user is accepted, otherwise she is rejected.

Biometric authentication has become popular thanks to its usability and user-
dependent nature, properties that cannot be achieved with classical authentication
methods (e.g., passwords, distance-bounding). In particular, biometric authenti-
cation removes the need for users to memorize complicated, long passwords or to
carry along special secret tokens. Moreover, biometric credentials are characteris-
tic features naturally bound to the user’s body, are hard to steal, reproduce and
to spoof [7, 80]. This very same advantageous property, however, raises serious
security and privacy concerns in the case of a biometric trait being compromised
(cloned, forged).

Unlike passwords or tokens, biometric credentials cannot be kept secret or hidden,
and stolen biometrics cannot be revoked as easily [3]. Compromised biometric
credentials have an even stronger impact than spoofed passwords or stolen tokens.
With a stolen biometric credential attackers can perform crimes such as identity
theft and individual profiling and tracking [71, 80]. Moreover, from stolen biometrics
traits one can learn sensitive information about the owners, including ethnicity,
genetic information [75], medical diseases [12] and can use these data to compromise
health records [54].

Motivated by the high sensitivity of biometric data, in the past years several
privacy-preserving biometric authentication protocols have been proposed [7, 82,
87]. Such protocols are designed to resist specific attack scenarios including the
biometric reference recovery attack. In this attack, an unauthorized entity tries to
recover the (plaintext) reference biometric template b for a target user ID. A success-
ful reference recovery attack has particularly harmful consequences: the knowledge
of the raw credential b gives unauthorized access to any system that uses b as the
reference template for user ID and may additionally leak sensitive information about
the user’s physical characteristics and genetics.

Privacy-preserving biometric authentication protocols make use of advanced cryp-
tographic techniques (such as Oblivious Transfer and Homomorphic Encryption)
and are based on a distributed setting, where several entities take part in the pro-
tocol. The main reason for this approach is to minimize the amount of information
known by each entity.

In Paper E [68] we generalize Abidin, Pagnin and Mitrokotsa’s biometric refer-
ence recovery attack [3] to a wider family of BAPs and investigate the leakage of
information that affects biometric authentication. In Paper F [70] we show how
to mitigate Abidin’s attack [3] using Verifiable Computation techniques.

Summary of Papers and Contributions

We hope this will inspire others to work in this
fascinating area in which participation has been
discouraged in the recent past by a nearly total

government monopoly.

Diffie and Hellman, 1976 [37]

This section provides an overview of the main results of the papers included in Part
II of this thesis. It also contains descriptions of my contributions to each work.

Multi-Key Homomorphic Authenticators

Problem statement and related work. Homomorphic authenticators enable
a client to authenticate a large collection of data in such a way that any third party
can generate a short authenticator vouching for the correctness of the output of
some computation on the data and the authenticators. Previous works proposed
Homomorphic signatures or homomorphic MAC schemes that could support com-
putations of linear functions [16] or of more expressive polynomials [15, 49]. All
the aforementioned schemes are however single-key, i.e., computations can only be
performed on data generated with a single secret key. This characteristic limits the
application range of homomorphic authenticators to non-collaborative settings as
it prevents the correct authentication of any computation that requires input from
entities with different secret keys.

Consider the earlier example of a school database. Homomorphic signatures en-
able teachers to upload signed grades and anyone else (e.g., the school director or
the students’ parents) to check for the authenticity of simple statistics on the grades.
Unforgeability ensures that the students cannot upload fake grades. Homomorphic
signatures schemes, however, do not directly support authenticated statistics on
grades generated with different secret keys. In particular, in our example it would
not be possible to authenticate the outcome of computations that involve grades
by different teachers. To achieve this property, the signature scheme would need to
be homomorphic even among messages signed with different secret keys, in other
words, be multi-key and homomorphic.

Contributions and their implications. In this paper, we introduce the no-
tion of Multi-Key Homomorphic Authenticators (MK-HAs), a reasonable security
model for this new primitive and two independent constructions. MK-HAs extend
the existing notions of Homomorphic Signatures and Homomorphic Message Au-
thentication Codes to support computations on data generated by different secret

24 Thesis summary

keys while relying on succinct authenticators, i.e., the size of the authenticators
depends at most logarithmically on the total number of inputs to the computation.
Our Multi-Key HS scheme is based on standard lattices and supports the evalu-
ation of circuits of bounded polynomial depth. Our construction of a Multi-Key
Homomorphic MAC is particularly efficient, it is based on pseudorandom functions
and supports the evaluation of low-degree arithmetic circuits.

Statement of contributions. This paper is the result of a collaboration be-
tween Dario Fiore, Luca Nizzardo, Aikaterini Mitrokotsa and myself. We developed
and formalized the new primitive and its security model during my visit at IMDEA
funded by CryptoAction. I mainly worked on the Multi-Key Homomorphic MAC
construction and its security proofs. In addition, I proposed adding the Z compo-
nent to the signatures of the Multi-Key HS scheme to mitigate a special family of
forgeries.

Matrioska: A Compiler for Multi-Key Homomorphic Signa-

tures

Problem statement and related work. This paper is a follow-up of our work
on multi-key homomorphic authenticators [39]. Existing multi-key homomorphic
signature schemes are ad-hoc adaptations of a single-key homomorphic signature
[39] or derived by a generic construction that exploits strong, non-falsifiable cryp-
tographic primitives such as SNARKs [60]. In particular, there is no formal study
on the connections between multi-key and single-key HS schemes. This papers fills
this gap and provides a generic compiler for constructing a secure multi-key variant
of any (sufficiently expressive) single-key homomorphic signature scheme.

Contributions and their implications. In this paper, we establish formal
connections between multi-key and single-key homomorphic signatures and build
a (theoretical) bridge between these two primitives. In more details, we propose
Matrioska: the first generic compiler that enhances any (sufficiently expressive)
single-key HS with multi-key features under standard falsifiable assumptions only.
The existence of this compiler implies that multi-key and single-key homomorphic
signatures are equivalent (if they support evaluations of a special class of functions).
Moreover, Matrioska can be used to define new multi-key HS schemes from any fu-
ture proposal of a single-key homomorphic signature. The core of the Matrioska
technique is to use the single-key homomorphic evaluation procedure in an original
way that allows us to derive t signatures vouching for the authenticity of computa-
tions on an arbitrary number of signatures from t different signers. Our approach
is completely different from the known ways to obtain multi-key HS schemes [39, 60].

Statement of contributions. This paper is the outcome of a joint work be-
tween Dario Fiore and myself. It is a natural follow-up to our paper on multi-key
homomorphic authenticators [39] and dives in understanding the relation between
single- and multi-key homomorphic signatures. My contribution in this work was to
come up with the technical details that made the idea work correctly and securely.
All authors contributed equally to the paper.

Summary of Papers and Contributions 25

Anonymous Server-Aided Verification of Signatures

Problem statement and related work. Since the introduction of server-
aided verification of signatures [8, 45, 64] there has been a constant development
towards more efficient schemes and more realistic security models. The basic secu-
rity notions for SAV are soundness and existential unforgeability [45]. Wu et al. [85]
address for the first time attack scenarios where a malicious signer colludes with the
server in order to tamper with the outcome of the server-aided verification. Chow
et al. [31] refine previous definitions and show that the enabler of many attacks to
previous SAV schemes is the absence of an integrity check on the results returned
by the server. Integrity is not the only concern when outsourcing computations:
how about the signer’s privacy?

Contributions and their implications. In this paper, we provide formal def-
initions for known and new realistic attack scenarios against server-aided verifica-
tion of signatures and propose three novel constructions of server-aided verification
schemes. Concretely, we present the first compiler that defines a single-round (give-
and-take) server-aided verification protocol for any signature given an appropriate
verifiable computation scheme. We make use of our compiler to define new SAV
schemes that are the first published proposals achieving existential unforgeability
and soundness against collusion simultaneously.

In addition, we are the first to consider the notions of signer anonymity and ex-
tended existential unforgeability for SAV. To give an idea on the importance of these
two attack scenarios consider the case of signed auctions, where bidders sign their
bids (messages) to avoid other people impersonating them. In this setting, signer
anonymity prevents a malicious server from distinguishing one signer from another.
As a consequence, the server cannot ‘keep out’ target bidders from the auction by
making their signatures appear invalid. We also provide an extension to the notion
of unforgeability that additionally captures the following attack scenario. Imagine
the adversary is a bidder taking part in the auction. In order to steer the price of
certain items the adversary could get control over the server used for the aided veri-
fication and prevent signatures of higher bids from verifying correctly. Our compiler
allows us to determine sufficient requirements on the signature scheme (and/or the
verifiable computation scheme) in order to achieve security and anonymity.

Statement of contributions. This paper is the result of a study on server-
aided verification of signatures started by Aiketerini Mitrokotsa and myself during
a visit at Keisuke Tanaka Sensei’s laboratory. Although Dario Fiore is not listed
among the authors, he provided me with important technical feedback on the work.
I am the main author of this work and developed all the results. This paper is
of special importance within my Ph.D. because it represents my ‘first step’ as an
independent researcher on the academic path.

Two-hop Distance-Bounding Protocols: Keep your Friends

Close

Problem statement and related work. Traditional distance-bounding au-
thentication protocols aim to authenticate a resource-constrained prover to a (more
powerful) verifier [20, 51, 59, 73, 74], assuming that the prover lies within the com-
munication range of the verifier. Albeit most DBAPs are designed for RFID tags,

26 Thesis summary

there are works that consider slightly more powerful provers and define public-key
privacy-preserving distance-bounding [42, 52] and group distance-bounding [26].
The common factor to all protocols, however, remains that authentication is sub-
jected to the location of the parties: all devices must lie within each others’ trans-
mission range. While this requirement represents the main motivation for adopting
distance-bounding authentication protocols as a countermeasure against relay at-
tacks, it also limits their application scenarios. In particular, it is hard to directly
employ traditional distance-bounding protocols in multiple access control scenar-
ios, in ubiquitous computing environments and even to verify the proximity of a
two-hop neighbor. Pagnin et al. [69] put forward the idea to extend DBAPs to two-
hop neighbors, that is, when the prover and the verifier communicate through an
in-between linker. However, a formal framework for constructing two-hop distance-
bounding authentication from traditional DBAPs was missing.

Contributions and their implications. In this paper, we extend traditional
distance-bounding authentication protocols to also authenticate two-hop neighbors,
instead of adjacent devices only. This setting covers environments where the prover
is out of the communication range of the verifier, but both parties lie in the prox-
imity of the same untrusted entity, called the linker. We present an intuitive tax-
onomy of existing DBAPs and provide the first formal framework to extend any
register-based protocol to additionally support the two-hop distance-bounding au-
thentication. We also identify connections between attacks against the two-hop and
the one-hop settings and implement five two-hop distance-bounding authentication
protocols derived from the proposals in [19, 20, 59, 77] using our framework. Our
experimental results demonstrate the correctness of our security analysis and the
efficiency of our model.

Statement of contributions. This paper is the result of a collaboration started
within the objective of a STINT grant awarded to Aikaterini Mitrokotsa and Ger-
hard Hancke. Anjia Yang is the first author, I am the corresponding author. My
contributions in this work include the proposal of the taxonomy of existing distance-
bounding authentication protocols, the development of the formalism and the de-
scription of the framework for generic extension of register-based DBAP to the
two-hop setting. Additionally, I performed the formal security analysis.

On the Leakage of Information in Biometric Authentication

Problem statement and related work. User authentication via biometric cre-
dentials has become an increasingly popular way to authenticate people in highly
sensitive services such as health care systems [34], but also in everyday tasks such
as smartphone unlocking. If not implemented correctly, the wide adoption of these
systems might raise severe concerns about the users’ privacy and security. Privacy-
preserving biometric authentication protocols are designed to mitigate dangerous
threats including individual profiling, user tracking and leakage of sensitive informa-
tion connected to biometric traits (e.g., healthcare data [22, 23, 57]). The current
framework for analyzing template security and privacy models distributed biometric
authentication systems with internal adversaries [80]. Among the described attacks
there is also the so-called center search attack.

Summary of Papers and Contributions 27

Contributions and their implications. In this paper, we provide a formal
mathematical framework to analyze the implications of center search attacks against
privacy-preserving biometric authentication systems. The standard center search
attack is defined on binary strings. In this work, we generalize this efficient hill-
climbing technique to vectors with components in Zq for q ≥ 2. As a consequence,
certain families of biometric authentication protocols become naturally vulnerable
to our biometric template recovery attack. The main implication of our attack is
that, if successful, it will let the adversary learn susceptible users’ private data that
can lead to disclosure of health condition and digital impersonation of the victim.
However, not all is lost: one of the starting conditions for the attack to work is
the knowledge of a biometric credential that is close enough to the target one. We
investigated how to get such credentials in a theoretical way and showed that such
a problem is equivalent to the set-covering problem which is known to be NP com-
plete [32].

Statement of contributions. This work builds on a previous result by Abidin,
Pagnin and Mitrokotsa [4] and has been developed by me, Christos Dimitrakakis,
Aysajan Abidin and Aikaterini Mitrokotsa. I am the main author of this paper. I
developed the way to generalize Abidin’s attack to a larger setting, all the formal
details and the proofs.

Revisiting Yasuda et al.’s Biometric Authentication Protocol:

Are you Private Enough?

Problem statement and related work. Abidin, Pagnin and Mitrokotsa [4]
showed that Yasuda et al.’s privacy-preserving biometric authentication protocol
[87] is vulnerable to an ad-hoc biometric template recovery attack, and thus can no
longer be considered fully privacy-preserving. Among the enablers of Abidin’s at-
tack is the fact that the attacker is a malicious computational server. In this paper,
we redeem Yasuda’s protocol and propose a mitigation to the aforementioned attack.

Contributions and their implications. In this paper, we put forward a
generic strategy to transform privacy-preserving BAPs that are secure in the honest-
but-curious model into schemes that can tolerate internal malicious attackers. The
stronger security guarantee is derived by employing verifiable computation tech-
niques during the matching process. Specifically, we define BFR + SHE, a biometric
authentication protocol that essentially augments Yasuda et al.’s proposal [87] with
Backes et al.’s verifiable computation scheme [6] and is no longer vulnerable to
Abidin’s attack [4].

We remark that, BFR + SHE is still affected by the unavoidable leakage of in-
formation inherent to BAPs that employ the Hamming distance in the matching
process [68]. However, for the leakage to actually happen, the adversary needs to
already hold a matching template, and [68] shows that from a theoretical point of
view finding a matching biometric template is an NP-hard problem.

Statement of contributions. This paper is the outcome of Jing Liu’s successful
master thesis project under the supervision of Aikaterini Mitrokotsa and myself. I
contributed with constant support for technical matters during the development of
the master thesis and shaped up the results into a publishable paper.

Conclusions and Outlook

Our research isn’t finished and much is left to do
For instance, proving theorems completely in haiku

Trotta Gnam [46]

This Ph.D. thesis contributes to the body of knowledge in data and user authenti-
cation. It provides high-level explanations of four authentication methods and six
state-of-the-art papers that investigate homomorphic signatures, server-aided sig-
nature verification, distance-bounding authentication and biometric authentication.
This thesis brings in new constructions and aims to inspire further research.

Among the directions for future investigation that stem from the contributions
of this thesis we highlight the following. Paper A and Paper B show how to
construct multi-key homomorphic authenticators, but do not aim to give succinct
instantiations. Constructing multi-key schemes with authenticators of size indepen-
dent of the number of users involved in the computation is an open challenge, if one
does not want to rely on strong cryptographic tools that are likely to be based on
non-falsifiable assumptions (e.g., SNARKs as proposed in [60]). Other directions
of research in this area include: combining authentication and confidentiality so
that the entity who runs the homomorphic evaluation (e.g., the cloud) does not
learn the data over which it computes; and developing context-hiding schemes that
achieve privacy by revealing no non-trivial information about the computations’
inputs. Paper C raises awareness about the need for more efficient verifiable com-
putation schemes for bilinear-pairing evaluation that would render a wide range of
signature schemes accessible to resource-limited devices via server-aided verifica-
tion techniques. Paper D opens up a new scene for distance-bounding authentica-
tion and therefore calls for creative application scenarios in two-hop and multi-hop
settings. Finally, Paper E and Paper F address privacy concerns in biometric
authentication and identify the need for new tools to achieve non-leaky biometric
template matching.

In addition to the six papers collected in Part II, during my Ph.D. I had several
successful collaborations that resulted in the publications reported in the List of
Publications at the beginning of this thesis. Figure 8 provides subway map in-
spired representation of my research work so far. Papers are represented as stations,
and the four lines follow the paths of data/user privacy privacy, multi-key features,
constrained settings and new attacks. The two, black, right-most stations in Figure
8 are outlooks of two on-going works that I describe in what follows.

30 Thesis summary

2014 2015 2016 2017 2018

co
ll
a
b
o
ra

ti
v
e

se
tt

in
g
s

Signal+

Succinct MKHE

HB+DB, distance

FGCS

HB+DB, mitigating

WISEC

Using dist.bo. to securely

IEEE CL

Matrioska

SCN

Multi-Key hom. auth.

ASIACRYPT

Privacy-Preserving bio.auth.

SaCN, HINDAWI

Attacks on

bio.auth.

NORDSEC

On the leakage of information

INDOCRYPT

Revisiting Yasuda

CANS

Two-hop dist.bo.

IEEE TMC

privacy line

attacks line

multi-key line

constraints line

Anonymous SAV

LATINCRYPT

HIKE: walking

CANS

A B

F C
E

D

Figure 8: A subway-style map of the papers I contributed to during my Ph.D. The
works are organized by the time of publication (or due date) on the x axis, and
the size of the supported collaborative setting on the y axis (starting from two
users and increasing progressively). Connections between papers are represented as
‘subway lines’ between ‘stations’. The lines are named after the four main themes
of my Ph.D. The Latin letters A-F refer to the corresponding papers appended to
this thesis. Dashed lines lead to results currently under development and highlight
directions for future work.

Paper Succinct MKHE in Figure 8 puts forward an original way to achieve fully
succinct ciphertexts in multi-key additive homomorphic encryption. Exploiting the
algebraic structure of some additive homomorphic encryption schemes, we define a
new encryption scheme that is a hybrid of secret-key and public-key mechanisms.
Our objective is to develop a scheme that supports linearly homomorphic compu-
tations on data encrypted by different users and has ciphertexts of constant-length.
Paper Signal+ investigates how to obtain secure asynchronous messaging under the
presence of very powerful adversaries. The starting point is the widely deployed
Signal protocol. We identify some weaknesses in the design of Signal and propose
mitigations and improvements. Our two major goals are to change the trust as-
sumptions of the Signal protocol and to develop a new approach to the ratchet
mechanism that supports persistent entity authentication (partnering).

To conclude, I hope this thesis presents a pleasant tour in the land of data and
user authentication. Authentication is only one side of the complex polyhedron of
security goals in the cryptography world. I am confident that the authentication
protocols and schemes we have now and will develop in the future will allow us
to happily and safely collaborate in this digital Era even under the presence of
malicious entities. Thus, I wish you all to be more and be merry!

Bibliography

[1] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and
Miyako Ohkubo. “Structure-Preserving Signatures and Commitments to Gro-
up Elements”. In: CRYPTO 2010. Ed. by Tal Rabin. Vol. 6223. LNCS. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, 2010, pp. 209–236.

[2] Masayuki Abe and Tatsuaki Okamoto. “Provably Secure Partially Blind Sig-
natures”. In: CRYPTO 2000. Ed. by Mihir Bellare. Vol. 1880. LNCS. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, 2000, pp. 271–286.

[3] Aysajan Abidin and Aikaterini Mitrokotsa. “Security Aspects of Privacy-Pre-
serving Biometric Authentication Based on Ideal Lattices and Ring-LWE”. In:
Information Forensics and Security (WIFS), 2014 IEEE International Work-
shop on. IEEE. 2014, pp. 60–65.

[4] Aysajan Abidin, Elena Pagnin, and Aikaterini Mitrokotsa. “Attacks on Priva-
cy-Preserving Biometric Authentication”. In: Proceedings of the 19th Nordic
Conference on Secure IT Systems (NordSec 2014). Springer. 2014, pp. 293–
294.

[5] Gildas Avoine, Muhammed Ali Bingöl, Süleyman Kardaş, Cédric Lauradoux,
and Benjamin Martin. “A Framework for Analyzing RFID Distance Bounding
Protocols”. In: vol. 19. 2. IOS Press, 2011, pp. 289–317.

[6] Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk.
“ADSNARK: Nearly Practical and Privacy-Preserving Proofs on Authenti-
cated Data”. In: 2015 IEEE Symposium on Security and Privacy. San Jose,
CA, USA: IEEE Computer Society Press, 2015, pp. 271–286.

[7] Manuel Barbosa, Thierry Brouard, Stéphane Cauchie, and Simão Melo de
Sousa. “Secure Biometric Authentication with Improved Accuracy”. In: ACISP
08. Ed. by Yi Mu, Willy Susilo, and Jennifer Seberry. Vol. 5107. LNCS. Wol-
longong, Australia: Springer, Heidelberg, Germany, 2008, pp. 21–36.

[8] Philippe Béguin and Jean-Jacques Quisquater. “Fast Server-Aided RSA Sig-
natures Secure Against Active Attacks”. In: CRYPTO’95. Ed. by Don Cop-
persmith. Vol. 963. LNCS. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, 1995, pp. 57–69.

[9] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. “A Modular Approach to
the Design and Analysis of Authentication and Key Exchange Protocols (Ex-
tended Abstract)”. In: 30th ACM STOC. Dallas, TX, USA: ACM Press, 1998,
pp. 419–428.

[10] Adam Bender, Jonathan Katz, and Ruggero Morselli. “Ring Signatures: Stron-
ger Definitions, and Constructions Without Random Oracles”. In: TCC 2006.
Ed. by Shai Halevi and Tal Rabin. Vol. 3876. LNCS. New York, NY, USA:
Springer, Heidelberg, Germany, 2006, pp. 60–79.

31

32 Thesis summary

[11] Alexandra Boldyreva. “Threshold Signatures, Multisignatures and Blind Sig-
natures Based on the Gap-Diffie-Hellman-Group Signature Scheme”. In: PKC
2003. Ed. by Yvo Desmedt. Vol. 2567. LNCS. Miami, FL, USA: Springer, Hei-
delberg, Germany, 2003, pp. 31–46.

[12] James Bolling. “A Window to Your Health”. In: Special Issue: Retinal Dis-
eases: Capacity and Examples Jacksonville Medicine 51.9 (2000).

[13] Mike Bond, Omar Choudary, Steven J. Murdoch, Sergei Skorobogatov, and
Ross Anderson. “Chip and Skim: Cloning EMV Cards with the Pre-Play
Attack”. In: Security and Privacy (SP). IEEE. 2014, pp. 49–64.

[14] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group Signatures”.
In: CRYPTO 2004. Ed. by Matthew Franklin. Vol. 3152. LNCS. Santa Bar-
bara, CA, USA: Springer, Heidelberg, Germany, 2004, pp. 41–55.

[15] Dan Boneh and David Mandell Freeman. “Homomorphic Signatures for Poly-
nomial Functions”. In: EUROCRYPT 2011. Ed. by Kenneth G. Paterson.
Vol. 6632. LNCS. Tallinn, Estonia: Springer, Heidelberg, Germany, 2011,
pp. 149–168.

[16] Dan Boneh and David Mandell Freeman. “Linearly Homomorphic Signa-
tures over Binary Fields and New Tools for Lattice-Based Signatures”. In:
PKC 2011. Ed. by Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio
Nicolosi. Vol. 6571. LNCS. Taormina, Italy: Springer, Heidelberg, Germany,
2011, pp. 1–16.

[17] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil
Pairing”. In: ASIACRYPT 2001. Ed. by Colin Boyd. Vol. 2248. LNCS. Gold
Coast, Australia: Springer, Heidelberg, Germany, 2001, pp. 514–532.

[18] Dan Boneh, Emily Shen, and Brent Waters. “Strongly Unforgeable Signatures
Based on Computational Diffie-Hellman”. In: PKC 2006. Ed. by Moti Yung,
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin. Vol. 3958. LNCS. New
York, NY, USA: Springer, Heidelberg, Germany, 2006, pp. 229–240.

[19] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. “Practical and
Provably Secure Distance-Bounding”. In: ISC 2013. Ed. by Yvo Desmedt.
Vol. 7807. LNCS. Dallas, TX, USA: Springer, Heidelberg, Germany, 2015,
pp. 248–258.

[20] Stefan Brands and David Chaum. “Distance-Bounding Protocols (Extended
Abstract)”. In: EUROCRYPT’93. Ed. by Tor Helleseth. Vol. 765. LNCS.
Lofthus, Norway: Springer, Heidelberg, Germany, 1994, pp. 344–359.

[21] Emmanuel Bresson, Jacques Stern, and Michael Szydlo. “Threshold Ring Sig-
natures and Applications to Ad-hoc Groups”. In: CRYPTO 2002. Ed. by Moti
Yung. Vol. 2442. LNCS. Santa Barbara, CA, USA: Springer, Heidelberg, Ger-
many, 2002, pp. 465–480.

[22] Julien Bringer, Herve Chabanne, Melanie Favre, Alain Patey, Thomas Schnei-
der, and Michael Zohner. “GSHADE: Faster Privacy-Preserving Distance Com-
putation and Biometric Identification”. In: Proceedings of the 2nd ACM work-
shop on Information hiding and multimedia security. ACM. 2014, pp. 187–198.

[23] Julien Bringer, Hervé Chabanne, and Alain Patey. “Shade: Secure Hamming
Distance Computation from Oblivious Transfer”. In: FC 13. Springer. 2013,
pp. 164–176.

Conclusions and Outlook 33

[24] Christina Brzuska, Heike Busch, Özgür Dagdelen, Marc Fischlin, Martin Franz,
Stefan Katzenbeisser, Mark Manulis, Cristina Onete, Andreas Peter, Bertram
Poettering, and Dominique Schröder. “Redactable Signatures for Tree-Struc-
tured Data: Definitions and Constructions”. In: ACNS 10. Ed. by Jianying
Zhou and Moti Yung. Vol. 6123. LNCS. Beijing, China: Springer, Heidelberg,
Germany, 2010, pp. 87–104.

[25] Jan Camenisch and Anna Lysyanskaya. “A Signature Scheme with Efficient
Protocols”. In: SCN 02. Ed. by Stelvio Cimato, Clemente Galdi, and Giuseppe
Persiano. Vol. 2576. LNCS. Amalfi, Italy: Springer, Heidelberg, Germany,
2003, pp. 268–289.

[26] Srdjan Capkun, Karim M. El Defrawy, and Gene Tsudik. “Group Distance
Bounding Protocols - (Short Paper)”. In: TRUST 11. Pittsburgh, PA, USA,
2011, pp. 302–312.

[27] Jae Choon Cha and Jung Hee Cheon. “An Identity-Based Signature from
Gap Diffie-Hellman Groups”. In: PKC 2003. Ed. by Yvo Desmedt. Vol. 2567.
LNCS. Miami, FL, USA: Springer, Heidelberg, Germany, 2003, pp. 18–30.

[28] David Chaum. “Blind Signatures for Untraceable Payments”. In: CRYPTO
82. Ed. by David Chaum, Ronald L. Rivest, and Alan T. Sherman. Santa
Barbara, CA, USA: Plenum Press, New York, USA, 1982, pp. 199–203.

[29] David Chaum and Eugène van Heyst. “Group Signatures”. In: EUROCRYPT
91. Ed. by Donald W. Davies. Vol. 547. LNCS. Brighton, UK: Springer, Hei-
delberg, Germany, 1991, pp. 257–265.

[30] Tom Chothia, Flavio D. Garcia, Joeri de Ruiter, Jordi van den Breekel, and
Matthew Thompson. “Relay Cost Bounding for Contactless EMV Payments”.
In: FC 2015. Ed. by Rainer Böhme and Tatsuaki Okamoto. Vol. 8975. LNCS.
San Juan, Puerto Rico: Springer, Heidelberg, Germany, 2015, pp. 189–206.

[31] Sherman S. M. Chow, Man Ho Au, and Willy Susilo. “Server-Aided Signatures
Verification Secure against Collusion Attack (Short Paper)”. In: ASIACCS
11. Ed. by Bruce S. N. Cheung, Lucas Chi Kwong Hui, Ravi S. Sandhu, and
Duncan S. Wong. Hong Kong, China: ACM Press, 2011, pp. 401–405.

[32] Vasek Chvatal. “A Greedy Heuristic for the Set-Covering Problem”. In: Math-
ematics of operations research 4.3 (1979), pp. 233–235.

[33] John Horton Conway. “On Numbers and Games”. In: London Mathematical
Society Monographs. 6. Academic Press London-New-San Francisco, 1976.

[34] Ashok Kumar Das and Adrijit Goswami. “A Secure and Efficient Uniqueness-
and-Anonymity-Preserving Remote User Authentication Scheme for Connect-
ed Health Care”. In: Journal of Medical Systems 37.3 (2013), p. 9948.

[35] John Daugman. “How Iris Recognition Works”. In: The essential guide to
image processing. Elsevier, 2009, pp. 715–739.

[36] Yvo Desmedt. “Computer security by redefining what a computer is”. In:
Proceedings on the 1992-1993 workshop on New security paradigms. ACM.
1993, pp. 160–166.

[37] Whitfield Diffie and Martin Hellman. “New directions in cryptography”. In:
IEEE transactions on Information Theory 22.6 (1976), pp. 644–654.

[38] Saar Drimer and Steven J. Murdoch. “Keep Your Enemies Close: Distance
Bounding Against Smartcard Relay Attacks”. In: USENIX 97. Boston, MA,
USA, 2007.

34 Thesis summary

[39] Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin. “Multi-
key Homomorphic Authenticators”. In: ASIACRYPT 2016, Part II. Ed. by
Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10032. LNCS. Hanoi, Vietnam:
Springer, Heidelberg, Germany, 2016, pp. 499–530.

[40] Dario Fiore and Elena Pagnin. “Matrioska: A Compiler for Multi-Key Homo-
morphic Signatures”. In: SCN 18. LNCS. Amalfi, Italy: Springer, Heidelberg,
Germany, 2018.

[41] Aurélien Francillon, Boris Danev, and Srdjan Capkun. “Relay Attacks on
Passive Keyless Entry and Start Systems in Modern Cars”. In: NDSS 2011.
San Diego, CA, USA: The Internet Society, 2011.

[42] Sébastien Gambs, Cristina Onete, and Jean-Marc Robert. “Prover Anony-
mous and deniable Distance-Bounding Authentication”. In: ASIACCS 14.
Ed. by Shiho Moriai, Trent Jaeger, and Kouichi Sakurai. Kyoto, Japan: ACM
Press, 2014, pp. 501–506.

[43] Rosario Gennaro and Daniel Wichs. “Fully Homomorphic Message Authen-
ticators”. In: ASIACRYPT 2013, Part II. Ed. by Kazue Sako and Palash
Sarkar. Vol. 8270. LNCS. Bengalore, India: Springer, Heidelberg, Germany,
2013, pp. 301–320.

[44] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: 41st
ACM STOC. Ed. by Michael Mitzenmacher. Bethesda, MD, USA: ACM Press,
2009, pp. 169–178.

[45] Marc Girault and David Lefranc. “Server-Aided Verification: Theory and
Practice”. In: ASIACRYPT 2005. Ed. by Bimal K. Roy. Vol. 3788. LNCS.
Chennai, India: Springer, Heidelberg, Germany, 2005, pp. 605–623.

[46] Trotta Gnam. “Zero-Knowledge Made Easy so It Won’t Make You Dizzy -
(A Tale of Transaction Put in Verse About an Illicit Kind of Commerce)”.
In: SCN 16. Ed. by Vassilis Zikas and Roberto De Prisco. Vol. 9841. LNCS.
Amalfi, Italy: Springer, Heidelberg, Germany, 2016, pp. 191–197.

[47] Shafi Goldwasser and Mihir Bellare. “Lecture Notes on Cryptography”. In:
http://www. cs. ucsd. edu/users/mihir/papers/gb.html (2015).

[48] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. “A Digital Signature
Scheme Secure Against Adaptive Chosen-message Attacks”. In: SIAM Journal
on Computing 17.2 (Apr. 1988), pp. 281–308.

[49] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. “Leveled Fully
Homomorphic Signatures from Standard Lattices”. In: 47th ACM STOC. Ed.
by Rocco A. Servedio and Ronitt Rubinfeld. Portland, OR, USA: ACM Press,
2015, pp. 469–477.

[50] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. “Attribute-
Based Encryption for Fine-Grained Access Control of Encrypted Data”. In:
ACM CCS 06. Ed. by Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati. Alexandria, Virginia, USA: ACM Press, 2006, pp. 89–98.

[51] Gerhard P. Hancke and Markus G. Kuhn. “An RFID Distance Bounding
Protocol”. In: First International Conference on Security and Privacy for
Emerging Areas in Communications Networks, (SecureComm). 2005, pp. 67–
73.

[52] Jens Hermans, Roel Peeters, and Cristina Onete. “Efficient, Secure, Private
Distance Bounding Without Key Updates”. In: Security and privacy in wire-
less and mobile networks (WiSec). ACM. 2013, pp. 207–218.

Conclusions and Outlook 35

[53] Javier Herranz, Fabien Laguillaumie, Benôıt Libert, and Carla Ràfols. “Short
Attribute-Based Signatures for Threshold Predicates”. In: CT-RSA 2012. Ed.
by Orr Dunkelman. Vol. 7178. LNCS. San Francisco, CA, USA: Springer,
Heidelberg, Germany, 2012, pp. 51–67.

[54] Anil K Jain, Karthik Nandakumar, and Abhishek Nagar. “Biometric Template
Security”. In: Hindawi Publishing Corp., 2008, p. 113.

[55] Markus Jakobsson and Ari Juels. “Proofs of Work and Bread Pudding Pro-
tocols”. In: Secure Information Networks: Communications and Multimedia
Security (CMS ’99). Springer, 1999, pp. 258–272.

[56] Markus Jakobsson and Susanne Wetzel. “Secure Server-Aided Signature Gen-
eration”. In: PKC 2001. Ed. by Kwangjo Kim. Vol. 1992. LNCS. Cheju Island,
South Korea: Springer, Heidelberg, Germany, 2001, pp. 383–401.

[57] Ayman Jarrous and Benny Pinkas. “Secure Hamming Distance Based Com-
putation and Its Applications”. In: ACNS 09. Ed. by Michel Abdalla, David
Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud. Vol. 5536. LNCS.
Paris-Rocquencourt, France: Springer, Heidelberg, Germany, 2009, pp. 107–
124.

[58] Ari Juels and Stephen A. Weis. “Authenticating Pervasive Devices with Hu-
man Protocols”. In: CRYPTO 2005. Ed. by Victor Shoup. Vol. 3621. LNCS.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, 2005, pp. 293–308.

[59] Chong Hee Kim, Gildas Avoine, François Koeune, François-Xavier Standaert,
and Olivier Pereira. “The Swiss-Knife RFID Distance Bounding Protocol”.
In: ICISC 08. Ed. by Pil Joong Lee and Jung Hee Cheon. Vol. 5461. LNCS.
Seoul, Korea: Springer, Heidelberg, Germany, 2009, pp. 98–115.

[60] Russell W. F. Lai, Raymond K. H. Tai, Harry W. H. Wong, and Sher-
man S. M. Chow. “A Zoo of Homomorphic Signatures: Multi-Key and Key-
Homomorphism”. Cryptology ePrint Archive, Report 2016/834, http : / /

eprint.iacr.org/2016/834. 2016.

[61] Byoungcheon Lee, Heesun Kim, and Kwangjo Kim. “Strong Proxy Signature
and its Applications”. In: Proceedings of SCIS. Vol. 2001. 2001, pp. 603–608.

[62] Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. “Zero-Knowledge
Arguments for Lattice-Based Accumulators: Logarithmic-Size Ring Signa-
tures and Group Signatures Without Trapdoors”. In: EUROCRYPT 2016,
Part II. Ed. by Marc Fischlin and Jean-Sébastien Coron. Vol. 9666. LNCS.
Vienna, Austria: Springer, Heidelberg, Germany, 2016, pp. 1–31.

[63] Benôıt Libert, Thomas Peters, and Moti Yung. “Short Group Signatures
via Structure-Preserving Signatures: Standard Model Security from Simple
Assumptions”. In: CRYPTO 2015, Part II. Ed. by Rosario Gennaro and
Matthew J. B. Robshaw. Vol. 9216. LNCS. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, 2015, pp. 296–316.

[64] Chae Hoon Lim and Pil Joong Lee. “Server (Prover/Signer)-Aided Verification
of Identity Proofs and Signatures”. In: EUROCRYPT’95. Ed. by Louis C.
Guillou and Jean-Jacques Quisquater. Vol. 921. LNCS. Saint-Malo, France:
Springer, Heidelberg, Germany, 1995, pp. 64–78.

[65] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. “Attribute-Based
Signatures”. In: CT-RSA 2011. Ed. by Aggelos Kiayias. Vol. 6558. LNCS. San
Francisco, CA, USA: Springer, Heidelberg, Germany, 2011, pp. 376–392.

http://eprint.iacr.org/2016/834
http://eprint.iacr.org/2016/834

36 Thesis summary

[66] Konstantinos Markantonakis, Lishoy Francis, Gerhard Hancke, and Keith
Mayes. “Practical Relay Attack on Contactless Transactions by Using NFC
Mobile Phones”. In: Radio Frequency Identification System Security: RFIDsec
12 (2012), p. 21.

[67] Elena Pagnin, Carlo Brunetta, and Pablo Picazo-Sanchez. “HIKE: Walking
the Privacy Trail”. In: Cryptology and Network Security (CANS). LNCS.
Naples, Italy, 2018.

[68] Elena Pagnin, Christos Dimitrakakis, Aysajan Abidin, and Aikaterini Mitro-
kotsa. “On the Leakage of Information in Biometric Authentication”. In:
INDOCRYPT ’14. Ed. by Willi Meier and Debdeep Mukhopadhyay. Vol. 8885.
LNCS. New Delhi, India: Springer, Heidelberg, Germany, 2014, pp. 265–280.

[69] Elena Pagnin, Gerhard P. Hancke, and Aikaterini Mitrokotsa. “Using Distance-
Bounding Protocols to Securely Verify the Proximity of Two-hop Neighbours”.
In: IEEE Communications Letters 19.7 (2015), pp. 1173–1176.

[70] Elena Pagnin, Jing Liu, and Aikaterini Mitrokotsa. “Revisiting Yasuda et al.’s
Biometric Authentication Protocol: Are you Private Enough?” In: Cryptology
and Network Security (CANS). LNCS. Hong Kong, 2017.

[71] Elena Pagnin and Aikaterini Mitrokotsa. “Privacy-preserving biometric au-
thentication: challenges and directions”. In: Security and Communication Net-
works (2017). Article ID 7129505.

[72] Elena Pagnin, Aikaterini Mitrokotsa, and Keisuke Tanaka. “Anonymous Single-
Round Server-Aided Verification”. In: 5th International Conference on Cryp-
tology and Information Security in Latin America (2017).

[73] Elena Pagnin, Anjia Yang, Gerhard P. Hancke, and Aikaterini Mitrokotsa.
“HB+DB, Mitigating Man-in-the-Middle Attacks against HB+ with Distance
Bounding”. In: Security & Privacy in Wireless and Mobile Networks (WiSec).
ACM. 2015, 3:1–3:6.

[74] Elena Pagnin, Anjia Yang, Qiao Hu, Gerhard Hancke, and Aikaterini Mitrokotsa.
“HB+ DB: Distance Bounding Meets Human Based Authentication”. In: Fu-
ture Generation Computer Systems 80 (2018), pp. 627–639.

[75] LS Penrose. “Dermatoglyphic topology”. In: Nature 205.4971 (1965), pp. 544–
546.

[76] Charles Rackoff and Daniel R. Simon. “Non-Interactive Zero-Knowledge Proof
of Knowledge and Chosen Ciphertext Attack”. In: CRYPTO’91. Ed. by Joan
Feigenbaum. Vol. 576. LNCS. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, 1992, pp. 433–444.

[77] Jason Reid, Juan Manuel González Nieto, Tee Tang, and Bouchra Senadji.
“Detecting Relay Attacks with Timing-Based Protocols”. In: ASIACCS 07.
Ed. by Feng Bao and Steven Miller. Singapore: ACM Press, 2007, pp. 204–
213.

[78] M. Savvides, B. V. K. Vijaya Kumar, and P. K. Khosla. “Cancelable bio-
metric filters for face recognition”. In: International Conference on Pattern
Recognition, ICPR. Vol. 3. 3. 2004, pp. 922–925.

[79] Siamak Fayyaz Shahandashti and Reihaneh Safavi-Naini. “Threshold Attrib-
ute-Based Signatures and Their Application to Anonymous Credential Sys-
tems”. In: AFRICACRYPT 09. Ed. by Bart Preneel. Vol. 5580. LNCS. Gam-
marth, Tunisia: Springer, Heidelberg, Germany, 2009, pp. 198–216.

[80] Koen Simoens, Julien Bringer, Hervé Chabanne, and Stefaan Seys. “A frame-
work for analyzing template security and privacy in biometric authentication
systems”. In: IEEE Transactions on Information Forensics and Security 7.2
(2012), pp. 833–841.

[81] William Stallings. Cryptography and network security: principles and practice.
Pearson Education, 2003.

[82] Alex Stoianov. “Cryptographically secure biometrics”. In: Biometric Technol-
ogy for Human Identification VII. Vol. 7667. International Society for Optics
and Photonics. 2010, p. 76670.

[83] Zhiwei Wang. “A new construction of the server-aided verification signature
scheme”. In: Mathematical and Computer Modelling 55.1 (2012), pp. 97–101.

[84] Zhiwei Wang, Licheng Wang, Yixian Yang, and Zhengming Hu. “Comment
on Wu et al.’s Server-aided Verification Signature Schemes.” In: International
Journal of Network Security 10.2 (2010), pp. 158–160.

[85] Wei Wu, Yi Mu, Willy Susilo, and Xinyi Huang. “Provably secure server-aided
verification signatures”. In: Computers & Mathematics with Applications 61.7
(2011), pp. 1705 –1723.

[86] A. Yang, E. Pagnin, A. Mitrokotsa, G. P. Hancke, and D. S. Wong. “Two-hop
Distance-Bounding Protocols: Keep your Friends Close”. In: IEEE Transac-
tions on Mobile Computing 17.7 (2018), pp. 1723–1736.

[87] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokomaya, and T. Kashiba. “Practi-
cal packing method in somewhat homomorphic encryption”. In: DPM/SETOP.
Vol. 8147. LNCS. Springer Berlin Heidelberg, 2013, pp. 34–50.

[88] Naser Zaeri. “Minutiae-Based fingerprint extraction and recognition”. In: Bio-
metrics. InTech, 2011.

Part II

Collection of Papers

39

Paper A

Multi-Key Homomorphic Authenticators
Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena

Pagnin

Abstract. Homomorphic authenticators (HAs) enable a client to authenticate a
large collection of data elements m1, . . . ,mt and outsource them, along with the
corresponding authenticators, to an untrusted server. At any later point, the server
can generate a short authenticator vouching for the correctness of the output y of
a function f computed on the outsourced data, i.e., y = f(m1, . . . ,mt). Recently
researchers have focused on HAs as a solution, with minimal communication and
interaction, to the problem of delegating computation on outsourced data. The
notion of HAs studied so far, however, only supports executions (and proofs of
correctness) of computations over data authenticated by a single user. Motivated
by realistic scenarios (ubiquitous computing, sensor networks, etc.) in which large
datasets include data provided by multiple users, we study the concept of multi-
key homomorphic authenticators. In a nutshell, multi-key HAs are like HAs with
the extra feature of allowing the holder of public evaluation keys to compute on
data authenticated under different secret keys. In this paper, we introduce and
formally define multi-key HAs. Secondly, we propose a construction of a multi-key
homomorphic signature based on standard lattices and supporting the evaluation of
circuits of bounded polynomial depth. Thirdly, we provide a construction of multi-
key homomorphic MACs based only on pseudorandom functions and supporting the
evaluation of low-degree arithmetic circuits. Albeit being less expressive and only
secretly verifiable, the latter construction presents interesting efficiency properties.

Keywords. Homomorphic Signatures, Homomorphic Message Authentication.

Proceedings of the 22nd International Conference on the Theory and Application
of Cryptology and Information Security (ASIACRYPT), 2016.

Multi-Key Homomorphic Authenticators

1 Introduction

The technological innovations offered by modern IT systems are changing the way
digital data is collected, stored, processed and consumed. As an example, think of
an application where data is collected by some organizations (e.g., hospitals), stored
and processed on remote servers (e.g., the Cloud) and finally consumed by other
users (e.g., medical researchers) on other devices. On one hand, this computing
paradigm is very attractive, particularly as data can be shared and exchanged by
multiple users. On the other hand, it is evident that in such scenarios one may
be concerned about security: while the users that collect and consume the data
may trust each other (up to some extent), trusting the Cloud can be problematic
for various reasons. More specifically, two main security concerns to be addressed
are those about the privacy and authenticity of the data stored and processed in
untrusted environments.

While it is widely known that privacy can be solved in such a setting using,
e.g., homomorphic encryption [27], in this work we focus on the orthogonal prob-
lem of providing authenticity of data during computation. Towards this goal, our
contribution is on advancing the study of homomorphic authenticators (HAs), a
cryptographic primitive that has been the subject of recent work [9, 26, 30, 33].

Homomorphic Authenticators. Using an homomorphic authenticator (HA)
scheme a user Alice can authenticate a collection of data items m1, . . . ,mt using
her secret key, and send the authenticated data to an untrusted server. The server
can execute a program P on the authenticated data and use a public evaluation
key to generate a value σP,y vouching for the correctness of y = P(m1, . . . ,mt).
Finally, a user Bob who is given the tuple (P, y, σP,y) and Alice’s verification key
can use the authenticator to verify the authenticity of y as output of the program
P executed on data authenticated by Alice. In other words, Bob can check that
the server did not tamper with the computation’s result. Alice’s verification key
can be either secret or public. In the former case, we refer to the primitive as
homomorphic MACs [11, 26], while in the latter we refer to it as homomorphic
signatures [9]. One of the attractive features of HAs is that the authenticator σP,y
is succinct, i.e., much shorter than P’s input size. This means that the server can
execute a program on a huge amount of data and convince Bob of its correctness
by sending him only a short piece of information. As discussed in previous work
(e.g., [5, 26, 30]), HAs provide a nice solution, with minimal communication and
interaction, to the problem of delegating computations on outsourced data, and
thus can be preferable to verifiable computation (more details on this comparison
appear in Section 1.1).

Our Contribution: Multi-Key Homomorphic Authenticators. Up to now,
the notion of HAs has inherently been single-key, i.e., homomorphic computations

44 Paper A

are allowed only on data authenticated using the same secret key. This characteris-
tic is obviously a limitation and prevents HA schemes from suiting scenarios where
the data is provided (and authenticated) by multiple users. Consider the previously
mentioned example of healthcare institutions which need to compute on data col-
lected by several hospitals or even some remote-monitored patients. Similarly, it
is often required to compute statistics for time-series data collected from multiple
users e.g., to monitor usage data in smart metering, clinical research or to monitor
the safety of buildings. Another application scenario is in distributed networks of
sensors. Imagine for instance a network of sensors where each sensor is in charge
of collecting data about air pollution in a certain area of a city, it sends its data to
a Cloud server, and then a central control unit asks the Cloud to compute on the
data collected by the sensors (e.g., to obtain the average value of air pollution in a
large area).

A trivial solution to address the problem of computing on data authenticated by
multiple users is to use homomorphic authenticators in such a way that all data
providers share the same secret authentication key. The desired functionality is
obviously achieved since data would be authenticated using a single secret key.
This approach however has several drawbacks. The first one is that users need to
coordinate in order to agree on such a key. The second one is that in such a setting
there would be no technical/legal way to differentiate between users (e.g., to make
each user accountable for his/her duties) as any user can impersonate all the other
ones. The third and more relevant reason is that sharing the same key exposes
the overall system to way higher risks of attacks and makes disaster recovery more
difficult: if a single user is compromised the whole system is compromised too, and
everything has to be reinitialized from scratch.

In contrast, this paper provides an innovative solution through the notion of
multi-key homomorphic authenticators (multi-key HAs). This primitive guarantees
that the corruption of one user affects the data of that user only, but does not endan-
ger the authenticity of computations among the other (un-corrupted) users of the
system. Moreover, the proposed system is dynamic, in the sense that compromised
users can be assigned new keys and be easily reintegrated.

1.1 An Overview of Our Results

Our contribution is mainly threefold. First of all, we elaborate a suitable definition
of multi-key HAs. Second, we propose the first construction of a multi-key homo-
morphic signature (i.e., with public verifiability) which is based on standard lattices
and supports the evaluation of circuits of bounded polynomial depth. Third, we
present a multi-key homomorphic MAC that is based only on pseudorandom func-
tions and supports the evaluation of low-degree arithmetic circuits. In spite of
being less expressive and only secretly verifiable, this last construction is way more
efficient than the signature scheme. In what follows, we elaborate more on our
results.

Multi-Key Homomorphic Authenticators: What are they? At a high
level, multi-key HAs are like HAs with the additional property that one can execute
a program P on data authenticated using different secret keys. In multi-key HAs,
Bob verifies using the verification keys of all users that provided inputs to P. These
features make multi-key HAs a perfect candidate for applications where multiple
users gather and outsource data. Referring to our previous examples, using multi-
key HAs each sensor can authenticate and outsource to the Cloud the data it collects;
the Cloud can compute statistics on the authenticated data and provide the central

Multi-Key Homomorphic Authenticators 45

control unit with the result along with a certificate vouching for its correctness.
An important aspect of our definition is a mechanism that allows the verifier

to keep track of the users that authenticated the inputs of P, i.e., to know which
user contributed to each input wire of P. To formalize this mechanism, we build
on the model of labeled data and programs of Gennaro and Wichs [26] (we refer
the reader to Section 3 for details). In terms of security, multi-key HAs allow
the adversary to corrupt users (i.e., to learn their secret keys); yet this knowledge
should not help the adversary in tampering with the results of programs which
involve inputs of honest (i.e., uncorrupted) users only. Our model allows to handle
compromised users in a similar way to what occurs with classical digital signatures:
a compromised user could be banned by means of a certificate revocation, and
could easily be re-integrated via a new key pair.2 Thinking of the sensor network
application, if a sensor in the field gets compromised, the data provided by other
sensors remains secure, and a new sensor can be easily introduced in the system
with new credentials.

Finally, we require multi-key homomorphic authenticators to be succinct in the
sense that the size of authenticators is bounded by some fixed polynomial in (λ, n,
log t), where λ is the security parameter, n is the number of users contributing to the
computation and t is the total number of inputs of P. Although such dependence
on n may look undesirable, we stress that it is still meaningful in many application
scenarios where n is much smaller than t. For instance, in the application scenario
of healthcare institutions a few hospitals can provide a large amount of data from
patients.

A Multi-Key Homomorphic Signature for All Circuits. After setting the
definition of multi-key homomorphic authenticators, we proceed to construct multi-
key HA schemes. Our first contribution is a multi-key homomorphic signature that
supports the evaluation of boolean circuits of depth bounded by a fixed polynomial
in the security parameter. The scheme is proven secure based on the small integer
solution (SIS) problem over standard lattices [37], and tolerates adversaries that
corrupt users non-adaptively.3 Our technique is inspired by the ones developed by
Gorbunov, Vaikuntanathan and Wichs [30] to construct a (single-key) homomor-
phic signature. Our key contribution is on providing a new representation of the
signatures that enables to homomorphically compute over them even if they were
generated using different keys. Furthermore, our scheme enjoys an additional prop-
erty, not fully satisfied by [30]: every user can authenticate separately every data
item mi of a collection m1, . . .mt, and the correctness of computations is guaranteed
even when computing on not-yet-full datasets. Although it is possible to modify
the scheme in [30] for signing data items separately, the security would only work
against adversaries that query the whole dataset. In contrast, we prove our scheme
to be secure under a stronger security definition where the adversary can adaptively
query the various data items, and it can try to cheat by pretending to possess signa-
tures on data items that it never queried (so-called Type 3 forgeries). We highlight
that the scheme in [30] is not secure under the stronger definition (with Type 3
forgeries) used in this paper, and we had to introduce new techniques to deal with
this scenario. This new property is particularly interesting as it enables users to
authenticate and outsource data items in a streaming fashion, without ever having
to store the whole dataset. This is useful in applications where the dataset size can

2Here we mean that this process does not add more complications than the ones already existing
for classical digital signatures (e.g., relying on PKI mechanisms).

3Precisely, our “core” scheme is secure against adversaries that make non-adaptive signing
queries; this is upgraded to adaptive security via general transformations.

46 Paper A

be very large or not fixed a priori.

A Multi-Key Homomorphic MAC for Low-Degree Circuits. Our sec-
ond construction is a multi-key homomorphic MAC that supports the evaluation of
arithmetic circuits whose degree d is at most polynomial in the security parameter,
and whose inputs come from a small number n of users. For results of such com-
putations the corresponding authenticators have at most size s =

(
n+d
d

)
.4 Notably,

the authenticator’s size is completely independent of the total number of inputs
of the arithmetic circuit. Compared to our multi-key homomorphic signature, this
construction is only secretly verifiable (i.e., Bob has to know the secret verification
keys of all users involved in the computation) and supports a class of computations
that is less expressive; also its succinctness is asymptotically worse. In spite of these
drawbacks, our multi-key homomorphic MAC achieves interesting features. From
the theoretical point of view, it is based on very simple cryptographic tools: a fam-
ily of pseudorandom functions. Thus, the security relies only on one-way functions.
On the practical side, it is particularly efficient: generating a MAC requires only
one pseudo-random function evaluation and a couple of field operations; homomor-
phic computations boil down to additions and multiplications over a multi-variate
polynomial ring Fp[X1, . . . , Xn].

1.2 Related Work

Homomorphic MACs and Signatures. Homomorphic authenticators have re-
ceived a lot of attention in previous work focusing either on homomorphic signatures
(publicly verifiable) or on homomorphic MACs (private verification with a secret
key). The notion of homomorphic signatures was originally proposed by Johnson et
al. [33]. The first schemes that appeared in the literature were homomorphic only
for linear functions [8, 13–15, 23] and found important applications in network cod-
ing and proofs of retrievability. Boneh and Freeman [9] were the first to construct
homomorphic signatures that can evaluate more than linear functions over signed
data. Their scheme could evaluate bounded-degree polynomials and its security
was based on the hardness of the SIS problem in ideal lattices in the random oracle
model. A few years later, Catalano et al. [16] proposed an alternative homomor-
phic signature scheme for bounded-degree polynomials. Their solution is based on
multi-linear maps and bypasses the need for random oracles. More interestingly, the
work by Catalano et al. [16] contains the first mechanism to verify signatures faster
than the running time of the verified function. Recently, Gorbunov et al. [30] have
proposed the first (leveled) fully homomorphic signature scheme that can evaluate
arbitrary circuits of bounded polynomial depth over signed data. Some important
advances have been also achieved in the area of homomorphic MACs. Gennaro
and Wichs [26] have proposed a fully homomorphic MAC based on fully homomor-
phic encryption. However, their scheme is not secure in the presence of verification
queries. More efficient schemes have been proposed later [5, 11, 12] that are secure in
the presence of verification queries and are more efficient at the price of supporting
only restricted homomorphisms. Finally, we note that Agrawal et al. [1] considered
a notion of multi-key signatures for network coding, and proposed a solution which
works for linear functions only. Compared to this work, our contribution shows
a full-fledged framework for multi-key homomorphic authenticators, and provides
solutions that address a more expressive class of computations.

