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Abstract. In biometric authentication protocols, a user is authenticated
or granted access to a service if her fresh biometric trait matches the
reference biometric template stored on the service provider. This match-
ing process is usually based on a suitable distance which measures the
similarities between the two biometric templates. In this paper, we prove
that, when the matching process is performed using a specific family
of distances (which includes distances such as the Hamming and the
Euclidean distance), then information about the reference template is
leaked. This leakage of information enables a hill-climbing attack that,
given a sample that matches the template, could lead to the full recovery
of the biometric template (i.e. centre search attack) even if it is stored
encrypted. We formalise this “leakage of information” in a mathematical
framework and we prove that centre search attacks are feasible for any
biometric template defined in Znq , pq ě 2q after a number of authentication
attempts linear in n. Furthermore, we investigate brute force attacks to
find a biometric template that matches a reference template, and hence
can be used to run a centre search attack. We do this in the binary case
and identify connections with the set-covering problem and sampling
without replacement.

Key words: Biometric authentication, privacy-preservation, centre search
attack, hill-climbing, brute force attacks.

1 Introduction

While biometric authentication is becoming increasingly popular, the
privacy and security risks related to their usage are raising severe concerns.
The main threats associated to biometric authentication include profiling
and tracking of individuals and identity theft. If successfully performed,
any attack that recovers a biometric template may have serious impact
since users cannot change their biometric features and biometric data may
reveal very sensitive information (e.g. genetic [1] information and medical
diseases [2]).
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Biometric authentication protocols involve comparing fresh biometric
data with a stored biometric template. The process is essentially per-
formed by computing some distance or divergence between the fresh and
the stored template. If the measured distance is less than a predefined
threshold, then the user is authenticated; otherwise she is rejected. Many
biometric authentication protocols use straightforward choices for the
distance, such as the Hamming distance [3, 4], the normalised Hamming
distance ( [5] for iris recognition) and the Euclidean distance [6–9]. In
these cases the matching process leaks information that could be exploited
by an adversary to recover the stored template. More precisely, the ad-
versary could run an iterative process where he progressively changes the
components of an arbitrary biometric template until acceptance. This
strategy is known as hill-climbing attack [10], due to similarity with the
synonymous optimisation technique. When the initial template is an ac-
ceptable biometric trait (e.g. a fresh sample) this process is called centre
search attack [10]. Recovering stored biometric templates has more severe
impact than just finding an acceptable biometric template. Indeed, the
same stored template might be used in multiple biometric authentication
systems which may even employ different matching processes. Furthermore,
a recovered stored template could be used to find a match in criminal
biometric template databases or even compromise health records [11].

Hill climbing attacks involve making incremental changes to a potential
solution, until one or more acceptable solutions are found. In our case,
the adversary observes how the matcher responds to forged biometric
templates. His goal is to recover the stored template from one matching
template. Bringer et al. [12] presented a hill-climbing strategy that is
successful even when a dedicated secure access module (e.g. smartcard)
is used to perform the biometric authentication process. The matching
process considered in [12] involves an adapted Hamming distance with
erasures, nevertheless, the adversary is able to recover multiple encrypted
biometric templates. Later on, Simoens et al. [10] describe multiple attacks
(including the centre search attack) that can be mounted by each of the
internal entities in a distributed biometric authentication systems.

In the past years privacy-preserving distance computation has been
investigated [13–15]. Although these protocols have direct applications to
biometric identification and authentication they all suffer from leakage of
information when a centre search attack is employed.

The problem of leakage of information due to the employment of dis-
tances has also been investigated in other areas not relevant to biometric
authentication. For example, the Hamming weight model has been em-
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ployed in order to successfully perform side channel attacks [16, 17] (e.g.
differential power analysis). It has been shown [16,17] that the power con-
sumption of a device (e.g. a smart card) directly depends on the Hamming
weight and on the number of changes 0 Ø 1 in the binary vector that is
considered during the execution of the attack.