4Note that s can be bounded by poly(n) for constant d, or by poly(d) for constant n.

Multi-Key Homomorphic Authenticators 47

Verifiable Computation. Achieving correctness of outsourced computations is
also the aim of verifiable delegation of computation (VC) [6, 18, 20, 25, 29, 38]. In
this setting, a client wants to delegate the computation of a function f on input
x to an untrusted cloud-server. If the server replies with y, the client’s goal is
to verify the correctness of y = f(x) spending less resources than those needed
to execute f . As mentioned in previous work (e.g., [26, 30]) a crucial difference
between verifiable computation and homomorphic authenticators is that in VC the
verifier has to know the input of the computation – which can be huge – whereas
in HAs one can verify by only knowing the function f and the result y. Moreover,
although some results of verifiable computation could be re-interpreted to solve
scenarios similar to the ones addressed by HAs, results based on VC would still
present several limitations. For instance, using homomorphic authenticators the
server can prove correctness of y = f(x) with a single message, without needing
any special encoding of f from the delegator. Second, HAs come naturally with
a composition property which means that the outputs of some computations on
authenticated data (which is already authenticated) can be fed as input for follow-up
computations. This feature is of particular interest to parallelize and or distribute
computations (e.g., MapReduce). Emulating this composition within VC systems is
possible by means of certain non-interactive proof systems [7] but leads to complex
statements and less natural realizations. A last advantage is that by using HAs,
clients can authenticate various (small) pieces of data independently and without
storing previously outsourced data. In contrast, most VC systems require clients
to encode the whole input in ‘one shot’, and often such encoding can be used in a
single computation only.

Multi-Client Verifiable Computation. Another line of work, closely related
to ours is that on multi-client verifiable computation [17, 31]. This primitive, in-
troduced by Choi et al. [17], aims to extend VC to the setting where inputs are
provided by multiple users, and one of these users wants to verify the result’s cor-
rectness. Choi et al. [17] proposed a definition and a multi-client VC scheme which
generalizes that of Gennaro et al. [25]. The solution in [17], however, does not
consider malicious or colluding clients. This setting was addressed by Gordon et
al. in [31], where they provide a scheme with stronger security guarantees against
a malicious server or an arbitrary set of malicious colluding clients.

It is interesting to notice that in the definition of multi-client VC all the clients
but the one who verifies can encode inputs independently of the function to be
later executed on them. One may thus think that the special case in which the
verifier provides no input yields a solution similar to the one achieved by multi-key
HAs. However, a closer look at the definitions and the existing constructions of
multi-client VC reveals three main differences. (1) In multi-client VC, in order to
prove the correctness of an execution of a function f , the server has to wait a mes-
sage from the verifier which includes some encoding of f . This is not necessary in
multi-key HAs where the server can directly prove the correctness of f on previously
authenticated data with a single message and without any function’s encoding. (2)
The communication between the server and the verifier is at least linear in the total
number of inputs of f : this can be prohibitive in the case of computations on very
large inputs (think of TBytes of data). In contrast, with multi-key HAs the com-
munication between the server and the verifier is proportional only to the number
of users, and depends only logarithmically on the total number of inputs. (3) In
multi-client VC an encoding of one input can be used in a single computation. Thus,
if a user wants to first upload data on the server to later execute many functions on

48 Paper A

it, then the user has to provide as many encodings as the number of functions to be
executed. In contrast, multi-key HAs allow one to encode (i.e., authenticate) every
input only once and to use it for proving correctness of computations an unbounded
number of times.

2 Preliminaries

We collect here the notation and basic definitions used throughout the paper.

Notation. The Greek letter λ is reserved for the security parameter of the schemes.
A function ϵ(λ) is said to be negligible in λ (denoted as ϵ(λ) = negl(λ)) if ϵ(λ) =
O(λ−c) for every constant c > 0. When a function can be expressed as a polynomial
we often write it as poly(·). For any n ∈ N, we refer to [n] as [n] := {1, . . . , n}.
Moreover, given a set S, the notation s ←$ S stays for the process of sampling s
uniformly at random from S.

Definition 1.1 (Statistical Distance). Let X,Y denote two random variables with
support X ,Y respectively; the statistical distance between X and Y is defined as
SD(X,Y) := 1

2 (
∑

u∈X∪Y | Pr[X = u] − Pr[Y = u] |). If SD(X,Y) = negl(λ), we

say that X and Y are statistically close and we write X
stat
≈ Y .

Definition 1.2 (Entropy [19]). The min-entropy of a random variable X is defined
as

H∞(X) := −log
(

max
x

Pr[X = x]
)
.

The (average-) conditional min-entropy of a random variable X conditioned on a
correlated variable Y is defined as

H∞(X | Y) := −log
(

E
y←Y

[
max

x
Pr[X = x | Y = y]

])
.

The optimal probability of an unbounded adversary guessing X when given a corre-
lated value Y is 2−H∞(X|Y).

Lemma 1.1 ([19]). Let X,Y be arbitrarily random variables where the support of
Y lies in Y. Then H∞(X | Y) ≥ H∞(X)− log(| Y |).

3 Multi-Key Homomorphic Authenticators

In this section, we present our new notion of Multi-Key Homomorphic Authenti-
cators (multi-key HAs). Intuitively, multi-key HAs extend the existing notions of
homomorphic signatures [9] and homomorphic MACs [26] in such a way that one
can homomorphically compute a program P over data authenticated using differ-
ent secret keys. For the sake of verification, in multi-key HAs the verifier needs to
know the verification keys of all users that provided inputs to P. Our definitions
are meant to be general enough to be easily adapted to both the case in which
verification keys are public and the one where verification keys are secret. In the
former case, we call the primitive multi-key homomorphic signatures whereas in the
latter case we call it multi-key homomorphic MACs.

As already observed in previous work about HAs, it is important that an authen-
ticator σP,y does not authenticate a value y out of context, but only as the output of

Multi-Key Homomorphic Authenticators 49

a program P executed on previously authenticated data. To formalize this notion,
we build on the model of labeled data and programs of Gennaro and Wichs [26]. The
idea of this model is that every data item is authenticated under a unique label ℓ.
For example, in scenarios where the data is outsourced, such labels can be thought
of as a way to index/identify the remotely stored data. A labeled program P, on
the other hand, consists of a circuit f where every input wire i has a label ℓi. Going
back to the outsourcing example, a labeled program is a way to specify on what
portion of the outsourced data one should execute a circuit f . More formally, the
notion of labeled programs of [26] is recalled below.

Labeled Programs [26]. A labeled program P is a tuple (f, ℓ1, . . . , ℓn), such
that f : Mn → M is a function of n variables (e.g., a circuit) and ℓi ∈ {0, 1}∗
is a label for the i-th input of f . Labeled programs can be composed as follows:
given P1, . . . ,Pt and a function g : Mt → M, the composed program P∗ is the
one obtained by evaluating g on the outputs of P1, . . . ,Pt, and it is denoted as
P∗ = g(P1, . . . ,Pt). The labeled inputs of P∗ are all the distinct labeled inputs of
P1, . . .Pt (all the inputs with the same label are grouped together and considered
as a unique input of P∗). Let fid :M→M be the identity function and ℓ ∈ {0, 1}∗
be any label. We refer to Iℓ = (fid, ℓ) as the identity program with label ℓ. Note
that a program P = (f, ℓ1, . . . , ℓn) can be expressed as the composition of n identity
programs P = f(Iℓ1 , . . . , Iℓn).

Using labeled programs to identify users. In our notion of multi-key homo-
morphic authenticators, one wishes to verify the outputs of computations executed
on data authenticated under different keys. A meaningful definition of multi-key
HAs thus requires that the authenticators are not out of context also with respect
to the set of keys that contributed to the computation. To address this issue, we
assume that every user has an identity id in some identity space ID, and that the
user’s keys are associated to id by means of any suitable mechanism (e.g., PKI).
Next, in order to distinguish among data of different users and to identify to which
input wires a certain user contributed, we assume that the label space contains the
set ID. Namely, in our model a data item is assigned a label ℓ := (id, τ), where id
is a user’s identity, and τ is a tag; this essentially identifies uniquely a data item
of user id with index τ . For compatibility with previous notions of homomorphic
authenticators, we assume that data items can be grouped in datasets, and one
can compute only on data within the same dataset. In our definitions, a dataset is
identified by an arbitrary string ∆.5

Definition 1.3 (Multi-Key Homomorphic Authenticator). A multi-key homomor-
phic authenticator scheme MKHAut consists of a tuple of PPT algorithms (Setup,
KeyGen, Auth, Eval, Verify) satisfying the following properties: authentication cor-
rectness, evaluation correctness, succinctness and security. The five algorithms
work as follows:
Setup(1λ). The setup algorithm takes as input the security parameter λ and outputs

some public parameters pp. These parameters include (at least) descriptions
of a tag space T , an identity space ID, the message space M and a set of
admissible functions F. Given T and ID, the label space of the scheme is
defined as their cartesian product L := ID × T . For a labeled program P =
(f, ℓ1, . . . , ℓt) with labels ℓi := (idi, τi) ∈ L, we use id ∈ P as compact notation

5Although considering the dataset notion complicates the definition, it also provides some
benefits, as we illustrate later in the constructions. For instance, when verifying for the same
program P over different datasets, one can perform some pre-computation that makes further
verifications cheap.

50 Paper A

for id ∈ {id1, . . . , idt}. The pp are input to all the following algorithms, even
when not specified.

KeyGen(pp). The key generation algorithm takes as input the public parameters and
outputs a triple of keys (sk, ek, vk), where sk is a secret authentication key, ek
is a public evaluation key and vk is a verification key which could be either
public or private.6

Auth(sk,∆, ℓ,m). The authentication algorithm takes as input an authentication key
sk, a dataset identifier ∆, a label ℓ = (id, τ) for the message m, and it outputs
an authenticator σ.

Eval(f, {(σi,EKSi)}i∈[t]). The evaluation algorithm takes as input a t-input function
f :Mt −→ M, and a set {(σi,EKSi)}i∈[t] where each σi is an authenticator
and each EKSi is a set of evaluation keys.7

Verify(P,∆, {vkid}id∈P ,m, σ). The verification algorithm takes as input a labeled
program P = (f, ℓ1, . . . , ℓt), a dataset identifier ∆, the set of verification keys
{vkid}id∈P corresponding to those identities id involved in the program P, a
message m and an authenticator σ. It outputs 0 (reject) or 1 (accept).

Authentication Correctness. Intuitively, a Multi-Key Homomorphic Au-
tenticator has authentication correctness if the output of Auth(sk,∆, ℓ,m) veri-
fies correctly for m as the output of the identity program Iℓ over the dataset
∆. More formally, a scheme MKHAut satisfies authentication correctness if for
all public parameters pp←Setup(1λ), any key triple (sk, ek, vk) ← KeyGen(pp),
any label ℓ = (id, τ) ∈ L and any authenticator σ ← Auth(sk,∆, ℓ,m), we have
Verify(Iℓ,∆, vk,m, σ) outputs 1 with all but negligible probability.

Evaluation Correctness. Intuitively, this property says that running the
evaluation algorithm on signatures (σ1, . . . , σt) such that each σi verifies for mi

as the output of a labeled program Pi over the dataset ∆, it produces a signa-
ture σ which verifies for f(m1, . . . ,mt) as the output of the composed program
f(P1, . . . ,Pt) over the dataset ∆. More formally, let us fix the public parameters
pp←Setup(1λ), a set of key triples {(skid, ekid, vkid)}id∈ĨD for some ˜ID ⊆ ID, a dataset
∆, a function g :Mt →M, and any set of program/message/authentica-tor triples
{(Pi,mi, σi)}i∈[t] such that Verify(Pi,∆, {vkid}id∈Pi ,mi, σi) = 1 for all i ∈ [t]. Let
m∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,Pt), and σ∗ = Eval(g, {(σi,EKSi)}i∈[t]) where
EKSi = {ekid}id∈Pi . Then, Verify(P∗,∆, {vkid}id∈P∗ ,m∗, σ∗) = 1 holds with all but
negligible probability.

Succinctness. A multi-key HA is said to be succinct if the size of every au-
thenticator depends only logarithmically on the size of a dataset. However, we
allow authenticators to depend on the number of keys involved in the compu-
tation. More formally, let pp←Setup(1λ), P = (f, ℓ1, . . . , ℓt) with ℓi = (idi, τi),
{(skid, ekid, vkid) ← KeyGen(pp)}id∈P , and σi ← Auth(skidi ,∆, ℓi,mi) for all i ∈ [t].
A multi-key HA is said to be succinct if there exists a fixed polynomial p such that
|σ| = p(λ, n, log t) where σ = Eval(g, {(σi, ekidi)}i∈[t]) and n = |{id ∈ P}|.

6As mentioned earlier, the generated triple (sk, ek, vk) will be associated to an identity id ∈ ID.
When this connection becomes explicit, we will refer to (sk, ek, vk) as (skid, ekid, vkid).

7The motivation behind the evaluation-keys set EKSi is that, if σi authenticates the output of
a labeled program Pi, then EKSi = {ekid}id∈Pi

should be the set of evaluation keys corresponding
to identities involved in the computation of Pi.

Multi-Key Homomorphic Authenticators 51

Remark 1.1. Succinctness is one of the crucial properties that make multi-key HAs
an interesting primitive. Without succinctness, a trivial multi-key HA construction
is the one where Eval outputs the concatenation of all the signatures (and messages)
given in input, and the verifier simply checks each message-signature pair and re-
computes the function by himself. Our definition of succinctness, where signatures
can grow linearly with the number of keys but logarithmically in the total number
of inputs, is also non-trivial, especially when considering settings where there are
many more inputs than keys (in which case, the above trivial construction would
not work). Another property that can make homomorphic signatures an interest-
ing primitive is privacy—context-hiding—as considered in prior work. Intuitively,
context-hiding guarantees that signatures do not reveal information on the original
inputs. While we leave the study of context-hiding for multi-key HAs for future
work, we note that a trivial construction that is context-hiding but not succinct
can be easily obtained with the additional help of non-interactive zero-knowledge
proofs of knowledge: the idea is to extend the trivial construction above by requiring
the evaluator to generate a NIZK proof of knowledge of valid input messages and
signatures that yield the public output. In this sense, we believe that succinctness
is the most non-trivial property to achieve in homomorphic signatures, and this is
what we focus on in this work.

Security. Intuitively, our security model for multi-key HAs guarantees that an
adversary, without knowledge of the secret keys, can only produce authenticators
that were either received from a legitimate user, or verify correctly on the results
of computations executed on the data authenticated by legitimate users. Moreover,
we also give to the adversary the possibility of corrupting users. In this case, it must
not be able to cheat on the outputs of programs that get inputs from uncorrupted
users only. In other words, our security definition guarantees that the corruption
of one user affects the data of that user only, but does not endanger the integrity
of computations among the other (un-corrupted) users of the system. We point
out that preventing cheating on programs that involve inputs of corrupted users is
inherently impossible in multi-key HAs, at least if general functions are considered.
For instance, consider an adversary who picks the function (x1 + x2 mod p) where
x1 is supposed to be provided by user Alice. If the adversary corrupts Alice, it can
use her secret key to inject any input authenticated on her behalf and thus bias the
output of the function at its will.

The formalization of the intuitions illustrated above is more involved. For a
scheme MKHAut we define security via the following experiment between a chal-
lenger C and an adversary A (HomUF-CMAA,MKHAut(λ)):

Setup. C runs Setup(1λ) to obtain the public parameters pp that are sent to A.

Authentication Queries A can adaptively submit queries of the form (∆, ℓ,m),
where ∆ is a dataset identifier, ℓ = (id, τ) is a label in ID×T and m ∈M are
messages of his choice. C answers as follows:

• If (∆, ℓ,m) is the first query for the dataset ∆, C initializes an empty list
L∆ = ∅ and proceeds as follows.

• If (∆, ℓ,m) is the first query with identity id, C generates keys (skid, ekid,
vkid)←$ KeyGen(pp) (that are implicitly assigned to identity id), gives ekid
to A and proceeds as follows.

• If (∆, ℓ,m) is such that (ℓ,m) /∈ L∆, C computes σℓ ←$ Auth(skid,∆, ℓ,m)
(note that C has already generated keys for the identity id), returns σℓ

to A, and updates the list L∆ ← L∆ ∪ (ℓ,m).

52 Paper A

• If (∆, ℓ,m) is such that (ℓ, ·) ∈ L∆ (which means that the adversary had
already made a query (∆, ℓ,m′) for some message m′), then C ignores the
query.

Verification Queries A is also given access to a verification oracle. Namely, the
adversary can submit a query (P,∆,m, σ), and C replies with the output of
Verify(P,∆, {vkid}id∈P ,m, σ).

Corruption The adversary has access to a corruption oracle. At the beginning
of the game, the challenger initialises an empty list Lcorr = ∅ of corrupted
identities; during the game, A can adaptively query identities id ∈ ID. If
id /∈ Lcorr, then C replies with the triple (skid, ekid, vkid) (that is generated
using KeyGen if not done before) and updates the list Lcorr ← Lcorr ∪ id. If
id ∈ Lcorr, then C replies with the triple (skid, ekid, vkid) assigned to id before.

Forgery In the end, A outputs a tuple (P∗,∆∗,m∗, σ∗). The experiment outputs
1 if the tuple returned by A is a forgery (defined below), and 0 otherwise.

Definition 1.4 (Forgery). Consider an execution of HomUF-CMAA,MKHAut(λ) where
(P∗,∆∗,m∗, σ∗) is the tuple returned by the adversary in the end of the experi-
ment, with P∗ = (f∗, ℓ∗1, . . . , ℓ

∗
t). This is a forgery if Verify(P∗,∆∗, {vkid}id∈P∗ ,m∗,

σ∗) = 1, for all id ∈ P∗ we have that id /∈ Lcorr (i.e., no identity involved in P∗ is
corrupted), and either one of the following properties is satisfied:

Type 1: L∆∗ has not been initialized during the game (i.e., the dataset ∆∗ was
never queried).

Type 2: For all i ∈ [t], ∃(ℓ∗i ,mi) ∈ L∆∗ , but m∗ ̸= f∗(m1, . . . ,mt) (i.e., m∗ is
not the correct output of P∗ when executed over previously authenticated mes-
sages).

Type 3: There exists a label ℓ∗ such that (ℓ∗, ·) /∈ L∆∗ (i.e., A never made a query
with label ℓ∗).

We say that a HA scheme MKHAut is secure if for every PPT adversary A, its
advantage AdvHomUF-CMA

MKHAut,A (λ) = Pr[HomUF-CMAA,MKHAut(λ) = 1] is negligible.

Remark 1.2 (Comparison with previous security definitions). Our security notion
can be seen as the multi-key version of the one proposed by Gennaro and Wichs in
[26] (in their model our Type 3 forgeries are called ‘Type 1’ as they do not consider
multiple datasets). We point out that even in the special case of a single key, our
security definition is stronger than the ones used in previous work [9, 16, 23, 30]
(with the only exception of [26]). The main difference lies in our definition of Type
3 forgeries. The intuitive idea of this kind of forgeries is that an adversary who did
not receive an authenticated input labeled by a certain ℓ∗ cannot produce a valid
authenticator for the output of a computation which has ℓ∗ among its inputs. In
[9, 30] these forgeries were not considered at all, as the adversary is assumed to
query the dataset always in full. Other works [11, 16, 23] consider a weaker Type 3
notion, which deals with the concept of “well defined programs”, where the input
wire labeled by the missing label ℓ∗ is required to “contribute” to the computation
(i.e., it must change its outcome). The issue with such a Type 3 definition is that
it may not be efficient to test if an input contributes to a function, especially if the
admissible functions are general circuits. In contrast our definition above is simpler
and efficiently testable since it simply considers a Type 3 forgery one where the
labeled program P∗ involves an un-queried input.

Multi-Key Homomorphic Authenticators 53

Multi-Key Homomorphic Signatures. As previously mentioned, our defini-
tions are general enough to be easily adapted to either case in which verification is
secret or public. The only difference is whether the adversary is allowed to see the
verification keys in the security experiment. When the verification is public, we call
the primitive multi-key homomorphic signatures. More formally:

Definition 1.5 (Multi-Key Homomorphic Signatures). A multi-key homomorphic
signature is a multi-key homomorphic authenticator in which verification keys are
also given to the adversary in the security experiment.

Note that making verification keys public also allows to slightly simplify the
security experiment by removing the verification oracle (the adversary can run the
verification by itself). In the sequel, when referring to multi-key homomorphic
signatures we adapt our notation to the typical one of digital signatures, namely
we denote Auth(sk,∆, ℓ,m) as Sign(sk,∆, ℓ,m), and call its outputs signatures.

Non-Adaptive Corruption Queries. In our work, we consider a relaxation of
the security definition in which the adversaries ask for corruptions in a non-adaptive
way. More precisely, we say that an adversary A makes non-adaptive corruption
queries if for every identity id asked to the corruption oracle, id was not queried
earlier in the game to the authentication oracle or the verification oracle. For this
class of adversaries, it is easy to see that corruption queries are essentially of no
help as the adversary can generate keys on its own. More precisely, the following
proposition holds (see the full version [22] for the proof).

Proposition 1.1. MKHAut is secure against adversaries that do not make corrup-
tion queries if and only if MKHAut is secure against adversaries that make non-
adaptive corruption queries.

Weakly-Adaptive Secure multi-key HAs. In our work, we also consider a
weaker notion of security for multi-key HAs in which the adversary has to declare
all the queried messages at the beginning of the experiment. More precisely, we con-
sider a notion in which the adversary declares only the messages and the respective
tags that will be queried, for every dataset and identity, without, however, needing
to specify the names of the datasets or of the identities. In a sense, the adversary
A is adaptive on identities and dataset names, but not on tags and messages. The
definition is inspired by the one, for the single-key setting, of Catalano et al. [16].

To define the notion of weakly-adaptive security for multi-key HAs, we intro-
duce here a new experiment Weak-HomUF-CMAA,MKHAut, which is a variation of
experiment HomUF-CMAA,MKHAut (Definition 1.3) as described below.

Definition 1.6 (Weakly-Secure Multi-Key Homomorphic Authenticators). In the
security experiment Weak-HomUF-CMAA,MKHAut, before the setup phase, the adver-
sary A sends to the challenger C a collection of sets of tags Ti,k ⊆ T for i ∈ [Qid]
and k ∈ [Q∆], where Qid and Q∆ are, respectively, the total numbers of distinct
identities and datasets that will be queried during the game. Associated to every set
Ti,k, A also sends a set of messages {mτ}τ∈Ti,k . Basically the adversary declares,
prior to key generation, all the messages and tags that it will query later on; however
A is not required to specify identity and dataset names. Next, the adversary receives
the public parameters from C and can start the query-phase. Verification queries are
handled as in HomUF-CMAA,MKHAut. For authentication queries, A can adaptively
submit pairs (id,∆) to C. The challenger then replies with a set of authenticators

54 Paper A

{στ}τ∈Ti,k , where indices i, k are such that id is the i-th queried identity, and ∆ is
the k-th queried dataset.

An analogous security definition of weakly-secure multi-key homomorphic signa-
tures is trivially obtained by removing a verification oracle.

In the full version of this paper, we present two generic transformations that turn
weakly secure multi-key homomorphic authenticator schemes into adaptive secure
ones. Our first transformation holds in the standard model and works for schemes
in which the tag space T has polynomial size, while the second one avoids this
limitation on the size of T but holds in the random oracle model.

4 Our Multi-Key Fully Homomorphic Signature

In this section, we present our construction of a multi-key homomorphic signature
scheme that supports the evaluation of arbitrary circuits of bounded polynomial
depth. The scheme is based on the SIS problem on standard lattices, a background
of which is provided in the next section. Precisely, in Section 4.2 we present a scheme
that is weakly-secure and supports a single dataset. Later, in Section 4.3 we discuss
how to extend the scheme to handle multiple datasets, whereas the support of
adaptive security can be obtained via the applications of our transformations as
shown in [22].

4.1 Lattices and Small Integer Solution Problem

We recall here notation and some basic results about lattices that are useful to
describe our homomorphic signature construction.

For any positive integer q we denote by Zq the ring of integers modulo q. Elements
in Zq are represented as integers in the range (− q

2 ,
q
2]. The absolute value of any

x ∈ Zq (denoted with |x|) is defined by taking the modulus q representative of x
in (− q

2 ,
q
2], i.e., take y = x mod q and then set |x| = |y| ∈ [0, q

2]. Vectors and
matrices are denoted in bold. For any vector u := (ui, . . . , un) ∈ Zn

q , its infinity
norm is ∥u∥∞ := maxi∈[n] |ui|, and similarly for a matrix A := [ai,j] ∈ Zn×m

q we
write ∥A∥∞ := maxi∈[n],j∈[m] |ai,j |.

The Small Integer Solution Problem (SIS). For integer parameters n,m, q
and β, the SIS(n,m, q, β) problem provides to an adversary A a uniformly random
matrix A ∈ Zn×m

q , and requires A to find a vector u ∈ Zn
q such that u ̸= 0,

∥u∥∞ ≤ β, and A · u = 0. More formally,

Definition 1.7 (SIS [37]). Let λ ∈ N be the security parameter. For values n =
n(λ),m = m(λ), q = q(λ), β = β(λ), defined as functions of λ, the SIS(n,m, q, β)
hardness assumption holds if for any PPT adversary A we have

Pr
[
A · u = 0 ∧ u ̸= 0 ∧ ∥u∥∞ ≤ β : A←$ Zn×m

q ,u← A(1λ,A)
]
≤ negl(λ).

For standard lattices, the SIS problem is known to be as hard as solving certain
worst-case instances of lattice problems [2, 34, 35, 37], and is also implied by the
hardness of learning with error (we refer any interested reader to the cited papers
for the technical details about the parameters).

In our paper, we assume that for any β = 2poly(λ) there are some n = poly(λ),
q = 2poly(λ), with q > β, such that for all m = poly(λ) the SIS(n,m, q, β) hardness
assumption holds. This parameters choice assures that hardness of worst-case lattice
problems holds with sub-exponential approximation factors.

Multi-Key Homomorphic Authenticators 55

Trapdoors for Lattices. The SIS problem is hard to solve for a random matrix
A. However, there is a way to sample a random A together with a trapdoor such
that SIS becomes easy to solve for that A, given the trapdoor. Additionally, it
has been shown that there exist “special” (non random) matrices G for which SIS
is easy to solve as well. The following lemma summarizes the above known results
(similar to a lemma in [10]):

Lemma 1.2 ([3, 4, 28, 36]). There exist efficient algorithms TrapGen, SamPre,
Sam such that the following holds: given integers n ≥ 1, q ≥ 2, there exist some
m∗ = m∗(n, q) = O(n log q), βsam = βsam(n, q) = O(n

√
log q) such that for all

m ≥ m∗ and all k (polynomial in n) we have:

1. Sam(1m, 1k, q) → U samples a matrix U ∈ Zm×k
q such that ∥U∥∞ ≤ βsam

(with probability 1).

2. For (A, td) ← TrapGen(1n, 1m, q), A′ ←$ Zn×m
q , U ← Sam(1m, 1k, q), V :=

AU, V′ ←$ Zn×k
q , U′ ← SamPre(A,V′, td), we have the following statistical

indistinguishability (negligible in n)

A
stat
≈ A′ and (A, td,U,V)

stat
≈ (A, td,U′,V′)

and U′ ← SamPre(A,V′, td) always satisfies AU′ = V′ and ∥U′∥∞ ≤ βsam.

3. Given n,m, q as above, there is an efficiently and deterministically computable
matrix G ∈ Zn×m

q and a deterministic polynomial-time algorithm G−1 that

on input V ∈ Zn×k
q (for any integer k) outputs R = G−1(V) such that

R ∈ {0, 1}m×k and GR = V.

4.2 Our Multi-Key Homomorphic Signature for Single Data-
set

In this section, we present our multi-key homomorphic signature that supports the
evaluation of boolean circuits of bounded polynomial depth. Our construction is
inspired by the (single-key) one of Gorbunov et al. [30], with the fundamental
difference that in our case we enable computations over data signed using different
secret keys. Moreover, our scheme is secure against Type 3 forgeries. We achieve
this via a new technique which consists into adding to every signature a component
that specifically protects against this type of forgeries. We prove the scheme to be
weakly-secure under the SIS hardness assumption.

Parameters. Before describing the scheme, we discuss how to set the various
parameters involved. Let λ be the security parameter, and let d = d(λ) = poly(λ)
be the bound on the depth of the circuits supported by our scheme. We define the
set of parameters used in our scheme Par = {n,m, q, βSIS, βmax, βinit} in terms of λ, d
and of the parameters required by the trapdoor algorithm in Lemma 1.2: m∗, βsam,
where m∗ = m∗(n, q) := O(n log q) and βsam := O(n

√
log q). More precisely, we

set: βmax := 2ω(log λ)d; βSIS := 2ω(log λ)βmax; n = poly(λ); q = O(2poly(λ)) > βSIS

is a prime (as small as possible) so that the SIS(n,m′, q, βSIS) assumption holds
for all m′ = poly(λ); m = max{m∗, n log q + ω(log(λ))} = poly(λ) and, finally,
βinit := βsam = poly(λ).

56 Paper A

Construction. The PPT algorithms (Setup,KeyGen, Sign,Eval,Verify) which de-
fine our construction of Multi-key Homomorphic Signatures work as follows:

Setup(1λ). The setup algorithm takes as input the security parameter λ and gen-
erates the public parameters pp which include: the bound on the circuit
depth d (which defines the class F of functions supported by the scheme, i.e.,
boolean circuits of depth d), the set Par = {n,m, q, βSIS, βmax, βinit}, the set
U = {U ∈ Zm×m

q : ∥U∥∞ ≤ βmax}, the set V = {V ∈ Zn×m
q }, descriptions of

the message space M = {0, 1}, the tag space T = [T], and the identity space
ID = [C], for integers T,C ∈ N. In this construction, the tag space is of poly-
nomial size, i.e., T = poly(λ) while the identity space is essentially unbounded,
i.e., we set C = 2λ. Also recall that T and ID immediately define the label
space L = ID × T . The final output is pp = {d,Par,U ,V,M, T , ID}. We as-
sume that these public parameters pp are input of all subsequent algorithms,
and often omit them from the input explicitly.

KeyGen(pp). The key generation algorithm takes as input the public parameters pp
and generates a key-triple (sk, ek, vk) defined as follows. First, it samples T
random matrices V1, ...,VT ←$ V. Second, it runs (A, td)←TrapGen(1n, 1m, q)
to generate a matrix A ∈ Zn×m

q along with its trapdoor td. Then, it outputs
sk = (td,A,V1, . . . ,VT), ek = A, vk = (A,V1, . . . ,VT). Note that it is
possible to associate the key-triple to an identity id ∈ ID, when we need to
stress this explicitly we write (skid, ekid, vkid). We also observe that the key
generation process can be seen as the combination of two independent sub-
algorithms 8 KeyGen1 and KeyGen2, where {V1, . . .VT} ← KeyGen1(pp) and
(A, td)← KeyGen2(pp).

Sign(sk, ℓ,m). The signing algorithm takes as input a secret key sk, a label ℓ = (id, τ)
for the message m and it outputs a signature σ := (m, z, I,Uid,Zid) where I =
{id}, Uid is generated as Uid ← SamPre(A,Vℓ−mG, td) (using the algorithm
SamPre from Lemma 1.2), z = m and Zid = Uid. The two latter terms
are responsible for protection against Type 3 forgeries. Although they are
redundant for fresh signatures, their value will become different from (m,Uid)
during homomorphic operations, as we clarify later on. More generally, in our
construction signatures are of the form σ := (m, z, I, {Uid}id∈I, {Zid}id∈I) with
I ⊆ ID and Uid,Zid ∈ U , ∀ id ∈ I.

Eval
(
f, {(σi,EKSi)}i∈[t]

)
. The evaluation algorithm takes as input a t-input func-

tion f : Mt −→ M, and a set of pairs {(σi,EKSi)}i∈[t] where each σi is a
signature and each EKSi is a set of evaluation keys. In our description be-
low we treat f as an arithmetic circuit over Zq consisting of addition and
multiplication gates.9 Therefore, we only describe how to evaluate homomor-
phically a fan-in-2 addition (resp. multiplication) gate as well as a unary
multiplication-by-constant gate.

Let g be a fan-in-2 gate with left input σL := (mL, zL, IL,UL,ZL) and right
input σR := (mR, zR, IR,UR,ZR). To generate the signature σ := (m, z, I,U,Z)
on the gate’s output one proceeds as follows. First set I = IL ∪ IR. Second,
“expand” UL := {Uid

L }id∈IL as:

8This splitting will be used to extend our multi-key homomorphic signature scheme from sup-
porting a single dataset to support multiple datasets. This extension holds in the standard model
and is described in Section 4.3.

9We point out that considering f as an arithmetic circuit over Zq is enough to describe any
boolean circuits consisting of NAND gates as NAND(m1,m2) = 1−m1 ·m2 holds form1,m2 ∈ {0, 1}.

Multi-Key Homomorphic Authenticators 57

Ûid
L =

{
0 if id /∈ IL
Uid

L if id ∈ IL
, ∀ id ∈ I .

where 0 denotes an (m×m)-matrix with all zero entries. Basically, we extend
the set to be indexed over all identities in I = IL∪ IR by inserting zero matrices
for identities in I \ IL. The analogous expansion process is applied to UR :=
{Uid

R}id∈IL , ZL := {ZL
id}id∈IR and ZR := {Zid

R}id∈IR , denoting the expanded sets

{Ûid
R}id∈I, {Ẑid

L }id∈I and {Ẑid
R}id∈I respectively.

Next, depending on whether g is an addition or multiplication gate one pro-
ceeds as follows.

Addition gate. If g is additive, compute m = mL + mR, z = zL + zR,
U = {Uid}id∈I := {Ûid

L + Ûid
R}id∈I and Z = {Zid}id∈I := {Ẑid

L + Ẑid
R}id∈I.

If we refer to βL and βR as ∥UL∥∞ := max{∥Uid
L ∥∞ : id ∈ IL} and ∥UR∥∞ :=

max{∥Uid
R∥∞ : id ∈ IR} respectively, then for any fan-in-2 addition gate it

holds β := ∥U∥∞ = βL + βR. The same noise growth applies to Z.

Multiplication gate. If g is multiplicative, compute m = mL · mR, z =
zL + zR, define VL =

∑
id∈ IL

AidUid + mLG, set

U = {Uid}id∈I := {mRÛ
id
L + Ûid

R ·G−1(VL)}id∈I

and Z = {Zid}id∈I := {Ẑid
L + Ẑid

R}id∈I.
Letting βL and βR as defined before, then for any fan-in-2 multiplication gate
it holds β := ∥U∥∞ = |mR|βL +mβR, while the noise growth of Z is the same
as in the addition gate.

Multiplication by constant gate. Let g be a unary gate representing
a multiplication by a constant a ∈ Zq, and let its single input signature be
σR := (mR, zR, IR,UR,ZR). The output σ := (m, z, I,U,Z) is obtained by
setting m = a · mR ∈ Zq, z = zR, I = IR, Z = ZR, and U = {Uid}id∈I where,
for all id ∈ I, Uid = a ·Uid

R or, alternatively, Uid = Uid
R ·G−1(a ·G). In the

first case, the noise parameter becomes β := ∥U∥∞ = |a|βL (thus a needs to
be small), whereas in the second case it holds β := ∥U∥∞ ≤ mβL, which is
independent of a’s size.

Verify(P, {vkid}id∈P ,m, σ). The verification algorithm takes as input a labeled pro-
gram P = (f, ℓ1, . . . , ℓn), the set of the verification keys {vkid}id∈P of users
involved in the program P, a message m and a signature σ = (m, z, I,U,Z).
It then performs three main checks and outputs 0 if at least one check fails,
otherwise it returns 1.

Firstly, it checks if the list of identities declared in σ corresponds to the ones
in the labels of P:

I = {id : id ∈ P} (1)

Secondly, from the circuit f (again seen as an arithmetic circuit) and the val-
ues {Vℓ1 , . . . ,Vℓt} contained in the verification keys, it computes two values
V∗ and V+ proceeding gate by gate as follows. Given as left and right in-
put matrices V∗L,V

∗
R (resp. V+

L ,V
+
R), at every addition gate one computes

58 Paper A

V∗ = V∗L + V∗R (resp. V+ = V+
L + V+

R); at every multiplication gate one
computes V∗ = V∗RG

−1V∗L (resp. V+ = V+
L + V+

R). Every gate represent-
ing a multiplication by a constant a ∈ Zq, on input V∗R (resp. V+

R) outputs
V∗ = a·V∗R (resp. V+ = V+

R). Note that the computation of V+ is essentially

the computation of a linear function V+ =
∑t

i=1 γi ·Vℓi , for some coefficients
γi that depend on the structure of the circuit f .

Thirdly, the verification algorithm parses U = {Uid}id∈I and Z = {Zid}id∈I
and checks:

∥U∥∞ ≤ βmax and ∥Z∥∞ ≤ βmax (2)∑
id∈I

AidUid + m ·G = V∗ (3)∑
id∈I

AidZid + z ·G = V+ (4)

Finally, it is worth noting that the computation of the matrices V∗ and V+

can be precomputed (or performed offline), prior to seeing the actual signa-
ture σ. In the multiple dataset extension of Section 4.3 this precomputation
becomes particularly beneficial as the same V∗,V+ can be re-used every time
one wants to verify for the same labeled program P (i.e., one can verify faster,
in an amortized sense, than that of running f).

In the following paragraphs, we analyse succinctness and security of the proposed
construction; for what regards correctness we just give an intuition and refer the
interested reader to the full version of this paper available in [22].

Noise Growth and Succinctness. First we analyse the noise growth of the
components U,Z in the signatures of our MKHSig construction. In particular we
need to show that when starting from “fresh” signatures, in which the noise is
bounded by βinit, and we apply an admissible circuit, then one ends up with signa-
tures in which the noise is within the allowable amount βmax.

An analysis similar to the one of Gorbunov et al. [30] is applicable also to our
construction whenever the admissible functions are boolean circuits of depth d com-
posed only of NAND gates.

Let us first consider the case of the U component of the signatures. At every
NAND gate, if ∥UL∥∞, ∥UR∥∞ ≤ β, the noise of the resulting U is at most (m+1)β.
Therefore, if the circuit has depth d, the noise of the matrix U at the end of the
evaluation is bounded by ∥U∥∞ ≤ βinit · (m + 1)d ≤ 2O(log λ)d ≤ βmax. For what
regards the computation performed over the matrices Z, we observe that we perform
only additions (or identity functions) over them. This means that at every gate of
any f , the noise in the Z component at most doubles. Given that we consider
depth-d circuits we have that ∥Z∥∞ ≤ βinit · 2d ≤ 2O(log λ)+d ≤ βmax. Finally, by
inspection one can see that the size of every signature σ on a computation’s output
involving n users is at most (1 + 2d +nλ+ 2nβmax) that is O(n ·p(λ)) for some fixed
polynomial p(·).

Authentication Correctness. This is rather simple and follows from the noise
growth property mentioned above and by observing that equation AidUid + mG =

Vℓ = V∗ holds by construction.

Evaluation Correctness. Evaluation correctness follows from two main facts:
the noise growth mentioned earlier, and the preservation of the invariant (

∑
id∈I AidUid

Multi-Key Homomorphic Authenticators 59

+ mG) = V∗. At every gate, it is easy to see that the expansion of U still pre-
serves the invariant for both left and right inputs. For additive gates, assum-
ing validity of the inputs, i.e., VL =

∑
id∈IL

AidU
id
L + mLG (and similarly VR) and

by construction of Uid = Uid
L + Uid

R , one obtains
∑

id∈IL∪IR
AidUid + (mL + mR)G =

VL +VR = V∗. For what regards multiplicative gates, by construction of every Uid

we obtain
∑

id∈I AidUid + mG :=
∑

id∈I Aid(mRÛ
id
L + Ûid

RG
−1(VL)) + (mLmR)G. Group-

ing by mR and applying the definition of VL, the equation can be rewritten as

mRVL +
(∑

id∈I Aid Ûid
R

)
G−1(VL). If now we write mRVL as mRGG−1(VL) and we

group by G−1(VL), we get
[(∑

id∈IR
AidU

id
R

)
+mRG

]
G−1(VL) = V∗, where the last

equation follows from the definitions of VR and V∗. Correctness of computations
over the matrices Z is quite analogous.

Security. The following theorem states the security of the scheme MKHSig.

Theorem 1.1. If the SIS(n,m ·Qid, q, βSIS) hardness assumption holds, MKHSig =
(Setup, KeyGen, Sign, Eval, Verify) is a multi-key homomorphic signature weakly-
adaptive secure against adversaries that make signing queries involving at most Qid

different identities and that make non-adaptive corruption queries.

Proof. Note that we can deal with corruptions via our generic result of Proposition
1.1. Therefore it is sufficient to prove the security against adversaries that make no
corruptions. Moreover, since this scheme works for a single dataset note that Type
1 forgeries cannot occur.

For the proof let us recall how the weakly-adaptive security experiment (Definition
1.6) works for our multi-key homomorphic signature scheme MKHSig. This is a game
between an adversary A and a challenger C that has four main phases:

(1) A declares an integer Q representing the number of different identities that it
will ask in the signing queries. Moreover, for every i ∈ [Q] A sends to C a set
Ti ⊆ T := {τ1, . . . , τT} and a set of pairs {(mτ , τ)}τ∈Ti .

(2) C runs Setup(1λ) to obtain the public parameters and sends them to A.

(3) A adaptively queries identities id1, . . . , idQ. When C receives the query idi
it generates a key-triple (skidi , ekidi , vkidi) by running KeyGen(pp), and for all
labels ℓ = (idi, τ) such that τ ∈ Ti it runs σi

τ←Sign(skidi , ℓ,mτ). Then C sends
to A: the public keys vkidi := (Aidi , {Vℓ}τ∈T) and ekidi := (Aidi), and the
signatures {σi

τ}τ∈Ti .

(4) The adversary produces a forgery consisting of a labeled program P∗ = (f∗,
ℓ∗1, . . . , ℓ

∗
t) where f∗ ∈ F, f∗ :Mt →M, a message m∗ and a signature σ∗.

A wins the non-adaptive security game if Verify(P∗, {vkid}id∈P∗ ,m∗, σ∗) = 1 and
one of the following conditions holds:

Type 2 Forgery: there exist messages mℓ∗1
, . . . ,mℓ∗t

s.t. m∗ ̸= f∗(mℓ∗1
, . . . ,mℓ∗t

)
(i.e., m∗ is not the correct output of P∗ when executed over previously signed
messages).

Type 3 Forgery: there exists at least one label ℓ∗ = (id∗, τ∗) that was not queried
by A.

60 Paper A

Consider a variation of the above game obtained modifying phase (3) as follows:
(3)′ C picks an instance A ∈ Zn×m′

q of the SIS(n,m′, q, βSIS) problem for m′ =

m ·Q = poly(λ), and parse A := (Aid1 | . . . |AidQ) ∈ Zn×m′

q as the concatenation of
Q different blocks of n×m matrices.
Next, when C receives the i-th query idi from A, it does the following:

• it samples a matrix Uidi,τ ←$ U such that ∥Uidi,τ∥ ≤ βinit;

• for all ℓ := (idi, τ) with τ ∈ Ti, C computes Vℓ = AidiUidi,τ + mτ ·G;

• for all ℓ := (idi, τ) with τ /∈ Ti, C computes Vℓ = AidiUidi,τ + bi,τ ·G, where
bi,τ ←$ {0, 1}.

• C sends to A the public keys vkidi := (Aidi , {Vℓ}τ∈T) and ekidi := (Aidi),
along with signatures {σi

τ}τ∈Ti where σi
τ := (mτ ,mτ , I := {idi},Uidi,τ ,Uidi,τ).

Clearly, if A is a uniformly random matrix so is each block {Aidi}i∈[Q].
Due to point (2) of Lemma 1.2, since (AidiUidi,τ) is statistically indistinguishable
from a random matrix, all the matrices Vℓ generated in (3)′ are statistically close to
the ones generated in (3). Thus, the two games are statistically indistinguishable.
At this point we show that for every PPT adversary A which produces a forgery in
the modified game we can construct a PPT algorithm B that solves the SIS(n,m ·
Q, q, βSIS) problem. B receives an SIS instance A := (Aid1 | . . . |AidQ) ∈ Zn×mQ

q and
simulates the modified game to A by acting exactly as the challenger C described
above. Then, once A outputs its forgery, according to the forgery’s type, B proceeds
as described below.

Type 2 Forgeries. Let (P∗ := (f∗, ℓ∗1, . . . , ℓ
∗
t),m∗, σ∗ := (m∗, z∗, I∗,U∗,Z∗))

be a Type 2 forgery produced by A in the modified game. Moreover let σ =
(m, z, I,U,Z) be the signature obtained by honestly applying Eval to the signatures
corresponding to labels ℓ∗1, . . . , ℓ

∗
t that were given to A. Parse U := {Uid}id∈I and

notice that by the correctness of the scheme we have that m = f∗(mℓ∗1
, . . . ,mℓ∗t

),
I = {id : id ∈ P∗}, and

∑
id∈I AidUid +m ·G = V∗. Moreover, by definition of Type

2 forgery recall that m∗ ̸= f∗(mℓ∗1
, . . . ,mℓ∗t

) and that the tuple satisfies verification.
In particular, satisfaction of check (1) implies that I = I∗, while check (3) means∑

id∈I∗ AidU
∗
id + m∗ · G = V∗ . Combining the two equations above we obtain∑

id∈I AidŨid = m̃·G, where m̃ = m−m∗ ̸= 0 and, for all id ∈ I, Ũid = U∗id−Uid ∈ U
such that ∥Ũid∥∞ ≤ βmax. Notice that there must exist at least one īd ∈ I for which
Ũīd ̸= 0.

Moreover, for all id ∈ {id1, . . . , idQ} \ I, define Ũid = 0 and set Ũ =

 Ũid1

.

.

.

ŨidQ

 ∈
ZmQ×m
q . Then, we have AŨ = m̃ ·G.

Next B samples r←$ {0, 1}mQ, sets s = Ar ∈ Zn
q , and computes r′ = G−1(m̃−1 ·s),

so that r′ ∈ {0, 1}m and m̃ ·Gr′ = s. Finally, B outputs u = Ũr′ − r ∈ ZmQ
q . We

conclude the proof by claiming that the vector u returned by B is a solution of the
SIS problem for the matrix A. To see this observe that

A(Ũr′ − r) = (AŨ)r′ −Ar = m̃ ·G ·G−1(m̃−1 · s)− s = 0 .

and ∥u∥∞ ≤ (2m + 1)βmax ≤ βSIS.
It remains to show that u ̸= 0. We show that this is the case (i.e., Ũr′ ̸= r)

with overwhelming probability by using an entropy argument (the same argument
used in [30]). In particular, this holds for any (worst case) choice of A, Ũ, m̃, and

Multi-Key Homomorphic Authenticators 61

only based on the random choice of r ←$ {0, 1}mQid . The intuition is that, even
if r′ = G−1(sm̂−1) depends on s = Ar, s is too small to reveal much information
about the random r. More precisely, we have that H∞(r | r′) ≥ H∞(r | Ar) because
r′ is chosen deterministically based on s = Ar. Due to the Lemma 1.1, we have that
H∞(r | Ar) ≥ H∞(r)− log(|S|), where S is the space of all possible s. Since s ∈ Zn

q ,

|S| = qn, and then log(|S|) = log(qn) = log((2logq)n) = n log((2log q)) = n log q.
Regarding H∞(r), since H∞(X) := −log

(
maxx Pr[X = x]

)
, we have H∞(r) =

−log
(
2−mQ

)
= mQ ≥ m. Then, H∞(r | r′) ≥ H∞(r) − log(S) ≥ m − n log q =

ω(log λ). Since we know that for random variables X,Y the optimal probability
of an unbounded adversary guessing X given the correlated value Y is 2−H∞(X|Y),
then Pr[r = Ũr′] ≤ 2−H∞(r|r′) ≤ 2−ω(log λ) = negl(λ).

Type 3 Forgery. Let (P∗ := (f∗, ℓ∗1, . . . , ℓ
∗
t),m∗, σ∗ := (m∗, z∗, I∗,U∗,Z∗)) be

a Type 3 forgery produced by A in the modified game such that there exists (at
least) one label ℓ∗j = (id∗, τ∗) such that id∗ = idi but τ∗ /∈ Ti.10 Actually, without
loss of generality we can assume that there is exactly one of such labels; if this is
not the case, one could indeed redefine another adversary that makes more queries
until it misses only this one. Note that for such a tag τ∗ /∈ Ti, B simulated Vidi,τ∗ =
AUidi,τ∗ + bi,τ∗G for a randomly chosen bit bi,τ∗ ←$ {0, 1}, that is perfectly hidden
from A.

By definition of Type 3 forgery, the tuple passes verification, and in particular
check (4)

∑
id∈I∗ AidZ

∗
id + z∗ ·G = V+ =

∑t
i=1 γi ·Vℓ∗i

where the right hand side of
the equation holds by construction of the verification algorithm. Moreover, let σ =
(m, z, I,U,Z) be the signature obtained by honestly applying Eval to the signatures
corresponding to labels ℓ∗1, . . . , ℓ

∗
t ; in particular for the specific, missing, label ℓ∗j B

uses the values Uidi,τ∗ , bi,τ∗ used to simulate Vidi,τ∗ . Parsing Z := {Zid}id∈I, notice
that by correctness it holds I = {id : id ∈ P∗} and

∑
id∈I AidZid + z ·G = V+ where

z =
∑t

i=1,i ̸=j γimi + γjbi,τ∗ . Now, the observation is that every γi ≤ 2d < q, i.e.,
γi ̸= 0 mod q. Since bi,τ∗ is random and perfectly hidden to A we have that with
probability 1/2 it holds z ̸= z∗.

Thus, if z ̸= z∗, B combines the equalities on V+ to come up with an equation∑
id∈I AidZ̃id = z̃ ·G where z̃ = z−z∗ ̸= 0 mod q and, for all id ∈ I, Z̃id = Z∗id−Zid ∈

U such that ∥Z̃id∥∞ ≤ βmax.
Finally, using the same technique as in the case of Type 2 forgeries, B can compute

a vector u that is a solution of SIS with overwhelming probability, i.e., Au = 0.
Therefore, we have proven that if an adversaryA can break the MKHSig scheme with
non negligible probability, then C can use such an A to break the SIS assumption
for A with non negligible probability as well.

A Variant with Unbounded Tag Space in the Random Oracle Model. In
this section, we show that the construction of multi-key homomorphic signatures of
Section 4.2 can be easily modified in order to have short public keys and to support
an unbounded tag space T = {0, 1}∗. Note that once arbitrary tags are allowed,
the scheme also allows to handle multiple datasets for free. In fact, one can always
extend tags to include the dataset name, i.e., simply redefine each tag τ as consisting
of two substrings τ = (∆, τ ′) where ∆ is the dataset name and τ ′ the actual tag.
The idea of modifying the scheme to support an unbounded tag space is simple
and was also suggested in [30] for their construction. Instead of sampling matrices

10It is easy to see that the case in which id∗ is new would imply the generation of a new Aid∗ ,
which would make the verification equations hold with negligible probability (over the random
choice of Aid∗).

62 Paper A

{Vid,1, . . .Vid,T} in KeyGen, one can just choose a random string rid ←$ {0, 1}λ and

define every Vid,τ := Ĥ(rid, τ) where Ĥ : {0, 1}∗ → V is a hash function chosen in
Setup (modeled as a random oracle in the proof). In all the remaining algorithms,

every time one needs Vid,τ , this is obtained using Ĥ.
For this modified scheme, we also provide an idea of how the security proof of

Theorem 1.1 has to be modified to account for these changes. The main change is
the simulation of hash queries, which is done as follows.

Before phase (1), where A declares its queries, B simply answers every query

Ĥ(r, τ) with a randomly chosen V ←$ V. Afterwards, once A has declared all its
queries, B chooses rid1 , . . . , ridQ ←$ {0, 1}λ and programs the random oracle so that,

for all τ ∈ Ti, Ĥ(ridi , τ) = Vidi,τ where Vidi,τ is the same matrix generated in the

phase (3) of the modified game. On the other hand, for all τ /∈ Ti, Ĥ(ridi , τ) = Vidi,τ

where Vidi,τ = AidUidi,τ + bi,τG for a randomly chosen Uidi,τ ←$ U . All other

queries Ĥ(r, τ) where r ̸= ridi ,∀i ∈ [Q] are answered with random V ←$ V. With
this simulation, it is not hard to see that, from A’s forgery B can extract a solution
for SIS (except for some negligible probability that A guesses one of ridi before
seeing it).

4.3 From a Single Dataset to Multiple Datasets

In this section, we present a generic transformation to convert a single-dataset
MKHSig scheme into a scheme that supports multiple datasets. The intuition be-
hind this transformation is similar to the one employed in [30] and implicitly used in
[13, 16], except that here we have to use additional techniques to deal with the multi-
key setting. We combine a standard signature scheme NH.Sig (non-homomorphic)
with a single dataset multi-key homomorphic signature scheme MKHSig′. The idea
is that for every new dataset ∆, every user generates fresh keys of the multi-key ho-
momorphic scheme MKHSig′ and then uses the standard signature scheme NH.Sig to
sign the dataset identifier ∆ together with the generated public key. More precisely,
in our transformation we assume to start with (single-dataset) multi-key homomor-
phic signature schemes in which the key generation algorithm can be split into two
independent algorithms: KeyGen1 that outputs some public parameters related to
the identity id, and KeyGen2 which outputs the actual keys. Differently than [30],
in our scheme the signer does not need to sign the whole dataset at once, nor has
to fix a bound N on the dataset size (unless such a bound is already contained in
MKHSig′).

In more details, let NH.Sig = (NH.KeyGen,NH.Sign,NH.Verify) be a standard
(non-homomorphic) signature scheme, and let MKHSig′ = (Setup′,KeyGen′, Sign′,
Eval′,Verify′) be a single-dataset multi-key homomorphic signature scheme. We con-
struct a multi-dataset multi-key homomorphic signature scheme MKHSig = (Setup,
KeyGen, Sign,Eval,Verify) as follows.

Setup(1λ). The setup algorithm samples parameters of the single-dataset multi-key
homomorphic signature scheme, pp′ ← Setup′(1λ), together with a description
of a PRF F : K × {0, 1}∗ → {0, 1}ρ, and outputs pp = (pp′, F).

KeyGen(pp). The key generation algorithm runs NH.KeyGen to get (pkNHid , skNHid), a
pair of keys for the standard signature scheme. In addition, it runs KeyGen1
to generate user-specific public parameters ppid, and chooses a seed Kid for
the PRF F . The final output is the vector (skid, ekid, vkid): where skid =
(skNHid ,Kid), ekid = (ppid) and vkid = (pkNHid , ppid).