Our contribution: In this paper, we point out that all biometric authen-
tication protocols that rely on certain distances (including the Hamming
and the Euclidean distance) are susceptible to leakage of information
and we provide a formal mathematical framework to analyse this. In
particular, we generalise the centre search attack and prove that it is
efficient and feasible in the binary case as well as when the biometric
templates are defined in Znq . In both cases we show that the maximal
number of authentication attempts in order to fully recover the stored
biometrics corresponding to the given data is linear in n (the size of
the biometric string). Our proofs hold also when the Euclidean distance
is employed. Thus, we go beyond the Hamming distance case that was
described in [10]. We furthermore investigate the preliminary step to the
centre search attack: finding a biometric template that matches a reference
one. For the binary case, we propose a new algorithm that exploits a tree
structure and we compare its performance to standard brute force attacks
and to the optimal but infeasible attack. Finally, we highlight how the
optimal solution of finding a matching biometric template connects to the
NP-complete set-covering problem and sampling without replacement. Our
proofs are valid for standard as well as for privacy-preserving biometric
authentication protocols since the output of the matching process is not
affected by the employed protection mechanism (e.g. homomorphic en-
cryption). This means that encryption alone cannot mitigate the leakage
of information of the matching process. More precisely, this leakage of
information leads to full recovery of the stored template for the centre
search attack and to a matching template for the brute-force attack. An
implication of our work is that achieving security and privacy of biometric
templates using the known techniques is challenging.

Outline: The notations and the background material are introduced in
Section 2 while Section 3 describes the adversarial model. We generalise
the centre search attack in Section 4 in two ways: first to any leaking
distance on Zn2 and then to any leaking distance on Znq . In addition, we
investigate the success probability of finding an acceptable fresh biometric
template and compare the bounds for the success probability in different
cases in Section 5. Finally, Section 6 summarizes our results.
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2 Preliminaries

Notations: Let q P Z be a positive integer, q ě 2. The set of n-
dimensional vectors with components in Zq “ t0, 1, ¨ ¨ ¨ , q ´ 1u is de-
noted by Znq . The i-th component of a vector x P Znq is referred to as
xi P Zq. Given a distance d : Znq ˆ Znq Ñ Rě0, a point x P Znq and a
positive number τ P Rą0, the d-ball of center x and radius τ is defined
as Bxpτq “ tz P Znq : dpx, zq ď τu. In the following, the binary case
pq “ 2q will always be explicitly written as Zn2 . If not otherwise speci-
fied, Znq implies q ą 2. We denote the bit-flip operation as ¯: Z2 Ñ Z2,
namely 1̄“0, 0̄“1. The integer part of a real number τ , is denoted by tτ u
(rounding to the closest integer ď τ).

2.1 Biometric authentication

A biometric authentication system consists of two main phases: the enrol-
ment phase and the authentication phase.

The enrolment phase is a one-time step: a user (client) C registers
to a trusted party her biometric templates (digital strings b) along with
her identity ID. These two pieces of information are then stored in the
database of the authentication server AS. Once enrolled in the system,
the client can authenticate herself an unlimited number of times.

In the authentication phase, the client is required to provide a fresh
biometric trait b1 as well as her identity ID. These two data are then
communicated to the authentication server, which checks if matching
templates (fresh b1 and stored b) match. If the distance between the user’s
fresh biometric trait b1 and the reference biometric template b is less
or equal to a predefined threshold τ , then the client gets authenticated.
Otherwise, the system rejects the user.

Without loss of generality we will consider only the two party set-
ting (i.e. one client C and one authentication server AS, as depicted in
Figure 1). However, our analysis naturally applies when more than two
parties are involved in the biometric authentication process [4, 18, 19].
Due to privacy concerns, the biometric templates should be protected
and not sent in the clear over the network. This implies that often the
matching procedure is performed in the encrypted domain. For instance,
in multiple privacy-preserving biometric authentication protocols, secure
multi-party computation techniques are employed to preserve the privacy
of the users. In those protocols usually the biometric data are protected
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Fig. 1: Authentication phase in a two-party biometric authentication system.

using homomorphic encryption [20], garbled circuits [21] or oblivious
transfer [22].