Multi-Key Homomorphic Authenticators 63

Sign(skid,∆, ℓ,m). The signing algorithm proceeds as follows. First it samples the
keys of the single-dataset multi-key homomorphic signature scheme by feeding
randomness FKid

(∆) to KeyGen2, i.e., it runs KeyGen2(pp;FKid
(∆)) to obtain

the keys (sk∆id , ek
∆
id , vk

∆
id).11 The algorithm then runs σ′←Sign′(sk∆id , ℓ,m), and

uses the non-homomorphic scheme to sign the concatenation of the public
key vk∆id and the dataset identifier ∆, i.e., σ∆

id ← NH.Sign(skNHid , vk∆id |∆), The

output is the tuple σ := (I = {id}, σ′, par∆) where par∆ = {(ek∆id , vk
∆
id , σ

∆
id)}.

Note that the use of the PRF allows every signer (having the same Kid) to
generate the same keys of the scheme MKHSig′ on the same dataset ∆.

Eval(f, {(σi,EKSi)}i∈[t]). For each i ∈ [t], the algorithm parses every signature

as σi := (Ii, σ
′
i, par∆,i) with par∆,i = {ek∆id , vk

∆
id , σ

∆
id }id∈Ii , and sets EKS′i =

{ek∆id}id∈Ii . It computes σ′ ← Eval′(f, {σ′i,EKS
′
i}i∈[t]), defines I = ∪ti=1Ii and

par∆ = ∪ti=1par∆,i. The final output is σ = (I, σ′, par∆).

Verify(P,∆, {vkid}id∈P ,m, σ). The verification algorithm begins by parsing the ver-
ification keys as vkid := (pkNH

id , ppid) for each id ∈ I, and also the signature
as σ = (I, σ′, par∆) with par∆ = {(ek∆id , vk

∆
id , σ

∆
id)}id∈I. Then, it proceeds with

two main steps. First, for each id ∈ I, it verifies the standard signature σ∆
id on

the public key of the single-dataset multi-key homomorphic scheme and the
given dataset, i.e., it checks whether NH.Verify(pkNHid , vk∆id |∆, σ∆

id) = 1, ∀ id ∈ I.
If at least one of the previous equations is not satisfied, the algorithm re-
turns 0, otherwise it proceeds to the second check and returns the output of
Verify′(P, {ppid, vk

∆
id}id∈P ,m, σ′).

Authentication Correctness. Correctness of the scheme substantially follows
from the correctness of the regular signature scheme NH.Sig, the single-dataset
multi-hey homomorphic scheme MKHSig′ and the PRF F .

Evaluation Correctness. Evaluation correctness follows directly from the
correctness of the evaluation algorithm Eval′ of the single-dataset MKHSig scheme,
the correctness of NH.Sig and of the PRF.

Security. Intuitively, the security of the scheme follows from two main observa-
tions. First, no adversary is able to fake the keys of the single-dataset multi-key ho-
momorphic signature scheme, due to the security of the standard signature scheme
and the property of pseudo-random functions. Secondly, no adversary can tamper
with the results of Eval for a specific dataset as this would correspond to breaking
the security of the single-dataset MKHSig′ scheme.

Theorem 1.2. If F is a secure pseudo-random function, NH.Sig is an unforge-
able signature scheme and MKHSig′ is a secure single-dataset multi-key homomor-
phic signature scheme, then the MKHSig scheme for multiple datasets described in
Section 4.3 is secure against adversaries that make static corruptions of keys and
produce forgeries as in Definition 3.2.

The full proof of Theorem 1.2 is given in [22].

5 Our Multi-Key Homomorphic MAC from OWFs

In this section, we describe our construction of a multi-key homomorphic authen-
ticator with private verification keys and supporting the evaluation of low-degree

11Here we assume that a ρ-bits string is sufficient, otherwise it can always be stretched using a
PRG.

64 Paper A

arithmetic circuits. More precisely, for a computation represented by an arithmetic
circuit of degree d and involving inputs from n distinct identities, the final authen-
ticator has size

(
n+d
d

)
, that is bounded by poly(n) (for constant d) or by poly(d) (for

constant n). Essentially, the authenticators of our scheme grow with the degree of
the circuit and the number of distinct users involved in the computation, whereas
their size remains independent of the total number of inputs / users. This property
is particularly desirable in contexts that involve a small set of users each of which
contributes with several inputs.

Although our multi-key homomorphic MAC supports less expressive computa-
tions than our homomorphic signatures of Section 4, the scheme comes with two
main benefits. First, it is based on a simple, general assumption: it relies on
pseudo-random functions and thus is secure only assuming existence of one-way
functions (OWF). Second, the scheme is very intuitive and efficient: fresh MACs
essentially consist only of two Fp field elements (where p is a prime of λ bits) and

an identity identifier; after evaluation, the authenticators consist of
(
n+d
d

)
elements

in Fp, and homomorphic operations are simply additions and multiplications in the
multi-variate polynomial ring Fp[X1, . . . , Xn].

We describe the five algorithms of our scheme MKHMac below. We note that our
solution is presented for single data set only. However, since it admits labels that
are arbitrarily long strings it is straight-forward to extend the scheme for handling
multiple data sets: simply redefine each tag τ as consisting of two substrings τ =
(∆, τ ′) where ∆ is the dataset name and τ ′ the actual tag.

Setup(1λ). The setup algorithm generates a λ-bit prime p and let the message space
be M := Fp. The set of identities is ID = [C] for some integer bound C ∈ N,
while the tag space consists of arbitrary binary strings, i.e., T = {0, 1}∗.
The set F of admissible functions is made up of all arithmetic circuits whose
degree d is bounded by some polynomial in the security parameter. The setup
algorithm outputs the public parameters pp which include the descriptions
of M, ID, T ,F as in Section 3, as well as the description of a PRF family
F : K × {0, 1}∗ → Fp with seed space K. The public parameters define
also the authenticator space. Each authenticator σ consists of a pair (I, y)
where I ⊆ ID and y is in the C-variate polynomial ring Fp[X1, . . . , XC]. More
precisely, if C is set up as a very large number (e.g., C = 2λ) the polynomials
y can still live in some smaller sub-rings of Fp[X1, . . . , XC].

KeyGen(pp). The key generation algorithm picks a random x ←$ F∗p, a PRF seed
K ←$ K, and outputs (sk, ek, vk) where sk = vk = (x,K) and ek is void.

Auth(sk, ℓ,m). In order to authenticate the message m with label ℓ = (id, τ) ∈
ID × T , the authentication algorithm produces an authenticator σ = (I, y)
where I ⊆ ID and y ∈ Fp[Xid] ⊂ Fp[X1, . . . , XC]. The set I is simply {id}. The
polynomial y is a degree-1 polynomial in the variable Xid such that y(0) = m
and y(xid) = F (Kid, ℓ). Note that the coefficients of y(Xid) = y0 + yidXid ∈
Fp[Xid] can be efficiently computed with the knowledge of xid by setting y0 = m

and yid = F (Kid,ℓ)−m
xid

. Moreover, y can be compactly represented by only giving
the coefficients y0, yid ∈ Fp.

Eval(f, {σk}k∈[t]). Given a t-input arithmetic circuit f : Ft
p → Fp, and the t au-

thenticators {σk := (Ik, yk)}k, the evaluation algorithm outputs σ = (I, y)
obtained in the following way. First, it determines all the identities in-
volved in the computation by setting I = ∪tk=1Ik. Then every polynomial

Multi-Key Homomorphic Authenticators 65

yk is “expanded” into a polynomial ŷk, defined on the variables Xid corre-
sponding to all the identities in I. This is done using the canonical embed-
ding Fp[Xid : id ∈ Ik] ↪→ Fp[Xid : id ∈ I]. It is worth noticing that the
terms of ŷk that depend on variables in I ∖ Ik have coefficient 0. Next, let
f̂ : Fp[Xid : id ∈ I]t → Fp[Xid : id ∈ I] be the arithmetic circuit corresponding

to the given f , i.e., f̂ is the same as f except that additions (resp. multi-
plications) in Fp are replaced by additions (resp. multiplications) over the

polynomial ring Fp[Xid : id ∈ I]. Finally, y is obtained as y = f̂(ŷ1, . . . , ŷt).

Verify(P, {vkid}id∈P ,m, σ). Let P = (f, ℓ1, . . . , ℓt) be a labeled program where f is
a degree-d arithmetic circuit and every label is of the form ℓk = (idk, τk). Let
σ = (I, y) where I = {īd1, . . . , īdn} with īdi ̸= īdj for i ̸= j. The verification
algorithm outputs 1 (accept) if and only if the authenticator satisfies the
following three checks. Otherwise it outputs 0 (reject).

{īd1, . . . , īdn} = {id : id ∈ P}, (5)

y(0, . . . , 0) = m , (6)

y(xīd1 , . . . , xīdn) = f(F (Kid1 , ℓ1), . . . , F (Kidt , ℓt)) . (7)

In the remainder of the section, we discuss the efficiency and succinctness of our
MKHMac and prove the correctness of our scheme. We conclude with the security
analysis of the proposed MKHMac scheme.

Succinctness. Let us consider the case of an authenticator σ which was obtained
after running Eval on a circuit of degree d and taking inputs from n distinct iden-
tities. Note that every σ consists of two elements: a set I ⊆ [C] and a polynomial
y ∈ Fp[Xīd : īd ∈ I].

For the set I, it is easy to see that |I| = n and I can be represented with n logC
bits. The other part of the authenticator, y, is instead an n-variate polynomial in
Fp[Xīd1 , . . . , Xīdn] of degree d. Since the circuit degree is d, the maximum number of

coefficients of y is
(
n+d
d

)
. More precisely, the total size of y depends on the particular

representation of the multi-variate polynomial y which is chosen for implementation.
In [22] we discuss some possible representations (further details can also be found
in [32]). For example, when employing the sparse representation of polynomials,
the size of y is bounded by O(nt log d) where t is the number of non-zero coefficients
in y (note that in the worst case, a polynomial y ∈ Fp[Xīd1 , . . . , Xīdn] of degree d

has at most t =
(
n+d
d

)
non-zero coefficients). Thus, setting logC ≈ log p ≈ λ, we

have that the size in bits of the authenticator σ is |σ| ≤ λn + λ
(
n+d
d

)
. Ignoring the

security parameter, we have that |σ| = poly(n) when d is constant, or |σ| = poly(d)
when n is constant.

Efficiency of Eval. In what follows, we discuss the cost of computing addi-
tions and multiplications over authenticators in our MKHMac scheme. Let σ(i) =
(I(i), y(i)), for i = 1, 2 be two authenticators and consider the operation σ =
Eval(g, σ(1), σ(2)) where g is a fan-in-2 addition or multiplication gate. In both
cases the set I of identities of σ = (I, y) is obtained as the union I = I(1) ∪ I(2) that
can be computed in time O(n), where n = |I|, assuming the sets I(1), I(2) are ordered.
Regarding the computation of y from y(1) and y(2), one has to first embed each yi
into the ring Fp[Xīd : īd ∈ I], and then evaluate addition (resp. multiplication)
over Fp[Xīd : īd ∈ I]. Again, the costs of these operations depend on the adopted
representation [24, 32].

66 Paper A

Using the sparse representation of polynomials, expanding a y having t non-zero
coefficients into an n-variate polynomial ŷ requires time at most O(tn). To give
an idea, such expansion indeed consists simply into inserting zeros in the correct
positions of the exponent vectors of every non-zero monomial term of y. On the
other hand, the complexity of operations (additions and multiplications) on poly-
nomials using the sparse representation is usually estimated in terms of the number
of monomial comparisons. The cost of such comparisons depends on the specific
monomial ordering chosen, but is usually O(n log d), where n is the total number of
variables and d is the maximum degree. Given two polynomials in sparse represen-
tation having t1 and t2 non-zero terms respectively, addition costs about O(t1t2)
monomial comparisons (if the monomial terms are stored in sorted order the cost
of addition drops to O(t1 + t2)), while multiplication requires to add (merge) t2
intermediate products of t1 terms each, and can be performed with O(t1t2 log t2)
monomial comparisons [24].

Correctness. Authentication Correctness. By construction, each fresh au-
thenticator σ = (I, y) of a message m labeled by ℓ := (id, τ) is of the form I = {id}
and y(Xid) := y0 + yidXid = m + F (Kid,ℓ)−m

xid
Xid. Thus the set I satisfies equation

(5) since {id : id ∈ Iℓ} = {id}. The two last verification checks (6) and (7) are
automatically granted for the identity program Iℓ because y(0) = y0 = m and

y(xid) = m + F (Kid,ℓ)−m
xid

xid = F (Kid, ℓ).

Evaluation Correctness. The correctness of the Eval algorithm essentially
comes from the structure of the multi-variate polynomial ring. We provide the
detailed proof in the full version of the paper [22].

Security. In what follows we prove the security of our scheme against adversaries
that make static corruptions, and produce forgeries according to the following re-
strictions.

Definition 1.8 (Weak Forgery). Consider an execution of the experiment described
in Section 3, HomUF-CMAA,MKHAut(λ) where (P∗,∆∗,m∗, σ∗) is the tuple returned
by the adversary at the end of the experiment, with P∗ = (f∗, ℓ∗1, . . . , ℓ

∗
t), ∆∗ a

dataset identifier, m∗ ∈ M and σ∗ an authenticator. First, we say that the labeled
program P∗ is well-defined on a list L if either one of the following two cases occurs:

1. There exists i ∈ [t] such that (ℓ∗i , ·) /∈ L (i.e., A never made a query with
label ℓ∗i), and f∗({mj}(ℓj ,mj)∈L ∪ {m̃j}(ℓj ,·)/∈L) outputs the same value for all
possible choices of m̃j ∈M;

2. L contains the tuples (ℓ∗1,m1), . . . , (ℓ∗t ,mt), for some messages m1, . . . ,mt.

Then we say that (P∗,∆∗,m∗, σ∗) is a weak forgery if Verify(P∗,∆∗, {vkid}id∈P∗ ,
m∗, σ∗) = 1 and either one of the following conditions is satisfied:

Type 1: L∆∗ was not initialized during the game (i.e., ∆∗ was never queried).

Type 2: P∗ is well-defined on L∆∗ but m∗ ̸= f∗({mj}(ℓj ,mj)∈L∆∗ ∪{0}ℓj /∈L∆∗) (i.e.,
m∗ is not the correct output of P∗ when executed over previously authenticated
messages).

Type 3: P∗ is not well-defined on L∆∗ .

Multi-Key Homomorphic Authenticators 67

Although Definition 1.8 is weaker than our Definition 3.2, we stress that the
above definition still protects the verifier from adversaries that try to cheat on
the output of a computation. In more details, the difference between Definition
1.8 and Definition 3.2 is the following: if f∗ has an input wire that has never
been authenticated during the game (a Type 3 forgery in Definition 3.2), but f∗ is
constant with respect to such input wire, then the above definition does not consider
it a forgery. The intuitive reason why such a relaxed definition still makes sense
is that “irrelevant” inputs would not help in any case the adversary to cheat on
the output of f∗. Definition 1.8 is essentially the multi-key version of the forgery
definition used in previous (single-key) homomorphic MAC works, e.g., [11]. As
discussed in [23] testing whether a program is well-defined may not be doable in
polynomial time in the most general case (i.e., every class of functions). However,
in [12] it is shown how this can be done efficiently via a probabilistic test in the case
of arithmetic circuits of degree d over a finite field of order p such that d/p < 1/2.
Finally, we notice that for our MKHMac Type 1 forgeries cannot occur as the scheme
described here supports only one dataset.12

Theorem 1.3. If F is a pseudo-random function then the multi-key homomorphic
MAC described in Section 5 is secure against adversaries that make static corrup-
tions of keys and produce forgeries as in Definition 1.8.

Note that we can deal with corruptions via our generic result of Proposition 1.1.
Therefore, it is sufficient to prove the security against adversaries that make no
corruptions. The proof is done via a chain of games following this (intuitive) path.
First, we rule out adversaries that make Type 3 forgeries. Intuitively, this can be
done as the adversary has never seen one of the inputs of the computation, and
in particular an input which can change the result. Second, we replace every PRF
instance with a truly random function. Note that at this point the security of the
scheme is information theoretic. Third, we change the way to answer verification
queries that are candidates to be Type 2 forgeries. Finally, we observe that in this
last game the adversary gains no information on the secret keys xi and thus has
negligible probability of making a Type 2 forgery. Due to space restrictions, the
detailed and formal proofs appear in only in the full version [22].

6 Conclusions

In this paper, we introduced the concept of multi-key homomorphic authentica-
tors, a cryptographic primitive that enables an untrusted third party to execute a
function f on data authenticated using different secret keys in order to obtain a
value certifying the correctness of f ’s result, which can be checked with knowledge
of corresponding verification keys. In addition to providing suitable definitions,
we also propose two constructions: one which is publicly verifiable and supports
general boolean circuits, and a second one that is secretly verifiable and supports
low-degree arithmetic circuits. Although our work does not address directly the
problem of privacy, extensions of our results along this direction are possible, and
we leave the details to future investigation. A first extension is defining a notion of
context-hiding for multi-key HAs. Similarly to the single key setting, this property
should guarantee that authenticators do not reveal non-trivial information about the

12As noted at the beginning of the section the extension to multiple datasets is straightforward
given that tags are arbitrary strings. When such extension is applied it is easy to see that Type 1
forgeries are Type 3 ones in the underlying scheme.

68 Paper A

computation’s inputs. The second extension has to do with preventing the Cloud
from learning the data over which it computes. In this case, we note that multi-
key HAs can be executed on top of homomorphic encryption following an approach
similar to that suggested in [21]. Finally, an interesting problem left open by our
work is to find multi-key HA schemes where authenticators have size independent
of the number of users involved in the computation.

Acknowledgements. This work was partially supported by the COST Action
IC1306 through a STSM grant to Elena Pagnin, the European Union’s H2020 Re-
search and Innovation Programme under grant agreement 688722 (NEXTLEAP),
the Spanish Ministry of Economy under project reference TIN2015-70713-R (DEDE-
TIS) and a Juan de la Cierva fellowship to Dario Fiore, and by the Madrid Regional
Government under project N-Greens (ref. S2013/ICE-2731). This work was also
partially supported by the the People Programme (Marie Curie Actions) of the Eu-
ropean Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant
agreement no 608743, the VR grant PRECIS no 621-2014-4845 and the STINT grant
Secure, Private & Efficient Healthcare with wearable computing no IB2015-6001.

Bibliography

[1] Shweta Agrawal, Dan Boneh, Xavier Boyen, and David Mandell Freeman.
“Preventing Pollution Attacks in Multi-source Network Coding”. In: Public
Key Cryptography. Springer. 2010, pp. 161–176.

[2] Miklós Ajtai. “Generating Hard Instances of Lattice Problems (Extended Ab-
stract)”. In: 28th ACM STOC. ACM Press, 1996, pp. 99–108.

[3] Miklós Ajtai. “Generating Hard Instances of the Short Basis Problem”. In:
Automata, Languages and Programming, 26th International Colloquium. 1999,
pp. 1–9.

[4] Joël Alwen and Chris Peikert. “Generating shorter bases for hard random
lattices”. In: Theory of Computing Systems 48.3 (2011), pp. 535–553.

[5] Michael Backes, Dario Fiore, and Raphael M. Reischuk. “Verifiable delega-
tion of computation on outsourced data”. In: ACM CCS. ACM Press, 2013,
pp. 863–874.

[6] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. “Verifiable Delega-
tion of Computation over Large Datasets”. In: vol. 6841. Springer, Heidelberg,
2011, pp. 111–131.

[7] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “Recursive
composition and bootstrapping for SNARKS and proof-carrying data”. In:
45th ACM STOC. ACM Press, 2013, pp. 111–120.

[8] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. “Signing a
Linear Subspace: Signature Schemes for Network Coding”. In: PKC. Vol. 5443.
Springer, Heidelberg, 2009, pp. 68–87.

[9] Dan Boneh and David Mandell Freeman. “Homomorphic Signatures for Poly-
nomial Functions”. In: vol. 6632. Springer, Heidelberg, 2011, pp. 149–168.

[10] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. “Fully
Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact Gar-
bled Circuits”. In: EUROCRYPT. Vol. 8441. Springer, Heidelberg, 2014, pp. 533–
556.

[11] Dario Catalano and Dario Fiore. “Practical Homomorphic MACs for Arith-
metic Circuits”. In: vol. 7881. Springer, Heidelberg, 2013, pp. 336–352.

[12] Dario Catalano, Dario Fiore, Rosario Gennaro, and Luca Nizzardo. “Gener-
alizing Homomorphic MACs for Arithmetic Circuits”. In: vol. 8383. Springer,
Heidelberg, 2014, pp. 538–555.

69

70 Paper A

[13] Dario Catalano, Dario Fiore, and Luca Nizzardo. “Programmable Hash Func-
tions Go Private: Constructions and Applications to (Homomorphic) Signa-
tures with Shorter Public Keys”. In: CRYPTO. Vol. 9216. Springer, 2015,
pp. 254–274.

[14] Dario Catalano, Dario Fiore, and Bogdan Warinschi. “Adaptive Pseudo-free
Groups and Applications”. In: EUROCRYPT. Vol. 6632. Springer, 2011, pp. 207–
223.

[15] Dario Catalano, Dario Fiore, and Bogdan Warinschi. “Efficient Network Cod-
ing Signatures in the Standard Model”. In: PKC. Vol. 7293. Springer, 2012,
pp. 680–696.

[16] Dario Catalano, Dario Fiore, and Bogdan Warinschi. “Homomorphic Signa-
tures with Efficient Verification for Polynomial Functions”. In: CRYPTO.
Vol. 8616. Sringer, 2014, pp. 371–389.

[17] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Carlos Cid. “Multi-
Client Non-interactive Verifiable Computation”. In: TCC. Vol. 7785. Springer,
2013, pp. 499–518.

[18] Kai-Min Chung, Yael Kalai, and Salil P. Vadhan. “Improved Delegation of
Computation Using Fully Homomorphic Encryption”. In: vol. 6223. Springer,
Heidelberg, 2010, pp. 483–501.

[19] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. “Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data”. In: Interna-
tional conference on the theory and applications of cryptographic techniques.
Springer. 2004, pp. 523–540.

[20] Dario Fiore and Rosario Gennaro. “Publicly verifiable delegation of large poly-
nomials and matrix computations, with applications”. In: ACM CCS. ACM
Press, 2012, pp. 501–512.

[21] Dario Fiore, Rosario Gennaro, and Valerio Pastro. “Efficiently Verifiable Com-
putation on Encrypted Data”. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. 2014, pp. 844–855.

[22] Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin. “Multi-
Key Homomorphic Authenticators”. In: IACR Cryptology ePrint Archive (2016).

[23] David Mandell Freeman. “Improved Security for Linearly Homomorphic Sig-
natures: A Generic Framework”. In: PKC. Vol. 7293. Springer, 2012, pp. 697–
714.

[24] Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for
Computer Algebra. Norwell, MA, USA: Kluwer Academic Publishers, 1992.

[25] Rosario Gennaro, Craig Gentry, and Bryan Parno. “Non-interactive Verifiable
Computing: Outsourcing Computation to Untrusted Workers”. In: CRYPTO.
Vol. 6223. Springer, 2010, pp. 465–482.

[26] Rosario Gennaro and Daniel Wichs. “Fully Homomorphic Message Authenti-
cators”. In: ASIACRYPT. Vol. 8270. Springer, 2013, pp. 301–320.

[27] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: 41st
ACM STOC. ACM Press, 2009, pp. 372–381.

[28] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for hard
lattices and new cryptographic constructions”. In: ACM STOC. ACM Press,
2008, pp. 197–206.

Multi-Key Homomorphic Authenticators 71

[29] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating
computation: interactive proofs for muggles”. In: ACM STOC. ACM Press,
2008, pp. 113–122.

[30] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. “Leveled Fully
Homomorphic Signatures from Standard Lattices”. In: 47th ACM STOC.
ACM Press, 2015, pp. 469–477.

[31] S. Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi, and Hong-Sheng
Zhou. “Multi-Client Verifiable Computation with Stronger Security Guaran-
tees”. In: TCC. Vol. 9015. Springer, 2015, pp. 144–168.

[32] Joris van der Hoeven and Grgoire Lecerf. “On the bit-complexity of sparse
polynomial and series multiplication”. In: Journal of Symbolic Computation
50 (2013), pp. 227 –254.

[33] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner.
“Homomorphic Signature Schemes”. In: CT-RSA. Vol. 2271. Springer, Hei-
delberg, 2002, pp. 244–262.

[34] Daniele Micciancio. “Almost perfect lattices, the covering radius problem, and
applications to Ajtai’s connection factor”. In: SIAM Journal on Computing
34.1 (2004), pp. 118–169.

[35] Daniele Micciancio and Chris Peikert. “Hardness of SIS and LWE with small
parameters”. In: CRYPTO. Vol. 8042. Springer, 2013, pp. 301–320.

[36] Daniele Micciancio and Chris Peikert. “Trapdoors for Lattices: Simpler, Tighter,
Faster, Smaller”. In: EUROCRYPT. Vol. 7237. Springer, 2012, pp. 700–718.

[37] Daniele Micciancio and Oded Regev. “Worst-Case to Average-Case Reduc-
tions Based on Gaussian Measures”. In: 45th FOCS. IEEE, 2004, pp. 372–
381.

[38] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. “How to Dele-
gate and Verify in Public: Verifiable Computation from Attribute-Based En-
cryption”. In: TCC. Vol. 7194. Springer, 2012, pp. 422–439.

Paper B

Matrioska: A Compiler for Multi-Key
Homomorphic Signatures

Dario Fiore and Elena Pagnin

Abstract. Multi-Key Homomorphic Signatures (MKHS) enable clients in a system
to sign and upload messages to an untrusted server. At any later point in time, the
server can perform a computation C on data provided by t different clients, and
return the output y and a short signature σC,y vouching for the correctness of y as
the output of the function C on the signed data. Interestingly, MKHS enable veri-
fiers to check the validity of the signature using solely the public keys of the signers
whose messages were used in the computation. Moreover, the signatures σC,y are
succinct, namely their size depends at most linearly in the number of clients, and
only logarithmically in the total number of inputs of C.

Existing MKHS are constructed based either on standard assumptions over lat-
tices (Fiore et al., ASIACRYPT’16), or on non-falsifiable assumptions (SNARKs)
(Lai et al., ePrint’16). In this paper, we investigate connections between single-
key and multi-key homomorphic signatures. We propose a generic compiler, called
Matrioska, which turns any (sufficiently expressive) single-key homomorphic sig-
nature scheme into a multi-key scheme. Matrioska establishes a formal connection
between these two primitives and is the first alternative to the only known construc-
tion under standard falsifiable assumptions. Our result relies on a novel technique
that exploits the homomorphic property of a single-key HS scheme to compress an
arbitrary number of signatures from t different users into only t signatures.

Keywords. Homomorphic Signatures, Multi-Key Homomorphic Signatures.

Proceedings of the 11th Conference on Security and Cryptography for Networks
(SCN), 2018.

Matrioska: A Compiler for Multi-Key
Homomorphic Signatures

1 Introduction

Consider a scenario where a user Alice uploads a collection of data items x1, . . . , xn

to an untrusted server. Later on, the server executes a computation P on this data
and sends the result y = P(x1, . . . , xn) to another user Bob. How can Bob be sure
that y is the correct result obtained by running P on Alice’s data?
A trivial solution to this problem could be obtained by employing digital signatures:
Alice could sign each data item xi and send to the server the signatures σ1, . . . , σn.
Next, to convince Bob, a server can send along with y the original inputs with their
signatures, and Bob should check that y = P(x1, . . . , xn) and that each σi is a valid
signature for xi. While this solution solves the above security concern, it has a clear
efficiency drawback: it requires communication between the server and the verifier
Bob that is linear in the input size of P. This cost is undesirable and can even be
unacceptable if Bob is cannot store the x1, . . . , xn.

Homomorphic Signatures. A solution to the above problem that achieves both
security and efficiency can be obtained by using homomorphic signatures (HS).
With this primitive, Alice can use her secret key to sign x1, . . . , xn and sends the
signed data items to the server. The server can use a special procedure Eval that,
on input a program P and a collection of signatures σ1, . . . , σn, outputs a signature
σP,y. Given Alice’s public key and a triple (P, y, σP,y), Bob (or anyone else) can get
convinced that y is the correct output of P on inputs (x1, . . . , xn) signed by Alice.
Very informally, homomorphic signatures are secure in the sense that an untrusted
server (without knowing Alice’s secret key) must not be able to convince the verifier
of a false result. An additional property that makes this cryptographic primitive
interesting and non-trivial is that signatures must be succinct. This means that
the size of σP,y must be significantly smaller than P’s input size, e.g., size(σP,y) =
O(log n).

The notion of homomorphic signatures was proposed by Desdmedt [16] and first
formalized by Johnson et al. [24]. Boneh et al. [4] proposed the first scheme for com-
puting linear functions over signed vectors and showed an application to preventing
pollution attacks in linear network coding. Following [4], a long series of works
(e.g., [1, 2, 6, 8, 9, 11–13, 15, 19, 20, 26]) addressed the problem of constructing
linearly-homomorphic signatures obtaining new schemes that improved on multiple
fronts, such as efficiency, security, and privacy. A few more works addressed the
problem of constructing schemes for more expressive functionalities [5, 7, 14, 23].
Boneh and Freeman [5] proposed the first scheme for polynomial functions based on
lattices, which was later improved by Catalano, Fiore and Warinschi [14] based on
multilinear maps. In 2015, Gorbunov, Vaikuntanathan and Wichs [23] constructed
the first HS scheme for arbitrary circuits of bounded depth from standard lattices.

76 Paper B

Multi-Key Homomorphic Signatures. In a recent work, Fiore et al. [17]
initiated the study of multi-key homomorphic signatures (MK-HS). In a nutshell,
MK-HS are homomorphic signatures that allow for computing on data signed using
different secret keys. This capability extends that one of previously known ho-
momorphic signatures, and is useful in all those applications where one wants to
compute on data provided (and signed) by multiple users. In addition to formally
defining the notion of multi-key homomorphic signatures, Fiore et al. proposed a
construction of MK-HS based on lattices that supports bounded depth circuits.
Their scheme is obtained by extending the techniques of the single-key scheme of
Gorbunov et al. [23]. Another recent work by Lai et al. [25] shows how to build an
MK-HS using SNARKs and digital signatures. However, since SNARKs are likely
to be based on non-falsifiable assumptions [22], the resulting MK-HS also relies on
non standard assumptions.

1.1 Our Contribution

In this work, we continue the study of multi-key homomorphic signatures. Our
main interest is to identify connections between multi-key homomorphic signatures
and their single-key counterpart. In particular, we provide the first generic method
to construct multi-key homomorphic signatures from (sufficiently expressive) single-
key HS schemes. Our main contribution is a compiler, called Matrioska, that yields
the following result:

Theorem 3.1 (Informal). Let HS be a homomorphic signature scheme for circuits
of polynomial size. Then, for a constant t representing the number of distinct keys
involved in a computation, there exists a multi-key homomorphic signature scheme
MKHS(HS, t) for circuits of polynomial size. Furthermore, if HS has signatures
bounded by a fixed polynomial p(λ), MKHS(HS, t) has signatures bounded by t ·p(λ).

Our result essentially shows that for a sufficiently expressive class of functions multi-
key and single-key homomorphic signatures are equivalent. Our construction is the
first to establish a formal connection between these two primitives without resorting
to powerful primitives such as SNARKs which only yield constructions from non-
falsifiable assumptions. Also, we propose a new methodology to construct MK-
HS, which is the first alternative to the only known construction from standard
assumptions [17]. In particular, while the techniques in [17] are specific to an
algebraic lattice setting, our construction works in a generic fashion and as such it
will allow to immediately obtain new MK-HS schemes from any future proposal of
single-key HS.

Our MK-HS construction is quite involved and its efficiency is, admittedly, theo-
retical. In particular, in order to support circuits of (polynomial) size s, we need to

start from a single-key HS scheme that supports circuits of size scs
t−1

, where t is the
number of distinct keys involved in the computation and cs is some constant that
depends on the single-key HS scheme. Therefore our generic construction generates
multi-key homomorphic signature schemes that can support computations among
a constant number of keys (i.e., users) only.

Nevertheless, our MK-HS scheme has succinct signatures that have size t · p(λ),
which is non-trivial as it is independent of the total number of inputs involved in
the computation. Indeed, even in the multi-key setting a trivial solution to build
MK-HS from digital signatures (and even from HS) would require communication
linear in the total number of inputs of a computation, i.e., O(n · t), assuming each
user provides n inputs.

Matrioska: A Compiler for Multi-Key Homomorphic Signatures 77

An overview of our techniques. The main challenge in constructing an MK-HS
scheme generically from a single-key one is to obtain a construction with succinct
signatures. In particular, obtaining succinctness requires some mechanism to “com-
press” n · t signatures into some information that can at most depend linearly on
log n and t. While single-key HS allow for compressing signatures pertaining to the
same key, this property seems of no utility when one needs to compute on signatures
pertaining to different keys, if nothing about their structure can be assumed.13 To
overcome this challenge, we devise a novel technique that allows us to compress n · t
signatures from t different users into t signatures; for this we show how to use the
homomorphic property of the single-key HS scheme in order to inductively “prove”
that the signatures of the first i users verify correctly on the corresponding inputs.

In what follows we illustrate the core idea of our technique considering, for sim-
plicity, the two-client case t = 2, and assuming each users contributes to the com-
putation with n inputs.

Let C : {0, 1}2·n → {0, 1} be the circuit we wish to evaluate. Given the messages
m1, . . .mn by user id1 and mn+1, . . .m2·n by user id2, we wish to authenticate the
output of y = C(m1, . . . ,m2·n). Let σi be the signature for the message mi; in
particular the first n signatures and the last n signatures are associated to different
secret keys.

The initial step is to construct a (2 · n)-input circuit E0 such that E0(x1, . . . ,
x2n) = 1 iff C(x1, . . . , x2n) = y. Second, define a new circuit E1 : {0, 1}n → {0, 1}
that is E0 with the last n inputs hardwired: E1(x1, . . . , xn) = E0(x1, . . . , xn,mn+1,
. . . ,m2n). Now E1 is a circuit that has inputs by a single client only, thus we can
run σ̂1 ← HS.Eval(E1, pk1, σ1, . . . , σn). By the correctness of the single-key homo-
morphic signature scheme it must hold HS.Verify(E1, pk1, σ̂1, 1) = 1. At this point,
we already compressed the signatures σ1, . . . , σn into a single signature σ̂1. This is
however not yet sufficient for succinctness because verifying σ̂1 requires the circuit
E1, which in turn requires to transmit to the verifier n messages (mn+1, . . . ,m2n) to
let him reconstruct E1.

This is where the inductive reasoning, and our new technique, begins. Very
intuitively, we use the signatures of the second user to “prove” that HS.Verify(E1,
pk1, σ̂1, 1) = 1, without letting the verifier run this verification explicitly. Let us see
H = HS.Verify((E1, (τ1, . . . , τn)), pk1, σ̂1, 1) as a binary string with the description
of a (no input) circuit. Look for the bits of H where the values mn+1, . . . ,m2n are
embedded. We can define a new circuit description E2 that is the same as H except
that the hardwired values mn+1, . . . ,m2n are replaced with input gates. Thus E2

is an n-input circuit satisfying E2(mn+1, . . . ,m2n) = HS.Verify(E1, pk1, σ̂1, 1), which
returns 1 by correctness of HS.

Now, the crucial observation is that E2 is a circuit on inputs by the second client
only. Thus, we can run σ̂2 ← HS.Eval(E2, pk2, σn+1, . . . , σ2n). By the correctness of
the HS scheme, HS.Verify(E2, pk2, σ̂2, 1) = 1. Note that E2 does not contain any of
the messages m1, . . . ,m2·n hardwired; in particular E2 is completely determined by
C, y, pk1, σ̂1 and a description of HS.Verify. Hence, given (σ̂1, σ̂2) the verifier can
reconstruct E2 and check if HS.Verify(E2, pk2, σ̂2, 1) = 1. Intuitively, this proves
that for some messages signed by the second user E2(mn+1, . . . ,m2n) = 1. By the
correctness of HS, this in turn implies E1(m1, . . . ,mn) = 1 for some messages signed
by the first user; and by construction of E1 the latter implies C(m1, . . . ,m2n) = y.

Our compiler, extends the above idea to multiple users, showing that at each
step i the problem consists in proving correctness of a computation Ei−1 that de-

13This is the case if one aims for a generic single-key to multi-key construction. In contrast,
knowing for example the algebraic structure of signatures can be of help, as exploited in [17].

78 Paper B

pends only on the inputs of user i, while inputs of users > i are hardwired into
it. This means that a progressive application of this idea lets the hardwired inputs
progressively disappear up to the point of obtaining a circuit Et which has no input
hardwired and thus can be reconstructed by the verifier. This is the only compu-
tation explicitly checked by the verifier. By construction, Et encodes the nested
execution of several single-key HS verifications (from which our compiler’s name
“Matrioska”), and validity of Et implicitly implies that each Ei returns 1 (even
if the verifier does not know Ei itself). In this description we favor intuition to
precision. A detailed presentation can be found in Section 3.

2 Preliminaries

Notation. The security parameter of our schemes is denoted by λ. For any n ∈ N,
we use [n] to denote the set [n] := {1, . . . , n}. The symbol lg denotes the logarithm
in base 2; || denotes the string concatenation, e.g., (00)||(10) = (0010); bold font
letters, e.g., σ⃗ = (σ1, . . . , σn), denote vectors. A function ϵ(λ) is said negligible in
λ (denoted as ϵ(λ) = negl(λ)) if ϵ(λ) = O(λ−c) for every constant c > 0. Also, we
often write poly(·) to denote a function that can be expressed as a polynomial.

2.1 Circuits

We use a modeling of circuits similar to the one in [3]. We define circuits as 6-
tuples C = (n, u, q, L,R,G). The value n ≥ 1 denotes the number of inputs to the
circuit, u ≥ 1 is the number of outputs and q ≥ 1 is the number of gates. Let
w denote the total number of wires in the circuit. For the circuits considered in
this work w = n + q. The functions L and R define respectively the left and right
input wire to any given gate g ∈ [q], formally, L,R : [q] → [w] ∪ {0}. Finally,
G : [q] → {0, 1} encodes the gates by mapping each gate g ∈ [q] into a single bit
Gg. In our construction we treat circuit descriptions C as binary strings. Similarly
to [3], the size of our circuit description is quasi-linear in the number of wires:
|C| ∈ O(w lg(w)). Differently from [3], we number gates from 1 to q (instead of
from n + 1 to n + q) and label the outgoing wire of a gate g as g + n. Moreover,
we introduce the 0 wire to denote constant output gates, e.g., no-input gates or
gates that have the same output independently of the input values, and allow for a
gate to have the same left and right input, i.e., L(g) ≤ R(g) < g + n. The largest
component in the string C is the descriptions of the function L (and R), that is a
sequence of q values in [w] ∪ {0}, therefore |L| = |R| = q lg(w + 1). Hence, for a
fixed and reasonable encoding it holds |C| ∈ O(w lg(w)).

As an example of a circuit consider the following EQy circuit (that will be used
in our generic compiler) EQy =

(
1, 1, 5, (01134), (02325), (y, 1, 1, 1, 1)

)
.

We explain the procedure to evaluate a 1-output, n-input circuit and refer the
reader to [18] for the general case. Given (x1, . . . , xn) and the circuit description
C = (n, 1, q, L,R,G), compute y = C(x1, . . . , xn) as follows. Retrieve the label of
the left and right input wires to gate g = i, for i = 1, 2, . . . , q. Let l ← L(i) and
r ← L(i). Create a new variable xn+i ∈ {0, 1}. If l = 0 = r, g is a constant gate,
assign xn+i ← G(i). Otherwise, by definition l ̸= 0 ̸= r, retrieve the values xl and
xr, and return xn+i ← xl if G(i) = 0, or xn+i ← NAND(xl, xr) if G(i) = 1. The
output is xn+q = y = C(x1, . . . , xn).

Another interesting operation on circuits is circuit composition. Given two cir-
cuits, C1 and C2, we say that C1 is composable with C2 if u1 = n2. Intuitively,
composition connects each output wire of C1 with one input wire of C2. We

Matrioska: A Compiler for Multi-Key Homomorphic Signatures 79

denote the circuit composition as C3 = C1 ▷ C2. The resulting circuit C3 =
(n3, u3, q3, L3,R3,G3) is defined as: n3 = n1, u3 = u2, q3 = q1 + q2. Let wi be
the number of wires in Ci, then

L3 =

 L1(i) for i ∈ [w1]
0 for i ∈ [w1 + w2] \ [w1] and L2(i− w1) = 0

L2(i− w1) + w1 − u1 for i ∈ [w1 + w2] \ [w1] and L2(i− w1) ̸= 0

Note that the entries of L3 that are set to 0 preserve constant output gates. The
right-input function R3 is defined analogously. The right-input function R3 is defined
analogously. Finally, G3 = G1||G2.

2.2 Multi-Key Homomorphic Signatures

We start by recalling the notion of labeled programs of Gennaro and Wichs [21].

Labeled Programs [21]. A labeled program P is a tuple (C, ℓ1, . . . , ℓt), such
that C : Mt → M is a function of t variables (e.g., a circuit) and ℓi ∈ {0, 1}∗
is a label for the i-th input of C. Labeled programs can be composed as follows:
given P1, . . . ,Pn and a function G : Mn → M, the composed program P∗ is the
one obtained by evaluating G on the outputs of P1, . . . ,Pn, and it is denoted as
P∗ = G(P1, . . . ,Pn). The labeled inputs of P∗ are all the distinct labeled inputs of
P1, . . . ,Pn (all the inputs with the same label are grouped together and considered
as a unique input of P∗).

We recall the definitions of Fiore et al. [17] for multi-key homomorphic authen-
ticators, adapted to the case of signature schemes only. Following [17], we consider
labels where ℓ = (id, τ), such that id is a given client identity and τ is a tag which
refers to the client’s input data. To ease the reading, we use the compact and im-
proper notation id ∈ P meaning that there exists at least one index label ℓ in the
description of P = (C, (ℓ1, . . . , ℓn)) such that ℓ = (id, τ) for some string τ .

Definition 3.1 (Multi-Key Homomorphic Signature [17]). A multi-key homomor-
phic signature scheme MKHS is a tuple of five PPT algorithms MKHS = (MKHS.Setup,
MKHS.KeyGen,MKHS.Sign,MKHS.Eval,MKHS.Verify) that satisfies the properties
of authentication correctness, evaluation correctness, succinctness and security.
The algorithms are defined as follows:

MKHS.Setup(1λ). The setup algorithm takes as input the security parameter λ and
outputs some public parameters pp including a description of an identity space
ID, a tag space T (these implicitly define the label space L = ID × T), a
message space M and a set of admissible functions F . The pp are input to
all the following algorithms, even when not specified.

MKHS.KeyGen(pp). The key generation algorithm takes as input the public parame-
ters and outputs a pair of keys (sk, pk), where sk is a secret signing key, while
pk is the public evaluation and verification key.

MKHS.Sign(sk,∆, ℓ,m). The sign algorithm takes as input a secret key sk, a dataset
identifier ∆, a label ℓ = (id, τ) for the message m, and it outputs a signature
σ.

MKHS.Eval(P,∆, {(σi, pkidi)}i∈[n]). The evaluation algorithm takes as input a la-
beled program P = (C, (ℓ1, . . . , ℓn)), where C : Mn −→ M is an n-input
circuit, a dataset identifier ∆ and a set of signature and public-key pairs
{(σi, pkidi)}i∈[n]. The output is an homomorphic signature σ.

80 Paper B

MKHS.Verify(P,∆, {pkid}id∈P ,m, σ). The verification algorithm takes as input a la-
beled program P = (C, (ℓ1, . . . , ℓn)), a dataset identifier ∆, the set of public
keys {pkid}id∈P corresponding to those identities id involved in P, a message
m and an homomorphic signature σ. It outputs 0 (reject) or 1 (accept).

Remark 3.1 (Single/Multi-Hop Evaluation). Similarly to fully homomorphic en-
cryption, we call a (multi-key) homomorphic signature i-Hop if the Eval algorithm
can be executed on its own outputs up to i times. We call single-hop a scheme where
Eval can be executed only on fresh signatures, i.e., generated by Sign, whereas a
multi-hop scheme is a scheme that is i-Hop for all i.

Authentication Correctness. A multi-key homomorphic signature satisfies au-
thentication correctness if for all public parameters pp ← MKHS.Setup(1λ), any
key pair (skid, pkid) ← MKHS.KeyGen(pp), any dataset identifier ∆, any label ℓ =
(id, τ) ∈ L, any message m ∈ M and any signature σ ← MKHS.Sign(sk,∆, ℓ,m), it
holds that

Pr [MKHS.Verify(Iℓ,∆, pk,m, σ) = 1] ≥ 1− negl .

Evaluation Correctness. A multi-key homomorphic signature satisfies evalua-
tion correctness if

Pr [MKHS.Verify(P ′,∆, {pkid}id∈P′ ,m′, σ′) = 1] ≥ 1− negl

where the equality holds for a fixed description of the public parameters pp ←
MKHS.Setup(1λ), an arbitrary set of honestly generated keys {(skid, pkid)}id∈ĨD for

some ˜ID ⊆ ID, with | ˜ID| = t, a dataset identifier ∆, a function C : Mn →
M, and any set of program/message/signature triples {(Pi,mi, σi)}i∈[n] such that
MKHS.Verify(Pi,∆, {pkid}id∈Pi ,mi, σi) = 1 for all i ∈ [n], and m′ = g(m1, . . . ,mn),
P ′ = g(P1, . . . ,Pn), and σ′ = Eval(C, {(σi, PKi)}i∈[n]) where PKi = {pkid}id∈Pi .

Succinctness. Succinctness is one of the crucial properties that make multi-key
homomorphic signatures an interesting primitive. Intuitively, a MKHS scheme is
succinct if the size of every signature depends only logarithmically on the size
of a dataset. More formally, let pp ← MKHS.Setup(1λ), P = (C, (ℓ1, . . . , ℓn))
with ℓi = (idi, τi), (skid, pkid) ← MKHS.KeyGen(pp) for all id ∈ [n]. and σi ←
MKHS.Sign(skidi ,∆, ℓi,mi), for all i ∈ [n], then MKHS has succinct signatures if
there exists a fixed polynomial poly(·) such that size(σ) = poly(λ, t, log n) where
σ = MKHS.Eval(P, {(σi, pkidi)}i∈[n]).

Security. We adopt Fiore et al.’s security model [17]. Very intuitively, a multi-
key homomorphic signature scheme is secure if the adversary, who can request to
multiple users signatures on messages of its choice, can produce only signatures that
are either the ones it received, or ones that are obtained by correctly executing the
Eval algorithm. In addition, in the multi-key setting the adversary is also allowed
to corrupt users but this shall not affect the integrity of computations performed
on data signed by other (un-corrupted) users of the system. Formally, we define the
MK-HomUF-CMA security experiment below

Setup. The challenger C runs MKHS.Setup(1λ) and sends the public parameters
pp to the adversary A.

Matrioska: A Compiler for Multi-Key Homomorphic Signatures 81

Sign Queries. The adversary can adaptively submit queries of the form (∆, ℓ,m),
where ∆ is a dataset identifier, ℓ = (id, τ) is a label in ID× T and m ∈ M is
a message. The challenger answers performing all the 1-4 checks below:

1. If (ℓ,m) is the first query for the dataset ∆, the challenger initializes an
empty list L∆ = ∅.

2. If (∆, ℓ,m) is the first query with identity id, the challenger generates the
keys for that identity: (skid, pkid)← KeyGen(pp). and proceeds to step 3.

3. If (∆, ℓ,m) is such that (ℓ,m) /∈ L∆, the challenger computes σ ←
MKHS.Sign(skid,∆, ℓ,m) (this is possible since C has already generated
the keys for the identity id). Then the challenger updates the list L∆ ←
L∆ ∪ (ℓ,m) and returns (σ, pkid) to A.

4. If (∆, ℓ,m) is such that (ℓ, ·) /∈ L∆, that is, the adversary had already
made a query (∆, ℓ,m′) for some message m′, the challenger ignores the
query. Note that for a given (∆, ℓ) pair only one message can be obtained.

Corruption Queries. At the beginning of the game, the challenger initialises an
empty list Lcorr = ∅ of corrupted identities. During the game, the adversary
can adaptively perform corruption queries by sending id ∈ ID to the challenger.
If id /∈ Lcorr the challenger updates the list Lcorr ← Lcorr ∪ id and answers the
query with the pair (skid, pkid) generated using KeyGen (if not done before).
If id ∈ Lcorr the challenger replies with keys (skid, pkid) assigned to id before.

Forgery. At the end of the game, A outputs a tuple (P∗,∆∗, {pk∗id}id∈P∗ , y∗, σ∗).
The experiment outputs 1 if the tuple returned by A is a forgery (defined
below), and 0 otherwise.

A MK-HS scheme MKHS is unforgeable if for every PPT adversary A, its advantage
AdvMKHS

A (λ) = Pr[MK-HomUF-CMAA,MKHS(λ) = 1] is negl(λ).

Definition 3.2 (Forgery). We consider an execution of MK-HomUF-CMA where
(P∗,∆∗, {pk∗id}id∈P∗ , y∗, σ∗) is the tuple returned by A at the end of the experi-
ment. Let P∗ = (C∗, ℓ∗1, . . . , ℓ

∗
n). The adversary’s output is said to be a successful

forgery against the multi-key homomorphic signature scheme if: MKHS.Verify(P∗,
∆∗, {pk∗id}id∈P∗ , y∗, σ∗) = 1 and at least one of the following conditions hold:

Type-1 forgery: the dataset ∆∗ was never initialised.
Type-2 forgery: for all id ∈ P∗, id /∈ Lcorr and (ℓ∗i ,mi) ∈ L∆∗ for all i ∈ [n], but

y∗ ̸= C∗(m1, . . . ,mn).
Type-3 forgery: there exists (at least) one index i ∈ [n] such that ℓ∗i was never

queried, i.e., (ℓ∗i , ·) /∈ L∆∗ and idi /∈ Lcorr is a non-corrupted identity.

Non-adaptive corruption queries. We also recall a proposition given in [17],
which shows that it is sufficient to prove security for non-adaptive corruption queries.
This is a setting where the adversary A can perform corruption queries only on iden-
tities for which no signature query had already been performed. This proposition
can be used to simplify security proofs.

Proposition 3.1 ([17]). MKHS is secure against adversaries that do not make
corruption queries if and only if MKHS is secure against adversaries that make
non-adaptive corruption queries.

82 Paper B

2.3 Homomorphic Signatures

Despite some minor syntactic modifications, homomorphic signatures can be seen
as a special case of multi-key homomorphic signatures for algorithms that run
on inputs by a single user only. For the purpose of this work, single-key homo-
morphic signature schemes are defined by five PPT algorithms HS = (HS.Setup,
HS.KeyGen,HS.Sign,HS.Eval,HS.Verify) that have the same input-output behavior
as the corresponding algorithms in MKHS except:

- There is no identity space ID and the labels are simply ℓ = τ .
- The evaluation algorithm HS.Eval takes as input a circuit C, a single public key

pk and a set of signatures σ1, . . . , σn. In particular HS.Eval runs without labels or
dataset identifier.

- The verification algorithm HS.Verify accepts inputs from a single user only, i.e.,
the labeled program P is of the form P = (C, (τ1, . . . , τn)) and only one public key
pk is provided.

The properties of authentication and evaluation correctness are analogous to the
ones for MKHS in the case of computations on inputs by a single client. Regarding
succinctness, a homomorphic signature scheme HS has succinct signatures if the
size of any signature σ output by HS.Eval depends only logarithmic in the number
n inputs to the labelled program, i.e., size(σ) = poly(λ, log(n)).

Finally, we observe that the specialization to the single-key setting of the above
security definition corresponds to the strong-adaptive security definition of HS that
is formalized in [10]. In particular, the definitions in [10] allow for a simple treatment
of Type-3 forgeries. In [10] it is also shown that HS constructions for circuits that
are secure in this stronger model can be generically built, e.g., from [23].

3 The Matrioska compiler

In this section, we present Matrioska: a generic compiler from a single-key ho-
momorphic signature scheme HS = (HS.KeyGen, HS.Sign, HS.Eval, HS.Verify) to a
(single-hop) multi-key scheme MKHS = (MKHS.KeyGen, MKHS.Sign, MKHS.Eval,
MKHS.Verify). The result is summarized in the following theorem:

Theorem 3.2. Let HS be a homomorphic signature scheme that is correct and
unforgeable. Then, for any given integer number T ≥ 1 there exists a multi-
key homomorphic signature scheme MKHS(HS,T) that supports computations on
signatures generated using at most T distinct keys, it is correct and unforgeable.
Furthermore, if HS supports circuits of maximum size s and maximum depth d
and it has succinctness l, then MKHS(HS,T) on T distinct users has succinctness

T · l, and can support circuits of size s′ and depth d′ provided that s > (s′)cs
T−1

and d > max{d′, dHSV((s′)cs
T−1

, λ)}, where dHSV and cs are a function and a non-
negative constant that depend from the single-key scheme HS.

More precisely, dHSV expresses the depth of the circuit for the verification algo-
rithm HS.Verify as a function of its input length (which includes the description of
the labeled program P); cs is a constant such that the size of HS.Verify on input a
circuit C is size(C)cs . Notice that by efficiency of HS such cs exists, and dHSV can,
in the worst case, be written as size(C)cd for some other constant cd.

Theorem 3.2 can be instantiated in two ways. If HS is a fully-homomorphic
signature (whose existence is not yet known), then for any s′ = poly(λ) and for any

Matrioska: A Compiler for Multi-Key Homomorphic Signatures 83

constant number T, we are guaranteed that HS is executed on poly-sized circuits.
Otherwise, if HS is an HS for circuits of bounded polynomial depth (and of any, or
bounded, polynomial size), as e.g., [23], then for any s′ = poly(λ) and for any fixed
number of keys T, we can derive a polynomial bound d on the depth. The proof of
Theorem 3.2 is constructive. First we show a method to define MKHS given a HS
scheme and a value T. Next, in a sequence of lemmas, we prove all the properties
stated in the theorem.

Our construction is rather involved. Therefore, in the next section we first il-
lustrate our ideas for a simple case of a computation that takes inputs from three
different users, and then, in Section 3.2, we describe the full compiler.

3.1 An intuition: the three-client case

We provide here a simplified example to explain the core idea of our Matrioska
compiler. To ease the exposition we consider the case t = 3 (three clients with
identities id1, id2 and id3) and deliberately remove dataset identifiers. A detailed
description for t = n = 3 can be found in the full version of this paper [18].

Let P = (C, (ℓ1, . . . , ℓn)) be a labelled program, where C a (n)-input circuit (with
n = n1 + n2 + n3) and the labels ℓi = (idi, τi) are ordered, i.e., first n1 inputs
belong to client id1, the subsequent n2 to id2 and the last n3 inputs to id3. Let
σi be the signature on message mi for the label ℓi. For simplicity assume that
C(m1, . . . ,mn) = y = 1.

Step 1. We want extract from C a circuit that contains only inputs by clients id2
and id3. To this end, we define E1 as the partial evaluation of C on the mes-
sages mn1+1, . . . ,mn. Thus, E1 is an n1-input circuit with hardwired in it the
inputs by clients id2 and id3. In our framework E1 is obtained with two basic
operations on the bit string C: (1) setting any gate g with left or right input
wire in [n] \ [n1] to be a constant gate (i.e., setting the bits L(g) and R(g) to
0), and (2) initializing the now constant gate to the value mi for i ∈ [n] \ [n1].
At this point we obtained a circuit with inputs of a single client only, and we
can run σ̂1 ← HS.Eval(E1, pkid1 , σ1, . . . , σn1). By construction E1(m1, . . . ,mn1) =
C(m1, . . . ,mn) = 1, therefore HS.Verify((E1, (τ1, . . . , τn1)), pkid1 , σ̂1, 1) = 1.

Step 2. The actual inductive procedure begins now. We wish to verify the cor-
rectness of σ̂1 using the messages input by client id2 as variables. Consider the
input to the (single-client) verification as the string S1 = ((E1, (τ1, . . . , τn1)), pkid1 ,
σ̂1, 1). Recall that to construct the circuit E1 we used the messages mn1+1, . . .mn

(hard-wired in its gate description). To free the inputs by client id2 we mod-
ify S1 in the following way: (1) identify the gates that contain the messages
mn1+1, . . . ,mn1+n2 , (2) turn these gates into input gates by setting the left/right
wires to the opportune values w (using P). Let us consider HS.Verify on the
modified string S1, this is a proper circuit E2 such that E2(mn1+1, . . . ,mn1+n2) =
HS.Verify((E1, (τ1, . . . , τn1)), pkid1 , σ̂1, 1)=1. Being E2 a single-client circuit we can
run σ̂2 ← HS.Eval(E2, pkid2 , σn1+1, . . . , σn1+n2).

Step 3. This is analogous to Step 2: we wish to verify the correctness of σ̂2

using the messages input by client id3 as variables and define a circuit that is
completely determined by public values, no hard-wired message value. Let S2 =
((E2, (τn1+1, . . . , τn1+n2)), pkid2 , σ̂2, 1), we free the inputs by client id3 as in Step
2. We define E3 as the formal evaluation of HS.Verify on the modified string S2.
By construction it holds that E3(mn1+n2+1, . . . ,mn) = HS.Verify((E2, (τn1+1, . . . ,
τn1+n2)), pkid2 , σ̂2, 1) = 1, and we can run σ̂3 ← HS.Eval(E3, pkid3 , σn1+n2+1, . . . , σn).

84 Paper B

The multi-key homomorphic evaluation algorithm outputs σ̂ = (σ̂1, σ̂2, σ̂3).
The Matrioska verification procedure needs only reconstruct the final circuit E3, as
this is fully determined by the public values (P, pkid1 , pkid2 , σ̂1, σ̂2,HS.Verify, 1). Let
E3 = (E3, (τn1+n2+1, . . . , τn)), the verification concludes by running the single-key
verification algorithm: HS.Verify(E3, pk3, σ̂3, 1).

3.2 The Matrioska Compiler

In this section we describe our compiler in the general case of computing on signa-
tures generated by t different keys.

Definition 3.3 (Matrioska). Let HS = (HS.Setup,HS.KeyGen,HS.Sign,HS.Eval,
HS.Verify) be a single-key homomorphic signature scheme, we define a multi-key
homomorphic signature scheme MKHS as follows:

MKHS.Setup(1λ,T, s′, d′) → pp. The set-up algorithm takes as input the secu-
rity parameter λ, a positive integer T that represents a bound for the maximal
number of distinct identities involved in the same homomorphic computation, and
bounds s′, d′ = poly(λ) on the size and depth respectively of the circuits used in
the MKHS.Eval and MKHS.Verify algorithms. Setup first uses T, s′, d′ to derive two

integers s and d such that s > (s′)cs
T−1

and d > max{d′, dHSV((s′)cs
T−1

, λ)}. Next,
it runs HS.Setup(1λ, s, d) to obtain a tag space T (which corresponds to the label
space of HS), a message space M and a set of admissible circuits F .14 Labels of
the multi-key scheme are defined as pairs ℓ = (id, τ) ∈ ID×T , where the first entry
is a client-identity identifier. Labeled programs are of the form P = (C, (ℓ1, ..., ℓt))
with labels as above.

MKHS.KeyGen(pp) → (pk, sk). The key-generation algorithm runs HS.KeyGen
to obtain a public-secret key pair. This key-pair will be associated to an identity
id ∈ ID. When we need to distinguish among clients we make the dependency on
the identity explicit, e.g., (pkid, skid).

MKHS.Sign(sk,∆, ℓ,m)→ σ. This algorithm takes as input a secret key sk, a data
set identifier ∆ (e.g., a string), a label ℓ = (id, τ) for the message m. It outputs

σ ← HS.Sign(skid,∆, τ,m). (8)

Without loss of generality we assume that σ includes m.

MKHS.Eval(P,∆, {(σ⃗i, pkidi)}i∈[t]) → ⃗̂σ. Let P = (C, (ℓ1, . . . , ℓn)), where C =
(n, 1, q, L,R,G) and the n ≥ t labels are of the form ℓj = (idi, τj) for some i ∈ [t]
and τj ∈ T , where t ≤ T.

The case t = 1 In this case all the n signatures belong to the same user, that is to
say, there exists an identity id ∈ ID such that for all j ∈ [n] the labels are of the
form ℓ = (id, τj) for some τj ∈ T . Thus, it is possible to run the classical evaluation
algorithm of HS and the output of the multi-key evaluation algorithm for t = 1 is:

⃗̂σ = σ̂id ← HS.Eval
(
E0, pkid, (σ

id
1 , . . . , σ

id
n)
)
. (9)

The case t ≥ 2 In this case the inputs to the labeled program belong to t distinct
users. Without loss of generality, we assume that the labels are ordered per client

14If HS works without these a-priori bounds, it is enough to run HS.Setup(1λ).

Matrioska: A Compiler for Multi-Key Homomorphic Signatures 85

identity, i.e., all the labels between ℓtj and ℓtj+1−1 are of the form (idj , ∗). For each
i ∈ [t] the signature vector σ⃗i is σ⃗i = (σi

1, . . . , σ
i
ni) for opportune values ni ∈ [n−t+1]

satisfying
∑t

i=1 ni = n. Let ti = (
∑i−1

j=0 nj) + 1, where we set n0 = 0, then ti cor-
responds to the index of first input of identity idi. The multi-key homomorphic
evaluation performs the following t + 1 steps.

Step 0. Given P = (C, (ℓ1, . . . , ℓn)) retrieve the messages corresponding to the
labels ℓ1, . . . , ℓn. For notation sake let mj be the message corresponding to label
ℓj. Compute the value y = C(m1, . . . ,mn). Define a single-input single-output
circuit EQy(x) that outputs 1 if and only if x = y.Construct E0 = C ▷ EQy =
(n, 1, q0, L0,R0,G0). The properties of EQy imply that:

E0(x1, . . . , xn) = 1 iff C(x1, . . . , xn) = y . (10)

Note that E0 can be constructed directly from C and y, moreover

E0(m1, . . . ,mn) = 1. (11)

Step 1. We build a n1-input circuit E1 that corresponds to a partial evaluation
of E0 on the inputs of identities idj with j > 1. Given E0 = (E0, (ℓ1, . . . , ℓn)), the
signatures σ⃗1 = (σ1

1 , . . . , σ
1
n1) and the messages mn1+1, . . . ,mn do:

• Define the mask circuit M1 = (n1, n, n, L
′
1,R
′
1,G
′
1) where

L′1(j) = R′1(j) =

{
1 for j ∈ [n1]
0 for j ∈ [n] \ [n1]

and G′1 =

{
0 for j ∈ [n1]
mj for j ∈ [n] \ [n1]

.

By construction M1(b1, . . . , , bn1) = (b1, . . . bn1 ,mn1+1, . . . ,mn).

• Compose M1 with E0 to obtain E1 = M1 ▷ E0 = (n1, 1, q1, L1,R1,G1) where:
q1 = q0 + n; G1 = (G′1||G0); L1(g) = L′1(g) for g ∈ [n], L1(g) = (L0(g − n + 1) + 1)
for g ∈ [n + 1, n + q0] if L0(g − n + 1) ̸= 0 and 0 whenever L0(g − n + 1) = 0. The
function R1(g) is defined analogously. Equation (11) implies

E1(m1, . . . ,mn1) = 1. (12)

• Compute σ̂1 ← HS.Eval(E1, pkid1 , σ⃗1). This is possible since E1 is a circuit in-
volving only inputs of client id1.

Remark 3.2. Let E1 = (E1, (τ1, . . . , τn1)). Equation (12) and the correctness of the
HS scheme imply HS.Verify(E1,∆, pkid1 , σ̂1, 1) = 1.

Step i for i ∈ [2, t]. The goal is to construct an ni-input circuit Ei using Ei−1 =
(Ei−1, (τti , . . . , τti+1−1)), ∆, pkidi and σ⃗i = (σi

1, . . . σ
i
ni). This will be possible using

the circuits HSVi = (nHSVi, 1, qHSVi , LHSVi ,RHSVi ,GHSVi) for the (single-key) homo-
morphic signature verification against the value 1 .15

Let Si−1 = (Ei−1,∆, pkidi−1
, σ⃗i−1) be a string of nHSVi = size(Si−1) bits. Set g1 = 1.

The gates of Ei−1 that embed the ni values input by identity idi are located in the
interval Ii = [gi, gi + ni], where gi = 3 lg(Ni−1) + 2qi−1 lg(wi−1) + gi−1 + ni−1 (see
[18] for an explanation).

15The readers can consider the circuit HSVi to be the representation of HS.Verify(Ei−1, ·, ·, 1)
where Ei−1 is a labelled program for a circuit of size at most O((nHSVi−1 +qHSVi−1

) lg(wHSVi−1
)).

86 Paper B

• Define the mask circuit Mi = (ni, nHSVi, nHSVi, L
′
i,R
′
i,G
′
i) where

L′i(g) = R′i(g) =

{
0 if g ∈ [nHSVi] \ Ii
1 if g ∈ Ii

and
G′i(g) =

{
Si−1(g) if g ∈ [nHSV3] \ Ii
0 if g ∈ Ii

Note that for gates g in the interval Ii, L
′
i(g) = 1 and G′i(g) = 0 which means that

Mi outputs its ni input bits exactly the interval Ii, while outside Ii the output of Mi

is constant. In particular: Mi(mti , . . . ,mti+ni) = Si−1.

• Compose Mi with HSVi to obtain Ei = Mi ▷ HSVi = (ni, 1, qi, Li,Ri,Gi) where:
qi = nHSVi+qHSVi ; Gi = (G′i||GHSVi); Li(g) = L′i(g) for g ∈ [nHSVi], Li(g) = LHSVi(g−
nHSVi+1)+ni for g ∈ [nHSVi+1, qi] if LHSVi(g−nHSVi+1) ̸= 0, and 0 otherwise; and
Ri is defined analogously. . Circuit composition ensures that16 Ei(mti , . . . ,mti+ni) =
HS.Verify(Ei−1,∆, pkidi−1

, σ̂i−1, 1). In particular, applying Remark 3.2 inductively
we get:

Ei(mti , . . . ,mti+ni) = 1 (13)

Note that Ei can be constructed directly from E0 given the values mti , . . . ,mn and
the public data ∆, pkidj , σ̂j for j ∈ [i − 1]. In more details, for i ∈ [2, t] consider
the set of bit strings: headi = (ni, 1, qi, Li,Ri) and taili = (τti , . . . , τti+ni ,∆, pkidi−1

,
σ̂i−1,GHSVi

). For every i ∈ [2, t] headi and taili are completely determined by the
tags for identity idi−1, the public key pkidi−1

and the evaluated signature σ̂i−1. It
is immediate to see that headi and taili are respectively the head and the tail of
the circuit description of Ei. The heart of the string Ei is where “all the magic”
happens:

bodyi = (headi−1, . . . , head2, 0, . . . , 0︸ ︷︷ ︸
(ti+1−1)=

∑i
j=1 nj

mti , . . . ,mn,G0, tail2, . . . , taili)(14)

In particular, for i = t we have:

Et =
(
headt bodyt tailt

)
=

(
headt, (headt−1, . . . , head2, 0, . . . , 0︸ ︷︷ ︸

n

,G0, tail2, . . . , tailt−1), tailt
)

(15)

Equation (15) shows that the circuit Et is completely determined by the labeled
program E0 (to get the tags and the gate description G0), the dataset identifier ∆,
the public keys pkidi and the signatures σ̂i for i ∈ [t].

• Compute σ̂i ← HS.Eval(Ei, pkidi , σ⃗i).

Remark 3.3. This is possible since Ei is a ni-input circuit with inputs from the user
idi only. Equation (13) and the correctness of the HS scheme imply that

HS.Verify(Ei,∆, pki, 1, σ̂i) = 1. (16)

The output of the multi-key evaluation algorithm is the vector of t signatures: ⃗̂σ =
(σ̂1, . . . , σ̂t).

16With abuse of notation one can think that Ei(mti , . . . ,mti+ni) = Mi(mti , . . . ,mti+ni) ▷
HSVi = HSVi(Mi(mti , . . . ,mti+ni)). Since Mi(mti , . . . ,mti+ni) = Si−1 the claim follows by the
definition of HSVi.

Matrioska: A Compiler for Multi-Key Homomorphic Signatures 87

MKHS.Verify(P,∆, {pkid}id∈P , y, ⃗̂σ) → {0, 1}. The verification algorithm parses
the labeled program as P = (C, (ℓ1 . . . , ℓn)) and checks the number 1 ≤ t ≤ T of
distinct identities present among the n labels.

The case t = 1 In this case all the inputs to the labeled program P come from

the same user and ⃗̂σ = σ̂id. In other words, all the labels are of the form ℓj = (id, τj)
for an id ∈ ID and some τj ∈ T . Set E0 = (C, (τ1, . . . , τn)), notice that we removed
the identity from the labels. The multi-key verification returns the output of

HS.Verify(E0,∆, pkid, 1, σ̂id). (17)

The case t ≥ 2 In this case the labeled program P contains labels with t ≥ 2

distinct identities and ⃗̂σ = (σ̂1, . . . , σ̂t). Without loss of generality, we assume that
the labels are ordered per client identity and ni ∈ [n− t + 1] is the number of labels
with identity idi.
Define E0 = (n, 1, q0, L0R0,G0) as the circuit E0 = C ▷ EQy, where EQy(x) is
the a single-input single-output circuit that outputs 1 if and only if x = y. Thus,
E0(x1, . . . , xn) = 1 whenever C(x1, . . . , xn) = y. As noted in the Step 0 of the
evaluation algorithm, E0 is completely determined by P and y.

To verify the signature ⃗̂σ, the multi-key verification algorithm inductively creates
the following strings for i ∈ [2, t]:

headi = (ni, 1, qi = nHSVi + qHSVi , Li = (0, . . . , 0,︸ ︷︷ ︸
(
∑i−1

j=1 nj)−bits

ni−bits︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸

(n−
∑i

j=1 nj)−bits

),Ri = Li)

taili = (τti−1 , . . . , τti−1+ni−1 ,∆, pkidi−1
, σ̂i−1,GHSVi)

where, the circuit HSVi is the same as the one explained in MKHS.Eval, i.e., the
HSVi is the (single-key) homomorphic signature verification against the value 1. At
this point the verifier can combine all the pieces to (re)-construct the description of
the circuit Et:

Et = (headt, . . . , head2, 0, . . . , 0︸ ︷︷ ︸
n

,G0, tail2, . . . , tailt). (18)

Let Et = (Et, (τtt , . . . , τn)), where we removed idt from the labels. The verification
returns:

HS.Verify(Et,∆, pkidt , σ̂t, 1). (19)

Remark 3.4. Note that the Et constructed by the verifier via Equation (18) coincides
with the one created by the evaluator via Equation (15).

3.3 Correctness and Succinctness of Matrioska

In what follows we show that the Matrioska scheme satisfies the properties stated
in Theorem 3.2.

Succinctness. By construction, for a computation involving messages from t users,
our signatures consist of t signatures of the single-input scheme. It is straightfor-
ward to see that if HS signatures have length bounded by some polynomial l, the
size of Matrioska’s signatures is ≤ t · l, which is, asymptotically, the same level of
succinctness as the MK-HS construction by Fiore et al. [17].

88 Paper B

Correctness. The following two lemmas reduce the authentication and evaluation
correctness of Matrioska multi-key homomorphic signatures to the authentication
and evaluation correctness, respectively, of the underlying single-key HS scheme.

Lemma 3.1. Let HS be a single-key homomorphic signature scheme with authenti-
cation correctness, then the multi-key homomorphic signature scheme MKHS(HS,T)
obtained from the Matrioska compiler of Definition 3.3 achieves authentication cor-
rectness.

The proof is quite straightforward and uses the labeled identity program Iℓ =
(Cid, ℓ). For details check [18].

Lemma 3.2. Let HS be a single-key homomorphic signature scheme with evalua-
tion correctness, then the multi-key homomorphic signature scheme MKHS(HS,T)
obtained from the Matrioska compiler of Definition 3.3 achieves evaluation correct-
ness.

The evaluation correctness of Matrioska essentially follows from the evaluation
correctness of HS and the way we (inductively) define the circuits Ei. Moreover,
notice that our MK-HS scheme is single-hop, therefore we have to prove evaluation
correctness with respect to computing on freshly generated signatures (given that
authentication correctness is granted by the previous lemma). For a detailed proof
check [18].

Circuit Growth. In what follows we analyze the size growth of the circuits Ei

computed by the Matrioska compiler, and use this to prove the bounds in Theorem
3.2.

Lemma 3.3. Let HS be a correct single-key homomorphic signature scheme that
supports computations on circuits of (maximum) depth d and size s; then the multi-
key homomorphic signature scheme MKHS(HS,T) obtained from the Matrioska com-
piler of Definition 3.3 supports homomorphic computations on circuits of size s′ and

depth d′ provided that s > (s′)cs
T−1

and d > max{d′, dHSV((s′)cs
T−1

, λ)}, where dHSV
and cs are a function and a non-negative constant that depend on the single-key
scheme HS.

Intuitively, for t = 1, MKHS is running the plain algorithms of HS. and thus MKHS
supports circuits of size s′ < s and depth d′ < max{d, dHSV(s)}. For t > 1 the
Matrioska compiler runs HS.Eval and HS.Verify on every Ei including Et. Since
{Ei}i∈[t] is a sequence of circuits of increasing size and depth we need to make sure
that the circuit given as input to MKHS will grow into an Et that is supported by
HS. The details can be found in [18].

3.4 Security of Matrioska

In this section we argue that Matrioska MKHS schemes are unforgeable provided
that so is the underlying HS scheme. For the proof we rely on Proposition 3.1 from
[17], which allows for a simpler treating of corruption queries. Due to space limit,
the detailed proof appears in the full version of this paper [18] while below we give
a proof sketch with the main intuition.

Lemma 3.4. Let HS be a secure single-key homomorphic signature scheme. Then
the multi-key homomorphic signature scheme MKHS(HS,T) obtained from the Ma-
trioska compiler of Definition 3.3 is secure. In particular, for any PPT adversary A
making signing queries on at most Qid = poly(λ) distinct identities, there is a PPT
algorithm B such that: AdvMKHS

A ≤ Qid ·AdvHS
B .

Matrioska: A Compiler for Multi-Key Homomorphic Signatures 89

Proof sketch. The idea is that a forger against our MKHS scheme must create a
forgery for the HS scheme for at least one of the users, say idi⋆ , involved in the
computation. Thus the reduction B, on input a public key pk, makes a guess for
j∗ = i⋆, programs pkidj∗ = pk and generates all the other keys. This allows B to

perfectly simulate all the signing queries (perfectly hiding j∗ to A).
When A returns (P∗,∆∗, {pk∗id}id∈P∗ , y∗, σ∗), with σ∗ = (σ̂∗1 , . . . , σ̂

∗
t), the crucial

part of the proof is showing the existence of an index i⋆ such that σ̂∗i⋆ is a forgery
for HS. Specifically:

- σ∗ is of type-1 (∆∗ is new). Then i⋆ = t and σ̂∗t is a type-1 forgery against HS.

- σ∗ is of type-2. This means: E0(m1, . . . ,mn) = 0 while HS.Verify(Et, pkidt , 1, σ̂
∗
t) =

1. Then we show that there must exist a “forking index” i⋆ ∈ [t] such that
Ei−1(mti−1 , . . . ,mti−1+ni−1) = 0 but HS.Verify(Ei, pkidi , σ̂

∗
i , 1) = 1, that is, σ̂∗i⋆ is

a type-2 forgery against HS for the labeled program Ei.
- σ∗ is of type-3. If t = 1, then i⋆ = 1 and σ̂∗1 is a type-3 forgery against HS. If
t > 1, let i ∈ [t] be the first index such that ∃ j ∈ [n] : ℓj = (idi, τj) /∈ L∆∗ , i.e.,
the first identity for which a type-3 forgery condition holds. Then, either σ̂∗i is a
type-3 forgery for HS for identity idi (and thus i⋆ = i); or there is i⋆ > i such that
σ̂∗i⋆ is a type-2 forgery against identity idi⋆ . The latter can be argued by showing
the existence of a “forking index” as in the previous case. In a nutshell, a type-3
forgery against MKHS comes either from a type-3 forgery at some index i, or, the
i-th signature is incorrect and thus there must be a type-2 forgery at a later index
to cheat on the fact that verification at index i is correct.

Therefore, if j∗ = i⋆ (which happens with non-negligible probability 1/Qid), B can
convert A’s forgery into one for its challenger.

4 Conclusions and Future work

In this paper, we presented Matrioska the first generic compiler based on falsifi-
able assumptions that establishes a formal connection between single-key HS and
multi-key HS schemes. Matrioska introduces an original mechanism to gain multi-
key features by levering the homomorphic property of a single-key HS scheme. The
resulting signatures are succinct in the sense that their length depends solely on the
number of signers involved in the homomorphic computation, and not on the total
number of signatures input. Unfortunately, constructions obtained with Matrioska
are of limited efficiency, as they require the single-key HS scheme to support circuits
of size exponentially large in the maximum number of distinct signers involved in
the computation. Achieving full signature succinctness remains an interesting goal
for further developments, as well as investigating if Matrioska’s approach could be
used to enhance other cryptographic primitives with multi-key features.

Acknowledgements. This work was partially supported by the COST Action
IC1306 through a STSM grant to Elena Pagnin. Dario Fiore was partially supported
by the Spanish Ministry of Economy under project references TIN2015-70713-R
(DEDETIS), RTC-2016-4930-7 (DataMantium), and by the Madrid Regional Gov-
ernment under project N-Greens (ref. S2013/ICE-2731).

Bibliography

[1] Nuttapong Attrapadung and Benôıt Libert. “Homomorphic Network Coding
Signatures in the Standard Model”. In: PKC 2011: 14th International Con-
ference on Theory and Practice of Public Key Cryptography. Ed. by Dario
Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi. Vol. 6571.
Lecture Notes in Computer Science. Springer, Heidelberg, Mar. 2011, pp. 17–
34.

[2] Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. “Computing on
Authenticated Data: New Privacy Definitions and Constructions”. In: 18th
International Conference on the Theory and Application of Cryptology and
Information Security. 2012, pp. 367–385.

[3] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. “Foundations of gar-
bled circuits”. In: ACM CCS 12: 19th Conference on Computer and Com-
munications Security. Ed. by Ting Yu, George Danezis, and Virgil D. Gligor.
ACM Press, Oct. 2012, pp. 784–796.

[4] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. “Signing a
Linear Subspace: Signature Schemes for Network Coding”. In: PKC 2009: 12th
International Conference on Theory and Practice of Public Key Cryptography.
Vol. 5443. Lecture Notes in Computer Science. Springer, Heidelberg, 2009,
pp. 68–87.

[5] Dan Boneh and David Mandell Freeman. “Homomorphic Signatures for Poly-
nomial Functions”. In: EUROCRYPT 2011. Ed. by Kenneth G. Paterson.
Vol. 6632. LNCS. Tallinn, Estonia: Springer, Heidelberg, Germany, 2011,
pp. 149–168.

[6] Dan Boneh and David Mandell Freeman. “Linearly Homomorphic Signa-
tures over Binary Fields and New Tools for Lattice-Based Signatures”. In:
PKC 2011. Ed. by Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio
Nicolosi. Vol. 6571. LNCS. Taormina, Italy: Springer, Heidelberg, Germany,
2011, pp. 1–16.

[7] Dario Catalano and Dario Fiore. “Practical Homomorphic Message Authenti-
cators for Arithmetic Circuits”. In: Journal of Cryptology 31.1 (2018), pp. 23–
59.

[8] Dario Catalano, Dario Fiore, Rosario Gennaro, and Konstantinos Vamvourel-
lis. “Algebraic (Trapdoor) One-Way Functions and Their Applications”. In:
TCC 2013: 10th Theory of Cryptography Conference. Vol. 7785. Springer, Hei-
delberg, 2013, pp. 680–699.

[9] Dario Catalano, Dario Fiore, Rosario Gennaro, and Konstantinos Vamvourel-
lis. “Algebraic (trapdoor) one-way functions: Constructions and applications”.
In: Theoretical Computer Science 592 (2015), pp. 143–165.

90

Matrioska: A Compiler for Multi-Key Homomorphic Signatures 91

[10] Dario Catalano, Dario Fiore, and Luca Nizzardo. “On the Security Notions
for Homomorphic Signatures”. In: (2018).

[11] Dario Catalano, Dario Fiore, and Luca Nizzardo. “Programmable Hash Func-
tions Go Private: Constructions and Applications to (Homomorphic) Signa-
tures with Shorter Public Keys”. In: CRYPTO. Vol. 9216. Springer, 2015,
pp. 254–274.

[12] Dario Catalano, Dario Fiore, and Bogdan Warinschi. “Adaptive Pseudo-free
Groups and Applications”. In: EUROCRYPT. Vol. 6632. Springer, 2011, pp. 207–
223.

[13] Dario Catalano, Dario Fiore, and Bogdan Warinschi. “Efficient Network Cod-
ing Signatures in the Standard Model”. In: PKC. Vol. 7293. Springer, 2012,
pp. 680–696.

[14] Dario Catalano, Dario Fiore, and Bogdan Warinschi. “Homomorphic signa-
tures with efficient verification for polynomial functions”. In: International
Cryptology Conference. Springer. 2014, pp. 371–389.

[15] Dario Catalano, Antonio Marcedone, and Orazio Puglisi. “Authenticating
Computation on Groups: New Homomorphic Primitives and Applications”.
In: 20th International Conference on the Theory and Application of Cryptol-
ogy and Information Security. 2014, pp. 193–212.

[16] Y. Desmedt. “Computer security by redefining what a computer is”. In:
NSPW. 1993.

[17] Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin. “Multi-
key homomorphic authenticators”. In: 22nd International Conference on the
Theory and Application of Cryptology and Information Security. Springer.
2016, pp. 499–530.

[18] Dario Fiore and Elena Pagnin. “Matrioska: A Compiler for Multi-Key Ho-
momorphic Signatures.” Cryptology ePrint Archive, Report 2018/616, http:
//eprint.iacr.org/2018/616. 2018.

[19] David Mandell Freeman. “Improved Security for Linearly Homomorphic Sig-
natures: A Generic Framework”. In: PKC 2012: 15th International Conference
on Theory and Practice of Public Key Cryptography. Vol. 7293. Springer, Hei-
delberg, 2012, pp. 697–714.

[20] Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. “Secure
Network Coding over the Integers”. In: PKC 2010: 13th International Confer-
ence on Theory and Practice of Public Key Cryptography. Vol. 6056. Springer,
Heidelberg, 2010, pp. 142–160.

[21] Rosario Gennaro and Daniel Wichs. “Fully Homomorphic Message Authenti-
cators”. In: ASIACRYPT. Vol. 8270. Springer, 2013, pp. 301–320.

[22] Craig Gentry and Daniel Wichs. “Separating succinct non-interactive argu-
ments from all falsifiable assumptions”. In: 43rd Annual ACM Symposium
on Theory of Computing. Ed. by Lance Fortnow and Salil P. Vadhan. ACM
Press, June 2011, pp. 99–108.

[23] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. “Leveled Fully
Homomorphic Signatures from Standard Lattices”. In: 47th ACM STOC. Ed.
by Rocco A. Servedio and Ronitt Rubinfeld. Portland, OR, USA: ACM Press,
2015, pp. 469–477.

http://eprint.iacr.org/2018/616
http://eprint.iacr.org/2018/616

92 Paper B

[24] Robert Johnson, David Molnar, Dawn Song, and David Wagner. “Homomor-
phic signature schemes”. In: Cryptographers’ Track at the RSA Conference.
Springer. 2002, pp. 244–262.

[25] Russell W. F. Lai, Raymond K. H. Tai, Harry W. H. Wong, and Sher-
man S. M. Chow. “A Zoo of Homomorphic Signatures: Multi-Key and Key-
Homomorphism”. Cryptology ePrint Archive, Report 2016/834, http : / /

eprint.iacr.org/2016/834. 2016.

[26] Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung. “Linearly Ho-
momorphic Structure-Preserving Signatures and Their Applications”. In: Ad-
vances in Cryptology – CRYPTO 2013, Part II. Vol. 8043. Springer, Heidel-
berg, 2013, pp. 289–307.

http://eprint.iacr.org/2016/834
http://eprint.iacr.org/2016/834

Matrioska: A Compiler for Multi-Key Homomorphic Signatures 93

Appendix

B.i Circuit evaluation and composition of circuits

In this work we define circuits as 6-tuples C = (n, u, q, L,R,G). We consider circuits
of fan-in 2 only as any constant fan-in K circuit can be made into this form by
paying a constant factor in the circuit’s depth and size. The largest component
in the string C is the descriptions of the function L (and R), that is a sequence
of q values in [w] ∪ {0}, therefore |L| = |R| = q lg(w + 1). Hence, for a fixed and
reasonable encoding it holds |C| ∈ O(w lg(w)).

To show that this formalism is meaningful we describe two fundamental opera-
tions on circuits: circuit evaluation and circuit composition.

Evaluating a Circuit. In order to evaluate a circuit on a given input, we need
a gate-functionality function that translates each bit in (the description of) G into
the output of a gate. Let G(g) denote the g-th bit in the description of G, we define
the gate-functionality function γ : [q]× {0, 1}2 → {0, 1} as:

γ(g, xl, xr) =

 G(g) if L(g) = 0,
xl if (L(g) ̸= 0 and G(g) = 0),
NAND(xl, xr) if (L(g) ̸= 0 and G(g) = 1)

Note that when L(g) = 0 the gate-functionality of g is the constant-gate that always
returns the value G(g) ∈ {0, 1}. Otherwise, g is a proper gate: if G(g) = 0 it returns
the left input to g, while if G(g) = 1 it returns the NAND between the two input
values.

We define the evaluation function evcirc on a circuit C = (n, u, q, L,R,G) and an
n-bit string (x1, x2, . . . , xn) as:

process evcirc(C, (x1, . . . , xn))
for g from 1 to q do:

l← L(g); r ← R(g);xg ← γ(g, xl, xr);
return (xn+q−u+1, . . . , xn+q).

We will often shorten evcirc(C, (x1, . . . , xn)) into C(x1, . . . , xn).

Sequential composition of circuits. Given two circuits, C1 and C2, we say
that C1 is composable with C2 if u1 = n2. We denote the circuit composition
as C3 = C1 ▷ C2. The resulting circuit C3 = (n3, u3, q3, L3,R3,G3) is defined as:
n3 = n1, u3 = u2, q3 = q1 + q2. Let wi be the number of wires in Ci, then

L3 =

 L1(i) for i ∈ [w1]
0 for i ∈ [w1 + w2] \ [w1] and L2(i− w1) = 0

L2(i− w1) + w1 − u1 for i ∈ [w1 + w2] \ [w1] and L2(i− w1) ̸= 0

The right-input function R3 is defined analogously. Finally, G3 = G1||G2.

B.ii Details of the three-client three-input case for
Matrioska

Consider the case in which we want to authenticate the result of a three-input
circuit C = (3, 1, qC , LC ,RC ,GC) evaluated on three messages, each signed by a

94 Paper B

distinct client. For notation sake, we assume the clients have identities id1 =
1, id2 = 2 and id3 = 3. Let mi ∈ {0, 1} denote the input of party i ∈ [3], and
σi ← HS.Sign(ski, ℓi,mi) be the corresponding signature. Note that each σ1, σ2 and
σ3 is generated using a different secret key of the HS scheme. Moreover, in this
example we are deliberately removing dataset identifiers for ease of exposition.

Step 0. Given the labeled program P = (C, (ℓ1, ℓ2, ℓ3)) and the three messages
m1,m2,m3, compute the value y = C(m1,m2,m3). Let E0 = (3, 1, q0, L0,R0,G0)
be a circuit satisfying E0(x1, x2, x3) = 1 iff C(x1, x2, x3) = y, e.g., E0 = C ▷ EQy.
Note that E0 can be constructed using C and y solely without, knowing the values
m1,m2,m3 (see the definition given in the Section 2.1). By construction it holds
that:

E0(m1,m2,m3) = 1. (20)

Step 1. We build a single-input circuit E1 that corresponds to E0 where the last
two inputs m2 and m3 are fixed and hardwired into it. In this way, we obtain a
single-input single-client circuit on which we can run HS.Eval using the public key
pk1. In more details, given E0 = (E0, (ℓ1, ℓ2, ℓ3)), the signature σ1 and the messages
m2,m3:

• Define a mask circuit M1 = (1, 3, 3, L′1,R
′
1,G
′
1) where L′1 = R′1 = (1, 0, 0) and

G′1 = (0,m2,m3). The purpose of M1 is to create ad-hoc inputs for E0: given
b ∈ {0, 1} as input, M1 outputs M1(b) = (b,m2,m3). 17

• Compose M1 with E0 to obtain E1 = M1 ▷ E0 = (1, 1, q1, L1,R1,G1) where:
q1 = q0 + 3 and G1 = (G′1||G0). Let L⋆0 and R⋆

0 be the string representations of the
functions:

L⋆0(i) =

{
L0(i) + 3 if L0(i) ̸= 0, (i ∈ [q0])

0 if L0(i) = 0, (i ∈ [q0])
,

R⋆
0(i) =

{
R0(i) + 3 if R0(i) ̸= 0, (i ∈ [q0])

0 if R0(i) = 0, (i ∈ [q0])

The left/right input functions of E1 are L1 = (L′1||L⋆0), R1 = (R′1||R⋆
0).

Circuit composition ensures that E1(x1) = E0(x1,m2,m3) and thus equation (20)
implies

E1(m1) = 1. (21)

Note that E1 can be constructed directly from E0 given m2 and m3, in particular
the value m1 is not needed:

E1 =
(
1, 1, n0 + 3, (100, L⋆0), (100,R⋆

0), (0,m2,m3,G0)
)
.

• Compute σ̂1 ← HS.Eval(E1, pk1, σ1). This is possible since E1 is a one-input
circuit. Moreover equation (21) and the correctness of the HS scheme imply that

HS.Verify((E1, ℓ1), pk1, σ̂1, 1) = 1. (22)

Step 2. The actual inductive procedure begins now. The challenge is that σ̂1 cannot

17 Recall that L′1(1) = 1 ̸= 0 and G′
1(1) = 0, thus the first gate outputs the input to the circuit.

Matrioska: A Compiler for Multi-Key Homomorphic Signatures 95

be directly checked by the verifier as it does not know the messages m2,m3 needed
to define the circuit E1. Our idea is to write equation (22) as HS.Verify(S1) = 1 for
a string S1 = ((E1, ℓ1), pk1, σ1) that contains two bits that are the messages m2,m3,
and then we want to use HS.Eval to create a signature proving the correctness of
the computation in (22). As we shall see, this is possible by repeating our previous
technique, namely seeing HS.Verify(S1) as a single-input function of m2 in which m3

is hardwired. Repeating this approach one more time, we will later be able to let
m3 also “disappear” and use HS.Eval on a circuit that can be reconstructed by the
verifier without knowing m1,m2,m3.

Coming back to this second step, in MKHS.Eval we proceed as follows. We define a
mask circuit that outputs S1 where the bit that embeds the value m2 is substituted
with the bit input to mask circuit. Next, we define E2 as the composition of
this mask and the circuit HSV2 that is the verification circuit of the signature
scheme when checking the authenticity of a signature against the value 1 on input
of size(E1).18

Facts: The position of the gate that embeds the value m2 in E1 is by construction
g2 = 3 lg(N1) + 2q1 lg(w1) + 2, where N1 is a given upper bound on the size of n1
and q1, indeed:

E1 =
(

1, 1, q1︸ ︷︷ ︸
3 lg(N1)

, L1,R1︸ ︷︷ ︸
2q1 lg(w1)

,G1 = (0,m2︸ ︷︷ ︸
2

,m3,G0)
)
.

Since S1 = ((E1, ℓ1), pk1, σ1) is a valid input to HSV2, we have that |S1| = nHSV2.

Given S1 = ((E1, ℓ1), pk1, σ̂1) and the signature σ2:

• Define a mask circuit M2 = (1, nHSV2, nHSV2, L
′
2,R
′
2,G
′
2) where

L′2(g) = R′2(g) =

{
0 if g ∈ [nHSV2] \ {g2}
1 if g = g2

and

G′2(g) =

{
S1[g] if g ∈ [nHSV2] \ {g2}
0 if g = g2

The purpose of M2 is to create ad-hoc inputs for the circuit HS.Verify. The output
of M2 is S1 where we overwrite the second gate of E1 to output the value input to
the circuit M2 – instead of the constant output m2. In particular,

M2(m2) =
(
(

E1︷ ︸︸ ︷
1, 1, q1, L1,R1, (0,m2,m3,G0)︸ ︷︷ ︸

G1

, ℓ1), pk1, σ̂1)

where all values should be seen as bit-strings.

• Compose M2 with HSV2 to obtain E2 = M2 ▷ HSV2 = (1, 1, q2, L2,R2,G2) where:
q2 = nHSV2 + qHSV2 ; and G2 = (G′2||GHSV2). Let L⋆HSV2

and R⋆
HSV2

be the string
representations of the functions:

L⋆HSV2
(i) =

{
LHSV2(i) + nHSV2 if LHSV2(i) ̸= 0, (i ∈ [qHSV2])

0 if LHSV2(i) = 0, (i ∈ [qHSV2])
,

R⋆
HSV2

(i) =

{
RHSV2(i) + nHSV2 if RHSV2(i) ̸= 0, (i ∈ [qHSV2])

0 if RHSV2(i) = 0, (i ∈ [qHSV2])

18 With abuse of notation HSV2 = HS.Verify((·, · · ·), ·, · · · , 1). The index 2 is used to keep track
of the size of the input (and corresponding output) of the verification circuit.

96 Paper B

The left/right input functions of E2 are defined as L2 = (L′2||L⋆HSV2
), R2 = (R′2||R⋆

HSV2
).

Circuit composition ensures that E2(m2) = HS.Verify((E1, ℓ1), pk1, σ̂1, 1), there-
fore by (22) it holds that:

E2(m2) = 1 (23)

Note that E2 can be constructed directly from E0 given solely m3, and additional
public data (i.e., pk1, σ̂1, HS.Verify, P, y), indeed:

G2 = (

g2−th index︷ ︸︸ ︷
1, 1, q0 + 3, (1, 0, 0, L⋆0)︸ ︷︷ ︸

L1

, (1, 0, 0,R⋆
0)︸ ︷︷ ︸

R1

, (0,0,m3,G0︸ ︷︷ ︸
G′
1

, ℓ1, pk1, σ̂1,GHSV2)

where all values should be seen as bit-strings.

• Compute σ̂2 ← HS.Eval(E2, pk2, σ2). This is possible since E2 is a one-input
circuit, and σ2 is a signature on m2. Indeed, equation (23) and the correctness of
the HS scheme imply that

HS.Verify((E2, ℓ2), pk2, σ̂2, 1) = 1. (24)

Step 3. We proceed inductively, along the line of Step 2.

Facts: The position of the gate that embeds the value m3 in E2 is by construction
g3 = 3 lg(N2) + 2q2 lg(w2) + g2 + 1, where N2 is a given upper bound on the size of
n2 and q2, indeed:

E2 =
(

1, 1, q2︸ ︷︷ ︸
3 lg(N2)

, L2,R2︸ ︷︷ ︸
2q2 lg(w2)

,G2 = (1, 1, q1, L1,R1, (0,0︸ ︷︷ ︸
g2

,m3,G0, ℓ1...GHSV2)
)
.

Given S2 = ((E2, ℓ2), pk2, σ̂2), and the signature σ2:

• Define a mask circuit M3 = (1, nHSV3, nHSV3, L
′
3,R
′
3,G
′
3) where

L′3(g) = R′3(g) =

{
0 if g ∈ [nHSV3] \ {g3}
1 if g = g3

and

G′3(g) =

{
S2[g] if g ∈ [nHSV3] \ {g3}
0 if g = g3

The output of M3 is S2 where we overwrite the gate that embeds the constant
value m3 with a gate that outputs the value input to the circuit M3. In particular,
M3(m3) = S2.

• Compose M3 with HSV3 to obtain E3 = M3 ▷HSV3 = (1, 1, q3, L3,R3,G3). Circuit
composition ensures that E3(m3) = HS.Verify((E2, ℓ2), pk2, σ̂2, 1), therefore by (24)
it holds that:

E3(m3) = 1. (25)

Matrioska: A Compiler for Multi-Key Homomorphic Signatures 97

Note that E3 can be constructed directly from E0 = (E0, ℓ1, ℓ2, ℓ3) given solely the
public data pki, σ̂i for i ∈ [2]: indeed:

E3 =
(

1, 1, nHSV3 + qHSV3 , L3 = (

nHSV3︷ ︸︸ ︷
0..0..1︸ ︷︷ ︸

g3

0..0,

qHSV3︷ ︸︸ ︷
L⋆HSV3

),R3 = (

nHSV3︷ ︸︸ ︷
0..0..1︸ ︷︷ ︸

g3

0..0,

qHSV3︷ ︸︸ ︷
R⋆
HSV3

),

(

g2︷︸︸︷
0..01 0..0, L⋆HSV2

)︸ ︷︷ ︸
G3 =

(
(1, 1, nHSV2 + qHSV2 , L2, R2, string,GHSV2 , ℓ2), pk2, σ̂2,GHSV3)

))
︷ ︸︸ ︷
(1, 1, q0 + 3, (1, 0, 0, L⋆0)︸ ︷︷ ︸

L1

, (1, 0, 0,R⋆
0)︸ ︷︷ ︸

R1

, (0, 0, 0,G0, ℓ1, pk1, σ̂1))

where all values should be seen as bit-strings.

• Compute σ̂3 ← HS.Eval(E3, pk3, σ3). This is possible since E3 is a one-input
circuit. From Equation (25) and the correctness of the HS scheme we get:

HS.Verify((E3, ℓ3), pk3, σ̂3, 1) = 1. (26)

The multi-key homomorphic evaluation algorithm outputs σ̂ = (σ̂1, σ̂2, σ̂3).

In order to verify σ̂ the verifier simply needs the labeled program P = (C, (ℓ1, ℓ2,
ℓ3)), the value y corresponding to the claimed output of P, the three public keys
pki for i ∈ [3] and the multi-key homomorphic signature σ̂ = (σ̂1, σ̂2, σ̂3). The
verification process begins by constructing the circuit E0. As noted before, this can
be done given solely C and y. Next, the verifier computes directly the circuit E3.
This can be done using the available values ℓi, pki, σ̂i for i ∈ [2] and the (public)
circuit descriptions of HSV2 and HSV3. Let E3 = (E3, ℓ3), the verification concludes
by running:

HS.Verify(E3, pk3, σ̂3, 1)

It is easy to see that by correctness, this returns 1, as stated in Equation (26).

B.ii.1 Computing the index where the messages of signer i
are embedded

Here we explain the reasoning behind the definition of the index

gi = 3 lg(Ni−1) + 2qi−1 lg(wi−1) + gi−1 + ni−1

in our compiler (step i in Definition 3.3). Recall that in this step we hold the
circuit Ei−1 and look for the positions in its gate description where the ni values
input by identity idi are located. This will be an interval Ii = [gi, gi + ni], for
some index gi. Essentially, gi should jump over the description of the first part
of the circuit Ei−1 = (ni−1, 1, qi−1, Li−1,Ri−1,Gi−1) to select the bits in Gi−1 that
contain the values m(ni−1+1), . . . ,mni . The description of the values ni−1, 1, qi−1
covers the first 3 lg(Ni−1) bits. Then, the left/right input functions Li−1,Ri−1 are
two strings of qi−1 wires covering additional 2qi−1 lg(wi−1) bits. At this point

98 Paper B

we enter the gate description of Ei−1 that brings with an accumulative addend
of gi−1 + ni−1 + 1 bits to reach the position where Gi−1 contains the first mes-
sage input by client idi. By construction Gi−1 = (G′i−1||GHSVi−1), for consis-
tency let HSV1 = G0. For i ≥ 2 the gates in G′i−1 embed (a minor modifica-
tion of) the string Si−2 = ((Ei−2, ℓti−1 , . . . , ℓti−1), pkidi−2

, σ⃗i−2), for consistency let
S0 = (0..0mn1+1..mn) where the first n1 entries are 0. When i = 2, G′1 = S0,
therefore the bit that contains the first input by client id2 is the t2 = (n1 + 1)-
th bit in G1, which is consistent with the formula g1 + n1 since we set g1 = 1.
Now for i = 3, G′2 equals S1 = ((E1, ℓn1+1, . . . , ℓt2−1), pkid1 , σ⃗1), except for the
(n3) bits where G′1 has the gates initiated to the values input by id3. This in-
terval begins at the 3 lg(N1) + 2q1 lg(w1) + n1 + 1 = g2 bit of S1. Therefore
g3 = 3 lg(N2) + 2q2 lg(w2) + g2 + n2. This explains the recursive definition of
gi. in our representation of circuits the largest factor in the size of a circuit is
determined by the description of the functions L and R. In particular, for a circuit
C with q >> n the asymptotic bound is size(C) ∼ q lg(q), where we approximate
the number of wires w with the number of gates q.19

Let q0 denote the number of gates in E0, then: size(E0) ∼ q0 lg(q0). Let n be
the total number of input to the computation (in case n=t each input belongs to a
different user) then size(E1) ∼ (q0 + n) lg(q0 + n), since n < q0 in this analysis we
consider

size(E1) ∼ 2q0 lg(2q0). (27)

The actual growth begins with i = 2. From this point on, in fact, the verification
circuit HSVi is contained in Ei. Without loss of generality, we assume that on input
a circuit of size Z the verification circuit size(HSV) has size size(HSV) ∼ size(Z)cs ,
for a constant value cs ≥ 1 (dependent on the HS scheme). In our compiler this
translates to qHSVi lg(qHSVi) ∼ (qi−1 lg(qi−1))cs , thus:

size(E2) = size(M2 ▷ HSV2) = |(1, 1, q2, L2,R2,G2)|
∼ q2 lg(q2) (28)

∼ qHSV2 lg(qHSV2) (29)

∼ (2q0 lg(2q0))cs . (30)

Where (28) is the usual approximation of the circuit’s size with the number of gates,
(29) comes from the fact that20 q2 = nHSV2 + qHSV2 ∼ qHSV2 and (30) is implied
by our assumption size(HSV2) ∼ size(E1)cs and (27). Following this reasoning

inductively we get: size(Et) ∼ (q0 lg(q0))
cs

t−1

. In other words, let s′ denote the

size of the circuit C given in input to MKHS.Eval, then size(Et) = s′cs
t−1

< s.
Regarding the depth growth we notice that if the function dHSV(z, λ) is polynomial
there exists a constant cd ≥ 1 such that dHSV(z, λ) = zcd . Then depth(Et) =

size(Et−1)cd = scd·cs
1−t

. However, if dHSV(z, λ) is logarithmic then depth(Et) =
log(size(Et−1)) = (cs

1−t)s.

Proof. We define a reduction B between an MK-HomUF-CMA forger A and an
HomUF-CMA challenger C. The reduction begins by initializing the identity counter
q to 1 and by choosing a (random) index j∗ ← [Qid] as a guess for an identity on
which A will make a forgery.

19 Approximating w = q+ n with q is a quite tight in our case, since all Ei are circuits with one
single input.

20to upperbound we could put a factor 2 in this estimate: q2 < 2qHSV2
but since this is an

asymptotic estimate and qHSV2
> 2 it would not change much.

Matrioska: A Compiler for Multi-Key Homomorphic Signatures 99

Setup. In the setup phase B starts the HomUF-CMA game for the scheme HS. The
reduction uses the public parameters of the HS scheme given by its HomUF-CMA
challenger C to generate pp for the MKHS scheme (e.g., adding the ID set, redefining
the labels). B sends pp to the adversary A, and stores the public key pk provided
by C.

Sign queries. In the sign queries, the reduction B answers to queries (∆, ℓ =
(id, τ),m) as follows:

1. If this is the first query for the dataset ∆, the reduction initializes an empty
list L∆ = ∅ and proceeds to step 2.

2. If this is the first query with identity id and q ̸= j∗, generate keys for the
identity id running (skq, pkq) ← MKHS.KeyGen(pp). If this is the first query
with identity id and q = j∗, set pkj∗ = pk (A is generating the user that B has
guessed as to be the target for the forgery). Update the identity-index map
ω : ID → [Qid] with ω(id) = q and increase the identity counter q ← q + 1.
Proceed to step 3 and 4.

3. If the query has not been asked before, (i.e., (ℓ,m) /∈ L∆) and ω(id) = i ̸= j∗,
compute σ ← MKHS.Sign(ski, ℓ,m) (notice that in this case B knows the secret
key). If (ℓ,m) /∈ L∆ and ω(id) = j∗, B queries its challenger C with (∆, τ,m)
to obtain a signature σ. Finally, in both cases, the reduction updates the list
of queried messages for the database ∆: L∆ ← L∆ ∪ {(ℓ,m)} and returns
(σ, pki) to A (i ∈ [q]).

4. If the query has the same label of a previous query on the same dataset, i.e.,
there exists a message m′ ∈M such that (ℓ,m′) ∈ L∆, ignore the query.

It is easy to see that up to this point B perfectly simulates the MK-HomUF-CMA
game to A.

Forgery. Let (P∗,∆∗, {pk∗id}id∈P∗ , y∗, σ∗) denote the output of A at the end of
the MK-HomUF-CMA security experiment (simulated by B). Let id∗ denote the
identity corresponding to the index j∗ chosen by B, i.e., ω(id∗) = j∗. If id∗ /∈ P∗
the reduction aborts. In this case indeed, B has for sure failed to guess one of the
identities involved in the forgery made by A. Otherwise, in what follows we show
that the forgery (P∗,∆∗, {pk∗id}id∈P∗ , y∗, σ∗) can be converted (except with some
non-negligible error probability related to the wrong guess of j∗) into a single-key
forgery for the HomUF-CMA experiment. In what follows we do an analysis case by
case.

Single user. If P∗ is a computation that involves a single user only, the reduction
is perfect, i.e., B can turn every forgery (of any type) output by A against MKHS
into a forgery against HS by removing the identity id∗ from the labels. Indeed,
notice that if B reached this point, it did not abort, and thus id∗ ∈ P∗.

Multi-user programs. If P∗ involves t > 1 users, the reduction proceeds as
follows.

100 Paper B

Type-1 Forgery. Namely, it holds that both MKHS.Verify(P∗,∆∗, {pk∗id}id∈P∗ ,
y∗, σ∗) = 1 and L∆∗ = ∅. We show that this corresponds to a type-1 forgery
against HS for the t-th key in P∗. By construction (see Equation (19)), MKHS.Verify
outputs 1 if and only if HS.Verify((Et, (τ

∗
tt , . . . , τ

∗
n)),∆∗, pk∗idt , 1, σ̂

∗
t) = 1. Moreover,

since L∆∗ = ∅, the reduction never queried its challenger C on the dataset ∆∗

either. The last two conditions ensure that (Et, (τ
∗
tt , . . . , τ

∗
n)),∆∗, pk∗idt , 1, σ̂

∗
t) is a

type-1 forgery against HS for the key pair (pkidt , skidt).
Therefore, in this case the reduction B returns (Et, (τ

∗
tt , . . . , τ

∗
n)),∆∗, pk∗idt , 1, σ̂

∗
t)

to its challenger, if j∗ = ω(idt) (i.e., pkidt = pkj∗), and aborts otherwise.

Remark 3.5. The adversary A can possibly produce type-1 forgeries also for identi-
ties idi with i < t. In this case, however, L∗∆ is empty and therefore it is impossible
to run the (single-key) verification algorithm on the circuits Ei for i < t, as this
would require the knowledge of the messages mti+ni+1, . . . ,mn input by the last t− i
users.

Type-2 Forgery. Namely, the adversary returns (P∗,∆∗, {pk∗id}id∈P∗ , y∗, σ∗) such
that MKHS.Verify(P∗,∆∗, {pk∗id}id∈P∗ , y∗, σ∗)=1 and y∗ ̸= C∗(m1, . . . ,mn), where
m1, . . . ,mn are the messages queries by A for the respective labels in P∗. In the
following claim, we formally show that from any type-2 forgery against the MKHS
scheme, it is possible to extract a type-2 forgery against the HS scheme (correspond-
ing to at least one of the users involved in P∗).

Claim 1. Let t ≥ 2, and let (P∗,∆∗, {pk∗id}id∈P∗ , y∗, σ∗) be such that MKHS.Verify(P∗,
∆∗, {pk∗id}id∈P∗ , y∗, σ∗)=1 and y∗ ̸= C∗(m1, . . . ,mn), with σ∗ = (σ̂∗1 , . . . , σ̂

∗
t). Then,

there exists (at least) one index i ∈ [t] such that σ̂∗i is a type-2 forgery against the
HS scheme (for an opportune function).

Proof. The claim follows from this inductive reasoning. Consider ⃗̂σ∗ = (σ̂∗1 , . . . , σ̂
∗
t).

By definition E0(m1, . . . ,mn) = 1 if and only if C∗(m1, . . . ,mn) = y (see Equation
(10)). Since (P∗,∆∗, {pk∗id}id∈P∗ , y∗, σ∗) is a type-2 forgery y∗ ̸= y. Therefore
E0(m1, . . . ,mn) = 0. The correctness of the Matrioska compiler therefore implies
that E1(m1, . . . ,mn1) = 0 as well, where E1 is the circuit defined in MKHS.Eval
with the messages of identities idj , with j > 1, hardwired.

Given the signature σ̂∗1 there are two possible cases: either HS.Verify(E1, pkid1 , σ̂
∗
1 ,

1) = 1 or not. In the first case, (E1, pkid1 , σ̂
∗
1 , 1) is a type-2 forgery against the HS

scheme for the key-pair (pk1, sk1), and thus we have found our forgery and the claim
is proven with index i = 1. Otherwise, we proceed inductively to the next identity
to show that the claim can be proven for i > 1.