Figure 1 depicts the authentication phase of a biometric authentication
system in a two party setting, between a client C and an authentication
server AS. The client presents her fresh biometric and her ID to the
authentication system. The sensor S gets the user’s biometric vector b1

and her identity. In the privacy-preserving case, S encrypts b1 (Epb1q) and

ID (ĂID), otherwise this data is sent in the clear. Subsequently, the two

data (Epb1q, ĂID) are sent to the authentication server AS, who retrieves
the (possibly encrypted) stored template that corresponds to the user
with identity ID. The matching process is then preformed by checking
if the distance between the fresh and stored biometric templates is less
than a predefined threshold τ (i.e. dpb, b1q ď τ). Finally, depending on
the outcome of the matching (OutAS), the authentication server either
accepts or rejects the client. Note that even in the privacy-preserving case,
where the biometric data is encrypted, the output of the authentication
server depends only on the value of dpb, b1q, i.e. the distance between the
fresh and the stored biometric vectors. Hence, encryption alone does not
mitigate our attacks.

The main enablers of the attacks described in this paper are:

(a) A return channel of the biometric authentication process, denoted as
OutAS (e.g. access granted or not) that is sent by the authentication
server to the user after each authentication attempt. In a real-life
biometric authentication scenario this could be a door that opens
denoting “access granted” when biometric authentication is used for
access control in a building.

(b) The fact that the matching process (and so the value of OutAS) is
based on a distance that is sensitive to single component variations
(see leaking distance Definition 1).

In this paper, we demonstrate that even when secure-multi party
computation techniques are employed, it is still possible to disclose the
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biometric templates as long as a certain family of distances is used to
compare the raw (plaintext) biometric data. That is, an attacker can
learn information about the value of b (plaintext of stored biometric
template) by observing the authentication server’s response OutAS to
the client’s authentication requests, if the response depends on the value
of dpb, b1q. More precisely, if d is a distance that detects component-
variation (see Definition 1), and if there exists a function f that enables
to retrieve information about the distance of the raw templates, given
their possibly encrypted versions, i.e. Df s.t. fpEpbq, Epb1qq “ dpb, b1q,
then the biometric authentication system leaks information (in the non
privacy-preserving case E “ id, is the identity map and f “ d is the given
distance). In particular, it is always possible to disclose the original b
given a matching b1. For instance, consider the case [4] where b, b1 P Zn2 ,
d “ dH is the Hamming distance and E and D are the Goldwasser-Micali
[23] encryption and decryption functions, respectively. Then, dHpb, b

1q “

HWpb ‘ bq1 “ HW pDpEpb‘ b1qqq “ HW pDpEpbq ˆ Epb1qqq, where HW
denotes the Hamming weight of a vector, i.e. HWpxq “

řn
i“1 xi. In this

case, we have f “ HW ˝D ˝ ˆ.

3 Adversarial Model

The main threats in a privacy-preserving biometric authentication protocol
are classified as follows [10]:

– Biometric reference recovery: the adversary tries to recover the refer-
ence (stored) biometric template b.

– Biometric sample recovery: the adversary tries to recover (or generate)
a fresh biometric template b1 that will be acceptable by the biometric
authentication system.

– Identity privacy: the adversary tries to link a biometric template bpiq
of a user i to the user’s identity IDpiq.

– Traceability and distinguishability of users: the adversary’s objective
is to distinguish different users and/or trace one user in different
authentication attempts.

In this paper, we focus on the two first threats only, as they apply to
any biometric authentication system, privacy-preserving or not. We also
consider that the adversary A has access to the output of the authentication
process (OutAS) as well as to the predefined threshold τ used in matching
process. The settings for the two attacks are:
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– Biometric reference recovery: the adversary A has an acceptable fresh
biometric template b1 at his disposal and tries to recover the stored
template b (centre search attack).

– Biometric sample recovery: the adversary A does not have access to
an acceptable fresh biometric b1 but tries to find an accepted template
anyway (brute force attack).

4 Generalisations of the Centre Search Attack

Let b1 P Znq denote a fresh biometric template and b P Znq the reference
(stored) template, for q ě 2. The standard centre search attack aims at
finding the point b in the centre of the acceptance ball Bbpτq “ t z P Zn2 :
dpb, zq ď τ u. Simoens et al. [10] gave an informal description of this attack
in the case d is the Hamming distance. Here, we extend this attack to
a larger family of distances over Zn2 (Theorem 2). In order to do so, we
prove in Theorem 1 that any leaking distance (cf. Definition 1) over Zn2 is
equivalent to the Hamming distance. In addition, Theorem 3 proves that
a centre search attack is feasible also for b P Znq when q ą 2 if a leaking
distance (e.g. the Euclidean distance) is employed in the matching process.

The family of distances we consider in this paper is defined as follows:

Definition 1 (Leaking distances). Let q ě 2, a distance d : Znq ˆZnq Ñ
Rě0, is said to be a leaking distance (to detect component variations) if it
can be written as dpx, yq “ h

`
řn
i“1 |xi ´ yi|

k
˘

, for all x, y P Zn2 , k P Qą0
and h : RÑ Rě0 a monotonically strictly increasing positive function.

The Hamming distance is an example of a leaking distance over Z2

(take h to be the identity map and k “ 1). For a general q ě 2, the
Euclidean distance detects component variation (h is the square-root
function and k “ 2). Note that leaking distances are reasonable distances
to be used for biometric authentication, as they enable to compare vectors
(biometric data) component wise.

In order to simulate the query/access to an oracle, we introduce the
following decision function.

Definition 2. Let q ě 2, τ P Rą0 and let d : Znq ˆ Znq Ñ Rě0 be a
distance metric. Then, for each x P Znq , we define a decision function

δx : Znq Ñ t0, 1u as δxpzq “

"

0 if dpx, zq ą τ
1 if dpx, zq ď τ

.

It is easy to see that the decision function δx corresponds to the output
of the authentication process denoted as OutAS in Sections 2 and 3. Firstly,
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we consider biometric templates as binary vectors. This is for instance the
case for iris recognition based biometric authentication [5, 24]. We begin
by proving that any binary leaking distance can be written in terms of
the Hamming distance.

Theorem 1. Let d : Zn2 ˆ Zn2 Ñ Rě0 be a leaking distance on Zn2 . Then
every d-ball corresponds to a dH-ball, with dH being the Hamming distance.

We provide the proof of Theorem 1 in the appendix. Observe that
Theorem 1 provides a boardwalk among all binary leaking distances. In
particular, it enables us to extend all the results concerning Hamming
distance to any other leaking distance (on Zn2 ). For example, the correction
factor for the Euclidean distance on Zn2 is τ “ τ̃2.

Theorem 2. Let dH : Zn2 ˆ Zn2 Ñ Rě0 be the Hamming distance and
τ P Rą0. Then, it is possible to determine the bit-values of a string x
having access only to a vector y P Bxpτq and in at most n ` 2τ calls to
the decision function δx (cf. Definition 2).

The proof of Theorem 2 is provided in the appendix. In light of
Theorem 1, we have the natural extension of Theorem 2 to the case of any
leaking distance on Zn2 .

Corollary 1. For any leaking distance d on Zn2 , Theorem 2 holds, with
τ “ h´1pτ̃q being the corresponding threshold when τ̃ is the given radius
of the ball for the distance d.

As a side result, we have:

Corollary 2. If x is the stored biometric template b, and y is a matching
fresh measurement b1 satisfying dpb, b1q ď τ , then Theorem 2 provides
an algorithm to retrieve b being given b1 in a number of authentication
attempts linear in bit-length of the biometric templates.

In the protocol for iris recognition by Daugman [5], the matching process re-
lies on a normalised Hamming distance, which is defined as NHDpb, b1, X, Y q “
řn
i“1pbi‘ b

1
iqXiYi {

řn
i“1XiYi, for b, b1, X, Y P Zn2 . In the previous formula

the vector X is the mask for the stored biometric template b, while Y
masks the fresh trait b1. It is immediate to see that the normalised Ham-
ming distance does not comply with Definition 1, nevertheless it is still
possible, given b1 and Y , to mount a centre search attack and recover the
bits of b that are not blinded by the mask X,i.e. bi such that Xi “ 1.

Theorem 2 holds only for leaking distances on Zn2 as in the proof we
exploit the fact that |xi ´ yi| can only assume two values 0 and 1, when
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xi “ yi and xi ‰ yi respectively. However, Theorem 3 generalises the
reasoning in Theorem 2 to the non-binary case when any leaking distance
is used (such as the Euclidean distance, often used in non-binary biometric
authentication protocols).

Theorem 3. Let d : Znq ˆ Znq Ñ Rě0 be any leaking distance on Znq (cf.