By induction, let i > 1 and assume Ei−1(mti−1 , . . . ,mti−1+ni−1) = 0. By con-
struction of Matrioska it holds that Ei(mti , . . . ,mti+ni) = 0. Similarly to the
case i = 1, note that for the signature σ̂∗i there are two possible cases: either
HS.Verify(Ei, pkidi , σ̂

∗
i , 1) = 1 or not. In the first case (Ei, pkidi , σ̂

∗
i , 1) is a type-2

forgery against the HS scheme for the key-pair (pki, ski), and thus we have found
our forgery and the claim is proven with this index i. Otherwise, we proceed with
index i + 1.

Finally, to show that such index i must exist, we notice that we cannot reach i =
t+1 without finding a forgery. In fact, for i = t+1 we would have Et(mtt , . . . ,mn) =
0. However, by definition of type-2 forgery in MK-HomUF-CMA we have that
MKHS(P∗,∆∗, {pk∗id}id∈P∗ , y∗, σ∗) = 1, that is HS.Verify(Et, pkidt , 1, σ̂

∗
t) = 1 (see

Equation (19)). This immediately shows that (Et, pkidt , 1, σ̂
∗
t) is a type-2 forgery

against HS for the key pkidt . This completes the proof of the claim.

Matrioska: A Compiler for Multi-Key Homomorphic Signatures 101

Given the type-2 forgery produced by A, B builds the circuit Ej∗ using P∗ =
(C∗, (ℓ1, . . . , ℓn)), the messages stored in L∆∗ and the signatures σ̂∗i for i < j∗. Let
i be the index whose existence is granted by the previous claim. If i = j∗, B outputs
to its challenger C the tuple (Ẽj∗ = (Ej∗ , (τtj∗ , . . . , τtj∗+nj∗)), 1, σ̂∗j∗) as its type-2
forgery against HS for the key pkj∗ . Otherwise, the reduction aborts as the guess
of j∗ was incorrect and σ̂∗j∗ is not guaranteed to be a forgery.

Type-3 Forgery. Namely, the adversary returns (P∗,∆∗, {pk∗id}id∈P∗ , y∗, σ∗) such
that MKHS.Verify(P∗,∆∗, {pk∗id}id∈P∗ , y∗, σ∗)=1 and there exists one label, say ℓi⋆ ∈
P∗, for which no sign query was performed, i.e., (ℓi⋆ = (idi⋆ , τi⋆), ·) /∈ L∆∗ . In the
following claim we show that any such type-3 forgery against MKHS reduces to
either a type-3 or a type-2 forgery against HS.

Claim 2. Let t ≥ 2. If, at the end of the MK-HomUF-CMA security experiment,
A outputs a type-3 forgery for the label ℓi⋆ = (idi⋆ , τi⋆) ∈ P∗ then either (1) the
forgery reduces to a type-3 forgery against HS for the identity idi⋆ , or (2) there is
(at least one) type-2 forgery against HS for an identity idi ∈ P∗ with i > i⋆.

Proof. Let (P∗,∆∗, {pk∗id}id∈P∗ , y∗, σ∗) be the type-3 forgery output by the ad-
versary at the end of the MK-HomUF-CMA experiment. Since no sign query for
the label ℓi⋆ was performed during the security experiment, it is impossible to
reconstruct any circuit Ei for i < i⋆. The motivation is that by construction
the description of Ei includes all the messages mj with j ≥ ti, including mi⋆

(see Equation (14)). Therefore the first circuit that is publicly reconstructible
is Ei⋆ . Let Ei⋆ = (Ei⋆ , (τti⋆ , . . . , τti⋆+ni⋆)), there are two possible cases: either
HS.Verify(Ei⋆ ,∆∗, pki⋆ , 1, σ̂∗i⋆) = 1 or it equals 0. It is immediate to see that in case
the verification procedure outputs 1 (Ei⋆ ,∆∗, pki⋆ , 1, σ̂∗i⋆) satisfies all the require-
ments for a type-3 forgery on the key pki⋆ against the scheme HS. Otherwise, the
verification of the i⋆-th circuit fails, i.e., HS.Verify(Ei⋆ ,∆∗, pki⋆ , 1, σ̂∗i⋆) = 0, and the
correctness of the Matrioska compiler implies that Ej(mtj , . . . ,mtj+nj) = 0 for all
j > i⋆. However, by definition of type-3 forgery the final (multi-key) verification out-
puts 1. We are now in a situation similar to the one of type=2 forgeries. In particular
for MKHS.Verify to output 1, it must hold that HS.Verify(Et,∆∗, pkidt , σ̂

∗
t , 1) = 1 (see

Equation (19)). Therefore there must be a type-2 forgery against the HS scheme
for one identity idj with i⋆ < j ≤ t. The latter follows by the same argument used
in the previous Claim (details omitted). This concludes the proof of the claim.

In light of the claim above, from a type-3 forgery (P∗,∆∗, {pk∗id}id∈P∗ , y∗, σ∗) the
reduction B can derive either a type-3 forgery against its HomUF-CMA challenger
(if idi⋆ = idj∗ and HS.Verify(Ej∗ ,∆∗, pkj∗ , 1, σ̂∗j∗) = 1) or a type-2 forgery (if j∗ > i⋆

and HS.Verify(Ej∗ ,∆∗, pkj∗ , 1, σ̂∗j∗) = 1 while Ej∗(mtj∗ , . . . ,mtj∗+nj∗) = 0, note that
since j∗ > i⋆ we know all the messages needed to define Ej∗).

Putting together all the cases analyzed above, one can see that, when B does not
abort, it provides a perfect simulation to A and always finds a forgery against HS.
Hence, AdvHS

B = AdvMKHS
A Pr[B does not abort]. Since the simulation provided by

B to A is perfect, the index j∗ is completely hidden to A. Also, B does not abort
when j∗ equals an appropriate index (in each forgery case), which happens with
probability at least 1/Qid.

Paper C

Anonymous Single-Round Server-Aided
Verification

Elena Pagnin, Aikaterini Mitrokotsa, and Keisuke Tanaka

Abstract. Server-Aided Verification (SAV) is a method that can be employed
to speed up the process of verifying signatures by letting the verifier outsource part
of its computation load to a third party. Achieving fast and reliable verification
under the presence of an untrusted server is an attractive goal in cloud computing
and internet of things scenarios.

In this paper, we describe a simple framework for SAV where the interaction be-
tween a verifier and an untrusted server happens via a single-round protocol. We
propose a security model for SAV that refines existing ones and includes the new
notions of SAV-anonymity and extended unforgeability. In addition, we apply our
definitional framework to provide the first generic transformation from any signature
scheme to a single-round SAV scheme that incorporates verifiable computation. Our
compiler identifies two independent ways to achieve SAV-anonymity: computation-
ally, through the privacy of the verifiable computation scheme, or unconditionally,
through the adaptibility of the signature scheme.

Finally, we define three novel instantiations of SAV schemes obtained through
our compiler. Compared to previous works, our proposals are the only ones which
simultaneously achieve existential unforgeability and soundness against collusion.

Keywords. Server-Aided Verification, Digital Signatures, Anonymity, Verifiable
Computation.

Proceedings of the 5th International Conference on Cryptology and Information
Security (LATINCRYPT), 2017.

Anonymous Single-Round Server-Aided
Verification

1 Introduction

The design of new efficient and secure signature schemes is often a challenging task,
especially when the target devices on which the scheme should run have limited
resources, as it happens in the Internet of Things (IoT). Nowadays many IoT devices
can perform quite expensive computations. For instance, smartphones have gained
significant computational power. Carrying out several expensive tasks, however,
leads to undesirable consequences as, e.g., draining the battery of the device [11].
We consider signed auctions as a motivating example in an IoT setting. In signed
auctions, bidders sign their offers to guarantee that the amount is correct and that
the offer belongs to them. The auctioneer considers a bid valid only if its signature
is verified. Imagine that the auctioneer checks the validity of the bids using a
resource-limited device. In this case, running the signature verification algorithm
several times drastically affects the device’s performance. In this setting one may
wonder:

Can an auctioneer efficiently, securely and privately check the authen-
ticity of signed bids using a resource-limited device?

This paper addresses the above question in case the auctioneer has access to a
computationally powerful, yet untrusted, server. This is indeed the setting of server-
aided verification.

1.1 Previous Work

The concept of Server-Aided Verification (SAV) was introduced in the nineties in two
independent works [1, 18], and refined for the case of signature and authentication
schemes by Girault and Lefranc [15]. The aim of SAV is to guarantee security and
reliability of the outcome of a verification procedure when part of the computation
is offloaded from a trusted device, called the verifier, to an untrusted one, the server.

All existing security models for SAV consider existential forgery attacks, where
the adversary, i.e., the malicious server, tries to convince the verifier that an invalid
signature is valid [8, 15, 21, 23, 25, 26]. Despite the fundamental theoretical contri-
butions, [15] did not consider attack scenarios in which the malicious signer colludes
with the server, e.g., by getting control over the server, in order to tamper with
the outcome of the server-aided verification of a signature. The so-called collusion
attack was defined by Wu et al. in [25, 26] together with two SAV schemes claimed
to be collusion-resistant. Subsequent works revisited the notion of signer-server
collusion [8, 22, 23]. The most complete and rigorous definition of collusion attack
is due to Chow et al. [8], who also showed that the protocols in [25] are no longer
collusion resistant under the new definition [7, 8]. Recently, Cao et al. [7] rose new

106 Paper C

concerns about the artificiality and the expensive communication costs of the SAV
in [26].

Chow et al. [8] showed that the enabler of many attacks against SAV is the absence
of an integrity check on the results returned by the server. Integrity however, is not
the only concern when outsourcing computations. In this paper, we address for the
first time privacy concerns and we introduce the notion of anonymity in the context
of SAV of signatures.

1.2 Contributions

The main motivation of this work is the need for formal and realistic definitions in
the area of server-aided verification. To this purpose we:

- Introduce a formalism which allows for an intuitive description of single-round
SAV signature schemes (Section 3);

- Define a security model that includes three new security notions: SAV-anonymity
(Section 4.3), extended existential unforgeability and extended strong unforgeability
(Section 4.1);

- Describe the first compiler to a SAV signature scheme from any signature and a
verifiable computation scheme (Section 5). Besides its simplicity, our generic com-
position identifies sufficient requirements on the underlying primitives to achieve se-
curity. In particular, we prove that under mild assumptions our compiler provides:
extended (existential/strong) unforgeability (Theorem 4.1); soundness against collu-
sion (Theorem 4.2); and SAV-anonymity when either the employed verifiable com-
putation is private (Theorem 4.3) or the signature scheme is adaptive (Theorem
4.4).

- Apply our generic composition to obtain new SAV schemes for the BLS signature
[3] (Section 6.1), Waters’ signature Wat [24] (Section 6.2) and the first SAV for the
CL signature by Camenisch and Lysyanskaya [5] (Section 6.3). While preserving
efficiency, our proposals achieve better security than previous works (Table C.1).

2 Preliminaries

Throughout the paper, x← A(y) denotes the output x of an algorithm A run with
input y. If X is a finite set, by x ←$ X we mean x is sampled from the uniform
distribution over the set X. The expression cost(A) refers to the computational
cost of running algorithm A. For any positive integer n, [n] = {1, . . . , n} and Gn is
a group of order n. A function f : N→ R is said to be negligible if f(n) < 1/poly(n)
for any polynomial poly(·) and any n > n0, for suitable n0 ∈ N. Finally, ε denotes
a negligible function.

2.1 Signature schemes

Signature schemes [4, 5, 13] enable one to sign a message in such a way that anyone
can verify the signature and be convinced that the message was created by the
signer. Formally,

Definition 4.1 (Signature scheme). A signature scheme Σ = (SetUp,KeyGen, Sign,
Verify) consists of four, possibly randomized, polynomial time algorithms where:

SetUp(1λ): on input the security parameter λ ∈ N, the setup algorithm returns
the global parameters gp of the scheme, which include a description of the

Anonymous Single-Round Server-Aided Verification 107

message and the signature spaces M, S. The gp are input to all the following
algorithms, even when not specified.

KeyGen(): the key generation outputs public-secret key pairs (pk, sk).

Sign(sk,m): on input a secret key sk and a message m ∈ M, the sign algorithm
outputs a signature σ ∈ S for m.

Verify(pk,m, σ): The verification algorithm is a deterministic algorithm that given
a public key pk, a message m ∈ M and a signature σ ∈ S, outputs b = 1 for
acceptance, or b = 0 for rejection.

Definition 4.2 ((In)Valid signatures). Let Σ be a signature scheme. We say that a
signature σ ∈ S is valid for a message m ∈M under the key pk if Verify(pk,m, σ) =
1. Otherwise, we say that σ is invalid.

In this paper, we refer to (in)valid signatures also as (in)valid message-signature
pairs.

2.2 Verifiable computation

Verifiable computation schemes enable a client to delegate computations to one or
more untrusted servers, in such a way that one can efficiently verify the correctness
of the result returned by the server [2, 12]. Gennaro et al. [14] formalised private
verification of outsourced computations as:

Definition 4.3 (Verifiable Computation scheme [14]). A verifiable computation
scheme Γ = (KeyGen,ProbGen,Comp,Verify) consists of four possibly randomized
algorithms where:

KeyGen(λ, f): given the security parameter λ and a function f , the key generation
algorithm produces a public key pk, that encodes the target function f , and a
secret key sk.

ProbGen(sk, x): given the secret key sk and the input data x, the problem generation
algorithm outputs a public value ωx and a private value τx.

Comp(pk, ωx): given the public key pk and the encoded input ωx, this algorithm
computes ωy, which is an encoding of y = f(x).

Verify(sk, τx, ωy): given sk, τx and the encoded result ωy, the verification algorithm
returns y if ωy is a valid encoding of f(x), and ⊥ otherwise.

A verifiable scheme is efficient if verifying the outsourced computation requires
less computational effort than computing the function f on the data x, i.e.,

cost(ProbGen) + cost(Verify) < cost(f(x)).

In the remainder of the paper, we often drop the indexes and write τx = τ ,
ωx = ω, ωy = ρ and denote by y the output of Verify(sk, τ, ρ).

108 Paper C

3 Single-round server-aided verification

In the context of signatures, server-aided verification is a method to improve the
efficiency of a resource-limited verifier by outsourcing part of the computation load
required in the signature verification to a computationally powerful server. Intu-
itively SAV equips a signature scheme with:

– An additional SAV.VSetup algorithm that sets up the server-aided verification
and outputs a public component pb (given to the server) and a private one pr
(held by the verifier only). 21

– An interactive protocol AidedVerify executed between the verifier and the
server that outputs: 0 if the input signature is invalid; 1 if the input sig-
nature is valid; and ⊥ otherwise, e.g., when the server returns values that do
not match the expected output of the outsourced computation.

In this work, we want to reduce the communication cost of AidedVerify and restrict
this to a single-round (two-message) interactive protocol. This choice enables us to
describe the AidedVerify protocol as a sequence of three algorithms: SAV.ProbGen
(run by the verifier), SAV.Comp (run by the server) and SAV.Verify (run by the
verifier). This limitation is less restrictive than it may appear: all the instantiations
of SAV signature schemes in [15, 17, 21, 23, 25, 26, 28] are actually single-round
SAV.

We define single-round server-aided verification signature schemes as:

Definition 4.4 (SAV). A single-round server-aided verification signature scheme
is defined by the following possible randomized algorithms:

SAV.Init(1λ): on input the security parameter λ ∈ N, the initialisation algorithm
returns the global parameters gp of the scheme, which are input to all the
following algorithms, even when not specified.

SAV.KeyGen(): the key generation algorithm outputs a secret key sk (used to sign
messages) and the corresponding public key pk.

SAV.VSetup(): the server-aided verification setup algorithm outputs a public verifi-
cation-key pb and a private one pr.

SAV.Sign(sk,m): given a secret key sk and a message m the sign algorithm produces
a signature σ.

SAV.ProbGen(pr, pk,m, σ) : on input the private verification key pr, the public key
pk, a message m and a signature σ, this algorithm outputs a public-private
data pair (ω, τ) for the server-aided verification.

SAV.Comp(pb, ω): on input the public verification key pb and ω the outsourced-
computation algorithm returns ρ.

SAV.Verify(pr, pk,m, σ, ρ, τ): the verification algorithm takes as input the private
verification-key pr, the public key pk, m, σ, ρ and τ . The output is ∆ ∈
{0, 1,⊥}.

Intuitively, the output ∆ of SAV.Verify has the following meanings:

21 In [8, 25] the output of SAV.VSetup is called Vstring.

Anonymous Single-Round Server-Aided Verification 109

– ∆ = 1: the pair (m, σ) is considered valid and we say that (m, σ) verifies in
the server-aided sense;

– ∆ = 0: the pair (m, σ) is considered invalid and we say that (m, σ) does not
verify in the server-aided sense;

– ∆ = ⊥: the server-aided verification has failed, ρ is rejected (not σ), and
nothing is inferred about the validity of (m, σ).

Unless stated otherwise, from now on SAV refers to a single-round server-aided
signature verification scheme as in Definition 4.4. Definition 4.4 implicitly allows
to delegate the computation of several inputs, as long as all inputs can be sent in a
single round, as a vector ω.

Completeness and efficiency of SAV are defined as follows.

Definition 4.5 (SAV completeness). A SAV is said to be complete if for all λ ∈ N,
gp←SAV.Init(1λ), for any (pk, sk) ← SAV.KeyGen(), (pb, pr) ← SAV.VSetup() and
message m ←$ M; given σ ← SAV.Sign(sk,m), (ω, τ) ← SAV.ProbGen(pr, pk,m, σ)
and ρ← SAV.Comp(pb, ω), it holds:

Prob[SAV.Verify(pr, pk,m, σ, ρ, τ) = 1] > 1− ε

where the probability is taken over the coin tosses of SAV.Sign, SAV.ProbGen.

Definition 4.6 (SAV efficiency). A SAV for a signature scheme Σ = (SetUpΣ,
KeyGenΣ,SignΣ,VerifyΣ) is said to be efficient if the computational cost of the whole
server-aided verification is less than the cost of running the standard signature ver-
ification, i.e.,(

cost(SAV.ProbGen) + cost(SAV.Verify)
)
< cost(VerifyΣ) .

4 Security model

In server-aided verification there are two kinds of adversaries to be considered: the
one that solely controls the server used for the aided-verification, and the one that
additionally knows the secret key for signing (signer-server collusion). In the first
case, we are mostly concerned about forgeries against the signature scheme, while
in the second scenario we want to avoid some kind of repudiation [7]. Existing
security models for SAV consider existential unforgeability (EUF) and soundness
against collusion (SAC) [8, 25]. In this section, we extend the notion of EUF to
capture new realistic attack scenarios and we consider for the first time signer
anonymity in server-aided verification.

In what follows, the adversary A is a probabilistic polynomial time algorithm.
We denote by qs (resp. qv) the upper bound on the number of signature (resp.
verification) queries in each query phase.

4.1 Unforgeability

Intuitively, a SAV signature scheme is unforgeable if a malicious server, taking part
to the server-aided verification process, is not able to tamper with the output of
the protocol. All the unforgeability notions presented in this section are based
on the unforgeability under chosen message and verification attack (UF-ACMV)
experiment:

110 Paper C

Definition 4.7. The unforgeability under chosen message and verification experi-
ment (ExpUF-ACMV

A [λ]) goes as follows:
Setup. The challenger C runs the algorithms SAV.Init, SAV.KeyGen and SAV.-

VSetup to obtain the system parameters gp, the key pair (pk, sk), and the public-
private verification keys (pb, pr). The adversary A is given pk, pb, while sk and pr
are withheld from A.

Query Phase I. The adversary can make a series of queries which may be of
the following two kinds:

- sign: A chooses a message m and sends it to C. The challenger behaves as a
signing oracle: it returns the value σ ← SAV.Sign(sk,m) and stores the pair (m, σ)
in an initially empty list L ⊂M×S.

- verify: A begins the interactive (single-round) protocol for server-aided verifi-
cation by supplying a message-signature pair (m, σ) to its challenger. C simulates
a verification oracle: it runs SAV.ProbGen(pr, pk,m, σ) → (ω, τ), returns ω to A,
and waits for a second input. Upon receiving an answer ρ from the adversary, the
challenger returns ∆← SAV.Verify(pr, pk,m, σ, ρ, τ).
The adversary can choose its queries adaptively based on the responses to previous
queries, and can interact with both oracles at the same time.

Challenge. A chooses a message-signature pair (m∗, σ∗) and sends it to C. The
challenger computes (ω̂, τ̂) ← SAV.ProbGen(pr, pk,m∗, σ∗). The value τ̂ is stored
and withheld from A, while ω̂ is sent to the adversary.

Query Phase II. In the second query phase the sign queries are as before, while
the verify queries are answered using the same τ̂ generated for the challenge, i.e.,
A submits only ρ and C replies with ∆← SAV.Verify(pr, pk,m∗, σ∗, ρ, τ̂).

Forgery. A outputs the tuple (m∗, σ∗, ρ∗).
The experiment outputs 1 if (m∗, σ∗, ρ∗) is a forgery (see Definition 4.8), and 0
otherwise.

Unlike unforgeability for digital signatures, in SAV the adversary can influence
the outcome of the signature verification through the value ρ∗. Moreover, A can
perform verification queries. This is a crucial requirement as the adversary cannot
run SAV.Verify on its own, since pr and τ are withheld from A. In practice, whenever
the output of the server-aided verification is ⊥ the verifier could abort and stop
interacting with the malicious server. In this work, we ignore this case and follow
the approach used in [8] and in verifiable computation [14] where the adversary
‘keeps on querying’ independently of the outcome of the verification queries.

Definition 4.8 (Forgery). Consider an execution of the UF-ACMV experiment
where (m∗, σ∗, ρ∗) is the tuple output by the adversary. We define three types of
forgery:

type-1a forgery: (m∗, ·) /∈ L and 1← SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂).
type-1b forgery: (m∗, σ∗) /∈ L and 1← SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂).
type-2 forgery: (m∗, σ∗) ∈ L and 0← SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂),

Existential unforgeability for SAV signature schemes is defined for a quite weak
adversary: the second query phase is skipped and only type-1a forgeries are consid-
ered:

Definition 4.9 (Existential Unforgeability (EUF) [8]). A SAV scheme is (ε, qs, qv)-
existentially unforgeable under adaptive chosen message and verification attacks if
Prob[ExpUF-ACMV

A [λ] = 1] < ε and the experiment ExpUF-ACMV
A [λ] outputs 1 only on

type-1a forgeries, and no query is performed in the Query Phase II.

Anonymous Single-Round Server-Aided Verification 111

This notion of unforgeability fails to capture some realistic attack scenarios. For
instance, consider the case of signed auctions. The adversary is a bidder and wants
to keep the price of the goods he is bidding on under a certain threshold. A simple
way to achieve this goal is to get control over the server used for the SAV and prevent
signatures of higher bids from verifying correctly. This motivates us to extend the
notion of EUF in [8, 25] to also account for malicious servers tampering with the
verification outcome of honestly generated message-signature pairs:

Definition 4.10 (Extended Existential Unforgeability (ExEUF)). A SAV scheme is
(ε, qs, qv)-extended existentially unforgeable under adaptive chosen message and ver-
ification attacks if Prob[ExpUF-ACMV

A [λ] = 1] < ε and the experiment ExpUF-ACMV
A [λ]

outputs 1 on type-1a and type-2 forgeries.

Extended existential unforgeablility deals with a stronger adversary than the one
considered in EUF: in ExEUF the adversary can perform two different types of
forgeries and has access to an additional query phase (after setting the challenge).
Resembling the notion of the strongly unforgeable signatures [4], we introduce ex-
tended strong unforgeability for SAV:

Definition 4.11 (Extended Strong Unforgeability (ExSUF)). A SAV scheme is
(ε, qs, qv)-extended strong unforgeable under adaptive chosen message and verifi-
cation attacks if Prob[ExpUF-ACMV

A [λ] = 1] < ε and ExpUF-ACMV
A [λ] outputs 1 on

type-1a, type-1b and type-2 forgeries.

In ExSUF there is no restriction on the pair (m∗, σ∗) chosen by the adversary: it
can be a new message (type-1a), a new signature on a previously-queried message
(type-1b) or an honestly generated pair obtained in the first Query Phase (type-2).

4.2 Soundness against collusion

In collusion attacks, the adversary controls the server used for the aided verification
and holds the signer’s secret key. This may happen when a malicious signer hacks
the server and wants to tamper with the outcome of a signature verification. As a
motivating example consider signed auctions. The owner of a good could take part
to the auction (as the malicious signer) and influence its price. For instance, in
order to increase the cost of the good, the malicious signer can produce an invalid
signature for a high bid (message) and make other bidders overpay for it. To tamper
with the verification of the invalid signature, the malicious signer can use the server
and make his (invalid) signature verify when the bid is stated. However, in case no
one outbids him, the malicious signer can repudiate the signature as it is actually
invalid.

We define collusion as in [8], with two minor adaptations: (i) we use our single-
round framework, that allows us to clearly state the information flow between A
and C; and (ii) we introduce a second query phase, after the challenge phase (to
strengthen the adversary).

Definition 4.12 (Soundness Against Collusion (SAC)). Define ExpACVAuC
A [λ] to be

ExpUF-ACMV
A [λ] where:

- in the Setup phase, C gives to A all keys except pr, and
- no sign query is performed, and
- the tuple (m∗, σ∗, ρ∗) output by A at the end of the experiment is consid-

ered forgery if ∆ ← SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂) is such that ∆ ̸= ⊥ and

112 Paper C

∆ ̸= SAV.Verify(pr, pk,m∗, σ∗, ρ, τ̂), where ρ ← SAV.Comp(pb, ω̂) is generated hon-
estly. A SAV signature scheme is (ε, qv)-sound against adaptive chosen verification
attacks under collusion if Prob[ExpACVAuC

A [λ] = 1] < ε.

Definition 4.12 highlights connections between the notions of extended existential
unforgeability and soundness against collusion. In particular, it is possible to think
of collusion attacks as unforgeability attacks where A possesses the signing secret
key sk (and thus no sign query is needed), and a forgery is a tuple for which the
output of the server-aided verification does not coincide with the correct one, e.g.,
if σ∗←SAV.Sign(sk, m∗) then SAV.Verify(pr, pk, m∗, σ∗, ρ∗, τ̂) returns 0.

4.3 Anonymity

We initiate the study of anonymity in the context of server-aided verification of
signatures and provide the first definition of SAV-anonymity.

Consider the running setting of signed auctions. If a malicious server can distin-
guish whose signature it is performing the aided-verification of, it can easily ‘keep
out’ target bidders from the auction by preventing their signatures from verifying
(in the server aided sense). To prevent such an attack, bidders may want to hide
their identity from the untrusted server. SAV-anonymity guarantees precisely this:
the auctioneer (trusted verifier) learns the identities of the bidders (signers), while
the untrusted server is not able to determine whose signature was involved in the
SAV.

Definition 4.13 (SAV-anonymity). A SAV scheme is (ε, qv) - SAV-anonymous if
Prob[ExpSAV-anon

A [λ] = 1] < 1
2 + ε and ExpSAV-anon

A [λ] is:

Setup. The challenger runs the algorithms SAV.Init, SAV.VSetup to obtain the
system parameters and the verification keys (pb, pr). Then it runs SAV.KeyGen twice
to generate (sk0, pk0), (sk1, pk1) and draws b←$ {0, 1}. C gives pb, pk0, pk1 to A and
retains the secret values pr, sk0, sk1.

Query I. A can adaptively perform up to qv partial-verification queries as follows.
The adversary sends a pair (m, i), i ∈ {0, 1} to C. The challenger computes σ ←
SAV.Sign(ski,m), runs SAV.ProbGen(pr, pki,m, σ)→ (ω, τ) and returns ω to A.

Challenge. The adversary chooses a message m∗ to be challenged on, and
sends it to C. The challenger computes σ ← SAV.Sign(skb,m

∗) and (ω, τ) ←
SAV.ProbGen(pr, pkb,m

∗, σ); and sends ω to the adversary.

Query II. A can perform another query phase, as in Query I.

Output. The adversary outputs a guess b∗ ∈ {0, 1} for the identity b chosen by
C. The experiment outputs 1 if b∗ = b and 0 otherwise.

The fundamental difference between anonymity for signatures schemes [13, 27]
and SAV-anonymity lies in the choice of the challenge message m∗. In the former
case, it is chosen by the challenger at random, while in SAV we let the adversary
select it. This change increases the adversary’s power and reflects several appli-
cation scenarios where A learns the messages (e.g., bids in signed auctions). We
remark that in SAV-anonymity the adversary does not have access to the verifica-
tion outcome ∆, as this would correspond to having a verification oracle, which is
not allowed in the anonymity game for signature schemes [13, 27].

Anonymous Single-Round Server-Aided Verification 113

5 A compiler for SAV

We present here the first generic compiler for server-aided verification of signatures.
Our generic composition method allows to combine any signature scheme Σ with an
efficient verifiable computation scheme Γ for a function f involved in the signature
verification algorithm, and outputs SAVΓ

Σ, a single-round server-aided verification
scheme for Σ.

The idea to employ verifiable computation in SAV comes from the following obser-
vation. All the attacks presented in [8] succeed because in the target SAV schemes
the verifier never checks the validity of the values returned by the server. We lever-
age the efficiency and security properties of verifiable computation to mitigate such
attacks.

5.1 Description of our compiler

Let Σ = (SetUpΣ,KeyGenΣ, SignΣ,VerifyΣ) be a signature scheme and Γ = (KeyGenΓ,
ProbGenΓ, CompΓ, VerifyΓ) be a verifiable computation scheme.22 In our generic
composition, we identify a computationally-expensive sub-routine of VerifyΣ that
we refer to as VerH (the heavy part of the signature verification); and we outsource
f = VerH using the verifiable computation scheme Γ. To ease the presentation, we
introduce:

ProbGenPRE: This algorithm prepares the input to ProbGenΓ.

VerL: This algorithm is the computationally light part of the signature verifica-
tion. More precisely, VerL is VerifyΣ where VerH is replaced by the output y
of VerifyΓ. It satisfies: cost(VerL) < cost(VerifyΣ) and VerL(pkΣ,m, σ, y) =
VerifyΣ(pk,m, σ) whenever y ̸= ⊥.

Definition 4.14 (SAVΓ
Σ). Let Σ, Γ and f be as above. Our generic composition

method for single-round server-aided verification signature scheme SAVΓ
Σ is defined

by the following possibly randomized algorithms:

SAV.Init(1λ): the initialisation algorithm outputs the global parameters gp ←
SetUpΣ(1λ), which are implicitly input to all the algorithms.

SAV.KeyGen(): this algorithm outputs (pkΣ, skΣ)← KeyGenΣ().

SAV.Sign(skΣ,m): the sign algorithm outputs σ ← SignΣ(skΣ,m).

SAV.VSetup(): the verification setup algorithm outputs a pair of verification keys
(pkΓ, skΓ)← KeyGenΓ(λ, f), where the function f is described in gp.

SAV.ProbGen(skΓ, pkΣ,m, σ): this algorithm first runs ProbGenPRE(pkΣ,m, σ)→x
to produce an encoding of pkΣ, m, σ. Then x is used to compute the output
(ω, τ)← ProbGenΓ(skΓ, x).

SAV.Comp(pkΓ, ω): this algorithm returns ρ← CompΓ(pkΓ, ω).

22To improve readability, we put the subscript Σ (resp. superscript Γ) to each algorithm related
to the signature (resp. verifiable computation) scheme.

114 Paper C

SAV.Verify(skΓ, pkΣ,m, σ, ρ, τ): the verification algorithm executes VerifyΓ(skΓ, ρ, τ)
→ y; if y = ⊥, it sets ∆ = ⊥ and returns. Otherwise, it returns the output of
VerL(pkΣ,m, σ, y)→ ∆ ∈ {0, 1}.

Intuitively, the SAV.ProbGen algorithm prepares the inputs for the delegated com-
putations (ω) and the private values for the verification of computations (τ). The
SAV.Comp algorithm performs the verifiable delegation of the bilinear pairing com-
putation, and returns ρ, which includes the encoding of the bilinear pairing and
some additional values to prove the correctness of the performed operations. Fi-
nally, SAV.Verify checks the correctness of the values received by the server, and
proceed with the (light-weight) verification of the signature, only if the server has
behaved according to the protocol.

Completeness of SAVΓ
Σ. The correctness of SAVΓ

Σ is a straight-forward computa-
tion assuming that Σ is complete and Γ is correct (see the extended version of this
paper [19] for a detailed proof).

Efficiency of SAVΓ
Σ. It is immediate to check that cost(VerifyΣ) = cost(VerL) +

cost(VerH). The ProbGenPRE algorithm is just performing encodings of its in-
puts (usually projections), and does not involve computationally expensive opera-
tions.23 By the efficiency of verifiable computation schemes we have: cost(VerH) >
cost(ProbGenΓ) + cost(VerifyΓ) and thus

cost(VerifyΣ) > cost(ProbGenPRE) + cost(ProbGenΓ) + cost(VerifyΓ) + cost(VerL),

which proves the last claim.
Our generic composition enjoys two additional features: it applies to any signa-

ture scheme and it allows to reduce the security of SAVΓ
Σ to the security of its build-

ing blocks, Σ and Γ. To demonstrate the first claim, let us set f = VerH = VerifyΣ
and ProbGenPRE(pkΣ,m, σ) → x = (pkΣ,m, σ). The correctness of Γ implies that
y = VerH(x) = VerifyΣ(pkΣ,m, σ). In this case, VerL(pkΣ,m, σ, y) is the function
that returns 1 if y = 1 and 0 otherwise. We defer the proof of the second claim to
the following section.

5.2 Security of our generic composition

The following theorems state the security of the compiler presented in Definition
4.14. Our approach is to identify sufficient requirements on Σ and Γ to guaran-
tee specific security properties in the resulting SAVΓ

Σ scheme. All the proofs can be
found in the extended version of this paper [19]. We highlight that the results below
apply to all our instantiations of the SAV signature schemes presented in Section 6,
since these are obtained via our generic composition method.

Theorem 4.1 (Extended Unforgeability of SAVΓ
Σ). Let Σ be an (εΣ, qs)-existentially

(resp. strongly) unforgeable signature scheme, and Γ an (εΓ, qv)-secure verifiable

computation scheme. Then SAVΓ
Σ is (εΣ+εΓ

2 , qs, qv)-extended existentially (resp.
strongly) unforgeable.

The proof proceeds by reduction transforming type-1a (resp. type-1b) forgeries into
existential (resp. strong) forgeries against Σ; and type-2 forgeries, into forgeries
against the security of Γ.

23This claim will become clear after seeing examples of SAV signature schemes.

Anonymous Single-Round Server-Aided Verification 115

Theorem 4.2 (Soundness Against Collusion of SAVΓ
Σ). Let Σ be a correct signa-

ture scheme and Γ an (εΓ, qv)-secure verifiable computation scheme. Then SAVΓ
Σ is

(εΓ, qv)-sound against collusion.

The intuition behind the proof of Theorem 4.2 is the same as in Theorem 4.1 for
the case of type-2 forgeries.

We present now two independent ways to achieve SAV-anonymity for schemes ob-
tained with our compiler: leveraging either the privacy of the verifiable computation
scheme or the adaptibility of the signature scheme.

Theorem 4.3 (Anonymity of SAVΓ
Σ from Private Verification). Let Σ be a correct

signature scheme and Γ an (εΓ, qv)-private verifiable computation scheme. Then
SAVΓ

Σ is (εΓ, qv)-SAV-anonymous.

Theorem 4.3 does not require Σ to be anonymous and SAV-anonymity comes
directly from the privacy of the verifiable computation scheme.

Key-homomorphic signatures have been recently introduced by Derler and Sla-
manig [10]. In a nutshell, a signature scheme provides adaptibility of signatures [10]
if given a signature σ for a message m under a public key pk, it is possible to publicly
create a valid σ′ for the same message m under a new public key pk′. In particular,
there exists an algorithm Adapt that, given pk, m, σ and a shift amount h, returns
a pair (pk′, σ′) for which Verify(pk′,m, σ′) = 1 (cf. Definition 16 in [10] for a formal
statement). 24

Theorem 4.4 (Anonymity of SAVΓ
Σ from Perfect Adaption). Let Σ be a signature

scheme with perfect adaption and Γ a correct verifiable computation scheme. If the
output of ProbGenPRE depends only on the adapted values, i.e., for all pr, pk,m, σ
there is a function G such that:

ProbGenPRE(pr, pk,m, σ) = G(Adapt(pk,m, σ, h),m)

for a randomly chosen shift amount h, then SAVΓ
Σ is unconditionally SAV-anony-

mous.

Theorem 4.4 provides a new application of key-homomorphic signatures to ano-
nymity. The proof is inspired to the tricks used in [10], intuitively SAV-anonymity
follows from the indistinguishability of the output of Adapt from (pk′′, σ′′ ← Sign(sk′′,
m)) for a freshly generated key pair (pk′′, sk′′). Many signatures based on the dis-
crete logarithm problem enjoy this property, e.g., BLS [3] and Wat [24].

6 New instantiations of SAV schemes

Our generic composition requires the existence of a verifiable computation scheme
for a function f = VerH used in the signature verification algorithm. To the best
of the authors’ knowledge, there are verifiable computation schemes for arithmetic
circuits [9, 20] and bilinear pairings [6], but no result is yet known for simpler
computations such as hash functions and group exponentiations. Following previous
works’ approach, we consider only SAV for pairing-based signatures [8, 21, 25, 28],
since bilinear pairings are bottle-neck computations for resource-limited devices.25

24 To provide an example, consider the BLS signature scheme [3]. Given pk = gsk, m ∈ {0, 1}∗,
σ ∈ Gp and h ∈ Zp, the output of Adapt can be defined as: pk′ = pk · gh and σ′ = σ · H(m)h. It is
immediate to check that (σ′,m) is a valid pair under pk′.

25 To give benchmarks, let Mp denote the computational cost of a base field multiplication in
Fp with log p = 256, then computing za for any z ∈ Fp and a ∈ [p] costs about 256Mp, while
computing the Optimal Ate pairing on the bn curve requires about 16000Mp (results extrapolated
from Table 1 in [16]).

116 Paper C

ProbGenPRE(pkΣ,m, σ) : on input pkΣ ∈ G1, m ∈ {0, 1}∗ and σ ∈ G1, the
algorithm returns x =

(
(pkΣ,H(m)), (σ, g)

)
.

VerL(pkΣ,m, σ, y) : this algorithm is VerifyBLS where the computation of
the two pairings is replaced with the output y = (y1, y2) of VerifyCDS2 .
Formally, VerL checks whether y1 = y2, in which case it outputs ∆ =
1, otherwise it returns ∆ = 0.

Figure C.9: The core algorithms of SAVCDS1

BLS .

All our instantiations of SAV schemes are obtained using the compiler in Definition
4.14. Their security therefore follows from the results of Section 5.2, once shown that
that the chosen schemes satisfy the hypothesis of the theorems. For conciseness,
we only define the two algorithms ProbGenPRE and VerL. Appendix C.i contains
thorough descriptions.

6.1 A secure SAV for BLS (SAVCDS1
BLS)

The BLS signature by Boneh et al. [3] has been widely used for constructing server-
aided verification schemes, e.g., Protocols I and II in [25]. Cao et al. [7] and Chow
et al. [8] have shown that all the existing SAV for BLS are neither existentially
unforgeable, nor sound against collusion. This motivates us to propose SAVCDS1

BLS

(described in Figure C.9). As a verifiable scheme for the pairing computation,
we employ ‘a protocol for public variable A and B’ by Canard et al. [6], which
we refer to as CDS1. By the correctness of the CDS1 scheme y2 = e(pkΣ,H(m))
and y2 = e(σ, g), thus VerL has the same output as VerifyBLS. Given that BLS is
strongly unforgeable in the random oracle model [3] and that CDS1 is secure in
the generic group model [6], SAVCDS1

BLS is extended strongly unforgeable and sound
against collusion. Our SAV scheme for the BLS is not SAV-anonymous: the signer’s
public key is given to the server for the aided verification. However, SAV-anonymity
can be simply gained via the adaptability of BLS [10].

In SAVCDS1

BLS the verifier does not need to perform any pairing computation. This
is a very essential feature, especially if the verifying device has very limited compu-
tational power, e.g., an RFID tag.

6.2 A secure SAV for Wat (SAVCDS1
Wat)

Wu et al. [25] proposed a SAV for Waters’ signature Wat [24], which is neither
existentially unforgeable nor sound against collusion. Here we propose SAVCDS1

Wat

(described in Figure C.10), which is similar to Protocol III in [25], but has strong
security guarantees thanks to the verifiable computation scheme for ‘public A and
B’ CDS1 [6].

By the correctness of the CDS1 scheme y1 = e(σ1, g), and y2 = e(H(m), σ2). Thus,
VerL has the same output as VerifyWat. Given that CDS1 is secure in the generic
group model [6], and that Wat is existentially unforgeable in the standard model
[24] our SAVCDS1

Wat is extended existential unforgeable and sound against collusion.

Similarly to Protocol III in [25], SAVCDS1

Wat achieves SAV-anonymity thanks to the
perfect adaption of Wat [10].

Anonymous Single-Round Server-Aided Verification 117

ProbGenPRE(pkΣ,m, σ) : given pkΣ ∈ G1, m ∈ {0, 1}∗ and σ ∈ G1, select h←$
Zp, compute (pk′Σ, σ

′)← Adapt(pkΣ,m, σ, h), return x = (pk′Σ,m, σ′).

VerL(pk′Σ,m, σ, y) : this is VerifyWat where the computation of the two pair-
ings is replaced with the outputs y1, y2 of VerifyCDS1 . Formally, VerL
checks if y1 = pk′Σ · y2, in which case it outputs ∆ = 1, otherwise it
returns ∆ = 0.

Figure C.10: The core algorithms of SAVCDS1

Wat .

ProbGenPRE(pkΣ,m, σ) : this algorithm simply returns the first two entries
of the signature σ = (σ1, σ2, σ3), i.e., x = (σ1, σ2).

VerL(pkΣ,m, σ, y) : this algorithm is VerifyCL, except for two pairing
computations which are replaced with the outcome y = (β1, β2)
of VerifyCDS2 . More precisely, the VerL algorithm computes α1 =
e(σ1, Y), α2 = e(X,σ1) and α3 = e(X,σ2)m. It then checks whether
α1 = β1 and α2 ·α3 = β2. If both of the conditions hold, the algorithm
returns ∆ = 1, otherwise ∆ = 0.

Figure C.11: The core algorithms of SAVCDS2

CL .

6.3 The first SAV for CL (SAVCDS2
CL)

The verification of the BLS and the Wat signatures only requires the computation
of two bilinear pairings. We want to move the focus to more complex signature
schemes that would benefit more of server-aided verification. To this end, we con-
sider scheme A by Camenish and Lysyanskaya [5], which we refer to as CL, where
VerifyCL involves the computation of five bilinear pairings. For verifiability we em-
ploy CDS2, ‘a protocol with public constant B and variable secret A’ by Canard et
al. [6]. Our SAVCDS2

CL scheme is reported in Figure C.11.
By the correctness of CDS2 we have: y1 = β1 = e(σ, g1), and y2 = β2 = e(H(m), pkΣ).
Therefore VerL performs the same checks as VerifyCL and the two algorithms have
the same output. Given that CL is existential unforgeable in the standard model [5]
and CDS2 is secure and private in the generic group model [6], SAVCDS2

CL is extended-
existential unforgeable, sound against collusion and SAV-anonymous. Therefore
SAVCDS2

CL is an example of a scheme which is SAV-anonymous although the base
signature scheme is not anonymous.

6.4 Comparison with previous work

Table C.1 gives a compact overview of how our SAV schemes compare to previous
proposals in terms of unforgeability, soundness under collusion and SAV-anonymity.
We report only the highest level of unforgeability that the scheme provides. A yes
(resp. no) in the table states that the scheme does (resp. does not) achieve the
property written at the beginning of the row, e.g., Protocol III does not employ
a verifiable computation scheme and provides SAV-anonymity. Every scheme or
property is followed by a reference paper or the section where the claim is proven.
Regarding efficiency, the computational cost of pairing-based algorithms is influ-

118 Paper C

Proto-
col

I [25]

Proto-
col

II [25]
SAVCDS1

BLS

Proto-
col

III [25]
SAVCDS1

Wat

SAV-
ZSS [15] SAVCDS2

CL

signature BLS [3] BLS [3] BLS [3]
Wat [24] Wat [24] ZSS [28]

CL [5]

verifiability no no
CDS1 [6]

no
CDS1 [6]

no
CDS2 [6]

unforgeabil-
ity

EUF
[25]

no [8]
ExSUF
(6.1)

no [19]
ExEUF
(6.2)

EUF
[15]

ExEUF
(6.3)

collusion
resistance

no [8] no [19]
yes
(6.1)

no [19]
yes
(6.2)

no [19]
yes
(6.3)

anonymity no [19] no [19]
no

(6.1)
yes [19]

yes
(6.2)

no [19]
yes
(6.3)

Table C.1: Comparison among our SAV schemes and previous works: Protocol I
(Figure 3 in [25]), Protocol II (Figure 5 in [25]), Protocol III (Figure 4 in [25]),
SAV-ZSS [15] (depicted in Figure 1 in [25]).

enced by three main parameters: (i) the elliptic curve, (ii) the field size, and (iii)
the bilinear pairing. As a result, it is impossible to state that a given algorithm is
efficient for all pairings and for all curves, since even the computational cost of the
most basic operations (e.g., point addition) variates significantly with the above
parameters. For example, CDS2 provides a 70% efficiency gain26 for the delega-
tor (verifier) when the employed pairing is the Optimal Ate pairing on the kss-18
curve [6], but is nearly inefficient when computed on the bn curve [16].

7 Conclusions
In this paper, we provided a framework for single-round server-aided verification sig-
nature schemes and introduced a security model which extends previous proposals
towards more realistic attack scenarios and stronger adversaries. In addition, we de-
fined the first generic composition method to obtain a SAV for any signature scheme
using an appropriate verifiable computation scheme. Our compiler identifies for the
first time sufficient requirements on the underlying primitives to ensure the security
and anonymity of the resulting SAV scheme. In particular, we showed sufficient con-
ditions to achieve both computational and unconditional SAV-anonymity. Finally,
we introduced three new SAV signature schemes obtained via our generic composi-
tion method, that simultaneously achieve existential unforgeability and soundness
against collusion.

Currently, Canard et al.’s is the only verifiable computation scheme for pairings
available in the literature. Considering the wide applicability of bilinear pairings
in cryptography, a more efficient verifiable computation scheme for these functions
would render pairings a server-aided accessible computation to a large variety of
resource-limited devices, such as the ones involved in IoT and cloud computing set-
tings.

Acknowledgements We thank Dario Fiore (Assistant Research Professor) for pro-
viding useful comments. This work was partially supported by the Japanese Society
for the Promotion of Science (JSPS), summer program, the SNSF project SwissSens-
eSynergy and the STINT project IB 2015-6001.

26 Efficiency gain is the ratio
(
cost(SAV.ProbGen) + cost(SAV.Verify)

)
/cost(VerifyΣ).

Bibliography

[1] Philippe Béguin and Jean-Jacques Quisquater. “Fast Server-Aided RSA Sig-
natures Secure Against Active Attacks”. In: Advances in Cryptology - CRYPTO
’95. 1995, pp. 57–69.

[2] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. “Verifiable delega-
tion of computation over large datasets”. In: Annual Cryptology Conference.
Springer. 2011, pp. 111–131.

[3] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil
Pairing”. In: ASIACRYPT 2001. Ed. by Colin Boyd. Vol. 2248. LNCS. Gold
Coast, Australia: Springer, Heidelberg, Germany, 2001, pp. 514–532.

[4] Dan Boneh, Emily Shen, and Brent Waters. “Strongly Unforgeable Signatures
Based on Computational Diffie-Hellman”. In: PKC 2006. Ed. by Moti Yung,
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin. Vol. 3958. LNCS. New
York, NY, USA: Springer, Heidelberg, Germany, 2006, pp. 229–240.

[5] Jan Camenisch and Anna Lysyanskaya. “Signature schemes and anonymous
credentials from bilinear maps”. In: Annual International Cryptology Confer-
ence. Springer. 2004, pp. 56–72.

[6] Sébastien Canard, Julien Devigne, and Olivier Sanders. “Delegating a pairing
can be both secure and efficient”. In: International Conference on Applied
Cryptography and Network Security. Springer. 2014, pp. 549–565.

[7] Zhengjun Cao, Lihua Liu, and Olivier Markowitch. “On Two Kinds of Flaws
in Some Server-aided Verification Schemes”. In: International Journal of Net-
work Security 18.6 (2016), pp. 1054–1059.

[8] Sherman S. M. Chow, Man Ho Au, and Willy Susilo. “Server-Aided Signatures
Verification Secure against Collusion Attack (Short Paper)”. In: ASIACCS
11. Ed. by Bruce S. N. Cheung, Lucas Chi Kwong Hui, Ravi S. Sandhu, and
Duncan S. Wong. Hong Kong, China: ACM Press, 2011, pp. 401–405.

[9] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin
Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. “Geppetto: Versa-
tile verifiable computation”. In: Security and Privacy (SP), 2015 IEEE Sym-
posium on. IEEE. 2015, pp. 253–270.

[10] David Derler and Daniel Slamanig. Key-homomorphic signatures and appli-
cations to multiparty signatures. Tech. rep. IACR Cryptology ePrint Archive
2016, 792, 2016.

[11] Xuhua Ding, Daniele Mazzocchi, and Gene Tsudik. “Experimenting with
Server-Aided Signatures”. In: NDSS. 2002.

119

120 Paper C

[12] Dario Fiore, Rosario Gennaro, and Valerio Pastro. “Efficiently verifiable com-
putation on encrypted data”. In: Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security. ACM. 2014, pp. 844–
855.

[13] Marc Fischlin. “Anonymous signatures made easy”. In: International Work-
shop on Public Key Cryptography. Springer. 2007, pp. 31–42.

[14] Rosario Gennaro, Craig Gentry, and Bryan Parno. “Non-interactive verifi-
able computing: Outsourcing computation to untrusted workers”. In: Annual
Cryptology Conference. Springer. 2010, pp. 465–482.

[15] Marc Girault and David Lefranc. “Server-Aided Verification: Theory and
Practice”. In: ASIACRYPT 2005. Ed. by Bimal K. Roy. Vol. 3788. LNCS.
Chennai, India: Springer, Heidelberg, Germany, 2005, pp. 605–623.

[16] Aurore Guillevic and Damien Vergnaud. “Algorithms for outsourcing pairing
computation”. In: CARDIS. Springer. 2014, pp. 193–211.

[17] Fuchun Guo, Yi Mu, Willy Susilo, and Vijay Varadharajan. “Server-aided sig-
nature verification for lightweight devices”. In: The Computer Journal (2013),
bxt003.

[18] Chae Hoon Lim and Pil Joong Lee. “Server (Prover/Signer)-Aided Verification
of Identity Proofs and Signatures”. In: EUROCRYPT’95. Ed. by Louis C.
Guillou and Jean-Jacques Quisquater. Vol. 921. LNCS. Saint-Malo, France:
Springer, Heidelberg, Germany, 1995, pp. 64–78.

[19] Elena Pagnin, Aikaterini Mitrokotsa, and Keisuke Tanaka. “Anonymous Single-
Round Server-Aided Verification”. In: (2017). http://eprint.iacr.org/
2017/794.

[20] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. “Pinocchio:
Nearly practical verifiable computation”. In: Security and Privacy (SP), 2013
IEEE Symposium on. IEEE. 2013, pp. 238–252.

[21] Bin Wang. “A Server-Aided Verification Signature Scheme without Random
Oracles”. In: International Review on Computers & Software 7 (7 2012),
p. 3446.

[22] Zhiwei Wang. “A new construction of the server-aided verification signature
scheme”. In: Mathematical and Computer Modelling 55.1 (2012), pp. 97–101.

[23] Zhiwei Wang, Licheng Wang, Yixian Yang, and Zhengming Hu. “Comment
on Wu et al.’s Server-aided Verification Signature Schemes.” In: International
Journal of Network Security 10.2 (2010), pp. 158–160.

[24] B. Waters. “Efficient identity-based encryption without random oracles”. In:
In EUROCRYPT 2005, in: Lecture Notes in Computer Science 3494.114–127
(2005).

[25] Wei Wu, Yi Mu, Willy Susilo, and Xinyi Huang. “Provably secure server-aided
verification signatures”. In: Computers & Mathematics with Applications 61.7
(2011), pp. 1705 –1723.

[26] Wei Wu, Yi Mu, Willy Susilo, and Xinyi Huang. “Server-aided verification
signatures: Definitions and new constructions”. In: International Conference
on Provable Security. Springer. 2008, pp. 141–155.

[27] Guomin Yang, Duncan S Wong, Xiaotie Deng, and Huaxiong Wang. “Anony-
mous signature schemes”. In: International Workshop on Public Key Cryp-
tography. Springer. 2006, pp. 347–363.

http://eprint.iacr.org/2017/794
http://eprint.iacr.org/2017/794

Anonymous Single-Round Server-Aided Verification 121

[28] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. “An efficient sig-
nature scheme from bilinear pairings and its applications”. In: International
Workshop on Public Key Cryptography. Springer. 2004, pp. 277–290.

Appendix

C.i Detailed descriptions of our SAV schemes

In this Appendix we present thorough descriptions of the new SAV scheme proposed
in this paper (Section 6). The complete explanations of the algorithms in SAVCDS1

BLS ,

SAVCDS1

Wat and SAVCDS2

CL are presented in Figures C.12, C.13 and C.14 respectively.

For consistency, we adopt the multiplicative notation for describing the operation
elliptic curve groups.

SAV.Init(1λ) = SetUpBLS(1
λ). This algorithm generates the global parameters of the

scheme, that include: a Gap Diffie-Hellman bilinear group (p, g1,G,GT , e) according
to the security parameter λ; and a hash function H : {0, 1}∗ → G that maps messages
m ∈M = {0, 1}∗ to group elements in G. The output is gp = (p, g1,H,G,GT , e).
SAV.KeyGen() = KeyGenBLS(). The key generation algorithm draws a random x ←$ Z∗

p

and outputs (pk, sk) = (g1
x,x).

SAV.VSetup() = KeyGenCDS1(). This algorithm outputs pr = void and
pb = (p,G,GT , e, g, β̂), where β̂ = e(g, g).
SAV.Sign(sk,m) = SignBLS(sk,m). The signing algorithm outputs σ = H(m)x ∈ G.
SAV.ProbGen(void, pk,m, σ). This algorithm runs ProbGenPRE(pk,m, σ) →(
(pk,H(m)), (σ, g)

)
and returns the outputs of ProbGenCDS1 on the two pairs (pk,H(m))

and (σ, g). In details, for (pk,H(m)) the problem generator algorithm selects two

random values r1, r2 ←$ Zp, computes the points R1 = pkr
−1
2 gr1 , R2 = H(m)r

−1
1 gr2

and Û = β̂r1r2 . This process (with fresh randomness) is applied to the pair (σ, g)

as well. The final outputs are ω =
(
(pk,H(m), R

(1)
1 , R

(1)
2), (σ, g,R

(2)
1 , R

(2)
2)

)
and

τ =
(
(Û (1), r

(1)
1 , r

(1)
2), (Û (2)r

(2)
1 , r

(2)
2)

)
.

SAV.Comp(pb, ω). The algorithm computes the following bilinear pairings:

α
(1)
1 = e(pk,H(m)), α

(1)
2 = e(R

(1)
1 , R

(1)
2)

(
e(pk, g)e(g,H(m))

)−1
, α

(2)
1 = e(σ, g),

α
(2)
2 = e(R

(2)
1 , R

(2)
2)

(
e(σ, g)e(g, g)

)−1
. It returns ρ = (ρ1, ρ2) =

(
(α

(1)
1 , α

(1)
2), (α

(2)
1 , α

(2)
2)

)
.

SAV.Verify(void, pk,m, σ, ρ, τ). The verification algorithm first runs VerifyCDS1(ρi, τi) for

i ∈ [2], i.e., checks whether α
(i)
2 = Û (i)(α

(i)
1)(r

(i)
1 r

(i)
2)−1

and α1 ∈ GT . If any of the
previous checks fails, the verification algorithm returns ∆ = ⊥ and halts. Otherwise, it
sets yi = α

(i)
1 , for i ∈ [2] and runs VerL(pk,m, σ, y), which returns ∆ = 1 if y1 = y2, and

∆ = 0 otherwise.

Figure C.12: SAVCDS1

BLS : Our SAV for the BLS Signature in [3].

122 Paper C

SAV.Init(1λ) = SetUpWat(1
λ). This algorithm generates a bilinear group (p, g1,G,GT , e)

according to the security parameter λ; selects n + 1 group elements V0, V1, . . . Vn ←$ G
and defines a function H : {0, 1}n → G as H(m) = V0(

∏n
i=1 V

mi
i). The output is

gp = (p, g1,H,G,GT , e).
SAV.KeyGen() = KeyGenWat(). The key generation algorithm draws a random x ←$ Z∗

p

and outputs (pk, sk) = (e(g1, g1)
x,x).

SAV.VSetup() = KeyGenCDS1(). This algorithm outputs pr = void and pb =
(p,G,GT , e, g, β̂), where β̂ = e(g, g).
SAV.Sign(sk,m) = SignWat(sk,m). The signing algorithm picks a random a ←$ Zp and
outputs σ = (σ1, σ2) = (g1

x(H(m))a, g1
a) ∈ G2.

SAV.ProbGen(void, pk,m, σ). This algorithm runs ProbGenPRE(pk,m, σ)→ (pk′, σ′) to cre-
ate a signature for a new public key, i.e., it picks two random values h, b ←$ Zp and sets
pk′ = pkβ̂h, σ′ = (ghσ1H(m)b, σ2g

b). (By the adaptivity of Wat if σ is a valid signature
for m under sk with randomness a, then σ′ is a valid signature for m under sk′ + h with
randomness a+ b).
Secondly, the problem generation algorithm runs ProbGenCDS1 on (σ′

1, g) and (H(m), σ′
2).

In details, for each pair (A,B), the algorithm selects two random values r1, r2 ←$ Zp,
computes the points R1 = Ar−1

2 gr1 , R2 = Br−1
1 gr2 and Û = β̂r1r2 . The final outputs are

ω = (R
(1)
1 , R

(1)
2 , R

(2)
1 , R

(2)
2) and τ = (pk′Û (1), r

(1)
1 , r

(1)
2 , Û (2)r

(2)
1 , r

(2)
2).

SAV.Comp(pb, ω). The algorithm parses ω as
(
(R

(1)
1 , R

(1)
2), (R

(2)
1 , R

(2)
2)

)
; for each pair

(A,B) it computes α1 = e(A,B) and α2 = e(R1, R2)
(
e(g,B), e(A, g)

)−1
. It returns

ρ = (α
(1)
1 , α

(1)
2 , α

(2)
1 , α

(2)
2).

SAV.Verify(void, pk,m, σ, ρ, τ). The verification algorithm parses ρ = (ρ(1), ρ(2)) =(
(α

(1)
1 , α

(1)
2), (α

(2)
1 , α

(2)
2)

)
and τ = (pk′, τ (1), τ (2)) =

(
(Û (1), r

(1)
1 , r

(1)
2), (Û (2)r

(2)
1 , r

(2)
2)

)
.

For i ∈ [2] it runs VerifyCDS2(ρ(i), τ (i)), i.e., it checks if α
(i)
2 = Û (i)(α

(i)
1)(r

(i)
1 r

(i)
2)−1

and
α1 ∈ GT . If any of the previous checks fails, the verification algorithm returns ∆ = ⊥ and
halts. Otherwise, it returns y(i) = α

(i)
1 and runs VerL(pk,m, σ, y), which returns ∆ = 1 if

y(1) = pk′ y(2), and ∆ = 0 otherwise.

Figure C.13: SAVCDS1

Wat : Our SAV for the Wat Signature in [24].

Anonymous Single-Round Server-Aided Verification 123

SAV.Init(1λ) = SetUpCL(1
λ). The setup algorithm generates the global parameters of the

scheme, that include a bilinear group (q,G, g,GT , ĝ, e).
SAV.KeyGen() = KeyGenCL(). The key generation algorithm draws two random values
x, y ←$ Zq, computes gx = X, gy = Y and returns pk = (X,Y) and sk = (x, y).
SAV.VSetup() = KeyGenCDS2(). This algorithm outputs pr = void and pb =
(p,G,GT , e, G,B, β̂), where G ←$ G, B = g and β̂ = e(G,B).
SAV.Sign(sk,m) = SignCL(sk,m). The sign algorithm picks a random a←$ G and outputs
the signature σ = (σ1, σ2, σ3) = (a, ay, ax+mxy) ∈ G3.
SAV.ProbGen(void, pk,m, σ). This algorithm first runs ProbGenPRE(pk,m, σ) → (σ2, σ3).
Then it runs ProbGenCDS2 on σ2 and σ3. In more details, for i ∈ {2, 3} it selects

three random values r
(i)
1 , r

(i)
2 , u(i) ←$ Zq, computes the points R

(i)
1 = σi · Gr

(i)
1 and

R
(i)
2 = σu(i)

i · Gr
(i)
2 , and calculates X̂

(i)
1 = (β̂)r

(i)
1 , X̂

(i)
2 = (β̂)r

(i)
2 . The final outputs are

ω = (R
(2)
1 , R

(2)
2 , R

(3)
1 , R

(3)
2) and τ = (u(2), X̂

(2)
1 , X̂

(2)
2 , u(3), X̂

(3)
1 , X̂

(3)
2).

SAV.Comp(pb, ω). The algorithm parses ω = (R
(2)
1 , R

(2)
2 , R

(3)
1 , R

(3)
2) and returns ρ =

(e(R
(2)
1 , g), e(R

(2)
2 , g), e(R

(3)
1 , g), e(R

(2)
2 , g)).

SAV.Verify(void, pk,m, σ, ρ, τ). The verification algorithm first runs VerifyCDS2(ρ, τ), i.e.,

for i ∈ {2, 3} it checks if α
(i)
2 = X̂

(i)
2 (α1(X̂

(i)
1)−1)u and α

(i)
1 ∈ GT . If any of the pre-

vious checks fails, the verification algorithm returns ∆ = ⊥ and halts. Otherwise,
the values y(i) = β

(i)
1 (X̂

(i)
1)−1, for i ∈ {2, 3} are used as input for VerL. In details,

VerL(pk,m, σ, y = (y(2), y(3))), computes: β1 = e(σ1, Y), β2 = e(X,σ1σ
m
2). If both

β1 = y(1) and β2 = y(2), the algorithm returns ∆ = 1; otherwise it returns ∆ = 0.

Figure C.14: SAVCDS2

CL : Our SAV for the CL Signature in [5].

Paper D

Two-hop Distance-Bounding Protocols:
Keep your Friends Close

Anjia Yang, Elena Pagnin, Aikaterini Mitrokotsa, Gerhard P.
Hancke, and Duncan S. Wong

Abstract. Authentication in wireless communications often depends on the phys-
ical proximity to a location. Distance-bounding (DB) protocols are cross-layer au-
thentication protocols that are based on the round-trip-time of challenge-response
exchanges and can be employed to guarantee physical proximity and combat relay
attacks. However, traditional DB protocols rely on the assumption that the prover
(e.g., user) is in the communication range of the verifier (e.g., access point); some-
thing that might not be the case in multiple access control scenarios in ubiquitous
computing environments as well as when we need to verify the proximity of our
two-hop neighbour in an ad-hoc network. In this paper, we extend traditional DB
protocols to a two-hop setting i.e. when the prover is out of the communication
range of the verifier and thus, they both need to rely on an untrusted in-between
entity in order to verify proximity. We present a formal framework that captures the
most representative classes of existing DB protocols and provide a general method
to extend traditional DB protocols to the two-hop case (three participants). We
analyse the security of two-hop DB protocols and identify connections with the
security issues of the corresponding one-hop case. Finally, we demonstrate the cor-
rectness of our security analysis and the efficiency of our model by transforming
five existing DB protocols to the two-hop setting and we evaluate their performance
with simulated experiments.

Keywords. Distance-Bounding, Relay Attacks, Authentication Protocols.

IEEE Transactions on Mobile Computing (2018).

Two-hop Distance-Bounding Protocols: Keep
your Friends Close

1 Introduction

Wireless communications have strong connections with proximity-based authenti-
cation. For instance, in multiple wireless access control scenarios, we gain access
to a service and/or a place depending on our physical proximity to an access con-
trol point. Furthermore, wireless communications often rely on the cooperation of
one-hop and two-hop neighbours (e.g., routing in wireless ad-hoc networks). Veri-
fying the location of our neighbours and our proximity to an access point is usually
performed by employing a secure neighbour discovery (SND) method [20]. Distance-
bounding (DB) protocol is an important method for reliable SND, which is based on
the round-trip-time of carefully designed challenge-response messages to provide an
upper bound on the physical distance between two nodes. Although DB protocols
provide a cryptographic proof of proximity for one-hop neighbours they cannot be
employed when the prover is outside the communication range of the verifier.

In this paper, we investigate the extension of conventional (one-hop) DB protocols
to a two-hop setting. More precisely, we examine how DB protocols designed for
two participants –a (trusted) verifier V and a (usually untrusted) prover P– can
be extended to a three participants setting – a (trusted) verifier V, a (potentially
untrusted) prover that lies two hops away from V, and an (untrusted) in-between
entity, henceforth called the linker L, which is in the communication range of both
P and V.

We should stress here that one-hop DB protocols can be employed when P is
in the communication range of V, in order to verify that P is in the vicinity of
V. However, when P is outside V’s communication range, traditional one-hop DB
protocols are not enough. In the latter case, there is a need for two-hop DB protocols
that are able to verify that L is close to V and that P is close to L by measuring
the time-of-flight of the exchanged messages.

Given the tremendous development of wireless communications and the new era
of ubiquitous computing, two-hop distance-bounding can be useful in multiple im-
portant scenarios, such as the detection of wormhole attacks and wireless access
control scenarios where the prover is located outside the communication range of
the verifier.

A wormhole is an attack strategy, first described by Perrig et al. [14], for disrupt-
ing the normal operation of routing protocols. In a wormhole attack, an adversary
advertises as the most attractive routing path to another node in the network, a
path that passes through her. In this way, she is able to get under her control
the communication between two nodes (i.e. the messages are sent to her in order
to be forwarded). This implies that she can modify or even discard the messages
that reach her and consequently disrupt the whole communication. In a wormhole
attack, an adversary may have compromised a node L that is a one-hop neighbour

128 Paper D

of two nodes P and V, while P is a two-hop neighbour (i.e. outside the communi-
cation range) of V. For instance, consider the scenario where V wants to transmit a
message to P and verify that P is V’s two-hop neighbour. Here we can distinguish
between two cases: (i) if V trusts P, and (ii) if P is untrusted. If V trusts P but
both P and V do not trust L then by running a conventional DB protocol twice
(once run between V and L and once between L and P), V could verify that P
is indeed its two-hop neighbour. In the second case (untrusted P), conventional
(one-hop) DB protocols cannot directly verify the two-hop proximity of P. The
same problem exists when the adversary controls two nodes L1 and L2 instead of
a single node L (Figure D.15). It is easy to see that in such a scenario, there is
an eminent need for a mechanism to verify the two-hop proximity of an untrusted
node P by relying on an untrusted one-hop neighbour (L).

Figure D.15: A wormhole attack run by an external adversary that employs two
malicious nodes L1 and L2. The communication ranges of V and P are indicated
by dV and dP respectively.

As an additional motivation for the need of two-hop DB protocols we could con-
sider access control problems when the prover (i.e. employed device) does not have
direct access to the verifier (i.e. access point) but instead has to depend on an
untrusted (in-between) node (device). This could be the case in multiple scenarios
where smart devices are employed in ubiquitous computing environments, e.g., in
a university campus, gaining access to a printer if the prover can prove that he is a
two-hop neighbour of the verifier (i.e. printer).

Contributions. In this paper, we investigate how conventional (one-hop) DB pro-
tocols can be extended to a two-hop setting i.e. when the prover does not have
direct access (i.e. not in the communication range) with the verifier, but instead
has to rely an in-between untrusted party. We provide a general framework that
can be employed to transform certain families of one-hop DB protocols to the two-
hop (three participants) setting. We analyse the security of two-hop DB protocols
and identify connections with the security issues of the corresponding one-hop case.
Finally, we demonstrate the correctness of our security analysis and the efficiency
of our model by implementing five different two-hop DB protocols and performing
experimental attacks on them.

Organisation. The paper is organised as follows. Section 2 describes related work,
while Section 3 describes conventional (one-hop) DB protocols. In Section 4 we
describe the general structure of a two-hop DB protocol. Section 5 presents a
formal model for analysing the security of two-hop DB protocols, while Section 6
presents the experimental evaluation of our proposed model based on five existing
DB protocols. Finally, Section 6 concludes the paper.

Two-hop Distance-Bounding Protocols: Keep your Friends Close 129

2 Related Work

DB protocols are real-time challenge-response authentication protocols that attempt
to simultaneously verify the credentials and the proximity of an untrusted prover.
These protocols are mainly employed in settings where the adversary wants to
fool a verifier (e.g., access point) into accepting a distant prover. DB protocols
were initially proposed by Brands and Chaum [6] as an efficient countermeasure
against relay attacks in ATM systems. They rely on the round-trip-time of multiple
challenge-response pairs to determine an upper bound on the physical distance
between a trusted verifier V and an untrusted prover P. The final output of the
protocol depends on (i) the estimated distance between the prover and the verifier,
and (ii) the correctness of the received responses.

In 2005, Hancke and Kuhn [12] proposed a DB protocol resistant to the main
two threats against DB protocols and introduced the concept of registers for DB
protocols. Subsequently, many protocols were proposed that rely on the Hancke
and Kuhn’s protocol (e.g. [4, 16, 22, 24, 25]). In the recent decade, the interest
in formulating and evaluating DB protocols has grown considerably, and different
approaches have been presented [1, 2, 5, 10, 22, 23]. Although the majority of DB
protocols present in the literature are based on secret key cryptography, there are
also some recent proposals that rely on public key cryptography [11, 13, 15]. In
our analysis, to facilitate understanding, we shall focus on DB protocols that rely
on secret key cryptography. However, our results could also be easily applied to
protocols that rely on public key cryptography.

We classify DB protocols into two main categories, depending on how the prover
generates the responses:

Register-based DB protocols: In this case, the set of possible responses is com-
posed of ρ ≥ 1 vector(s), called register(s) [12]. The verifier’s challenges indi-
cate which register should be used for the calculation of the responses. Mul-
tiple existing DB protocols belong in this category, e.g., Brands-Chaum [6],
where ρ = 1; Hancke-Kuhn [12], Swiss-knife [16], Bussard-Bagga [7] and Reid
et al. [22], where ρ = 2; finally SKI [4] treats the case where ρ ≥ 3.

Non-register-based DB protocols: There are very few protocols that fall in this
category. In particular, Avoine et al. [2] proposed a DB protocol that employs
a tree-based response function, where the prover’s responses depend on all the
challenges sent in the same protocol run. Furthermore, a DB protocol where
the responses are based on challenge reflection with channel selection (CRCS)
were introduced by Rasmussen and Capkun [21].

In this paper, we shall focus on DB protocols that are register-based, as these con-
stitute the overwhelming majority of the proposals presented in the literature. We
need to note though that non-register based DB protocols could easily be extended
to a two-hop setting. However, the employed generalisation and notation does not
capture the description of non-register based protocols, since they have more compli-
cated structures (e.g., a tree-based response function). Henceforth, when referring
to DB protocols we shall consider register-based DB protocols. Similar to part of our
work, Mauw et al. [18] also constructed an abstract model for the register-based
DB protocols based on finite state automata, provided security analysis of these
protocols, and developed a new family of DB protocols which is resistant to mafia
fraud attacks. As a comparison, we provide more comprehensive security analysis
which captures all the three common attacks.

130 Paper D

Table D.2: Notations

V/ P/L : honest verifier/prover/linker
P∗/L∗ : dishonest prover/linker
K/M/I/C/R : key/message/index/challenge/response space
X,W : the range of two strings generated in the non-time critical phases
n : the number of rounds in the DB phase
i : the index of the rounds in the DB phase
g0/g1/g2 : functions used in the non-time critical phases
f : the response function used in the DB phase
xVL/xVP : the secret key shared between the verifier and the linker/prover
mV/mL/mP : messages sent by the verifier/linker/prover in the initialisation phase
ci/ri : the verifier’s challenge value / the prover’s response value
ℓi : the linker’s response value
w : the final signature sent by the prover
ξL, ξP : vectors used to produce the responses
∆ti : the time difference between the time ci was sent and ri was received
tmax : the maximum round-trip-time allowed (as a bound on the distance)

Current DB protocols mostly consider a single prover bounding the distance of
a single verifier. None of these proposals provide non-repudiation of the distance-
bound between two parties to any third (untrusted) party. Our proposal allows
the verifier to determine a distance bound on the linker (next-hop node) and verify
the validity of the distance bound between the linker and the prover, even though
the linker is not trusted. One interesting divergence from the two-party distance-
bounding approach is performing distance-bounding with multiple parties [8]. This
group distance-bounding verifies that all the parties are in close proximity. However,
this still requires all the parties in the group to be able to communicate directly
with each other to be able to complete the protocol. Our proposal allows a verifier
to verify that two nodes are in close proximity (next-hop and two-hop) without
directly communicating with the two-hop node. Centralized SND approaches can
verify more than just next-hop neighbours but are based on the assumption that
there are many nodes that can collaborate and aggregate data to a central system
controller [17]. This approach often involves location-based methods that require
the physical location of each node to be known [14]. Determining the location of
a node requires additional network infrastructure and resources, especially indoors
where Global Positioning Systems (GPS) are not so effective, while a system wide
localization scheme still relies on accurate node-level neighbour detection to build
secure connectivity maps [3]. There are several secure localization schemes that
use DB protocols for the underlying distance estimation between nodes [9]. Our
approach does not compete with these centralised approaches and can potentially
assist them by allowing individual nodes to securely verify the proximity of next-hop
and two-hop nodes.

We have recently introduced [19] the concept of two-hop distance-bounding that
extends traditional DB protocols to a two-hop setting and proposed an approach
on how some of the existing DB protocols could be modified to verify the proxim-
ity of both next-hop and two-hop neighbours. In this paper, we go beyond this
and introduce a general model that covers most of the existing DB protocols and
analyse its security for internal and external adversaries. Furthermore, we provide
instantiations for the transformation of five existing DB protocols to a two-hop set-
ting. To verify our theoretical analysis, we evaluate the five chosen protocols and
provide an analysis of the success probability of the different types of attacks for a
varying number of rounds. Finally, we provide simulated experiments that validate
our theoretical results.

Two-hop Distance-Bounding Protocols: Keep your Friends Close 131

3 A General Model for Distance-Bounding Proto-
cols

In this section, we describe a general structure of most existing DB protocols that
belong in the register-based category. Table D.2 refers to the main notations used
throughout the paper. Let K denote the set of keys, M the set of messages and X
the set of session vectors. The challenges will be taken from the set C, the responses
from the set R while I denotes the set of indices27. Then we can make the following
claim:

Claim: All (existing) register-based DB protocols can be described using the seven (fi-
nite) sets K,M,X , C,R, I,W and the four maps, g0, g1, g2, f defined as follows: g0 :
K →M, g1 : K×M×M→ X , g2 : K×X ×Cn×Rn →W, f : K×X ×C×I → R.

We shall demonstrate this claim via a proof-of-concept. More precisely, we
shall construct a general (register-based) DB protocol that employs the functions
g0, g1, g2, f . By explicitly defining the functions g0, g1, g2, f and the sets K,M,X , C,
R, I,W, one can obtain all register-based DB protocols. Specific instantiations for
five existing DB protocols are given in Section 6.

Verifier V Prover P

xVP xVP

Initialisation phase
mV = g0(xVP) mP = g0(xVP)

mV−−−−−−−→
mP←−−−−−−−

ξ = g1(x,mV ,mP) ξ = g1(x,mV ,mP)

Distance-bounding phase
for i ∈ {1, . . . , n}

pick ci ∈ C
Start Clock

ci−−−−−−−→
Stop Clock

ri←−−−−−−− ri = f(xVP , ξ, ci, i)

Verification phase

Compute w
w←−−−−−−− w = g2(xVP , ξ, c1, ..., cn, r1, ..., rn)

Verify ri and w, and
check if ∆ti ≤ tmax

for i ∈ {1, . . . , n}

Figure D.16: The general description of a register-based DB protocol.

We consider a trusted verifier V who is equipped with a clock, and an untrusted
prover P that shares a secret key xVP ∈ K. The general structure model for register-
based DB protocols is depicted in Figure D.16 and is composed of the following
phases:

27I = {1, . . . , n} where n is the total number of rounds in the distance-bounding phase.

132 Paper D

Initialisation Phase This first phase enables the verifier V and the prover P to
initialise some values that will be used in the subsequent phases of the protocol. At
this stage both parties can (i) generate some values (e.g., nonces, using the function
g0) and (ii) perform some preliminary computations (using the function g1). More
precisely, the functions g0 and g1 are defined as follows:
• g0 : K →M is a possibly randomised function used to generate the initialisation
messages: mV (for the verifier) and mP (for the prover). The function g0 could be
for example a random selection (e.g., generation of a nonce) [12].
• g1 : K×M×M→ X is a deterministic function used in the initialisation phase.
It takes as input the shared secret key and two previously generated messages,
and outputs ξ = g1(xVP ,mV ,mP). The function g1 could be for instance a hash
function, a pseudorandom function (PRF), a commitment scheme [6] or it could
just return void. The session vector ξ is usually representing a session key that will
be used to generate the responses in the following phase.

Distance-Bounding Phase This is the only time-critical part of the protocol
and consists of n = |I| rounds with the same structure. V picks a random element
in C (a challenge), sends it to P and starts the clock. Upon receiving the prover’s
response, V stops the clock, stores the received data and records the round-trip-time
∆ti for i ∈ {1, . . . , n}. The main function in the whole DB protocol is the response
function f : K ×X × C × I → R that is called in this phase. In general, f outputs
ri according to the values of the secret key x, the session vector ξ, the challenge ci
and also the round i. In DB, the independency of the responses ri follows from the
independency of the challenges ci and the domain definition of f .

Verification Phase This is the final stage of the protocol. In most existing DB
protocols in this phase, the verifier checks that the received responses are correct,
and all the recorded round-trip times (∆ti) are smaller or equal to a pre-defined
threshold tmax that denotes the maximum-round-trip-time between P and V. Op-
tionally, P can provide an additional message that V shall check. We could actually
discriminate two main classes of DB protocols that provide an additional message to
be checked (e.g., a MAC or a signature) following the protocol proposed by Brands
and Chaum [6] or those where there is no additional message, following the paradigm
of Hancke and Kuhn’s protocol [12]. Eventually, if all the conditions are satisfied,
the verifier states that the prover is close enough and authenticated. We model the
final message produced by P through the function g2 : K × X × Cn × Rn → W.
The exponent n is the number of rounds in the distance-bounding phase. The func-
tion g2 computes the value (usually a vector) w = g2(xVP , ξ, c1, . . . , cn, r1, . . . , rn).
The output w depends on the secret key xVP , the session vector ξ and possibly
the transcript of the DB phase (n challenges and the n corresponding responses).
Depending on the protocol, g2 can be an open-commitment [6], a signature on the
transcript [6, 16] or it might return a void value [4, 22].

It should be obvious to see that any register-based DB protocol fits in the pre-
sented framework. For instantiations of the functions g0, g1, g2, f and the sets
K,M,X , C,R, I,W we refer the reader to Section 6.

4 From One-Hop to Two-Hop Distance-Bounding

Although traditional (one-hop) DB protocols have important advantages on combat-
ing relay attacks and verifying the proximity of an untrusted prover P to a trusted

Two-hop Distance-Bounding Protocols: Keep your Friends Close 133

verifier V, they cannot be employed when P is beyond the communication range of
V. In this section, we describe how traditional DB protocols could be extended to
the two-hop setting. In this setting, we consider three parties: an untrusted prover
P, a trusted verifier V and an untrusted in-between node L. P and V are not in the
communication range of each other while L is a one-hop neighbour of both P and
V. The goal of a two-hop DB protocol is to enable V in determining an upper bound
of the distance of the next-hop node L as well as the two-hop neighbouring node P
even when both of these nodes are untrusted. Figure D.17 depicts the configuration
of a two-hop DB protocol under consideration. Following the same formalisation
used in section 3, in this section we provide the general structure of a two-hop DB
protocol.

Figure D.17: The basic configuration of two-hop DB protocols: P lies at a two-hop
distance from V. Being outside V’s communication rage, P relies on the in-between
untrusted node L, who is in the communication range of both P and V. dV , dL and
dP denote the communication ranges of V, L and P correspondingly.

4.1 Challenge-Response in two-hop Distance-Bounding

We assume that each entity in the setting under consideration broadcasts its mes-
sages. This condition implies that whenever the linker L sends a message to the
verifier V, this message will also be received by the prover P (since P lies in L’s
communication range). In particular, in the time-critical phase (i.e., the distance-
bounding phase) of the two-hop DB protocol, any response ℓi produced by L, will
be interpreted as a challenge by P. Therefore, we will refer to ℓi, the output of the
linker in the time-critical phase, as the challenge-response, because it is a response
to the challenge ci (generated by V) and also a challenge to P (who will return the
final response ri).

In our generalisation of two-hop DB protocols (depicted in Figure D.18), we let
L use the same response function f as P (obviously f has different inputs for
each entity). Because of this choice, the range R of the response function f shall
be contained in the set of possible challenges, i.e., R ⊆ C. For security reasons
explained in Section 5.3, we require that C = R. This assumption is actually
satisfied by the large majority of existing DB protocols [6, 7, 12, 16, 22].

Our two-hop extension also applies to the register-based DB protocols for which
|C| > |R|, e.g., [4]. Since the values ℓi are used both as challenges and as responses
(for the entities P and V respectively), ℓi ∈ R∩C = R, the prover knows a priori that
some challenge-values are not possible. Thus, the security level of the corresponding
two-hop DB protocols drops considerably. For this reason, we generalise Boureanu

134 Paper D

et al.’s DB protocol [4] to the two-hop case, only in the case where C = R.

4.2 General Construction of Two-Hop DB Protocols

We proceed now with the formal description of a two-hop DB protocol. Similarly
to the one-hop case, we assume that the verifier V shares a secret key xVP with
the prover P and a secret key xVL with the linker L. Note that a linker itself
could be a prover in another DB protocol execution. We recall that for the two-
hop DB protocols under consideration the set of challenges and the set of responses
coincide, i.e., C = R. The general structure of a two-hop DB protocol is depicted
in Figure D.18 and is composed of the following three phases:

Verifier V Linker L Prover P

xVL, xVP xVL xVP

Initialisation phase

mV = g0(xVL) mL = g0(xVL,mV ,mP) mP = g0(xVP)
mV−−−−−−−→ mP←−−−−−−−
mL←−−−−−−− mL−−−−−−−→

ξL = g1(xVL,mV ,mL) ξL = g1(xVL,mV ,mL) ξP = g1(xVP ,mP ,mL)

Distance-bounding phase

for i ∈ {1, . . . n}

pick ci ∈ C
Start Clocks

ci−−−−−−−→

Stop Clock tL
ℓi←−−−−−−− ℓi = f(xVL, ξL, ci, i)

ℓi−−−−−−−→
Store ∆tLi

ri←−−−−−−− ri = f(xVP , ξP , ℓi, i)

Stop Clock tP
ri←−−−−−−−

Store ∆tPi

Verification phase

Check ℓi values
w←−−−−−−− w←−−−−−−− w = g2(xVP , ξP , ℓ1, ..., ℓn, r1, ..., rn)

Verify ri and w, and
check if ∆tLi

≤ tmax, ∆tPi
≤ t′max

for i ∈ {1, . . . , n}

Figure D.18: The general structure of a two-hop DB protocol.

Initialisation Phase In this phase V, L and P calculate some values that will
be used in the rest of the protocol. Initially, V and P send to L the messages
mV = g0(xVL, void, void) and mP = g0(xVP , void, void) respectively. The linker L
broadcasts its message mL = g0(xVL,mV ,mP), which can be related to mV and
mP , e.g., a concatenation of them, or be independent, e.g., a randomly selected
nonce. Finally, all parties produce a (possibly different) value, which will be used
in the next phase. In the two-hop DB we augment the input of the function g0 :
K×M×M→M to include the case in which L transmits a manipulation of the
messages mV and mP generated by V and P correspondingly.

Distance-Bounding Phase This phase consists of n time-critical rounds and it
uses the response function f : K × X × C × I → R. In each round i ∈ {1, . . . , n},
V generates a challenge ci, transmits it and starts two clocks tL and tP . The linker

Two-hop Distance-Bounding Protocols: Keep your Friends Close 135

L receives ci and evaluates the function f on xVL, ξL, ci and the round counter i to
obtain value ℓi ∈ C. Then, L broadcasts ℓi, which will be read by V as the response
to the challenge ci and by the P as the i-th challenge. As soon as V receives ℓi it
stops the clock tL and stores the round-trip-time ∆tLi . The prover P replies to ℓi
with the value ri = f(xVP , ξP , ℓi, i). Eventually, L replies ri to the verifier, who
stops the clock tP and records the round-trip-time ∆tPi .

Verification Phase In this phase, V checks whether the responses ℓi, ri, ∀i ∈
{1, . . . , n} are correct and whether the recorded round-trip-times satisfy the condi-
tions ∆tLi ≤ tmax, and ∆tPi ≤ t′max where tmax = c · dV and t′max = c · (dV + dL);
c denotes the speed of light, and dV , dP the communication ranges of V and P
respectively. If we consider that all entities have the same communication range
then t′max = 2tmax. Moreover, in case g2 outputs a non-void value w, the verifier will
also check the correctness of it. Finally, if the verification succeeds, V states that
P is within its two-hop communication range and authenticated.

In the verification phase, both the linker and the prover are authenticated in
terms of the identity authentication and the distance checking.

5 Security Analysis in one-hop and two-hop Dis-
tance-Bounding

In this section, we provide the security analysis of the generalisations of one-hop
and two-hop DB protocols presented in sections 3 and 4 respectively. We consider a
list of threats in the two settings and show general formulas to compute the success
probability of the best attacks for each of the threats under consideration against
one-hop and two-hop DB protocols. The exact security level of a DB protocol can
be computed using the provided formulas, and obviously depends on the specific
properties of the employed functions (g0, g1, g2, f). We explicitly calculate these
values in Section 6 for several one-hop and two-hop instantiations of DB protocols.
In this work we rely on the classical security assumption of DB, namely:

• The verifier V is honest, i.e., it behaves according to the protocol.

• All entities (honest, malicious and/or external attackers) are aware of how the
DB protocol works, e.g., the functions g0, g1, g2, f are public.

• All rounds i ∈ {1, . . . , n} are independent, which implies that all challenges
are equi-probable at each round of the protocol (this is the usual case for most
existing DB protocols).

5.1 Threat Model for one-hop DB protocols

The main objective of DB protocols is to protect against the following main threats:

• Distance Fraud (DF): In this case, a dishonest prover P∗ attempts to prove
that it is close to the verifier V while in reality it is far away.

• Mafia Fraud (MF): This threat involves three entities: an honest verifier V,
an untrusted prover P and an adversary A who acts as man-in-the-middle and
is located close to V. More precisely, P and V are not in close proximity and
A attempts to shorten the distance between P and V, by convincing V that
it communicates with P, while in reality both P and V are communicating

136 Paper D

with A. For instance, in order to achieve this, A could control two nodes28

(L2 and L1 respectively) one near P and the other near V (as shown in
Figure D.15). Note that, since DB protocols take into account the round-
trip-time of the challenge-response pairs, in order to succeed A cannot simply
relay the communication.

• Terrorist Fraud (TF): In this case, similarly to the mafia fraud, three
entities are involved: a prover P∗, an honest verifier V and an adversary A
located close to V. Also in this case, the adversary’s goal is to shorten the
distance between P and V. However, in this threat the prover is dishonest
and helps A to get authenticated, and more precisely to make it appear that
A is the prover close to V. The attack is successful if P∗ does not reveal any
(useful) information to the attacker.

5.2 General Security Analysis for one-hop DB protocols

Since the main threats against DB protocols are distance fraud (DF), mafia fraud
(MF) and terrorist fraud (TF) [1, 5], in this section we describe the three attacks
in terms of the properties of the functions g0, g1, g2, f introduced in Section 3. We
also provide general formulas to compute the attacker’s best success probability for
any register-based DB protocol captured by our general framework.

• One-hop DF: In this fraud, the attacker is a dishonest prover P∗. In addi-
tion to the previously mentioned assumptions (introduction of Section 5), the
adversary knows the secret key xVP and can correctly compute ξ and mP .
The attack is considered successful if and only if (a) ∆ti < tmax and (b) P∗’s
responses r∗i are correct, i.e., r∗i = ri at any round i, where ri is the honest re-
sponse to challenge ci sent by the verifier. Due to the actual distance between
P∗ and V, in order to fool the verifier in point (a) the malicious prover has
to send a response before receiving the corresponding challenge. In this way,
the time-difference ∆ti measured by V will be smaller than the actual one. In
order to achieve distance shortening, the responses are computed right after
the initialization phase, before the time-critical DB phase. The best strategy
to achieve (b) is for P∗ to choose the response r∗i that is most likely to happen,
independently of the challenge ci. This can be easily achieved by evaluating
the function f on xVP , ξ, i and try all the possible values for the challenge,

obtaining a list r
(j)
i = f(xVP , ξ, c

(j), i), j ∈ {1, . . . , |C|}. In order to maxi-
mize the success probability, the malicious prover will take the value r∗i that
has the largest number pre-images in round i, i.e., the r∗i that appears most

frequently in the list {r(1)i , . . . , r
(|C|)
i }. Formally, r∗i = maxr∈R |{c ∈ C, r =

f(xVP , ξ, c, i)}|, where the pre-images are taken according to the known values
of xVP , ξ and i. Let pri∈ (0, 1) be the probability that the attacker P∗ guesses
the correct ri, and PDF1 denote the success probability of the distance fraud
in the one hop setting, then, assuming that all rounds are independent29, the
following holds:

PDF1 =
n∏

i=1

pri (D.31)

28Often, in order to ease the understanding the two adversarial-controlled nodes are collapsed
into one single entity, the adversary A.

29This assumption can be re-formulated as, all challenges are equi-probable at each round of the
protocol, which is the case for all register-based protocol considered in this paper.

Two-hop Distance-Bounding Protocols: Keep your Friends Close 137

Let ci denote the actual challenge for round i, pri =Pr
(
r∗i = f(xVP , ξ, ci, i)

)
≥

max
{

1
|R| ,

1
|C|

}
. We refer the reader to Section 6.2 for concrete examples of

values for pri .

• One-hop MF: Differently from DF, in MF the attacker A is an entity external
to the protocol, and therefore does not know xVP , ξ. The attack is considered
successful if A manages to pass the protocol as if she were the prover P but
is located in A’s position (i.e., close to V). Since, by assumption, A lies in
the verifier’s DB range, the only condition to have a valid forgery is that A
produces answers r∗i and a final transcript check w∗ (if needed) that correctly
pass the verification performed by V.

In order to output correct replies r∗i , the adversary can adopt the classical
(optimal) strategy against DB protocols: in the initialisation phase, relay the
transmissions between V and P; start a pre-ask session with the prover, i.e.,
query P for the responses ri to challenges c∗i of the attacker’s choice; collect
the final message w = g2(xVP , ξ, c

∗
1, . . . c

∗
n, r1, . . . rn). When the actual DB

phase starts, A runs the protocol with V pretending to be P. Every time
the verifier’s challenge equals the malicious pre-asked challenge (ci = c∗i) the
attacker can correctly reply using the response r∗i = ri collected during the
pre-ask session. If ci = c∗i for all i ∈ {1, . . . , n}, A can succeed by relaying
w∗ = w. On the other hand, if ci ̸= c∗i in at least one round i ∈ {1, . . . , n}, A
returns a random element r∗i from the set of responses R, and has to tamper
with the final message of the DB protocol. To formally define the probability
of one-hop mafia fraud (PMF1) we introduce three events: Gk : A guesses
correctly exactly k challenges (among the n rounds); Ef : A successfully
guesses the correct answer to all of the verifier’s challenges; Ew : A forges the
final message w. Then, by the law of total probability we have:

PMF1 =
n∑

k=0

Pr(Gk) Pr(Ef |Gk) Pr(Ew|Ef ∩Gk) (D.32)

Let εw(k) = Pr(Ew|Ef ∩ Gk), for k ∈ {1, . . . , n}. It is immediate to see
that, independently of the function g2, εw(n) = 1. Indeed, when k = n the
adversary has successfully guessed all the verifier’s challenges, and A can set
w∗ = w obtained from P in the pre-ask phase. For 1 ≤ k ≤ n − 1, εw(k)
is either negligible, as it corresponds to the unforgeability of the employed
signature/commitment scheme, or εw(k) = 1, e.g., when the output of g2 is
void, or it can be computed using solely public data. In any case, for k < n,
εw(k) = ε is a constant value. We can thus split the summation in Equation
(D.32) into the k = n term, and the k < n term:

PMF1 = Pr(Gn) Pr(Ef |Gn) · 1 +
n−1∑
k=0

Pr(Gk) Pr(Ef |Gk) · ϵ

=pnci + ϵ

n−1∑
k=0

(
n

k

)
pkci (1− pci)

n−k
(

1

|R|

)n−k

(D.33)

The value pci in the above expression corresponds to the probability of cor-
rectly guessing the challenge ci. In our security model pci = 1

|C| . Equation

(D.33) translates the intuition highlighted before: a mafia fraud attack is suc-
cessful if either A guesses all the challenges correctly, or A guesses correctly

138 Paper D

all the replies r∗i for which c∗i ̸= ci and produces a valid w∗. In partic-
ular, when |R| = |C|, which is the case for most DB protocols, Equation
(D.33) becomes: PMF1 = 1

|C|
n
+ negligible terms, for an unforgeable g2; and

PMF1 = 1
|C|

n
(

2− 1
|C|

)n
, when g2 is forgeable (i.e., ϵ = 1).

• One-hop TF: Terrorist fraud is a challenging threat to defend against and
different definitions are given regarding its success [1, 4, 10]. Although it is
not possible to design a general formula to capture all the different definitions,
we identify the common notion behind all of them: the malicious prover P∗
is willing to help A as long as no compromising information about the long-
term secret key xVP is revealed. Existing DB protocols that are TF resistant
(according to at least one of the cited definitions) prevent the forgery by
forcing the prover to partially or fully disclose the secret key to the attacker.
Table D.3 provides the values for the best success probability of TF of the
protocols investigated in this paper.

5.3 General Security Analysis of two-hop DB protocols

We begin the security analysis of two-hop DB protocols by identifying two types of
adversaries: internal adversaries and external adversaries. As the name suggests,
internal adversaries are entities that take part in the protocol and pretend to be
honest but actually behave in a dishonest way (we mark these malicious entities
with a ∗ symbol). Internal adversaries can be a dishonest prover P∗ and/or a
dishonest linker L∗. An external adversary A is an entity (possibly controlling
multiple entities) that is not supposed to take part in the protocol, however she
interferes with it. In order to maximise the success of the attacks an external
adversary would place herself between the V and the L or between the L and the P.
In general, malicious entities (internal or external) have two simultaneous goals: (a)
to successfully pass the protocol (impersonating P), and (b) shorten the distance
between a legitimate entity (i.e., P or L) and V. On top of the assumptions in
Section 5 for one-hop DB protocols, in the two-hop case we enable adversaries (A,
P∗, L∗) to send unilateral messages. For example, L∗ is able to query P without V
receiving the message(s) as well.

Internal Adversaries In two-hop DB protocols there are two possible attacks
that involve solely internal adversaries, and the attack scenarios resemble the ones
considered against one-hop DB protocols. However, the fact that the adversaries
are internal, the protocol makes the resulting security analysis quite different from
the one-hop cases. Since the linker is untrusted in the two-hop DB scenarios, the
two corresponding attack cases are: 1) dishonest linker, honest prover (L∗,P); and
2) dishonest linker, dishonest prover (L∗,P∗), where we denote them as L∗P, and
L∗P∗respectively.

• Case L∗P- (L∗,P): in this attack, the prover P is honest while the linker
L∗ is malicious. Although the setting resembles one-hop MF, in the two-hop
case the fact that the attacker is an internal entity for the protocol implies
that L∗ has a greater advantage with respect to the classical MF attacker A.
More precisely, L∗ additionally knows xVL, ξL and mP . By running a strategy
similar to the one-hop MF, L∗ can pre-ask P with challenge-responses ℓ∗i of its
choice. The values ℓ∗i are chosen without knowing the corresponding challenge
ci coming from V. In some cases, however, L∗ is able to predict the exact value

Two-hop Distance-Bounding Protocols: Keep your Friends Close 139

of some ℓi. Consider for instance the two-hop Hancke and Kuhn [12] DB
protocol depicted in Figure D.20: the g1 function in the initialisation phase
generates two equal-length registers, say ξL = (R0, R1) ∈ {0, 1}2n. In the
time-critical phase, the response function f outputs ℓi = (Rci)i on an input
challenge ci, i.e., the challenge-response ℓi corresponding to the challenge
ci is the i-th entry of the ci-th register. Whenever (R0)i = (R1)i, L∗ can
determine the correct ℓi = (R0)i without waiting for the challenge ci. For the
remaining rounds, in which (R0)i ̸= (R1)i, L∗ cannot pre-determine the exact
challenge-response value and will simply choose the most likely one, i.e., ℓ∗i s.t.
|{c ∈ C, ℓ∗i = f(xVL, ξL,mP , c)}| = maxℓ∈R |{c ∈ C, ℓ = f(xVL, ξL,mP , c)}|.
During the actual DB phase, upon receiving ci from V, the malicious linker
will find out whether its guess on ℓ∗i was correct or not. Every time it holds
that ℓ∗i = (Rci)i, L∗ will use the value ri that P honestly provided in the
pre-ask session (for the prover it was the DB phase). Otherwise, L∗ returns a
random guess r∗i on the value of P’s response.

To formally definite the success probability of two-hop L∗P attack, consider
the following three events: Gk : A guesses correctly exactly k values ℓi1 , . . . ℓik
(among the n rounds); Ef : A successfully guesses the correct answer ri to
the verifier’s challenge ci for all the n rounds; Ew : A forges the final message
w. By the law of total probability we have:

Pr(L∗,P) =
n∑

k=0

Pr(Gk) Pr(Ef |Gi) Pr(Ew|Ef ∩Gk)

=

(
n∏

i=1

pℓi

)
+ ϵ


n−1∑
k = 0,

I ⊊ {1, . . . , n},
|I| = k

(
n

k

)(∏
i∈I

pℓi

)
·

·

 ∏
i∈{1,...,n}\I

(1− pℓi)

(1

|R|

)n−k
 (D.34)

where, similarly to the case of one-hop mafia fraud, we split the summation
into two terms: the k = n case, corresponding to the case A guesses all the
values ℓi correctly; and the case where A guesses correctly k < n values of ℓi
and outputs the correct responses r∗i = ri for all 1 ≤ i ≤ n and forges w∗.
Similarly to the one-hop mafia fraud case, εw denotes the probability that L∗
forges the value w = g2(xVP , ξP , ℓ1, . . . , ℓn, r

∗
1 , . . . , r

∗
n) with r∗j ̸= rj for some

j ∈ {1, . . . , n}.
We observe that PrL∗P = PMF1 whenever pℓi = pci = 1

|R| at each round. This

corresponds to L∗ actually having no advantage in pre-determining the val-
ues ℓi. Intuitively, the longer the output of g1 (i.e., the larger the number of
registers) the lower the value of pℓi , and the closer PrL∗P is to PMF1.

• Case L∗P∗- (L∗, P∗): In this attack, both the prover and the linker are
malicious and collaborate with each other. Although this scenario resembles
TF in the one-hop case, there is a substantial difference: L∗ is an insider in
the protocol and potentially can exploit information about the values of ℓi (as
in the two-hop (L∗, P) case). However, differently from one-hop TF, L∗ must
be careful not to leak secret information (e.g., xL∗) to P∗. We distinguish two
scenarios for this attack:

140 Paper D

(i) P∗ helps L∗ to pass one protocol run with probability 1. However, if L∗
later on runs a two-hop L∗P attack, she should have no advantage (i.e.,
the knowledge leaked by P∗ does not increase the chances of L∗ to cheat
alone).

(ii) P∗ helps L∗ to pass one protocol run with a certain probability Pr(L∗,P∗)
≤ 1, without P∗ or L∗ leaking any secret information to each other.

Even though the two definitions appear distinct, they essentially capture the
aim of the L∗P∗attack: the higher the chance to pass the DB protocol the
larger amount of secret information needs to be leaked. The two expressions
we provide are consistent with each other and respectively answer the ques-
tions (i) Can L∗ pass the two-hop DB protocol with the help of P∗, without any
of them leaking information that can be useful to cheat in a subsequent proto-
col run? and (ii) If no information is leaked by L∗ or P∗, this could be useful
for future frauds, what is the probability that L∗ and P∗ together successfully
succeed in cheating on the prover’s distance? In the sequel, when mentioning
the adversary’s success probability with respect to the L∗P∗ attack, we will
refer only to the case (ii). Similar to the one-hop TF, it is not straight-forward
to give an equation for the success probability of L∗P∗for the general two-hop
DB protocol in Figure D.18. The main problem consists of defining the leakage
of information of a DB protocol in a general way, since this quantity depends
on the properties of the specific response function f , and thus differs for each
DB protocol. We will compute the leakage of information explicitly for the
five DB protocols considered in this paper in Section 6.2.

External Adversaries an external adversary A (man-in-the-middle) is a mali-
cious entity that takes part in a two-hop DB protocol, as a ghost, i.e., A /∈ {P∗,L∗}.
It can be located between V and L, or between L and P. In both cases, the ad-
versary has no direct access to the secret key of the parties L and P. Therefore,
A is as powerless as a one-hop MF adversary. The success probability of A equals
PMF1 in equation (D.33). We underline that there is no interest for an A settled
between V and L to impersonate both L and P, as this will only lower the success
probability. Let us discuss two-hop collusions. If the prover P helps A to pass
the protocol, we are exactly in the same situation as one-hop TF. Similarly, for the
collusion between L and A; however, in this case the probability should be higher,
as L (and so A) does not need to additionally evaluate function g2. In general, the
success probability of external attackers is always lower than obtained by internal
ones, simply because internal adversaries have access to the same information as
external ones and, in addition, possess at least one secret key needed in the protocol
run.

6 Protocols Evaluation

We have provided the security analysis of the novel model for general two-hop DB
protocols. In this section, we evaluate our proposed model on five existing DB
protocols: Hancke and Kuhn [12], Brands and Chaum [6], Reid et al. [22], Swiss-
Knife [16] and SKIextend from SKI [4]. We choose these five protocols because their
employed functions (g0, g1, g2, f) are representative of the majority of the existing
DB protocols. According to our model in Section 5, these four functions are the
key factors that determine any DB protocol, one-hop or two-hop. Therefore, all
aforementioned functions influence the adversary’s success probability in the three

Two-hop Distance-Bounding Protocols: Keep your Friends Close 141

main frauds. In the following, we first give a representative example of transforming
a one-hop DB protocol to two-hop and employ the Hancke and Kuhn’s protocol [12]
to a two-hop case. Then, we briefly revisit the other four selected protocols. Next,
we calculate the best success probabilities of the main attacks against one-hop and
two-hop DB protocols described in Sections 5.2 and 5.3 respectively. Finally, we
verify our theoretical analysis through some simulation experiments for the three
main attacks (distance fraud, mafia fraud and terrorist fraud).

6.1 The Selected DB Protocols

Hancke and Kuhn (HK) [12] protocol

In the Hancke-Kuhn protocol [12] (depicted in Figure D.19), the verifier V and the
prover P share a secret key xVP . During the initialisation phase the two parties
exchange some randomly selected nonces mV = NV and mP = NP through an ap-
propriate function g0 (e.g., a PRNG function). V and P evaluate a pseudorandom
function (PRF) f (corresponding to g1 in the general description of one-hop DB
protocols) on the exchanged nonces and the shared key, obtaining two n-bits se-
quences, a0 and a1 (ξ = a0||a1). The distance-bounding phase consists of n rounds:
for i ∈ {1, . . . , n}, the verifier V sends a random bit ci as a challenge to P. Upon
receiving ci, the prover P sends (aci)i as a response back to the verifier. After
the last round, the verifier checks whether the n responses r1, . . . , rn are correct
and if each round-trip-time (denoted by ∆ti) is less than or equal to a pre-defined
maximum delay-threshold tmax. If all previous constraints hold, the verifier states
that the prover is close enough and authenticated. There is no final message, i.e.,
the output w of g2 is void.

Verifier V Prover P

xVP xVP

Initialisation phase

NV ←− {0, 1}m
NV−−−−−−−→
NP←−−−−−−− NP ←− {0, 1}m

a0||a1 = fxVP(NV , NP) a0||a1 = fxVP(NV , NP)

Distance-bounding phase

for i = 1, . . . n

pick ci ∈ {0, 1}
Start Clock

ci−−−−−−−→ if ci /∈ {0, 1}, halt
Stop Clock

ri←−−−−−−− else ri = (aci)i

Check if ri’s are correct and
∆ti ≤ tmax

Figure D.19: The Hancke-Kuhn protocol.

Figure D.20 depicts the extension of the HK protocol. We assume that P and
L respectively share secret keys xVP and xVL with the verifier V only. In the first

142 Paper D

Verifier V Linker L Prover P

xVL, xVP xVL xVP

Initialisation phase

NV ← {0, 1}m
NV−−−−−−−→
NL←−−−−−−− NL ← {0, 1}m

NL−−−−−−−→
a0||a1 = fxVL(NV , NL) a0||a1 = fxVL(NV , NL) NP ← {0, 1}m

NP←−−−−−−− NP←−−−−−−−
d0||d1 = fxP(NL, NP)

Distance-bounding phase

for i ∈ {1, . . . n}

pick ci ∈ {0, 1}
Start Clocks

ci−−−−−−−→ if ci /∈ {0, 1}, halt

Stop Clock tL
ℓi←−−−−−−− else ℓi = (aci)i

ℓi−−−−−−−→ if ℓi /∈ {0, 1} halt
Store ∆tLi

ri←−−−−−−− else ri = (dℓi)i

Stop Clock tP
ri←−−−−−−−

Store ∆tPi

Verification phase
d0||d1 = fxP(NL, NP)

check ri and ∆ti < tmax ∀i = 1, . . . , n.

Figure D.20: The two-hop Hancke-Kuhn DB protocol (extension to three partici-
pants)

phase, each participant (V, L and P) generates a random string of bits (nonce)
(mV = NV , mL = NL and mP = NP respectively) using a function g0 (e.g., a
PRNG). Each participant uses the two nonces as input to the PRF g1 (with its
corresponding key) to produce the variables ξL = a0||a1 (for the verifier and linker)
and ξP = d0||d1 (for the prover).

In this way, V is able to check the correctness of L’s responses during the DB
phase. The DB phase consists of n rounds that run as follows. The verifier generates
a (random) challenge-bit ci and transmits it. The linker checks whether the received
input is acceptable, if so it reads the i-th entry of the ci-th register, namely (aci)i,
and transmits this bit, say ℓi. Both V and P get ℓi, the prover sends its reply
ri = (dℓi)i to the linker, who forwards it to the verifier.

The protocol ends with the verification phase, where V estimates the distance of
P by computing an average of the times ∆ti that elapses between the instant when
the challenge ci is sent (by V) and the instant when V receives the corresponding
response ri. V can check the authenticity of all the responses received from P and
thus authenticate the prover. The function g2 always returns w = void, and we omit
to write it.

Brands and Chaum (BC) [6]

In the Brands and Chaum’s protocol, g0 is a commitment, g1 is a pseudorandom
number generator (PRNG) and they are executed only in the prover side. Thus,
mV is a null string (i.e., there is no mV in this protocol). g2 is a combination of an
open commitment and a signature scheme. The response function is f = ci⊕(NP)i,
where ci ∈ {0, 1}.

Two-hop Distance-Bounding Protocols: Keep your Friends Close 143

Reid et al. [22]

In Reid et al.’s protocol, g0, f, g2 are the same as that of Hancke and Kuhn’s pro-
tocol. The difference is in g1, i.e., g1 is a combination of a PRF and an encryp-
tion scheme Enc. In particular, ξ = a0||a1, where a0 is an output of PRF and
a1 = Enca0(x).

Swiss-Knife [16]

The Swiss-Knife protocol is an extension of Reid et al.’s protocol, and thus shares
the same g0 and the response function f . g1 is a combination of a PRF and a one-
time pad encryption function. In particular, ξ = a0||a1, where a0 is an output of
PRF and a1 = a0 ⊕ x. The response function is f = (aci)i, where ci ∈ {0, 1}. g1, g2
are PRF. Note that in the Swiss-Knife protocol, there is a fourth non-time critical
phase (i.e. verification phase) where the verifier sends the prover the final message
to authenticate himself. Thus, this protocol achieves mutual authentication. How-
ever, this does not influence the security analysis of this protocol (does not change
any success probability). Therefore, hereafter when we talk about the Swiss-Knife
protocol under our general DB model, we mean the Swiss-Knife protocol without
the fourth slow (non-time critical) message.