Definition 1) and τ P Rą0, be a threshold such that τ ă hpt q2 u
kq, then it is

possible to determine the value of the vector x P Znq having access only to
a vector y P Bxpτq in at most mn calls to the decision function δx (as in
Definition 2), where m “ mintt2τ u, 2 log qu.

The proof of Theorem 3 is provided in the appendix. Also in this case,
if we consider the vectors as biometric templates it holds:

Corollary 3. Considering x as the stored biometric template b, and y
as the fresh matching trait b1, then the proof of Theorem 3 provides an
algorithm to mount centre search attacks against biometric authentication
systems with templates in Znq . And the maximal number of authentica-
tion attempts is linear in length (dimension as vectors) of the biometric
templates.

It is important to highlight that the results of this section imply that
all biometric authentication protocols that employ a leaking distance in
the matching process are vulnerable to the centre search attack, and this
attack can be performed in an efficient way.

5 Biometric Sample Recovery Attacks in the Binary Case

One of the most severe threats to biometric authentication systems is
recovering a stored raw biometric template b (maybe linked to the identity
of the user). The knowledge of b provides more information than the
knowledge of a fresh trait b1, as the same b could be used in multiple
biometric authentication systems possibly employing different matching
processes (while b1 might be rejected). In Section 4 we already presented
efficient ways to recover the centre b of a ball, given a point b1 close to
it, namely b1 P Bbpτq. The question we address now is: Is there a way to
find a matching template b1 given access only to δb? The next subsections
present four different answers to this question. We discuss the connection
between this problem and the set-covering problem in Section 5.2.

In the following, we consider only the case in which the biometric traits
are binary vectors, i.e. b P Zn2 , and the employed distance is a leaking
distance (cf. Definition 1).
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5.1 Blind Brute Force

In the blind brute force attack, the attacker randomly chooses a point

b1
R
ÐÝ Zn2 , and checks the output of the function δbpb

1q. If δbpb
1q “ 1, it

means that p P Bbpτq, so the attacker can easily recover b using this
point b1 (cf. Theorem 2). Otherwise (i.e., if δbpb

1q “ 0), the attacker picks
another point at random from Zn2 as before. We call this attack blind brute
force because in each attempt the adversary tries a random point until a
point in Bbpτq is found.

Let us compute the success probability of this attack after t P Zą0
attempts. Suppose first that we pick b1 P Zn2 uniformly at random. Then
the probability of having b1 accepted is ω :“ |Bbpτq|{|Zn2 | “

řτ
k“0

`

n
k

˘

{2n.
In each attempt, if the trial point is chosen uniformly at random and
independently from the previous attempts, then with probability ω this new
trial point will be accepted. Let us now introduce binary random variables
Xi “ 0 or 1, for i “ 1, 2, ¨ ¨ ¨ , t, and let PpXi “ 1q “ ω and PpXi “

0q “ 1 ´ ω. Obviously, Xi, i “ 1, 2, ¨ ¨ ¨ , t, are i.i.d. Bernoulli random
variables Xi „ Bernpωq. We are interested in computing P

`
řt
i“1Xi “ 1

˘

,
the total probability of succeeding once in t attempts. It is not hard
to see that P

`
řt
i“1Xi “ 1

˘

“ tωp1 ´ ωqt´1, as the random variable
řt
i“1Xi „ Binompt, ωq has a binomial distribution.

5.2 Sampling without replacement

Brute Force without Point Replacement In order to perform a brute
force attack without point replacement the attacker has to define a set of
potential candidates C Ď Zn2 . For the first trial, C “ Zn2 and the attacker

chooses a point b1
R
ÐÝ C at random. If δbpb

1q “ 1, the selected point is inside
the acceptance ball, b1 P Bbpτq, and so the attack is successful. Otherwise,
the attacker updates the set of potential candidates C “ Cztb1u, deleting
the one point that is not in the acceptance ball. The attack proceeds by
randomly picking a point from the updated set C.