SKI and SKIextend [4]

Boureanu et al. proposed the first family of provably secure DB protocols, named
SKI. This family of DB protocols introduced the use of circular-keying PRF functions
and PRF masking to provide resistance against a generalised version of mafia and
terrorist as well as distance fraud attacks. In one of the instantiations proposed
by Boureanu et al., g0 is a function that generates uniformly at random mV = NV
and mP = NP . g1 is derived by masking the output of a PRF (that employs
as input the random values NV and NP) with a random mask M . The result is
denoted by ξ = a1||a2 = M ⊕ f(x,NV , NP). The response function is f = (aci)i
for ci ∈ {1, 2}, aci ∈ {0, 1} and f = x′i + (a1)i + (a2)i mod 2 for ci = 3, where
ci ∈ {1, 2, 3}, x′ = L(x), and L is a linear transformation. There is no final message
and thus w and g2 are void. Obviously, a response is either 0 or 1 and a challenge
belongs to {1, 2, 3}. This implies that the response space and the challenge space
are different. To ease understand and employ the described approach of extending
one-hop DB protocols to DB protocols, we adopt a modified version of the SKI
family of protocols and derive a new protocol that we call SKIextend. More precisely,
in SKIextend we set both of the challenge and response space as {0, 1, 2}. Now the
response function becomes f = (aci)i for ci ∈ {0, 1} and f = x′i+(a0)i+(a1)i mod 3
for ci = 2, where a0, a1 ∈ F3 are two vectors consisting of n random numbers, and
thus (a0)i, (a1)i, ci ∈ {0, 1, 2}.

6.2 Concrete Security Analysis for Five Selected DB Proto-
cols

In the following, we shall show how to apply our security analysis model to compute
the concrete success probabilities of the chosen five protocols in the cases of both
one-hop and two-hop scenarios. In all these protocols, each round in the DB phase
is independent of another, i.e., the response of the current round ri is not influenced
by previous ri−1 or ci−1. Thus, we only need to compute the success probability for
each round and then we can obtain the success probability for n rounds immediately.

144 Paper D

Table D.3: Comparison of the best case success probabilities of attacks against five
DB protocols. The values shown for the one-hop case are the ones provided by the
authors in the corresponding papers.

One-hop DF One-hop MF One-hop TF Two-hop L∗P Two-hop L∗P∗

BC (1
2)n (1

2)n 1 (1
2)n 1

HK (3
4)n (3

4)n 1 (7
8)n 1

Reid et al. (3
4)n (3

4)n (3
4)n (7

8)n 1

Swiss-Knife (3
4)n (1

2)n (3
4)n (3

4)n (3
4)n

SKIExtend (17
27)n (2

3)n (7
9)n (3

4)n (25
27)n

One-hop Distance Fraud

Using equation (D.31), we only need to calculate pri . In the Brands and Chaum’s
protocol, the i-th response ri equals to ci⊕ (NP)i, where the attacker P∗ knows NP
but not ci, where ci, ri ∈ {0, 1}. Thus, pri = 1

2 and we get PDF1 = Pr(L,P∗) = (1
2)n.

In the HK, Reid et al., Swiss-Knife, and SKIextend protocols, the responses come
from more than one register and thus the attacker gets a higher advantage. Let’s
take the HK protocol as an example, in which the response function f is ri = (aci)i,
where ci, ri ∈ {0, 1}, and a0, a1 are two n-bit secret registers (outputs of a PRF). For
each round, the attacker already knows (a0)i and (a1)i, but she has no idea of ci.
She can list all the possible ci ∈ {0, 1} and thus can find the most likely response.
With a probability of 1

2 no matter if ci equals 0 or 1, the response is the same (i.e.,
(a0)i = (a1)i), then the attacker definitely knows the correct ri in advance. For the
other half, the attacker randomly guesses r∗i and thus pri = 1

2 ∗ 1 + (1− 1
2) ∗ 1

2 = 3
4 .

Using the same strategy for the other protocols we can get the specific values as
shown in Table D.3.

One-hop Mafia Fraud

For the one-hop MF, we can apply equation D.33, which requires the value of |C|,
|R| and εw. Protocols like HK, Reid et al., and SKIextend have no final signature,
that is, w is a null string in these protocols. Therefore, for these protocols the
value of εw is 1, which means the attacker does not need to forge w. In the BC
and Swiss-Knife protocols, the attacker has to forge a valid w without knowing the
secret key used in g2. If g2 is secure, then εw is negligible. Based on the above
analysis, we take the HK protocol as an example, where |C| = |R| = 2, εw = 1 and
thus, we get PMF1 = (1

2 + (1− 1
2) ∗ 1

2 ∗ εw)n = (3
4)n. The analysis for mafia fraud in

BC, Reid et al., Swiss-Knife, and SKIextend protocols is similar.

One-hop Terrorist Fraud

Protocols like BC, HK are not secure against terrorist fraud, since the malicious
prover can always help the attacker to pass the current protocol run, without leaking
any secret information, which means that the information that P∗ gives to the
attacker in the current protocol run does not help to increase the attacker’s success
probability in a future protocol run. Now we will focus on the Reid et al., Swiss-
Knife, and SKIextend protocols.

In the Reid et al. protocol, the prover has to give all the response registers to the
adversary, which results in revealing the secret key x. Therefore, it prevents the one-
hop TF. Both the Swiss-Knife and the SKIextend protocols use secret sharing schemes

Two-hop Distance-Bounding Protocols: Keep your Friends Close 145

to prevent terrorist fraud. Suppose an (m,m) secret-sharing scheme is used. The
prover P∗ can at most give (m − 1) shares of the secrets (response registers) to
the adversary, otherwise the secret will be revealed. In the case when a challenge
requires a response that comes from the last share of the secrets that is not sent to
the adversary, the adversary can send a random response as its answer. Thus, the
success probability of one-hop TF is:

PTF1 =
(m− 1

m
· 1 +

1

m
· 1

m

)n
=
(
1− 1

m
+

1

m2

)n
(D.35)

According to equation D.35, we can obtain the success probability of one-hop TF
for Swiss-Knife and SKIextend are (3

4)n and (7
9)n, respectively.

Two-hop L∗P

For the two-hop L∗P, according to equation (D.34), besides pci and εw, we also
need to compute pℓi , i.e., the probability that the attacker L∗ knows ℓi definitely.
In the two-hop BC protocol, there is only one response register and thus L∗ has no
way to assert ℓi, which means pℓi = 0. Thus, Pr(L∗,P) = (1

2)n. In the rest of the
selected protocols, there are more than one register and thus L∗ has the advantage
in winning the two-hop L∗P over in the one-hop MF. For instance, in the two-hop
HK protocol there are two registers, while the probability of having both registers
with the same value (either 0 or 1) is equal to 1

2 . Thus, we have pℓi = 1
2 and

Pr(L∗,P) = (1
2 + (1 − 1

2) ∗ (1
2 + (1 − 1

2) ∗ 1
2))n = (7

8)n. The analysis of the other
protocols is similar and the results are shown in Table D.3.

Two-hop L∗P∗

Similar with one-hop terrorist fraud, protocols like two-hop BC and two-hop HK are
not secure against two-hop L∗P∗, since the malicious prover can always help the
linker to pass the current protocol run, without leaking any secret information. We
only focus on the other three protocols.

In the two-hop Reid et al. protocol, the malicious linker L∗ can predict half of
ℓi’s (1 ≤ i ≤ n) correctly and can ask for the corresponding responses ri’s from
P∗ without leaking any secret information (this is because half of the responses
are either from the first register or from the second register, and thus one of the
registers will not leak secret information). As to the rest half of the responses, P∗
can give both of the two register values to L∗. With this method, L∗ has all the
correct responses ri and thus she can pass the current protocol with probability of
1, but she does not have all the values of the two registers, which means she cannot
recover the secret key. This means in the future protocols, without P∗’s help, L∗
has no advantage to win. Thus, the two-hop Reid et al. cannot prevent the two-hop
L∗P∗ attack.

In both of the two-hop Swiss-Knife and the two-hop SKIextend protocols, the mali-
cious linker L∗ can predict some ℓi and thus can query for the corresponding correct
response ri which can be given by P without leaking any secret information. Below
we provide the detailed analysis for the two-hop Swiss-Knife and SKIextend.

For the two-hop Swiss-Knife protocol both L∗ and P∗ have two registers that
store the candidate response strings, which are computed by the same response
function f but with different secret keys. In particular, ℓi = (aci)i, ri = (bℓi)i
where a0, b0 are n-bits outputs of a PRF, a1 = a0 ⊕ xL and b1 = b0 ⊕ xP . Table
D.4 shows all the possible values of (a0)i (resp. (b0)i) and (a1)i (resp. (b1)i) in
the i-th round, as well as the probability of those cases. Now we discuss how much

146 Paper D

(a) All possible values of (a0)i
and (a1)i

(a0)i 0 0 1 1
(a1)i 0 1 0 1

Pr 1
4

1
4

1
4

1
4

(b) All possible values of (b0)i
and (b1)i

(b0)i 0 0 1 1
(b1)i 0 1 0 1

Pr 1
4

1
4

1
4

1
4

Table D.4: All possible values of (a0)i/(b0)i and (a1)i/(b1)i for the i-th round where
ℓi = (aci)i, ri = (bℓi)i .

information P∗ can give to L∗ in order to help her pass the current protocol run.
On one hand, P∗ can only give either (b0)i or (b1)i for each round, otherwise L∗
can trivially recover (xP)i by computing (b0)i⊕ (b1)i. On the other hand, L∗ needs
to know the actual response ri ∈ {(b0)i, (b1)i} to pass the i-th round. L∗ can query
for ri by sending ℓi = (aci)i to P∗ who will return ri = (bℓi)i. Without knowing
ci, L∗ has to query both (a0)i and (a1)i, but this will reveal L∗’s secret key (xL)i
to P∗. Therefore, the best strategy for P∗ is to send half of the two register values
to L∗. For example, P∗ may give the first register b0 to L∗. Thus, this case falls in
the same category as the one-hop TF and thus we get Pr(L∗,P∗) = (3

4)n.
In the two-hop SKIextend protocol both L∗ and P∗ have three registers. The anal-

ysis is very similar with that in the two-hop Swiss-Knife, but with more registers.
The adversaries have more flexible ways to query the responses. In particular,
ℓi = (aci)i, ri = (bℓi)i where a0/b0, a1/b1 are vectors consisting of n random num-
bers belonging to F3 generated by a PRF, (a2)i = (a0)i + (a1)i + (xL)i mod 3 and
(b2)i = (b0)i + (b1)i + (xP)i mod 3. Table D.5 shows all possible values of ℓi and
ri. In the first case, (i.e., (a0)i = (a1)i = (a2)i), L∗ can query any two values
such as (a0)i and (a1)i, and get the correct response ri. In this way, L∗ does not
leak (xL)i, nor does P∗ leak (xP)i. In case 2, (i.e., two registers have the same
value in the i-th position), L∗ can still query two values and can succeed. Suppose
(a0)i = (a1)i ̸= (a2)i, then L∗ can query (a0)i and (a2)i to get all the possible
responses that will be used to answer the real challenges sent by V. In the last case,
all the registers have different values in the i-th position, then L∗ has to query for
all the positions, but this will reveal (xP)i to L∗ if P∗ gives all (b0)i, (b1)i and (b2)i
to L∗. In this case, P∗ can give at most two register values to L∗. Therefore, the
success probability should be Pr(L∗,P∗) = (1

9 ∗ 1 + 2
3 ∗ 1 + 2

9 ∗
2
3)n = (25

27)n. In fact,
for an (m,m) secret sharing scheme, we can obtain the following equation in order
to compute the two-hop TF probability, that is,

Pr(L∗,P∗) =
(

1− m!

mm+1

)n
(D.36)

6.3 Experiments

To verify our theoretical security analysis, we simulated the two different attack
scenarios in the two-hop versions of the five selected DB protocols in Matlab, namely
the case of L∗P (dishonest linker, honest prover) and the case of L∗P∗ (dishonest
linker, dishonest prover). For each selected value n (i.e., the number of rounds
in fast phase), we calculate the realistic success probability of the adversary by
figuring out how many correct responses that the adversary has returned, and we
repeat the simulation for 1000 times, as a consequence obtaining the final simulated
success probability by averaging the 1000 values. The results are shown in Figure

Two-hop Distance-Bounding Protocols: Keep your Friends Close 147

(a) All possible values of
(a0)i, (a1)i and (a2)i

(a0)i y0 y0 y0
(a1)i y0 y0 y1
(a2)i y0 y1 y2

Pr 1
9

2
3

2
9

(b) All possible values of
(b0)i, (b1)i and (b2)i

(b0)i y0 y0 y0
(b1)i y0 y0 y1
(b2)i y0 y1 y2

Pr 1
9

2
3

2
9

Table D.5: All possible values of (a0)i/(b0)i, (a1)i/(b1)i and (a2)i/(b2)i for the i-th
round, y0, y1, y2 ∈ {0, 1, 2}. ℓi = (aci)i, ri = (bℓi)i .

(a) Two-hop Brands and
Chaum (BC) protocol

(b) Two-hop Hancke-Kuhn
(HK) protocol

(c) Two-hop Swiss-Knife pro-
tocol

(d) Two-hop Reid et al. pro-
tocol

(e) Two-hop SKIextend proto-
col

Figure D.21: Theoretical and simulated success probabilities of the attackers in two
attack scenarios for the selected two-hop DB protocols. In particular, L∗P means
the attack case of dishonest linker and honest prover, while L∗P∗ refers to the attack
scenario of dishonest linker and dishonest prover. The x-axis shows the number of
rounds in fast phase and the y-axis shows the adversary’s success probability.

148 Paper D

D.21. Each subfigure illustrates one protocol with regard to the two attacks and
plots both the theoretical and the simulated success probabilities of the attacker.
The x-axis shows the number of rounds in fast phase and the y-axis shows the
adversary’s success probability. According to Figure D.21, the evaluation results
verify our theoretical analysis very well.

Moreover, we explore the relationship between a (m,m) secret-sharing scheme
with the success probability against one-hop terrorist fraud and two-hop L∗P∗ at-
tack, since secret-sharing scheme seems to be a good candidate to prevent these
complicated attacks. Figure D.22 shows that when m increases, the success prob-
abilities against both attacks also increase. In particular, when m ≥ 6, the ad-
versary has an overwhelming advantage to win the L∗P∗ attack. Intuitively, this
is because, when m is larger, the linker can exchange more information with the
dishonest prover without revealing any secret information to each other.

Figure D.22: Relationship between the success probability against one-hop terrorist
fraud, two-hop L∗P∗ attack and m, m ≥ 2 .

7 Conclusions

In this paper, we investigated how to extend DB protocols to the two-hop case, i.e.,
when the prover and the verifier do not lie in each other’s communication range
and they need to rely on an in-between entity (linker) to perform authentication
and distance-bounding. We defined two categories of DB protocols and provided a
model that captures all the so-called register-based ones (which is the large majority
of existing proposals). Using this model, we constructed a general method to derive
the two-hop DB protocol from a one-hop register based one. A detailed security
analysis for the two general constructions is then given, in particular we were the
first to define attack scenarios for the two-hop case. Experiments were run on
five different protocols to compare the values of the two main attacks against DB
and their analogues in the two-hop case. We discussed the relation between the
obtained results, and observed that (not surprisingly) the security of two-hop DB
protocols is less or equal than that of the corresponding original DB protocols, which
is consistent with our security analysis.

Bibliography

[1] Gildas Avoine, Muhammed Ali Bingöl, Süleyman Kardaş, Cédric Lauradoux,
and Benjamin Martin. “A Framework for Analyzing RFID Distance Bounding
Protocols”. In: J. Comput. Secur. 19.2 (2011), pp. 289–317.

[2] Gildas Avoine and Aslan Tchamkerten. “An efficient distance bounding RFID
authentication protocol: balancing false-acceptance rate and memory require-
ment”. In: International Conference on Information Security. Springer. 2009,
pp. 250–261.

[3] Azzedine Boukerche, Horacio ABF Oliveira, Eduardo F Nakamura, and Anto-
nio AF Loureiro. “Secure localization algorithms for wireless sensor networks”.
In: IEEE Communications Magazine 46.4 (2008), pp. 96–101.

[4] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. “Practical and
provably secure distance-bounding”. In: Journal of Computer Security 23.2
(2015), pp. 229–257.

[5] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. “Towards secure
distance bounding”. In: International Workshop on Fast Software Encryption.
Springer. 2013, pp. 55–67.

[6] Stefan Brands and David Chaum. “Distance-bounding protocols (extended
abstract)”. In: (1993), pp. 344–359.

[7] Laurent Bussard and Walid Bagga. “Distance-bounding proof of knowledge
to avoid real-time attacks”. In: IFIP International Information Security Con-
ference. Springer. 2005, pp. 223–238.

[8] Srdjan Capkun, Karim El Defrawy, and Gene Tsudik. “Group distance bound-
ing protocols”. In: International Conference on Trust and Trustworthy Com-
puting. Springer. 2011, pp. 302–312.

[9] Srdjan Capkun and J-P Hubaux. “Secure positioning in wireless networks”.
In: IEEE Journal on Selected Areas in Communications 24.2 (2006), pp. 221–
232.

[10] Ulrich Dürholz, Marc Fischlin, Michael Kasper, and Cristina Onete. “A formal
approach to distance-bounding RFID protocols”. In: International Conference
on Information Security. Springer. 2011, pp. 47–62.

[11] Sébastien Gambs, Cristina Onete, and Jean-Marc Robert. “Prover anony-
mous and deniable distance-bounding authentication”. In: Proceedings of the
9th ACM symposium on Information, computer and communications security.
ACM. 2014, pp. 501–506.

149

150 Paper D

[12] Gerhard P Hancke and Markus G Kuhn. “An RFID distance bounding pro-
tocol”. In: Security and Privacy for Emerging Areas in Communications Net-
works, 2005. SecureComm 2005. First International Conference on. IEEE.
2005, pp. 67–73.

[13] Jens Hermans, Roel Peeters, and Cristina Onete. “Efficient, secure, private
distance bounding without key updates”. In: Proceedings of the sixth ACM
conference on Security and privacy in wireless and mobile networks. ACM.
2013, pp. 207–218.

[14] Y-C Hu, Adrian Perrig, and David B Johnson. “Packet leashes: a defense
against wormhole attacks in wireless networks”. In: INFOCOM 2003. Twenty-
Second Annual Joint Conference of the IEEE Computer and Communications.
IEEE Societies. Vol. 3. IEEE. 2003, pp. 1976–1986.

[15] Handan Kılınç and Serge Vaudenay. “Efficient public-key distance bound-
ing protocol”. In: International Conference on the Theory and Application of
Cryptology and Information Security. Springer. 2016, pp. 873–901.

[16] Chong Hee Kim, Gildas Avoine, François Koeune, François-Xavier Standaert,
and Olivier Pereira. “The swiss-knife RFID distance bounding protocol”. In:
International Conference on Information Security and Cryptology. Springer.
2008, pp. 98–115.

[17] Zang Li, Wade Trappe, Yanyong Zhang, and Badri Nath. “Robust statistical
methods for securing wireless localization in sensor networks”. In: Proceed-
ings of the 4th international symposium on Information processing in sensor
networks. IEEE Press. 2005, pp. 91–98.

[18] Sjouke Mauw, Jorge Toro-Pozo, and Rolando Trujillo-Rasua. “A class of
precomputation-based distance-bounding protocols”. In: Security and Privacy
(EuroS&P), 2016 IEEE European Symposium on. IEEE. 2016, pp. 97–111.

[19] Elena Pagnin, Gerhard P. Hancke, and Aikaterini Mitrokotsa. “Using Distance-
Bounding Protocols to Securely Verify the Proximity of Two-hop Neighbours”.
In: IEEE Communications Letters 19.7 (2015), pp. 1173–1176.

[20] Marcin Poturalski, Panos Papadimitratos, and Jean-Pierre Hubaux. “Secure
neighbor discovery in wireless networks: formal investigation of possibility”.
In: Proceedings of the 2008 ACM symposium on Information, computer and
communications security. ACM. 2008, pp. 189–200.

[21] Kasper Bonne Rasmussen and Srdjan Capkun. “Realization of RF Distance
Bounding.” In: USENIX Security Symposium. 2010, pp. 389–402.

[22] Jason Reid, Juan Manuel González Nieto, Tee Tang, and Bouchra Senadji.
“Detecting Relay Attacks with Timing-Based Protocols”. In: ASIACCS 07.
Ed. by Feng Bao and Steven Miller. Singapore: ACM Press, 2007, pp. 204–
213.

[23] Rolando Trujillo-Rasua, Benjamin Martin, and Gildas Avoine. “Distance bound-
ing facing both mafia and distance frauds”. In: IEEE Transactions on Wireless
Communications 13.10 (2014), pp. 5690–5698.

[24] Anjia Yang, Yunhui Zhuang, and Duncan S Wong. “An efficient single-slow-
phase mutually authenticated RFID distance bounding protocol with tag pri-
vacy”. In: International Conference on Information and Communications Se-
curity. Springer. 2012, pp. 285–292.

Two-hop Distance-Bounding Protocols: Keep your Friends Close 151

[25] Yunhui Zhuang, Anjia Yang, Duncan S Wong, Guomin Yang, and Qi Xie.
“A highly efficient RFID distance bounding protocol without real-time PRF
evaluation”. In: International Conference on Network and System Security.
Springer. 2013, pp. 451–464.

Paper E

On the Leakage of Information in
Biometric Authentication

Elena Pagnin, Christos Dimitrakakis, Aysajan Abidin, and Aikaterini
Mitrokotsa

Abstract. In biometric authentication protocols, a user is authenticated or
granted access to a service if her fresh biometric trait matches the reference biomet-
ric template stored on the service provider. This matching process is usually based
on a suitable distance which measures the similarities between the two biometric
templates. In this paper, we prove that, when the matching process is performed us-
ing a specific family of distances (which includes distances such as the Hamming and
the Euclidean distance), then information about the reference template is leaked.
This leakage of information enables a hill-climbing attack that, given a sample that
matches the template, could lead to the full recovery of the biometric template (i.e.
centre search attack) even if it is stored encrypted. We formalise this “leakage of
information” in a mathematical framework and we prove that centre search attacks
are feasible for any biometric template defined in Zn

q , (q ≥ 2) after a number of
authentication attempts linear in n. Furthermore, we investigate brute force at-
tacks to find a biometric template that matches a reference template, and hence
can be used to run a centre search attack. We do this in the binary case and identify
connections with the set-covering problem and sampling without replacement.

Keywords. Biometric Authentication, Privacy-Preservation, Centre Search At-
tack, Hill-Climbing, Brute Force Attacks.

Proceedings of the 15th International Conference on Cryptology in India (INDOCRYPT),
2014.

On the Leakage of Information in Biometric
Authentication

1 Introduction

While biometric authentication is becoming increasingly popular, the privacy and
security risks related to their usage are raising severe concerns. The main threats
associated to biometric authentication include profiling and tracking of individuals
and identity theft. If successfully performed, any attack that recovers a biometric
template may have serious impact since users cannot change their biometric fea-
tures and biometric data may reveal very sensitive information (e.g. genetic [20]
information and medical diseases [4]).

Biometric authentication protocols involve comparing fresh biometric data with a
stored biometric template. The process is essentially performed by computing some
distance or divergence between the fresh and the stored template. If the measured
distance is less than a predefined threshold, then the user is authenticated; otherwise
she is rejected. Many biometric authentication protocols use straightforward choices
for the distance, such as the Hamming distance [8, 18], the normalised Hamming
distance ([13] for iris recognition) and the Euclidean distance [2, 15, 22]. In these
cases the matching process leaks information that could be exploited by an adversary
to recover the stored template. More precisely, the adversary could run an iterative
process where he progressively changes the components of an arbitrary biometric
template until acceptance. This strategy is known as hill-climbing attack [23], due to
similarity with the synonymous optimisation technique. When the initial template is
an acceptable biometric trait (e.g. a fresh sample) this process is called centre search
attack [23]. Recovering stored biometric templates has more severe impact than
just finding an acceptable biometric template. Indeed, the same stored template
might be used in multiple biometric authentication systems which may even employ
different matching processes. Furthermore, a recovered stored template could be
used to find a match in criminal biometric template databases or even compromise
health records [16].

Hill climbing attacks involve making incremental changes to a potential solution,
until one or more acceptable solutions are found. In our case, the adversary observes
how the matcher responds to forged biometric templates. His goal is to recover the
stored template from one matching template. Bringer et al. [10] presented a hill-
climbing strategy that is successful even when a dedicated secure access module
(e.g. smartcard) is used to perform the biometric authentication process. The
matching process considered in [10] involves an adapted Hamming distance with
erasures, nevertheless, the adversary is able to recover multiple encrypted biometric
templates. Later on, Simoens et al. [23] describe multiple attacks (including the
centre search attack) that can be mounted by each of the internal entities in a
distributed biometric authentication systems.

In the past years, privacy-preserving distance computation has been investi-
gated [7, 9, 17]. Although these protocols have direct applications to biometric

156 Paper E

identification and authentication they all suffer from leakage of information when a
centre search attack is employed.

The problem of leakage of information due to the employment of distances has
also been investigated in other areas not relevant to biometric authentication. For
example, the Hamming weight model has been employed in order to successfully
perform side channel attacks [3, 5] (e.g. differential power analysis). It has been
shown [3, 5] that the power consumption of a device (e.g. a smart card) directly
depends on the Hamming weight and on the number of changes 0↔ 1 in the binary
vector that is considered during the execution of the attack.

Our contribution: In this paper, we point out that all biometric authentication
protocols that rely on certain distances (including the Hamming and the Euclidean
distance) are susceptible to leakage of information and we provide a formal math-
ematical framework to analyse this. In particular, we generalise the centre search
attack and prove that it is efficient and feasible in the binary case as well as when
the biometric templates are defined in Zn

q . In both cases we show that the maximal
number of authentication attempts in order to fully recover the stored biometrics
corresponding to the given data is linear in n (the size of the biometric string). Our
proofs hold also when the Euclidean distance is employed. Thus, we go beyond
the Hamming distance case that was described in [23]. We furthermore investigate
the preliminary step to the centre search attack: finding a biometric template that
matches a reference one. For the binary case, we propose a new algorithm that
exploits a tree structure and we compare its performance to standard brute force
attacks and to the optimal but infeasible attack. Finally, we highlight how the opti-
mal solution of finding a matching biometric template connects to the NP-complete
set-covering problem and sampling without replacement. Our proofs are valid for
standard as well as for privacy-preserving biometric authentication protocols since
the output of the matching process is not affected by the employed protection mech-
anism (e.g. homomorphic encryption). This means that encryption alone cannot
mitigate the leakage of information of the matching process. More precisely, this
leakage of information leads to full recovery of the stored template for the centre
search attack and to a matching template for the brute-force attack. An implication
of our work is that achieving security and privacy of biometric templates using the
known techniques is challenging.

Outline: The notations and the background material are introduced in Section 2
while Section 3 describes the adversarial model. We generalise the centre search
attack in Section 4 in two ways: first to any leaking distance on Zn

2 and then to
any leaking distance on Zn

q . In addition, we investigate the success probability of
finding an acceptable fresh biometric template and compare the bounds for the
success probability in different cases in Section 5. Finally, Section 6 summarizes
our results.

2 Preliminaries

Notations: Let q ∈ Z be a positive integer, q ≥ 2. The set of n-dimensional
vectors with components in Zq = {0, 1, · · · , q − 1} is denoted by Zn

q . The i-th
component of a vector x ∈ Zn

q is referred to as xi ∈ Zq. Given a distance d :
Zn
q × Zn

q → R≥0, a point x ∈ Zn
q and a positive number τ ∈ R>0, the d-ball of

center x and radius τ is defined as Bx(τ) = {z ∈ Zn
q : d(x, z) ≤ τ}. In the following,

On the Leakage of Information in Biometric Authentication 157

Get E(b) corresponding to ĨD

compute the distance d(b, b′) ≤ τ

OutAS ∈ {accepted, rejected}

C
IDb′

OutASOutAS

S

AS
E(b′) ĨD

Figure D.23: Authentication phase in a two-party biometric authentication system.

the binary case (q = 2) will always be explicitly written as Zn
2 . If not otherwise

specified, Zn
q implies q > 2. We denote the bit-flip operation as ¯: Z2 → Z2, namely

1̄ = 0, 0̄ = 1. The integer part of a real number τ , is denoted by ⌊τ⌋ (rounding to
the closest integer ≤ τ).

2.1 Biometric authentication

A biometric authentication system consists of two main phases: the enrolment phase
and the authentication phase.

The enrolment phase is a one-time step: a user (client) C registers to a trusted
party her biometric templates (digital strings b) along with her identity ID. These
two pieces of information are then stored in the database of the authentication server
AS. Once enrolled in the system, the client can authenticate herself an unlimited
number of times.

In the authentication phase, the client is required to provide a fresh biometric
trait b′ as well as her identity ID. These two data are then communicated to the
authentication server, which checks if matching templates (fresh b′ and stored b)
match. If the distance between the user’s fresh biometric trait b′ and the reference
biometric template b is less or equal to a predefined threshold τ , then the client gets
authenticated. Otherwise, the system rejects the user.

Without loss of generality we will consider only the two party setting (i.e. one
client C and one authentication server AS, as depicted in Figure D.23). However,
our analysis naturally applies when more than two parties are involved in the bio-
metric authentication process [1, 8, 24]. Due to privacy concerns, the biometric
templates should be protected and not sent in the clear over the network. This
implies that often the matching procedure is performed in the encrypted domain.
For instance, in multiple privacy-preserving biometric authentication protocols, se-
cure multi-party computation techniques are employed to preserve the privacy of
the users. In those protocols usually the biometric data are protected using homo-
morphic encryption [19], garbled circuits [25] or oblivious transfer [21]. Figure D.23
depicts the authentication phase of a biometric authentication system in a two party
setting, between a client C and an authentication server AS. The client presents
her fresh biometric and her ID to the authentication system. The sensor S gets the
user’s biometric vector b′ and her identity. In the privacy-preserving case, S en-

crypts b′ (E(b′)) and ID (ĨD), otherwise this data is sent in the clear. Subsequently,

the two data (E(b′), ĨD) are sent to the authentication server AS, who retrieves
the (possibly encrypted) stored template that corresponds to the user with identity
ID. The matching process is then preformed by checking if the distance between
the fresh and stored biometric templates is less than a predefined threshold τ (i.e.
d(b, b′) ≤ τ). Finally, depending on the outcome of the matching (OutAS), the
authentication server either accepts or rejects the client. Note that even in the
privacy-preserving case, where the biometric data is encrypted, the output of the

158 Paper E

authentication server depends only on the value of d(b, b′), i.e. the distance be-
tween the fresh and the stored biometric vectors. Hence, encryption alone does not
mitigate our attacks.

The main enablers of the attacks described in this paper are:

1. A return channel of the biometric authentication process, denoted as OutAS
(e.g. access granted or not) that is sent by the authentication server to the
user after each authentication attempt. In a real-life biometric authentication
scenario this could be a door that opens denoting “access granted” when
biometric authentication is used for access control in a building.

2. The fact that the matching process (and so the value of OutAS) is based on a
distance that is sensitive to single component variations (see leaking distance
Definition 6.1).

In this paper, we demonstrate that even when secure-multi party computation
techniques are employed, it is still possible to disclose the biometric templates as
long as a certain family of distances is used to compare the raw (plaintext) bio-
metric data. That is, an attacker can learn information about the value of b
(plaintext of stored biometric template) by observing the authentication server’s
response OutAS to the client’s authentication requests, if the response depends on
the value of d(b, b′). More precisely, if d is a distance that detects component-
variation (see Definition 6.1), and if there exists a function f that enables to re-
trieve information about the distance of the raw templates, given their possibly
encrypted versions, i.e. ∃f s.t.f(E(b), E(b′)) = d(b, b′), then the biometric au-
thentication system leaks information (in the non privacy-preserving case E = id,
is the identity map and f = d is the given distance). In particular, it is always
possible to disclose the original b given a matching b′. For instance, consider the
case [8] where b, b′ ∈ Zn

2 , d = dH is the Hamming distance and E and D are the
Goldwasser-Micali [14] encryption and decryption functions, respectively. Then,
dH(b, b′) = HW(b ⊕ b)′ = HW (D(E(b⊕ b′))) = HW (D(E(b)× E(b′))), where HW
denotes the Hamming weight of a vector, i.e. HW(x) =

∑n
i=1 xi. In this case, we

have f = HW ◦D ◦ ×.

3 Adversarial Model

The main threats in a privacy-preserving biometric authentication protocol are clas-
sified as follows [23]:

• Biometric reference recovery: the adversary tries to recover the reference
(stored) biometric template b.

• Biometric sample recovery: the adversary tries to recover (or generate) a fresh
biometric template b′ that will be acceptable by the biometric authentication
system.

• Identity privacy: the adversary tries to link a biometric template b(i) of a user
i to the user’s identity ID(i).

• Traceability and distinguishability of users: the adversary’s objective is to
distinguish different users and/or trace one user in different authentication
attempts.

On the Leakage of Information in Biometric Authentication 159

In this paper, we focus on the two first threats only, as they apply to any bio-
metric authentication system, privacy-preserving or not. We also consider that the
adversary A has access to the output of the authentication process (OutAS) as well
as to the predefined threshold τ used in matching process. The settings for the two
attacks are:

• Biometric reference recovery: the adversary A has an acceptable fresh bio-
metric template b′ at his disposal and tries to recover the stored template b
(centre search attack).

• Biometric sample recovery: the adversaryA does not have access to an accept-
able fresh biometric b′ but tries to find an accepted template anyway (brute
force attack).

4 Generalisations of the Centre Search Attack

Let b′ ∈ Zn
q denote a fresh biometric template and b ∈ Zn

q the reference (stored)
template, for q ≥ 2. The standard centre search attack aims at finding the point b
in the centre of the acceptance ball Bb(τ) = { z ∈ Zn

2 : d(b, z) ≤ τ }. Simoens et al.
[23] gave an informal description of this attack in the case d is the Hamming distance.
Here, we extend this attack to a larger family of distances over Zn

2 (Theorem 6.2). In
order to do so, we prove in Theorem 6.1 that any leaking distance (cf. Definition 6.1)
over Zn

2 is equivalent to the Hamming distance. In addition, Theorem 6.3 proves
that a centre search attack is feasible also for b ∈ Zn

q when q > 2 if a leaking distance
(e.g. the Euclidean distance) is employed in the matching process.

The family of distances we consider in this paper is defined as follows:

Definition 6.1 (Leaking distances). Let q ≥ 2, a distance d : Zn
q × Zn

q → R≥0, is
said to be a leaking distance (to detect component variations) if it can be written
as d(x, y) = h

(∑n
i=1 |xi − yi|k

)
, for all x, y ∈ Zn

2 , k ∈ Q>0 and h : R → R≥0 a
monotonically strictly increasing positive function.

The Hamming distance is an example of a leaking distance over Z2 (take h to be
the identity map and k = 1). For a general q ≥ 2, the Euclidean distance detects
component variation (h is the square-root function and k = 2). Note that leaking
distances are reasonable distances to be used for biometric authentication, as they
enable to compare vectors (biometric data) component wise.

In order to simulate the query/access to an oracle, we introduce the following
decision function.

Definition 6.2. Let q ≥ 2, τ ∈ R>0 and let d : Zn
q × Zn

q → R≥0 be a distance
metric. Then, for each x ∈ Zn

q , we define a decision function δx : Zn
q → {0, 1} as

δx(z) =

{
0 if d(x, z) > τ
1 if d(x, z) ≤ τ

.

It is easy to see that the decision function δx corresponds to the output of the
authentication process denoted as OutAS in Sections 2 and 3. Firstly, we consider
biometric templates as binary vectors. This is for instance the case for iris recogni-
tion based biometric authentication [6, 13]. We begin by proving that any binary
leaking distance can be written in terms of the Hamming distance.

Theorem 6.1. Let d : Zn
2 × Zn

2 → R≥0 be a leaking distance on Zn
2 . Then every

d-ball corresponds to a dH-ball, with dH being the Hamming distance.

160 Paper E

We provide the proof of Theorem 6.1 in the appendix. Observe that Theorem 6.1
provides a boardwalk among all binary leaking distances. In particular, it enables
us to extend all the results concerning Hamming distance to any other leaking
distance (on Zn

2). For example, the correction factor for the Euclidean distance on
Zn
2 is τ = τ̃2.

Theorem 6.2. Let dH : Zn
2 × Zn

2 → R≥0 be the Hamming distance and τ ∈ R>0.
Then, it is possible to determine the bit-values of a string x having access only to
a vector y ∈ Bx(τ) and in at most n + 2τ calls to the decision function δx (cf.
Definition 6.2).

The proof of Theorem 6.2 is provided in the appendix. In light of Theorem 1, we
have the natural extension of Theorem 2 to the case of any leaking distance on Zn

2 .

Corollary 1. For any leaking distance d on Zn
2 , Theorem 6.2 holds, with τ = h−1(τ̃)

being the corresponding threshold when τ̃ is the given radius of the ball for the
distance d.

As a side result, we have:

Corollary 2. If x is the stored biometric template b, and y is a matching fresh
measurement b′ satisfying d(b, b′) ≤ τ , then Theorem 6.2 provides an algorithm to
retrieve b being given b′ in a number of authentication attempts linear in bit-length
of the biometric templates.

In the protocol for iris recognition by Daugman [13], the matching process relies on
a normalised Hamming distance, which is defined as NHD(b, b′, X, Y) =

∑n
i=1(bi ⊕

b′i)XiYi /
∑n

i=1 XiYi, for b, b′, X, Y ∈ Zn
2 . In the previous formula the vector X is

the mask for the stored biometric template b, while Y masks the fresh trait b′. It
is immediate to see that the normalised Hamming distance does not comply with
Definition 6.1, nevertheless it is still possible, given b′ and Y , to mount a centre
search attack and recover the bits of b that are not blinded by the mask X,i.e. bi
such that Xi = 1.

Theorem 6.2 holds only for leaking distances on Zn
2 as in the proof we exploit the

fact that |xi − yi| can only assume two values 0 and 1, when xi = yi and xi ̸= yi
respectively. However, Theorem 6.3 generalises the reasoning in Theorem 6.2 to the
non-binary case when any leaking distance is used (such as the Euclidean distance,
often used in non-binary biometric authentication protocols).

Theorem 6.3. Let d : Zn
q × Zn

q → R≥0 be any leaking distance on Zn
q (cf. Def-

inition 6.1) and τ ∈ R>0, be a threshold such that τ < h(⌊ q2⌋
k), then it is pos-

sible to determine the value of the vector x ∈ Zn
q having access only to a vector

y ∈ Bx(τ) in at most mn calls to the decision function δx (as in Definition 6.2),
where m = min{⌊2τ⌋, 2 log q}.

The proof of Theorem 6.3 is provided in the appendix. Also in this case, if we
consider the vectors as biometric templates it holds:

Corollary 3. Considering x as the stored biometric template b, and y as the fresh
matching trait b′, then the proof of Theorem 6.3 provides an algorithm to mount
centre search attacks against biometric authentication systems with templates in Zn

q .
And the maximal number of authentication attempts is linear in length (dimension
as vectors) of the biometric templates.

It is important to highlight that the results of this section imply that all biometric
authentication protocols that employ a leaking distance in the matching process
are vulnerable to the centre search attack, and this attack can be performed in an
efficient way.

On the Leakage of Information in Biometric Authentication 161

5 Biometric Sample Recovery Attacks in the Bi-
nary Case

One of the most severe threats to biometric authentication systems is recovering a
stored raw biometric template b (maybe linked to the identity of the user). The
knowledge of b provides more information than the knowledge of a fresh trait b′,
as the same b could be used in multiple biometric authentication systems possibly
employing different matching processes (while b′ might be rejected). In Section 4
we already presented efficient ways to recover the centre b of a ball, given a point
b′ close to it, namely b′ ∈ Bb(τ). The question we address now is: Is there a way to
find a matching template b′ given access only to δb? The next subsections present
four different answers to this question. We discuss the connection between this
problem and the set-covering problem in Section 5.2.

In the following, we consider only the case in which the biometric traits are
binary vectors, i.e. b ∈ Zn

2 , and the employed distance is a leaking distance (cf.
Definition 6.1).

5.1 Blind Brute Force

In the blind brute force attack, the attacker randomly chooses a point b′
R←− Zn

2 , and
checks the output of the function δb(b

′). If δb(b
′) = 1, it means that p ∈ Bb(τ),

so the attacker can easily recover b using this point b′ (cf. Theorem 2). Otherwise
(i.e., if δb(b

′) = 0), the attacker picks another point at random from Zn
2 as before.

We call this attack blind brute force because in each attempt the adversary tries a
random point until a point in Bb(τ) is found.

Let us compute the success probability of this attack after t ∈ Z>0 attempts.
Suppose first that we pick b′ ∈ Zn

2 uniformly at random. Then the probability
of having b′ accepted is ω := |Bb(τ)|/|Zn

2 | =
∑τ

k=0

(
n
k

)
/2n. In each attempt, if

the trial point is chosen uniformly at random and independently from the previous
attempts, then with probability ω this new trial point will be accepted. Let us
now introduce binary random variables Xi = 0 or 1, for i = 1, 2, · · · , t, and let
Pr(Xi = 1) = ω and Pr(Xi = 0) = 1 − ω. Obviously, Xi, i = 1, 2, · · · , t, are
i.i.d. Bernoulli random variables Xi ∼ Bern(ω). We are interested in computing

Pr
(∑t

i=1 Xi = 1
)

, the total probability of succeeding once in t attempts. It is

not hard to see that Pr
(∑t

i=1 Xi = 1
)

= tω(1 − ω)t−1, as the random variable∑t
i=1 Xi ∼ Binom(t, ω) has a binomial distribution.

5.2 Sampling without replacement

Brute Force without Point Replacement

In order to perform a brute force attack without point replacement the attacker has
to define a set of potential candidates C ⊆ Zn

2 . For the first trial, C = Zn
2 and the

attacker chooses a point b′
R←− C at random. If δb(b

′) = 1, the selected point is
inside the acceptance ball, b′ ∈ Bb(τ), and so the attack is successful. Otherwise,
the attacker updates the set of potential candidates C = C \ {b′}, deleting the one
point that is not in the acceptance ball. The attack proceeds by randomly picking
a point from the updated set C.

Let the random variables Xi, i = 1, 2, · · · , t, be as in the case of the blind
brute force attack. Note, however, that now Pr(Xi = 1) is different in each at-

162 Paper E

Figure D.24: The fundamental step of the Tree algorithm. Suppose the target biometric
template is the vector b = (10100) ∈ Z5

2, the black bullet in the tree, and suppose the
threshold is set to be τ = 2. Let a = (000) be the selected ancestor, highlighted as a
grey circle in the picture. Let b′ = (00011) be the leaf randomly generated from a, then
dH(b′, b) > τ and so δb

(
(00011)

)
= 0. In this case the points generated by a (i.e. that

have a as common ancestor) will be deleted from the set of potential solutions.

tempt. In this case,
∑t

i=1 Xi follows the Hypergeometric distribution. Therefore,

Pr
(∑t

i=1 Xi = 1
)

= B
(
2n−B
t−1

)/(
2n

t

)
, where B = |Bx(τ)| =

∑τ
k=0

(
n
k

)
. This attack

is intuitively better than the blind brute force, but of course the larger the n is, the
less efficient it is.

The Tree Algorithm

We propose here a method (Algorithm 1) to find a point b′ ∈ Zn
2 within distance τ

from the unknown biometric template b, given access to the decision function δb (as
in Definition 6.2). The central idea of Algorithm 1 is to consider the points of Zn

2

as leaves of a binary tree of depth n. The tree structure is then exploited to define
relatives-relations among the points of Zn

2 and to ensure that at each unsuccessful
trial one can delete non-overlapping portions of the space Zn

2 . More precisely, if a
point p ∈ Zn

2 is such that δb(p) = 0, the algorithm removes from the set of potential
centres not only the tried point p, but also its siblings-relatives generated by the τ
common ancestor (see Figure D.24).

The main function called by the al-
gorithm is generate. Its input is the
threshold τ and a (n − τ)-dimensional
binary vector a. The output is a ran-
dom leaf b′ ∈ Zn

2 generated by a (the
τ ancestor). That is, generate(a, τ) =
(a1, . . . , an−τ , r1, . . . , rτ) = b′, where
ri ∈ Z2, i = 1, . . . , τ are τ random bits.
The set of potential ancestors C is up-
dated at every unsuccessful round, by
deleting the chosen ancestor. The tree
algorithm uses the Hamming distance.

Algorithm 1 The Tree algorithm

Input: (n, τ, δb,)

Output: b′ = b′1, · · · , b′n (a match-
ing template)

C = Zn−τ
2

for i = 1 to 2n−τ : do
a

R←− {C}
p = generate(a, τ)

if δb(b
′) = 1 (accepted) then

Return b′

else
C = C ∖ {a}

end if

end for

On the Leakage of Information in Biometric Authentication 163

For a practical implementation, we can store the paths of the tree that lead to
the already rejected ancestors, and pick the new node a among the non-already-
traversed paths. The running time of the attack is (of course) exponential, as it
progressively constructs a binary tree of order n− τ . Nevertheless, the probability
to display the whole tree before finding a point that matches the reference template
is very low (precisely: 2−n+τ).

The optimal solution

The goal of the attacks described in this section is to find the ball Bb(τ) ⊂ Zn
2 on

which δb takes the value 1, without any additional information at hand. We have
already investigated blind brute force (random tries), brute force without point
replacement (remove one point at each unsuccessful trial), and the Tree algorithm
(remove 2τ points at each unsuccessful trial). The optimal brute force approach
exploits the following idea: if a point p ∈ Zn

2 is rejected, i.e. δb(p) = 0, it means
that b /∈ Bp(τ). Hence, the whole ball Bp(τ) can be removed by the set of potential
centres. Intuitively, the best one can do to rapidly reduce the size of potential
centres, is to use as trial points, points that lie at distance 2τ from each other. This
corresponds to covering the space Zn

2 with the smallest number of balls of radius
τ . This corresponds to an instance of the well-known set-covering problem in a
space [11, 12].

More precisely, the optimal biometric sample recovery attack would involve the
adversary covering Zn

2 with a family F of balls of radius τ . At this point, the
adversary needs to query the oracle (i.e. to use the decision function δb) at most |F|
times, one for each (centre of a) ball in F. Hence the best solution is for F a minimal
covering, i.e. |F| = minG∈C |G|, where C is the set of all possible covering of Zn

2

with balls of radius τ . This is exactly the set covering problem: to find the minimal
number of balls needed to cover a space. It is proven that the set covering problem
is NP-complete[12]. This result implies that also providing an optimal algorithm for
the biometric sample recovery attack is an NP-complete problem. However, there
exist some greedy approximations that are relatively efficient. In particular, for our
case, Theorem 1 in [12] applies directly and hence the number of points that the
adversary needs to query is only a factor of O(τ ln(n + 1)) more than the optimal
cover.

5.3 Comparisons and Bounds

In order to compare the performance of the four described methods we need to
bound the probability that an attacker succeeds in finding a matching point, in
each case. At the t-th trial, the attacker attempts point xt ∈ Zn

2 and observes
yt ∈ 0, 1, with yt ≜ 1Bb(τ)(xt) = δb(xt). Let zt ∈ {0, 1} denote whether or not

the attacker has found an acceptable point after t trials and st =
∑t

i=1 yt be the
number of points the attacker has found by time t.

To begin the analysis, we define µb(τ) ≜ |Bb(τ)|/|Zn
2 | ∈ [0, 1] to be the relative

measure of the acceptance ball around b. In the binary case, dropping the depen-
dence on b, τ , we have µ ∈ [2τ−n, (n + 1)τ2−n]. Of course, µ is also the probability
of acceptance if sampling uniformly.

Blind brute force. In this case the points are selected uniformly without re-
placement, i.e. xt ∼ U(Zn

2). It trivially follows that E(st) = µt. It is also clear
that the attack is successful whenever st ≥ 1. For that reason, we shall attempt to

164 Paper E

bound the probability that this occurs while µt < 1. As a matter of fact, we can
write:

Pr(st ≥ 1) = Pr(
t∨

i=1

zt = 1) ≤
t∑

i=1

Pr(zt = 1) = µt ≤ (n + 1)τ2−nt.

where the first inequality becomes an equality whenever µt < 1.

Sampling without replacement. All the other described approaches corre-
spond to sampling without replacement. In either case, let α ∈ [0, 1] denote the
proportion of points removed at each step. Then, we obtain the following bound:

Pr(st ≥ 1) ≤
t∑

i=1

Pr(zt = 1)

≤
t∑

i=1

µ

1− αi

≤
∫ t

0

µ

1− αx
dx =

µ

α
log

1

1− αt
.

For the point-wise replacement algorithm, α = q−n, hence there is little effect.
For the binary case, we can employ the tree algorithm, α = 2τ−n, which can be a
substantial improvement. An unbounded adversary may use an optimal cover, in
order to exclude as many points as possible whenever a point is rejected. In fact,
in the best case, the adversary will be able to remove B points every time a point
is rejected, giving a value of α = B2−n. To visualise the bounds, we choose some
parameters such that there is a clear difference after a small number of iterations
(depicted in Figure D.25). More precisely, Figure D.25 shows the performance of
all four methods in terms of an upper bound on their success probability after a
number of iterations. The four curves show sampling with replacement (i.e. brute
force), and three different cases for sampling without replacement. Firstly, removing
a single point. Secondly, removing 2τ points using the tree construction. Finally,
removing the maximum number of points B, which is computationally infeasible.
There is a significant gain for the last choice, but only after a large portion of
the space has already been covered. As when α → 0, ln 1

1−αt → αt, the success
probabilities of the first three methods are approximately linear in the size of the
space, and hence exponential in the dimension.

The naive no replacement algorithm naturally does not improve significantly over
brute force without replacement, since the volume that is excluded at every step is
infinitesimal. Obviously, if we are able to remove a significant part of the volume,
then we obtain a clear improvement in performance. Only an optimal adversary
can do significantly better. However, this would assume either that set-covering is
in P or that the adversary is computationally unbounded. Consequently, as there
is no polynomial algorithm that is significantly better than brute force, biometric
authentication schemes based on matching templates are secure against biometric
sample recovery attacks.

6 Conclusions

In this paper, we prove that all biometric authentication protocols that employ
distances between a template and an fresh biometric in the matching process suffer

On the Leakage of Information in Biometric Authentication 165

Figure D.25: Visualisation of the bounds for q = 2, n = 32, τ = 5. In this case
µ ≈ 5.6× 10−5.

from leakage of information that could be exploited by an adversary to launch
centre search attacks. In order to analyse this leakage of information, we provide a
mathematical framework and prove that centre search attacks are feasible for any
biometric template defined in Zn

q , q ≥ 2, after a number of authentication attempts
that is linear in n. Our results imply that it is possible to mount this attack on most
existing biometric authentication protocols (including privacy-preserving ones) that
rely on a Hamming, Euclidean, normalised Hamming distance or any distance that
complies with Definition 6.1.

Furthermore, we investigate whether brute force attacks can be used to recover
a matching biometric. We describe four strategies: blind brute force, brute force
without replacement, a new algorithm based on a tree structure and the optimal
case. Our results demonstrate that improving the success rate in these brute force
attacks would imply finding a solution to the NP-complete set-covering problem.
Thus, this provides some security guarantees of existing biometric authentication
protocols as long as the attacker has not access to a matching biometric trait.

A possible countermeasure that could be employed in order to strengthen existing
biometric authentication protocols against centre search attacks would be the em-
ployment of more sophisticated authentication methods. For example, simply using
weighted distances in which the weights are secret and different for each user may
provide sufficient security. Something similar is already employed in the normalised
Hamming distance for which indeed the centre search attack is feasible but only
for a subset of the components of the stored biometric template. An alternative
and promising direction would be to rely on a mechanism that randomly selects a
distance from a pool of distances at each authentication attempt. However, such
measures should be incorporated carefully in order not to affect the accuracy of the
biometric authentication system.

Bibliography

[1] Manuel Barbosa, Thierry Brouard, Stéphane Cauchie, and SimT ao Melo
Sousa. “Secure Biometric Authentication with Improved Accuracy.” In: ACISP
2008. Ed. by Yi Mu, Willy Susilo, and Jennifer Seberry. Vol. 5107. LNCS.
Springer, 2008, pp. 21–36.

[2] Mauro Barni, Tiziano Bianchi, Dario Catalano, Mario Di Raimondo, Ruggero
Donida Labati, Pierluigi Failla, Dario Fiore, Riccardo Lazzeretti, Vincenzo
Piuri, Fabio Scotti, and Alessandro Piva. “Privacy-preserving fingercode au-
thentication”. In: Proceedings of the 12th ACM workshop on Multimedia and
security. 2010, pp. 231–240.

[3] E. Biham and A. Shamir. “Power analysis of the key scheduling of the AES
candidates”. In: Proceedings of the 2nd AES Candidate Conference. 1999.

[4] J. Bolling. “A window to your health”. In: Jacksonville Medicine, Special
Issue: Retinal Diseases 51 (2000).

[5] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation Power Anal-
ysis with a Leakage Model”. In: CHES 2004. Vol. 3156. LNCS. Springer Berlin
Heidelberg, 2004, pp. 16–29.

[6] J. Bringer, H. Chabanne, G. Cohen, B. Kindarji, and G. Zémor. “Optimal Iris
Fuzzy Sketches”. In: Proceedings of the 1st IEEE International Conference on
Biometrics: Theory, Applications, and Systems. 2007.

[7] Julien Bringer, Herve Chabanne, Melanie Favre, Alain Patey, Thomas Schnei-
der, and Michael Zohner. “GSHADE: Faster Privacy-preserving Distance Com-
putation and Biometric Identification”. In: Proceedings of the 2nd ACM Work-
shop on Information Hiding and Multimedia Security. ACM, 2014, pp. 187–
198.

[8] Julien Bringer, Hervé Chabanne, Malika Izabachène, David Pointcheval, Qiang
Tang, and Sébastien Zimmer. “An Application of the Goldwasser-Micali Cryp-
tosystem to Biometric Authentication”. In: ACISP 2007. LNCS. Springer-
Verlag, 2007, pp. 96–106.

[9] Julien Bringer, Hervé Chabanne, and Alain Patey. “SHADE: Secure HAm-
ming DistancE Computation from Oblivious Transfer”. In: Financial Cryp-
tography Workshops. 2013, pp. 164–176.

[10] Julien Bringer, Hervé Chabanne, and Koen Simoens. “Blackbox Security of
Biometrics”. In: Proceedings of the 6th International Conference on Intelligent
InformationHiding and Multimenida Signal Processing. 2010, pp. 337–340.

[11] Long Chen. “New analysis of the sphere covering problems and optimal poly-
tope approximation of convex bodies”. In: Journal of Approximation Theory
133.1 (2005), pp. 134–145.

166

On the Leakage of Information in Biometric Authentication 167

[12] V. Chvatal. “A Greedy Heuristic for the Set-Covering Problem”. In: Mathe-
matics of Operations Research 4.3 (1979), pp. 233–235.

[13] J. Daugman. “How iris recognition works”. In: IEEE Transactions on Circuits
and Systems for Video Technology 14 (1 2004), pp. 21–30.

[14] Shafi Goldwasser and Silvio Micali. “Probabilistic encryption and how to play
mental poker keeping secret all partial information”. In: Proceedings of the
14th Annual ACM Symposium on Theory of Computing. STOC 1982. ACM,
1982, pp. 365–377.

[15] Yan Huang, Lior Malka, David Evans, and Jonathan Katz. “Efficient Privacy-
Preserving Biometric Identification”. In: NDSS 2011. 2011.

[16] Anil K. Jain, Karthik Nandakumar, and Abhishek Nagar. “Biometric tem-
plate security”. In: EURASIP J. Adv. Signal Process 2008 (2008), 113:1–
113:17.

[17] Ayman Jarrous and Benny Pinkas. “Secure Hamming Distance Based Compu-
tation and Its Applications”. In: ACNS 2009. Vol. 5536. LNCS. 2009, pp. 107–
124.

[18] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. “SCiFI - A System for
Secure Face Identification”. In: Security and Privacy, 2010 IEEE Symposium
on. 2010, pp. 239–254.

[19] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes”. In: EUROCRYPT 1999. Vol. 1592. LNCS. Springer, 1999,
pp. 223–238.

[20] L.S. Penrose. “Dermatoglyphic Topology”. In: Nature 205 (1965), pp. 544–
546.

[21] Michael O. Rabin. “How To Exchange Secrets with Oblivious Transfer”. In:
IACR Cryptology ePrint Archive 2005 (2005), p. 187.

[22] Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. “Efficient
Privacy-Preserving Face Recognition”. In: ICISC 2009. LNCS. 2009, pp. 229–
244.

[23] Koen Simoens, Julien Bringer, Hervé Chabanne, and Stefaan Seys. “A Frame-
work for Analyzing Template Security and Privacy in Biometric Authentica-
tion Systems”. In: IEEE Transactions on Information Forensics and Security
7.2 (2012), pp. 833–841.

[24] A. Stoianov. “Security Issues of Biometric Encryption”. In: Proceedings of the
2009 IEEE Toronto International Conference on Science and Technology for
Humanity (TIC- STH). 2009, pp. 34–39.

[25] Andrew Chi-Chih Yao. “How to generate and exchange secrets”. In: Founda-
tions of Computer Science, 1986., 27th Annual Symposium on. IEEE. 1986,
pp. 162–167.

168 Paper E

Appendix

D.i Collected proofs

Theorem 6.1. By hypothesis d is a leaking distance, hence it is of the form d(x, y) =
h(
∑n

i=1 |xi−yi|k), for all x, y ∈ Zn
2 . Since h : R→ R≥0 is monotonic, it is bijective

on its image, in other words it has an inverse h−1 : I → R, where I = Im(h) =
{w ∈ R≥0 : w = h(z), ∃ z ∈ R}.
Consider the d ball of radius τ̃ around a point x ∈ Zn

2 , namely the set {y ∈ Zn
2 :

d(x, y) ≤ τ̃}. We want to prove this d-ball equals a Hamming distance-ball centred
in x and of radius τ .
Indeed, d(x, y) ≤ τ̃ ⇐⇒ h(

∑n
i=1 |xi−yi|k) ≤ τ̃ . Noticing that h is increasing implies

that h−1 is also increasing, one obtains:
∑n

i=1 |xi−yi|k ≤ h−1(τ̃). In addition, since
|xi − yi| ∈ {0, 1} we can ignore the exponent k in the expression (this is because
0k = 0 and 1k = 1, ∀ k ∈ Q>0). Hence,

∑n
i=1 |xi − yi| ≤ h−1(τ̃), but the left hand

side of the inequality is exactly the Hamming distance between the points x and y.
To summarise, we have d(x, y) ≤ τ̃ ⇐⇒ dH(x, y) ≤ h−1(τ̃). Let us put τ = h−1(τ̃),
then {y ∈ Zn

2 : d(x, y) ≤ τ̃} = {y ∈ Zn
2 : dH(x, y) ≤ τ}. That is, any d-ball can

be described as a dH -ball (Hamming distance-ball) and vice versa.

Theorem 6.2. Step 1. Find a point w that lies just outside the boundary of Bx(τ).
By hypothesis δx(y) = 1. Let w be the vector obtained from y by flipping the
first bit, i.e. w1 = ȳ1 and wi = yi , ∀i ∈ {2, . . . , n}. If w is rejected, that is, if
δx(w) = 0, it means that y is already on the boundary of Bx(τ) and we are done
by putting v = y. Otherwise, proceed by flipping one more bit of y until it exits
Bx(τ). The general step after k− 1 trials (flipping bits of y and being accepted) is:
set w = (ȳ1, . . . , ȳk, yk+1, . . . , yn), if δx(w) = 0 put v = (ȳ1, . . . , ȳk−1, yk, . . . , yn).
If δx(w) = 1, go on and flip the next component. It is quite intuitive that this
procedure ends after at most 2τ + 1 steps (the worst case is when y is already on
the boundary but we move it in the wrong direction and cross the ball along its
diameter).

Step 2. Determine the central point x of Bx(τ).
Note that by Step 1, we already know the value of the k-th component of x,
namely xk = vk. For j ∈ {1, 2, . . . , n} \ {k}, consider the vector v(j) defined as
v(j)i = wi, ∀ i ∈ {1, . . . , n} \ {j}. If δx(v(j)) = 1, it means that v(j) compensates
the error (in the k-th component) introduced by w with a new correct component
(the j-th component). Hence xj = v(j)j . On the other hand, δx(v(j)) = 0 implies
that the j-th component of w was correct. Hence, in this case, xj = 1−v(j)j . Step
2 ends after n− 1 queries.

Theorem 6.3. Let e(i) ∈ Zn
q denote the i-th vector of the canonical basis, i.e. for

each i = 1, . . . , n, e(i)i = 1 and e(i)j = 0, ∀j ∈ {1, . . . , n} \ {i}. For each of the
n components of a biometric template, determine two vectors v(i), w(i) ∈ Zn

q , i =
1, . . . , n such that: v(i) = b′+λ1e(i) and w(i) = b′+λ2e(i), with λ1 ∈ {yi, q−1−yi}
and λ2 ∈ {0, yi−1}. Moreover, δx

(
v(i)

)
= 1 but δx

(
v(i)+e(i)

)
= 0, and δx

(
w(i)

)
=

1 but δx
(
w(i)− e(i)

)
= 0. Such pair of vectors exists for each component, as Bx(τ)

is a bounded subset of Zn
q and τ < h(⌊ q2⌋

k). There are two possible situations:

• v(i) and w(i) are on the boundary of the ball Bx(τ). In this case the centre
of the ball x ∈ Zn

q will have the i-th component equal to the middle point

On the Leakage of Information in Biometric Authentication 169

xi = (v(i)i + w(i)i)/2, ∀i ∈ {1, . . . , n}.

• v(i) and w(i) are not exactly on the boundary of the ball Bb(τ). Since it is
v(i), w(i), x ∈ Zn

q the respective distances from the boundary ϵv(i) and ϵw(i)

must be equal (by symmetry). Thus, also in this case bi = (v(i)i + w(i)i)/2,
∀i ∈ {1, . . . , n}.

There are two efficient strategies to determine the vectors v(i), w(i):

• Linear search: in this case the worst case scenario is when y = x, and the
adversary needs to try all the points (with components in Zq) that lie in the
diameter of the ball Bx(τ), that is at most ⌊2τ⌋ trials.

• Binary search: the adversary performs at most 2 log q trials to determine each
external point, v(i), w(i).

Thus, the maximum number of queries (access to the δx function) necessary in order
to recover the centre x of a ball in Zn

q is bounded by nm, with m = min{⌊2τ⌋, 2 log q}.

Paper F

Revisiting Yasuda et al.’s Biometric
Authentication Protocol: Are you Private

Enough?
Elena Pagnin, Jing Liu, and Aikaterini Mitrokotsa

Abstract. Biometric Authentication Protocols (BAPs) have increasingly been
employed to guarantee reliable access control to places and services. However, it is
well-known that biometric traits contain sensitive information of individuals and if
compromised could lead to serious security and privacy breaches. Yasuda et al. [3]
proposed a distributed privacy-preserving BAP which Abidin et al. [1] have shown
to be vulnerable to biometric template recovery attacks under the presence of a
malicious computational server. In this paper, we fix the weaknesses of Yasuda et
al.’s BAP and present a detailed instantiation of a distributed privacy-preserving
BAP which is resilient against the attack presented in [1]. Our solution employs
Backes et al.’s [2] verifiable computation scheme to limit the possible misbehaviours
of a malicious computational server.

Keywords. Biometric Authentication, Verifiable Delegation, Privacy-Preserving
Authentication.

Proceedings of 16th International Conference on Cryptology and Network Security
(CANS), 2017.

Revisiting Yasuda et al.’s Biometric
Authentication Protocol: Are you Private

Enough?

Biometric Authentication Protocols (BAPs) have increasingly been employed to
guarantee reliable access control to places and services. However, it is well-known
that biometric traits contain sensitive information of individuals and if compromised
could lead to serious security and privacy breaches. Yasuda et al. [23] proposed
a distributed privacy-preserving BAP which Abidin et al. [1] have shown to be
vulnerable to biometric template recovery attacks under the presence of a malicious
computational server. In this paper, we fix the weaknesses of Yasuda et al.’s BAP
and present a detailed instantiation of a distributed privacy-preserving BAP which is
resilient against the attack presented in [1]. Our solution employs Backes et al.’s [4]
verifiable computation scheme to limit the possible misbehaviours of a malicious
computational server.

1 Introduction

Biometric authentication has become increasingly popular as a fast and convenient
method of authentication that does not require to remember and manage long and
cumbersome passwords. However, the main advantage of biometrics, i.e., their di-
rect and inherent link with the identity of individuals, also rises serious security
and privacy concerns. Since biometric characteristics can not be changed or re-
voked, unauthorised leakage of this information leads to irreparable security and
privacy breaches such as identity fraud and individual profiling or tracking [18].
Thus, there is an urgent need for efficient and reliable privacy-preserving biometric
authentication protocols (BAPs).

The design of privacy-preserving BAPs is by itself a very delicate procedure. It
becomes even more challenging when one considers the distributed setting in which
a resource-constrained client outsources the computationally heavy authentication
process to more powerful external entities. In this paper, we focus on Yasuda et
al.’s protocol for privacy-preserving BAPs in the distributed setting [23] and show
how to mitigate the privacy attacks presented by Abidin et al. [1] by employing
Backes et al.’s verifiable computation scheme [4].

1.1 Background & related work
Distributed privacy-preserving BAPs usually involve the following entities: (i) a
client/user C, (ii) a database DB, (iii) a computational server CS, and (iv) an
authentication server AS. The granularity of roles and entities in the biometric au-
thentication process facilitates the privacy-preservation of the sensitive information.
This distributed setting, indeed guarantees that no single entity has access to both
the biometric templates (fresh and stored ones) and the identity of the querying
user.

Several existing proposals of privacy-preserving BAPs use the distributed setting,
e.g., [5, 20, 22, 23], and make leverage on advanced cryptographic techniques such

174 Paper F

as homomorphic encryption [7, 23], oblivious transfer [8] and garbled circuits [14].
In particular, Yasuda et al.’s protocol [23] was claimed to be privacy-preserving since
it is based on the distributed setting and relies on a novel somewhat homomorphic
encryption scheme based on ideal lattices. Abildin et al. [1] showed that Yasuda et
al.’s BAP is privacy-preserving only in the honest-but-curious model and described
an algorithm that enables a malicious CS to recover a user’s biometric template.
Intuitively, Abidin et al.’s attack succeeds because AS does not detect that the
malicious CS returns a value different from the one corresponding to the output of
the (honest) outsourced computation, leaving space for hill-climbing strategies [21]
that may lead to the disclosure of the stored reference biometric template.
Verifiable delegation of computation (VC) is a cryptographic primitive that enables
a client to securely and efficiently offload computations to an untrusted server [11].
Verification of arbitrary complex computations was initially achieved via interactive
proofs [2, 13] and then moved towards more flexible and efficient schemes such as
[3, 9, 10, 19]. The setting of VC schemes is by nature distributed and thus perfectly
fits the basic requirement of privacy-preserving BAPs. For this reason, Bringer et
al. [6] suggested to use VC techniques to detect malicious behaviours in BAP.

In this paper, we provide the first explicit instantiation of a distributed privacy-
preserving BAP which achieves security against malicious CS thanks to the verifi-
ability of the delegated computation.

1.2 Our contributions
In this paper, we mitigate Abidin et al.’s attack [1] against Yasuda et al.’s privacy-
preserving biometric authentication protocol [23] by the means of the verifiable
computation scheme by Backes et al. [4]. We combine the two schemes in an efficient
and secure way, and obtain a modification of Yasuda et al.’s protocol with strong
privacy guarantees. As a result, we obtain a new BAP which builds on top of
Yasuda et al.’s and is truly privacy-preserving in the distributed setting.

From a general point of view, this paper offers a strategy to transform privacy-
preserving BAPs that are secure in the honest-but-curious model into schemes that
can tolerate a malicious CS by addressing the most significant challenges in privacy-
preserving BAPs: to guarantee integrity and privacy of both the data and the
computation. Despite the idea of combining VC and BAP is quite natural and
intuitive [6], the actual combination needs to be done carefully in order to avoid
flawed approaches.

Organisation. The paper is organized as follows. Section 2 describes the back-
ground notions used in the rest of the paper. Section 3 contains our modification of
Backes et al.’s VC scheme to combine it with the somewhat homomorphic encryption
scheme used in [23]. Section 4 presents an improved version of Yasuda et al.’s BAP
together with a security and efficiency analysis. The proposed privacy-preserving
BAP incorporates the new construction of VC on encrypted data of Section 3. Sec-
tion 5 is an important side-note to our contributions, as it demonstrates how näıve
and straight-forward compositions of VC and homomorphic encryption may lead to
leakage of private information. Section 6 concludes the paper.

2 Preliminaries
Notations. We denote by Z and Zp = Z/pZ the ring of integers and the integers
modulo p, respectively. For two integers x, d ∈ Z, [x]d denotes the reduction of x
modulo d in the range of [−d/2, d/2]. We write vectors with capital letters, e.g., A,
and refer to the i-th component of A as Ai. The symbol x←$ X denotes selecting x

Revisiting Yasuda et al.’s Biometric Authentication Protocol: Are you Private
Enough? 175

KeyGen(λ)→ (ek, vk): Given the security parameter λ, the key generation algorithm out-
puts a secret verification key vk and a public evaluation key ek.

Auth(vk, L,m)→ σ : Given the secret verification key vk, a multi-label L = (∆, τ) and a
valid message m, this algorithm outputs an authentication tag σ.

Ver(vk,P∆,m, σ)→ {0, 1} : Given the secret key vk, a multi-label program P =
((f, τ1, . . . , τn),∆), a valid message m and a tag σ, the verification algorithm returns
an acceptance bit acc: “0” for rejection and “1” for acceptance.

Eval(ek, f,σ)→ σ: Given the public evaluation key ek, a circuit of a quadratic polynomial
f and a vector of tags σ = (σ1, . . . , σn), the evaluation algorithm produces a new tag
σ ← GroupEval(f, σ1, . . . , σn). The evaluation of GroupEval proceeds gate-by-gate
through the arithmetic circuit of f with the following rules:
Fan-in-2 addition gate:

i. X1, X2 ∈ G, output X = X1 ·X2 = gx1 · gx2 = gx1+x2 ∈ G.

ii. X̂1, X̂2 ∈ GT , output X̂=X̂1 ·X̂2 = e(g, g)x1 · e(g, g)x2 = e(g, g)x1+x2 ∈GT .

iii. X̂1 ∈ GT , X2 ∈ G, output X̂ = X̂1 · e(X2, g) = e(g, g)x1+x2 ∈ GT .

iv. X1 ∈ G, X̂2 ∈ GT , output X̂ = e(X1, g) · X̂2 = e(g, g)x1+x2 ∈ GT .

Fan-in-2 multiplication gate:

i. X1, X2 ∈ G, output X̂ = e(X1, X2) = e(g, g)x1x2 ∈ GT .

ii. X1 ∈ G ∪ GT , c ∈ Zp constant, output X = (X1)c = e(g, g)x1c ∈ GT .

The output of GroupEval is the output of the last gate of the arithmetic circuit.

Figure H.26: The BFR verifiable delegation of computation scheme.

uniformly at random from the set X . We denote the Hadamard product for binary
vectors as ⋄ : Zn

2 ⋄ Zn
2 → Zn

2 , with A ⋄B = C, Ci = Ai ·Bi ∈ Z2 for i = 1, 2, . . . , n.
The Hadamard product is similar to the inner product of vectors except that the
output is a vector rather than an integer.

Bilinear maps. A symmetric bilinear group is a tuple (p,G,GT , g, gT , e), where
G and GT are groups of prime order p. The elements g ∈ G and gT ∈ GT are
generators of the group they belong to, and e : G × G −→ GT is a bilinear map,
i.e., ∀A,B ∈ G and x, y ∈ Zp it holds that e(xA, yB) = e(A,B)xy and e(g, g) ̸= 1GT .
In the setting of VC, the map e is cryptographically secure, i.e., it should be defined
over groups where the discrete logarithm problem is assumed to be hard or it should
be hard to find inverses. In bilinear groups there exists a natural isomorphism
between G and (Zp,+) given by ϕg(x) = gx; similarly for GT . Since ϕg and ϕgT

are isomorphisms, there exist inverses ϕ−1g : G→ Zp and ϕ−1gT : GT → Zp, that can
be used to homomorphically evaluate any arithmetic circuit f : Zn

p → Zp, from G
to GT . More precisely, there exists a map GroupEval (as defined in [4]):

GroupEval(f,X1, . . . , Xn) = ϕgT (f(ϕ−1g (X1), . . . , ϕ−1g (Xn))).

For security, we assume ϕg and ϕgT are not efficiently computable.

Homomorphic MAC authenticators. In this paper, we make use of Backes,
Fiore and Reischuk’s verifiable computation scheme based on homomorphic MAC
authenticators [4], which we refer to as BFR. The BFR scheme targets functions
f that are quadratic polynomials over a large number of variables. Figure H.26
contains a succinct description of the BFR scheme. For further details we refer the
reader to the main paper [4].

176 Paper F

vE2(B), ID ID

vE1(A)
ctHD

C CS DB

AS

(i)
(ii)

(iii)

(iv)(v) yes/no

Figure H.27: Authentication phase in the Yasuda et al.’s BAP [23].

Homomorphic encryption. LetM denote the space of plaintexts that support
an operation ⊡, and C be the space of ciphertexts with ⊙ as operation. An en-
cryption scheme is said to be homomorphic if for any key, the encryption function
Enc satisfies: Enc(m1 ⊡m2) ← Enc(m1)⊙ Enc(m2), for all m1,m2 ∈ M, where
← means computed without decryption. In this paper, we only use Somewhat Ho-
momorphic Encryption schemes (SHE). As the name suggests these schemes only
support a limited number of homomorphic operations, e.g., indefinite number of
homomorphic additions and finite number of multiplications. The choice to use
SHE instead of Fully Homomorphic Encryption [12] is due to efficiency: SHE, if
used appropriately, can be much faster and more compact [15].

The Yasuda et al. protocol. Yasuda et al. [23] proposed a privacy-preserving
biometric authentication protocol that targets one-to-one authentication and re-
lies on somewhat homomorphic encryption based on ideal lattices. Two packing
methods facilitate efficient calculations of the secure Hamming distance, which is
a common metric used for comparing biometric templates. The protocol uses a
distributed setting with three parties: a client C, a computation server CS (which
contains the database DB) and an authentication server AS. The protocol is di-
vided into three phrases.

Setup Phase: AS generates the public key pk and the secret key sk of the SHE
scheme in [23]. AS gives pk to C and CS and keeps sk.

Enrollment phase: C provides a feature vector A from the client’s biometric data
(e.g., fingerprints), runs the type-1 packing method and outputs the encrypted
feature vector vEnc1(A). The computation server stores (ID, vEnc1(A)) in DB
as the reference template for the client ID.

Authentication phase: upon an authentication request, C provides a fresh bio-
metric feature vector B encrypted with the type-2 packing method and sends
(ID, vEnc2(B)) to the computational server. CS extracts from the database the
tuple (ID, vEnc1(A)) using ID as the search key. CS calculates the encrypted
Hamming distance ctHD and sends it to the authentication server. CS decrypts
ctHD and retrieves the actual Hamming distance HD(A,B) = Dec(sk, ctHD).
AS returns yes if HD(A,B) ≤ κ or no if HD(A,B) > κ, where κ is the
predefined accuracy threshold of the authentication system.

Figure H.27 depicts the authentication phase of Yasuda et al.’s BAP.
For additional details on biometric authentication protocols and systems we refer
the reader to [16].

Revisiting Yasuda et al.’s Biometric Authentication Protocol: Are you Private
Enough? 177

3 Combining the BFR and the SHE schemes

In this section, we describe how to efficiently combine the verifiable computation
scheme BFR by Backes et al. [4] with the somewhat homomorphic scheme SHE by
Yasuda et al. [23]. We call the resulting scheme BFR+SHE. Our motivation for
defining this new scheme is to build a tailored version of BFR that we insert in
Yasuda et al.’s biometric authentication protocol to mitigate the template recovery
attack of [1].

As a preliminary step, we explain the most challenging point This problem rises
because the elements and operations in BFR and SHE are defined over two different
rings. This passage is quite mathematical, but it is necessary to guarantee the
correctness of our composition BFR+SHE, presented later on in this section.

3.1 The ring range problem

The most significant challenge in combining the Backes et al. VC scheme with the
Yasuda et al. SHE scheme is the different range of the base rings. While BFR handles
all operations in Zp, where p is a prime, the operations in the SHE scheme [23] are
handled in Zd, where d is the resultant of two polynomials. Therefore, in our
BFR+SHE scheme, we need to tweak the input data if there is a mismatch in the
ranges. In the calculation of the secure Hamming distance, there is a constant term
equal to −2, which lives in [−d/2, d/2) but not in [0, p). In order to verify and
generate proper tags, we can write −2 as D = (d − 2) mod p. Furthermore, we
need to check the impact of the range difference to the verification carried out by
the client. The first equation in the Ver algorithm of BFR is:

ctHD = y
(HD)
0 , (H.37)

where ctHD ∈ Zd and y
(HD)
0 ∈ Zp. In our instantiation, the term ctHD corresponds

to the encrypted Hamming distance between the fresh and the reference templates,

while y
(HD)
0 is a component of the final authentication tag. As long as d ̸= p,

Equation (H.37) is not satisfied even when the computation is carried out correctly.
We present a general solution to this problem. For simplicity, we assume p < d

(as the tag size should be ideally small), although the reasoning also applies when
p > d by swapping the place of p and d. Our solution relies on keeping track of
the dividend. Given a stored template α ∈ Zd and a fresh template β ∈ Zd, both
encrypted, we have that: α = α′+mp,α′ = α mod p ∈ Zp, β = β′+kp and β′ = β
mod p ∈ Zp.

Let SWHD(x, y) be the arithmetic circuit for calculating the encrypted Hamming
distance without the final modulo d. Let c = SWHD(α, β) and c′ = SWHD(α′, β′),
we can derive: SWHD(α, β) mod p = SWHD(α′, β′) mod p; and c = ℓ · p+ c′. The
value ℓ is the dividend. In our case of study, we want to perform the comparison
between the Hamming distance (of the biometric templates) and the threshold κ
which determines if the templates match, i.e., the client is authenticated, or not.
To this end, we would track ℓ mod d instead of ℓ directly. The reason is that
ℓ contains more information and would lead to a privacy leak. Relating back to

equation (H.37) we have: ctHD = c mod d ∈ Zq and y
(HD)
0 = c′ ∈ Zp. Given

c = ℓ · p + c′, it holds that:

ctHD = c mod d = (ℓ ∗ p + c′) mod d

= c′ mod d + (ℓ mod d) · (p mod d)

= (y
(HD)
0 mod d) + (ℓ mod d) · (p mod d)

(H.38)

178 Paper F

Thus, if we define ℓd := (ℓ mod d) · (p mod d), the verification equation in (H.37)

becomes ctHD = y
(HD)
0 (mod d + ℓd), which is satisfied whenever ctHD is computed

correctly (as we show in Section 3.3).

3.2 Our BFR+SHE scheme

To facilitate the intuition of how we incorporate BFR+SHE in Yasuda et al.’s BAP
we describe the algorithms of BFR+SHE directly in the case the encrypted vectors
are biometric templates:

BFR+SHE.KeyGen(λ): The key generation algorithm runs SHE.KeyGen(λ) →
(pk, sk) and BFR.KeyGen(λ) → (ek, vk). The output is the four-tuple
(ek, pk, sk, vk).

BFR+SHE.Enc(pk,A, phase): The encryption algorithm takes as input the (en-
cryption) public key pk, a plaintext biometric template A ∈ {0, 1}2048 and
a phase ∈ {1, 2} to select the appropriate packing method. It outputs the
ciphertext ct computed as ct = vEncphase(A), using the type-phase packing
method of the SHE scheme.

BFR+SHE.Auth(vk, L, ct): on input the verification key vk, a ciphertext ct and
a multi-label L = (∆, τ), with ∆ the data set identifier (e.g., the client’s
ID) and τ the input identifier (e.g., “stored biometric template” or “fresh
biometric template”); this algorithm outputs σ ← BFR.Auth(vk, L, ct), with
σ = (y0, Yi, 1) = (ct, FK(∆, τ) · g−ct)1/θ), where the value θ and the function
FK are defined in vk.

BFR+SHE.Comp(pk, ct1, ct2): The compute algorithm takes as input the encryp-
tion public key pk, and two ciphertexts ct1, ct2, which intuitively correspond
to the encryptions vEnc1(A) and vEnc2(B) respectively. The output is the en-
crypted Hamming distance HD calculated as: ctHD = C2 · vEnc1(A) +C1 ·

vEnc2(B) + (−2 · vEnc1(A) · vEnc2(B)) ∈ Zd, where C1 :=

[
n−1∑
i=0

ri
]
d

and

C2 := [−C1 + 2]d and r, d are extracted from pk. To solve the ring range
problem described in Section 3.1 we compute ℓd as follows. Let c be the result
of the (encrypted) Hamming distance computation without the final modulo
d. Then c′ = c mod p and c = ℓp + c′, where c′ is a component in the au-
thentication tag and ℓ is a dividend. We compute ℓd = ℓ mod d = (c − [c
mod p])/p mod d. The output is (ctHD, ℓd)

BFR+SHE.Eval(ek, pk, σ1, σ2): The evaluation algorithm takes as input the evalua-
tion key ek, the ecryption public key pk, and two tags, which intuitively corre-
spond to the authenticators for the two biometric templates, A,B. In our case
of study, the function to be evaluated is fixed to be f = HD the Hamming dis-
tance. This algorithm outputs σHD = (y0, Y1, Ŷ2)← BFR.Eval(ek,HD, (σ1, σ2)).

In details, every input gate accepts either two tags σA, σB ∈ (Zp×G×GT)2,
or one tag and a constant σ, c ∈ ((Zp × G × GT) × Zp). The output of a
gate is a new tag σ′ ∈ (Zp × G × GT), which will be fed into the next gate
in the circuit as one of the two inputs. The operation stops when the final

Revisiting Yasuda et al.’s Biometric Authentication Protocol: Are you Private
Enough? 179

gate of f is reached and the resulting tag σHD is returned. A tag has the

format σ(i) = (y
(i)
0 , Y

(i)
1 , Ŷ

(i)
2) ∈ Zp ×G×GT for i = 1, 2 (indicating the two

input tags), which corresponds respectively to the coefficients of (x0, x1, x2)

in a polynomial. If Ŷ
(i)
2 is not defined, it is assumed that it has value 1 ∈ GT .

Next we define the specific operations for different types of gates:

• Addition. The output tag σ′ = (y0, Y1, Ŷ2) is calculated as:

y0 = y
(1)
0 + y

(2)
0 , Y1 = Y

(1)
1 · Y (2)

1 , Ŷ2 = Ŷ
(1)
2 · Ŷ (2)

2 .

• Multiplication. The output tag σ′ = (y0, Y1, Ŷ2) is calculated as:

y0 = y
(1)
0 · y

(2)
0 , Y1 = Y

(1)
1 · Y (2)

1 , Ŷ2 = e(Ŷ
(1)
1 , Ŷ

(2)
1).

Since the circuit f has maximum degree 2, the input tags to a multipli-
cation gate can only have maximum degree 1 each.

• Multiplication with constant. The two inputs are one tag σ and
one constant c ∈ Zp. The output tag σ′ = (y0, Y1, Ŷ2) is calculated as:

y0 = c · y(1)0 , Y1 = (Y
(1)
1)c, Ŷ2 = (Ŷ

(1)
2)c.

BFR+SHE.Ver(vk,P∆, ctHD, σHD, ℓd): The verification algorithm computes b ←
BFR.Ver(vk, sk,P∆, ctHD, σHD, κ) to verify the correctness of the outsourced
computation. In our case of study, P∆ is a multi-labeled program [4] for the
arithmetic circuit for calculating the encrypted HD. The BFR.Ver algorithm
essentially performs two integrity-checks:

ctHD = y0 mod (d + ℓd) (H.39)

W = e(g, g)y0 · e(Y1, g)θ · (Ŷ2)θ
2

(H.40)

If the verification output is b = 0 the algorithm returns

(accVC, accHD) = (0, 0).

Otherwise, if b = 1, it proceeds with the biometric authentication check: it
computes w ← SHE.Dec(ct) to retrieve the actual Hamming distance w =
HD(A,B). If HD(A,B) ≤ κ, here κ corresponds to the accuracy of the BAP,
the algorithm returns

(accVC, accHD) = (1, 1).

If HD(A,B) > κ, the output is

(accVC, accHD) = (1, 0).

3.3 Correctness analysis

In our BFR+SHE scheme the outsourced function is the Hamming distance HD,
that can be represented by a bi-variate deterministic quadratic function. Thus, we
can avoid using gate-by-gate induction proofs, as done in [4], and demonstrate the
correctness in a direct way. In what follows, we adopt the notation in [4], and we
prove the correctness of BFR+SHE by walking through the arithmetic circuit of HD
step by step.

180 Paper F

Figure H.28 depicts the arithmetic circuit for calculating the encrypted Ham-
ming distance. A and B denote the encrypted stored and fresh biometric tem-
plates respectively. C1 and C2 are the constants in the function as defined in the
BFR+SHE.Comp algorithm. The D letter indicates the −2 in the function, but
since −2 is not in the valid range Zp required by the original BFR scheme, we need
to have an intermediate transformation of D = d−2. All A,B,C1 and C2 are in Zd.

Finally, the σs are the outcome tags of the form σ(i) = (y
(i)
0 , Y

(i)
1 , Ŷ

(i)
2) ∈ Zp×G×GT

after each gate operation, and the Rs are values in either G or GT, which are used
for homomorphic evaluation over bilinear groups (i.e., GroupEval in [4]). We let α

Figure H.28: The arithmetic circuit for calculating the encrypted Hamming distance.

and β be vEnc1(A) and vEnc2(B) and each of them has a tag: σα = (y
(A)
0 , Y

(A)
1 , 1)

and σβ = (y
(B)
0 , Y

(B)
1 , 1). These two tags are generated by the BFR.Auth algo-

rithm, which specifies that y
(A)
0 = α and Y

(A)
1 = (Rα · g−α)1/θ. Similarly, we have

y
(B)
0 = β and Y

(B)
1 = (Rβ · g−β)1/θ. To verify the correctness of our BFR+SHE

scheme, we need to check that the two equations specified in the BFR.Ver al-
gorithm are satisfied if the computation is performed correctly. To this end, let

σHD = (y
(HD)
0 , Y

(HD)
1 , Ŷ

(HD)
2) be the final tag (which is equivalent to σ6 in the arith-

metic circuit depicted in Figure H.28).

The first step is to derive the tags for the intermediate calculation and eventually
the final tag. If we run the SHE.Eval algorithm homomorphically through the
circuit, we will get the outcome tags σ1, . . . , σ6 (for details see Appendix H.i). We
thus derive σHD (equivalent to σ6):

σHD = (y
(HD)
0 , Y

(HD)
1 , Ŷ

(HD)
2)

= (C2 · y(A)
0 + C1 · y(B)

0 + D · y(A)
0 · y(B)

0 ,

(Y
(A)
1)y

(B)
0 ·D+C2 · (Y (B)

1)y
(A)
0 ·D+C1 , e(Y

(A)
1 , Y

(B)
1)D).

Now we show the proofs for the two verification equations. First we need to prove
Equation (H.39), i.e., ctHD = y0 mod (d + ℓd). The equality holds as for Equa-

tion (H.38). The end result is: ctHD = y
(HD)
0 mod d + (ℓ mod d) · (p mod d). As

we define ℓd = (ℓ mod d) ·(p mod d), we can derive Equation (H.39). Secondly, we
need to prove that Equation (H.40) holds, i.e., W = e(RC2

α · R
C1

β , g) · e(Rα, Rβ)D.
To this end, we run GroupEval(f,Rα, Rβ) and execute the bilinear gate opera-
tions. Recall that Rα and Rβ correspond to RA and RB in the notation used in the
construction, Denote by R6 the final result of running GroupEval over the circuit
of HD. It holds that:

Revisiting Yasuda et al.’s Biometric Authentication Protocol: Are you Private
Enough? 181

R6 = GroupEval(f,Rα, Rβ) = e(RC2
α ·R

C1

β , g) · e(Rα, Rβ)D

= GroupEval(f,Rα, Rβ) = e(g, g)y
HD
0 · e(Y HD

1 , g)θ · (Ŷ (HD)
2)θ

2

By expanding the last expression the desired result (see Appendix H.i for details).
Thus, we have proved the correctness of the BFR+SHE scheme. which are the
results of the pseudo-random function FK in the BFR.Ver algorithm.

4 Improving the Yasuda et al. protocol

In this section, we describe a modified version of the Yasuda et al. [23] protocol
that is secure against the recently identified hill-climbing attack that can be per-
formed by a malicious computation server CS. It is composed of four distributed
parties: a client C (holding the keys pk, ek and vk), a computation server/database
CS (holding the keys pk and ek), an authentication server AS (holding the keys pk,
sk and vk). Figure In the proposed protocol, we preserve the assumption that AS
is a trusted party and furthermore assume the client C and the database DB are
also trusted parties. C is responsible to manage the secret key vk for the verifiable
computation scheme and DB stores the encrypted reference biometric templates
with the identities of the corresponding clients. However, CS can be malicious and
cheat with flawed computations. We describe the three main phases of our pro-
posed improvement of Yasuda et al.’s privacy-preserving biometric authentication
protocol:

Setup Phase: In this phase the authentication server AS runs SHE.KeyGen(λ)
to generate the public key pk and the secret key sk of the somewhat homo-
morphic encryption (SHE) scheme. AS keeps sk and distributes pk to both
the client C and the computation server CS.

Enrollment Phase: Upon client registration, the client C runs BFR.KeyGen(λ)
to generate the public evaluation key ek and the secret verification key vk. C
distributes ek to CS and vk to AS. The client C generates a 2048-bit feature
vector A from the client’s biometric data, runs BFR+SHE.Enc(pk,A, 0) to ob-
tain the ciphertext ctA. C authenticates ctA by running BFR+SHE.Auth(vk,
LA, ctA) and outputs a tag σA. Then C sends the three-tuple (ID, ctA, σA) to
the database. This three-tuple serves as the reference biometric template for
the specific client with identity ID.

Authentication Phase: The client provides fresh biometric data as a feature vec-
tor B ∈ {0, 1}2048. C runs BFR+SHE.Enc(pk,B, 1) to obtain the ciphertext
ctB and authenticates it by running σB ← BFR + SHE.Auth(vk, LB , ctB). C
sends (ID, ctB, σB) to CS, who extracts the tuple (ID, ctA, σA) corresponding
to the client to be authenticated (using the ID as the search key). CS calculates
the encrypted Hamming distance ctHD ← BFR+SHE.Comp(pk, ctA, ctB) and
generates a corresponding tag σHD ← BFR+SHE.Eval(ek, pk, σA, σB). Then,
CS sends (ID, ctHD, σHD) to the authentication server. AS runs (accVC, accHD)

182 Paper F

Input: the client’s identity ID, the public key for SHE scheme pk, the public
evaluation key for the BFR scheme ek, the stored reference template and tag
(vEnc1(A), σA), the encrypted fresh template vEnc2(B) and its tag σB .

Output: the inner product ctP = vEnc1(A) · vEnc2(A′) and the tag σ′
HD.

Goals: make the authentication server accept the inner product computation and

return yes, and use the hill-climbing strategy recover the reference template A.

Figure H.29: Setting for Abidin et al.’s template recovery attack in [1].

← BFR + SHE.Ver(vk, sk,P∆, ctHD, σHD, κ), where κ is the desired accuracy
level of the BAP. If either accVC or accHD is 0 AS outputs a no, for authen-
tication rejection. Otherwise, (accVC, accHD) = (1, 1) and AS outputs yes, for
authentication success.

4.1 Security analysis of the proposed BAP

Our primary aim is to demonstrate that our privacy-preserving biometric authenti-
cation protocol is not vulnerable to Abidin et al.’s template recovery attack [1]. To
this end, we sketch the attack setting in Figure H.29.
We recall that for this attack, the adversary is a malicious computational server
who tries to recover the stored reference biometric template of a client with identity
ID. All the other parties of the BAP, are trusted and behave honestly.

In what follows, we show that the malicious CS cannot forge a tag σHD′ that
passes the verification checks performed in BFR. It is possible for the adversary
to cheat on the first equality (Equation (H.39)) as it only tests that the returned
computation result (ctHD or ctP) aligns with the arithmetic circuit used to generate
the tag (σHD or σHD′). In [1], CS succeeds by computing the arithmetic circuit for
the inner product instead of HD. In this case, it is not possible for the malicious
computational server to fool the second second integrity check (Equation (H.40)).
In details, AS calculates W = GroupEval(f,Rα, Rβ), and since AS is honest,
f = HD is the arithmetic circuit for the Hamming distance. If CS returns incorrect
results, with overwhelming probability the second verification equation does not
hold, thus the attack is mitigated.

Other threats.

In what follows, we consider attack scenarios in which one of the participating
entities in the BAP is malicious.

Malicious client. C is responsible to capture the reference template and the
fresh template as well as to perform the encryption. If the client is malicious,
the knowledge of the encryption secret key and of the identity ID enables C to
initiate a center search attack and recover the stored template A as explained in
[17]. Unfortunately, Pagnin et al. [17] show that this class of attacks cannot be
detected using verifiable computation techniques, since the attacker is not cheating
with the computation.

A new concern with the modified Yasuda et al. protocol is the key generation for
BFR. In the protocol, we let the client C generate the private key vk, the evaluation
key ek and the authentication tags because we assume C is a trusted party. If C

Revisiting Yasuda et al.’s Biometric Authentication Protocol: Are you Private
Enough? 183

turns malicious, it could give a fake vk to the authentication server AS and initiate
the template recovery attack with the inner product by simulating CS. Since the
adversary (C) controls vk, the computation verification step becomes meaningless.

Malicious computation server. The main motivation to integrate VC in BAPs
is indeed to prevent CS from behaving dishonestly. Unlike the client C, CS only has
access to the encrypted templates vEnc1(A) and vEnc2(B) and the user pseudonyms.
CS cannot modify the secret key of the BFR scheme. We have analysed how the
template recovery attack conducted by CS can be countered and hence we shorten
the discussion here.

In contrast to the original protocol, CS needs to calculate an extra value ℓd to solve
the range issue after integrating BFR. However, ℓd is still operated on the ciphertext
level and is not involved in the second verification equation. Thus learning ℓd does
not provide any significant advantage in recovering the templates.

Malicious authentication server. A malicious AS will completely break down
the privacy of the BAP since it controls the secret key sk used by the SHE scheme.
If AS successfully eavesdrops and obtains the ciphertext vEnc1(A) or vEnc2(B), it
can recover the plaintext biometric templates.

4.2 Efficiency Analysis

The original BFR scheme in [4] allows alternative algorithms to improve the effi-
ciency of the verifier. Although in our instantiation we did not use these algorithms,
the current definition of the multi-labels in BFR+SHE is extensible. Given also that
the function to be computed is f = HD and has a very simple description as arith-
metic circuit, running the BFR+SHE.Ver algorithm requires O(|f |) computational
time. In addition, if the amortized closed-form efficiency functionality is adopted,
the verification function will run in time O(1). Nonetheless, the arithmetic circuit
of HD has 6 gates only and the saved computation overhead would be relatively
small.

5 A flawed approach
Privacy and integrity are the two significant properties desired in a privacy-preserving
BAP. There are two possible ways to combine VC and homomorphic encryption
(HE): running VC on top of HE, and viceversa, running HE on top of VC.

In the first case, the data (biometric template) is first encrypted and then encoded
to generate an authentication proof. Our construction of BFR+SHE follows this
principle. In this approach, AS can make the judgement whether the output of CS
is from a correct computation of HD before decrypting the ciphertext.

In the second case, the data is first encoded for verifiable computation and then
the encoded data is encrypted. This combination is not really straightforward and
is prune to security breaches.

In this section, we demonstrate an attack strategy that may lead to informa-
tion leakage in case the homomorphic encryption scheme (henceforth FHE)30 is
applied on top of a VC scheme. For the sake of generality, we define FHE =
(KeyGenFHE , Enc,Dec,Eval). For verifiable computation scheme we adopt the
notation of Gennaro et al. [11] and define VC = (KeyGenV C , P robGen,Compute,
V er), where KeyGenV C outputs the private key skvc and public key pkvc; ProbGen

30The same leakage of information could happen if a SHE scheme is used.

184 Paper F

takes skvc and the plaintext x as input and outputs the encoded value σx; Compute
takes the circuit f , the encrypted encoded input and outputs the encoded version of
the output; V er is performed to verify the correctness of the computation given the
secret key skvc and the encoded output σy. The main idea of the flawed approach
is to first encode the data in plaintext and then encrypt the encoded data. It can
be represented by x̂ = Enc(ProbGen(x)), where x̂ is what the malicious server gets
access to.

5.1 The attack
We describe now a successful attack strategy to break the privacy-preservation
property of a BAP built with the second composition method: HE on top of VC
(or HE after VC). The adversary’s goal is to recover σy, i.e., the encoded value of
the computation result. The attack runs in different phases. We show that the
privacy-preserving property is broken if q ≥ n, where q is the number of queries in
the learning phase and n is the length of the encoded result σy. For simplicity we
collect the two entities C and AS into a single trusted party V that we refer to as
the Verifier.

The attack is depicted in Figure H.30, a more detailed description follows.

Figure H.30: An attack strategy against the näıve the integration of FHE on top of VC.

Setup phase: V generates the keys of the protocol and gives pkvc, pkFHE to Adv.

Challenge phase: V generates the encoded version σx for the input x. V encrypts
the encoded input and sends Enc(σx) to Adv.

Learning phase: Adv uses V as a decryption oracle by sending verification queries,
which can be further divided into the following steps:

1. Adv performs honest computations and derives the Enc(σy).

2. Adv constructs a vector A′ ∈ Zn
2 equal in length to σy. A′ is initialized

with the last bit set to 0 and the rest of the bits set to 1. For the ith

trial, we set A′ = (11, . . . , 0i, 1i+1, . . . , 1n−1, 1n), i.e., set the ith bit to 0
and the rest bits to 1.

Revisiting Yasuda et al.’s Biometric Authentication Protocol: Are you Private
Enough? 185

3. Adv encrypts the tailored vector A′ and reuses the honest result Enc(σy)
from step 1. Then she computes: Enc(σy′) = Enc(A′)⋄Enc(σy), where ⋄
represents the Hadamard product for binary vectors and sends the result
to V for verification.

4. V decrypts Enc(σ′y). Thanks to the homomorphic property of FHE,
V can derive σy′ = A′ ⋄ σy. V checks the computation based on the
encoded result σy′ and returns either accept if V er(sk, σy′) = 1 or reject,
otherwise.

5. The attacker A′ acts as a “mask”: it copies all the bit values of σy into
σy′ except for the ith bit, which is always set to zero. Consequently, if
the output of the verification is accept, Adv will learn that σy = σy′ as
well as Enc(σy) = Enc(σy′), which reveals that the ith bit of σy equals
to 0. Similarly, if the output of the verification is reject, Adv learns that
the ith bit of σy is 1. In both cases, one bit of σy is leaked.

Output phase: After q ≥ n verification queries, where n equals the length of σy,
Adv outputs σy′ .

It is trivial to check that that σy′ = σy and thus V er(sk, σ′y) = V er(sk, σ′y) = 1
and attacker’s goal is achieved.

The attack demonstrates that the order of combining a VC and a (F)HE is very
crucial: the verifier must decrypt the ciphertext before it can determine whether it is
the result of the correct outsourced computation. Adopting such a scheme in a BAP
would make AS a decryption oracle. Leaking information on the Hamming distance
may be exploited to perform further attacks that might lead to the full recovery
of biometric templates as it has been recently shown [17]. Formally speaking, we
can say that the HE on top of VC is not a chosen-ciphertext attack (CCA) secure
scheme.

6 Conclusions
Biometric authentication protocols have gained considerable popularity for access
control services. Preserving the privacy of the biometric templates is highly critical
due to their irrevocable nature. Yasuda et al. proposed a biometric authentication
protocol [23] using a SHE scheme. However, a hill-climbing attack [1] has been pre-
sented against this protocol that relies on a malicious internal computation server
CS that performs erroneous computations and leads to the disclosure of the bio-
metric reference template. We counter the aforementioned attack by constructing
a new scheme named BFR+SHE which adds a verifiable computation layer to the
SHE scheme. We then describe a modified version of the Yasuda et al. protocol that
utilizes our BFR+SHE scheme, and demonstrate that the improved BAP provides
higher privacy guarantees. Although employing VC to mitigate hill-climbing attack
techniques seems a quite straight-forward step, we demonstrate that not all combi-
nations of a VC scheme with a HE one are secure, and show how a näıve combination
leads to a drastic private information leakage in BAP.

Bibliography

[1] Aysajan Abidin and Aikaterini Mitrokotsa. “Security aspects of privacy-preserving
biometric authentication based on ideal lattices and ring-LWE”. In: Pro-
ceedings of the IEEE Workshop on Information Forensics and Security 2014
(WIFS 2014). 2014.

[2] L Babai. “Trading Group Theory for Randomness”. In: Proceedings of STOC’85.
Providence, Rhode Island, USA: ACM, 1985, pp. 421–429.

[3] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk. “ADSNARK: Nearly
Practical and Privacy-Preserving Proofs on Authenticated Data”. In: Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy (Oakland).
2015.

[4] Michael Backes, Dario Fiore, and Raphael M Reischuk. “Verifiable delega-
tion of computation on outsourced data”. In: Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. ACM. 2013,
pp. 863–874.

[5] Manuel Barbosa, Thierry Brouard, Stéphane Cauchie, and SimT ao Melo
Sousa. “Secure Biometric Authentication with Improved Accuracy.” In: ACISP
2008. Ed. by Yi Mu, Willy Susilo, and Jennifer Seberry. Vol. 5107. LNCS.
Springer, 2008, pp. 21–36.

[6] Julien Bringer, Hervé Chabanne, Firas Kräıem, Roch Lescuyer, and Eduardo
Soria-Vázquez. “Some applications of verifiable computation to biometric ver-
ification”. In: Information Forensics and Security (WIFS), 2015 IEEE Inter-
national Workshop on. IEEE. 2015, pp. 1–6.

[7] Julien Bringer, Hervé Chabanne, and Alain Patey. “Privacy-preserving bio-
metric identification using secure multiparty computation: An overview and
recent trends”. In: Signal Processing Magazine, IEEE 30.2 (2013), pp. 42–52.

[8] Julien Bringer, Hervé Chabanne, and Alain Patey. “Shade: Secure Hamming
Distance Computation from Oblivious Transfer”. In: FC 13. Springer. 2013,
pp. 164–176.

[9] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin
Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. “Geppetto: Versa-
tile verifiable computation”. In: Security and Privacy (SP), 2015 IEEE Sym-
posium on. IEEE. 2015, pp. 253–270.

[10] Dario Fiore, Rosario Gennaro, and Valerio Pastro. “Efficiently verifiable com-
putation on encrypted data”. In: Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security. ACM. 2014, pp. 844–
855.

186

Revisiting Yasuda et al.’s Biometric Authentication Protocol: Are you Private
Enough? 187

[11] Rosario Gennaro, Craig Gentry, and Bryan Parno. “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers”. In: Advances in
Cryptology–CRYPTO 2010. Springer, 2010, pp. 465–482.

[12] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: 41st
ACM STOC. Ed. by Michael Mitzenmacher. Bethesda, MD, USA: ACM Press,
2009, pp. 169–178.

[13] S. Goldwasser, S. Micali, and C. Rackoff. “The Knowledge Complexity of
Interactive Proof Systems”. In: SIAM J. Comput. 18.1 (Feb. 1989), pp. 186–
208.

[14] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. “Im-
proved garbled circuit building blocks and applications to auctions and com-
puting minima”. In: Cryptology and Network Security. Springer, 2009, pp. 1–
20.

[15] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. “Can homo-
morphic encryption be practical?” In: Proceedings of the 3rd ACM workshop
on Cloud computing security workshop. ACM. 2011, pp. 113–124.

[16] Elena Pagnin. “Authentication under Constraints”. Licentiate dissertation.
Chalmers University of Technology, 2016.

[17] Elena Pagnin, Christos Dimitrakakis, Aysajan Abidin, and Aikaterini Mitrokotsa.
“On the Leakage of Information in Biometric Authentication”. In: Progress
in Cryptology–INDOCRYPT 2014. Springer, 2014, pp. 265–280.

[18] Elena Pagnin and Aikaterini Mitrokotsa. “Privacy-preserving biometric au-
thentication: challenges and directions”. In: IACR Cryptology ePrint Archive
2017 (2017), p. 450.

[19] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. “Pinocchio:
Nearly Practical Verifiable Computation”. In: Proceedings of the 2013 IEEE
Symposium on Security and Privacy. Washington, DC, USA: IEEE Computer
Society, 2013, pp. 238–252.

[20] Koen Simoens, Julien Bringer, Hervé Chabanne, and Stefaan Seys. “A Frame-
work for Analyzing Template Security and Privacy in Biometric Authentica-
tion Systems”. In: IEEE Transactions on Information Forensics and Security
7.2 (2012), pp. 833–841.

[21] Koen Simoens, Julien Bringer, Hervé Chabanne, and Stefaan Seys. “A frame-
work for analyzing template security and privacy in biometric authentication
systems”. In: IEEE Transactions on Information Forensics and Security 7.2
(2012), pp. 833–841.

[22] A. Stoianov. “Cryptographically secure biometrics”. In: SPIE 7667, Biometric
Technology for Human Identification VII (2010), pp. 76670C–12.

[23] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and
Takeshi Koshiba. “Practical packing method in somewhat homomorphic en-
cryption”. In: Data Privacy Management and Autonomous Spontaneous Se-
curity. Springer, 2014, pp. 34–50.

188 Paper F

Appendix

H.i Details in the correctness analysis

In this section, we show the intermediate steps of the calculation.
The derived tags are:
σ1 = (C2 · y(A)

0 , (Y
(A)
1)C2 , 1); σ2 = (C1 · y(B)

0 , (Y
(B)
1)C1 , 1);

σ3 = (y
(A)
0 · y(B)

0 , (Y
(A)
1)y

(B)
0 · (Y (B)

1)y
(A)
0 , e(Y

(A)
1 , Y

(B)
1));

σ4 = (D · y(A)
0 · y(B)

0 , (Y
(A)
1)y

(B)
0 ·D · (Y (B)

1)y
(A)
0 ·D, e(Y

(A)
1 , Y

(B)
1))D;

σ5 = (C2 · y(A)
0 + C1 · y(B)

0 , (Y
(A)
1)C2 · (Y (B)

1)C1 , 1);

σ6 =

 C2 · y(A)
0 + C1 · y(B)

0 +D · y(A)
0 · y(B)

0

(Y
(A)
1)y

(B)
0 ·D+C2 · (Y (B)

1)y
(A)
0 ·D+C1

e(Y
(A)
1 , Y

(B)
1)D


The homomorphic bilinear map calculation results are:
R1 = RC2

α ; R2 = RC1
β ; R3 = e(Rα, Rβ); R4 = e(Rα, Rβ)

D;

R5 = RC2
α ·RC1

β ; R6 = e(RC2
α ·RC1

β , g) · e(Rα, Rβ)
D.

To prove that W = GroupEval(f,Rα, Rβ) satisfies Equation (H.40), we start
by analysing the three factors that made up the righthand of the equation, namely:

e(g, g)y
HD
0 · e(Y HD

1 , g)θ · (Ŷ (HD)
2)θ

2

. We in turn expand each one of the factors and
finally compute the product of the results, evaluating it against W .
The first factor can be expanded as:

e(g, g)y
HD
0 = e(g, g)C2·y(A)

0 +C1·y(B)
0 +D·y(A)

0 ·y(B)
0 = e(g, g)C2α+C1β+αβD.

The second factor is expanded as:

e(Y HD
1 , g)θ = e((Y

(A)
1)y

(B)
0 ·D+C2 · (Y (B)

1)y
(A)
0 ·D+C1 , g)θ

= e((Rα · g−α)(βD+C2)/θ · (Rβ · g−β)(αD+C1)/θ, g)θ

= e(RβD+C2
α ·RαD+C1

β · g−2αβD−αC2−βC1 , g)

= e(Rα, g)
βD+C2 · e(Rβ , g)

αD+C1 · e(g, g)−2αβD−αC2−βC1 .

The third factor is expanded as:

(Ŷ
(HD)
2)θ

2

= e(Y
(A)
1 , Y

(B)
1)Dθ2 = e((Rα · g−α)1/θ, (Rβ · g−β)1/θ)Dθ2

= e(Rα · g−α, Rβ · g−β)D = e(Rα, Rβ · g−β)D · e(g−α, Rβ · g−β)D

= e(Rα, Rβ)
D · e(Rα, g)

−βD · e(RB , g)
−αD · e(g, g)αβD.

Here we need to prove the right hand side is equal to W . We use a tempo-

rary variable P = e(g, g)y
HD
0 · e(Y HD

1 , g)θ · (Ŷ (HD)
2)θ

2

to denote the expansion result
of the righthand-side. The expression below proves the correctness of the second
verification equation (H.40).

P = e(g, g)C2·α+C1·β+D·α·β · e(Rα, g)
βD+C2 · e(Rβ , g)

αD+C1 · e(g, g)−2αβD−αC2−βC1 ·

· e(Rα, Rβ)
D · e(Rα, g)

−βD · e(RB , g)
−αD · e(g, g)αβD

= e(g, g)0 · e(Rα, g)
C2 · e(Rβ , g)

C1 · e(Ra, Rb)
D

= e(RC2
α , g) · e(RC1

β , g) · e(Ra, Rb)
D

= e(RC2
α ·RC1

β , g) · e(Ra, Rb)
D = W.

It’s not that I’m so smart,
it’s just that I stay with problems longer.

Albert Einstein

	I Thesis Summary
	Introduction
	Background
	Summary of Papers and Contributions
	Conclusions and Outlook

	II Collection of Papers
	Paper A: Multi-Key Homomorphic Authenticators
	Paper B: Matrioska: A Compiler for Multi-Key Homomorphic Signatures
	Paper C: Anonymous Single-Round Server-Aided Verification
	Paper D: Two-hop Distance-Bounding Protocols: Keep your Friends Close
	Paper E: On the Leakage of Information in Biometric Authentication
	Paper F: Revisiting Yasuda et al.'s Biometric Authentication Protocol: Are you Private Enough?