Let the random variables Xi, i “ 1, 2, ¨ ¨ ¨ , t, be as in the case of
the blind brute force attack. Note, however, that now PpXi “ 1q is
different in each attempt. In this case,

řt
i“1Xi follows the Hypergeometric

distribution. Therefore, P
`
řt
i“1Xi “ 1

˘

“ B
`

2n´B
t´1

˘L`

2n

t

˘

, where B “

|Bxpτq| “
řτ
k“0

`

n
k

˘

. This attack is intuitively better than the blind brute
force, but of course the larger the n is, the less efficient it is.
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Fig. 2: The fundamental step of the Tree algorithm. Suppose the target biometric
template is the vector b “ p10100q P Z5

2, the black bullet in the tree, and suppose the
threshold is set to be τ “ 2. Let a “ p000q be the selected ancestor, highlighted as a
grey circle in the picture. Let b1 “ p00011q be the leaf randomly generated from a, then
dHpb

1, bq ą τ and so δb
`

p00011q
˘

“ 0. In this case the points generated by a (i.e. that
have a as common ancestor) will be deleted from the set of potential solutions.

The Tree Algorithm We propose here a method (Algorithm 1) to find
a point b1 P Zn2 within distance τ from the unknown biometric template b,
given access to the decision function δb (as in Definition 2). The central
idea of Algorithm 1 is to consider the points of Zn2 as leaves of a binary tree
of depth n. The tree structure is then exploited to define relatives-relations
among the points of Zn2 and to ensure that at each unsuccessful trial one
can delete non-overlapping portions of the space Zn2 . More precisely, if a
point p P Zn2 is such that δbppq “ 0, the algorithm removes from the set of
potential centres not only the tried point p, but also its siblings-relatives
generated by the τ common ancestor (see Figure 2).

The main function called by
the algorithm is generate. Its in-
put is the threshold τ and a
pn ´ τq-dimensional binary vector
a. The output is a random leaf
b1 P Zn2 generated by a (the τ an-
cestor). That is, generatepa, τq “
pa1, . . . , an´τ , r1, . . . , rτ q “ b1,
where ri P Z2, i “ 1, . . . , τ are τ
random bits. The set of potential
ancestors C is updated at every un-
successful round, by deleting the
chosen ancestor. The tree algorithm
uses the Hamming distance.

Algorithm 1 The Tree algorithm

Input: (n, τ, δb,)

Output: b1 “ b11, ¨ ¨ ¨ , b
1
n (a matching

template)

C “ Zn´τ2

for i “ 1 to 2n´τ : do
a

R
ÐÝ tCu

p “ generatepa, τq

if δbpb
1
q “ 1 (accepted) then

Return b1

else
C “ C r tau

end if

end for
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For a practical implementation, we can store the paths of the tree that
lead to the already rejected ancestors, and pick the new node a among the
non-already-traversed paths. The running time of the attack is (of course)
exponential, as it progressively constructs a binary tree of order n ´ τ .
Nevertheless, the probability to display the whole tree before finding a
point that matches the reference template is very low (precisely: 2´n`τ ).

The optimal solution The goal of the attacks described in this section
is to find the ball Bbpτq Ă Zn2 on which δb takes the value 1, without any
additional information at hand. We have already investigated blind brute
force (random tries), brute force without point replacement (remove one
point at each unsuccessful trial), and the Tree algorithm (remove 2τ points
at each unsuccessful trial). The optimal brute force approach exploits
the following idea: if a point p P Zn2 is rejected, i.e. δbppq “ 0, it means
that b R Bppτq. Hence, the whole ball Bppτq can be removed by the set of
potential centres. Intuitively, the best one can do to rapidly reduce the size
of potential centres, is to use as trial points, points that lie at distance
2τ from each other. This corresponds to covering the space Zn2 with the
smallest number of balls of radius τ . This corresponds to an instance of
the well-known set-covering problem in a space [25,26].

More precisely, the optimal biometric sample recovery attack would
involve the adversary covering Zn2 with a family F of balls of radius τ . At
this point, the adversary needs to query the oracle (i.e. to use the decision
function δb) at most |F| times, one for each (centre of a) ball in F. Hence the
best solution is for F a minimal covering, i.e. |F| “ minGPC |G|, where C is
the set of all possible covering of Zn2 with balls of radius τ . This is exactly
the set covering problem: to find the minimal number of balls needed to
cover a space. It is proven that the set covering problem is NP-complete
[26]. This result implies that also providing an optimal algorithm for the
biometric sample recovery attack is an NP-complete problem. However,
there exist some greedy approximations that are relatively efficient. In
particular, for our case, Theorem 1 in [26] applies directly and hence the
number of points that the adversary needs to query is only a factor of
Opτ lnpn` 1qq more than the optimal cover.

5.3 Comparisons and Bounds

In order to compare the performance of the four described methods we
need to bound the probability that an attacker succeeds in finding a
matching point, in each case. At the t-th trial, the attacker attempts
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point xt P Z
n
2 and observes yt P 0, 1, with yt fi 1Bbpτqpxtq “ δbpxtq. Let

zt P t0, 1u denote whether or not the attacker has found an acceptable
point after t trials and st “

řt
i“1 yt be the number of points the attacker

has found by time t.
To begin the analysis, we define µbpτq fi |Bbpτq|{|Zn2 | P r0, 1s to be

the relative measure of the acceptance ball around b. In the binary case,
dropping the dependence on b, τ , we have µ P r2τ´n, pn ` 1qτ2´ns. Of
course, µ is also the probability of acceptance if sampling uniformly.

Blind brute force. In this case the points are selected uniformly without
replacement, i.e. xt „ UpZn2 q. It trivially follows that Epstq “ µt. It is also
clear that the attack is successful whenever st ě 1. For that reason, we
shall attempt to bound the probability that this occurs while µt ă 1. As
a matter of fact, we can write:

Ppst ě 1q “ Pp
t

ł

i“1

zt “ 1q ď
t
ÿ

i“1

Ppzt “ 1q “ µt ď pn` 1qτ2´nt.

where the first inequality becomes an equality whenever µt ă 1.

Sampling without replacement. All the other described approaches cor-
respond to sampling without replacement. In either case, let α P r0, 1s
denote the proportion of points removed at each step. Then, we obtain
the following bound:

Ppst ě 1q ď
t
ÿ

i“1

Ppzt “ 1q ď
t
ÿ

i“1

µ

1´ αi
ď

ż t

0

µ

1´ αx
dx “

µ

α
log

1

1´ αt
.

For the point-wise replacement algorithm, α “ q´n, hence there is little
effect. For the binary case, we can employ the tree algorithm, α “ 2τ´n,
which can be a substantial improvement. An unbounded adversary may
use an optimal cover, in order to exclude as many points as possible
whenever a point is rejected. In fact, in the best case, the adversary will
be able to remove B points every time a point is rejected, giving a value
of α “ B2´n. To visualise the bounds, we choose some parameters such
that there is a clear difference after a small number of iterations (depicted
in Figure 3). More precisely, Figure 3 shows the performance of all four
methods in terms of an upper bound on their success probability after a
number of iterations. The four curves show sampling with replacement (i.e.
brute force), and three different cases for sampling without replacement.
Firstly, removing a single point. Secondly, removing 2τ points using the
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Fig. 3: Visualisation of the bounds for q “ 2, n “ 32, τ “ 5. In this case µ « 5.6ˆ10´5.

tree construction. Finally, removing the maximum number of points B,
which is computationally infeasible. There is a significant gain for the
last choice, but only after a large portion of the space has already been
covered. As when α Ñ 0, ln 1

1´αt Ñ αt, the success probabilities of the
first three methods are approximately linear in the size of the space, and
hence exponential in the dimension.

The naive no replacement algorithm naturally does not improve sig-
nificantly over brute force without replacement, since the volume that is
excluded at every step is infinitesimal. Obviously, if we are able to remove
a significant part of the volume, then we obtain a clear improvement
in performance. Only an optimal adversary can do significantly better.
However, this would assume either that set-covering is in P or that the
adversary is computationally unbounded. Consequently, as there is no
polynomial algorithm that is significantly better than brute force, bio-
metric authentication schemes based on matching templates are secure
against biometric sample recovery attacks.

6 Conclusions

In this paper, we prove that all biometric authentication protocols that
employ distances between a template and an fresh biometric in the match-
ing process suffer from leakage of information that could be exploited
by an adversary to launch centre search attacks. In order to analyse this
leakage of information, we provide a mathematical framework and prove
that centre search attacks are feasible for any biometric template defined
in Znq , q ě 2, after a number of authentication attempts that is linear
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in n. Our results imply that it is possible to mount this attack on most
existing biometric authentication protocols (including privacy-preserving
ones) that rely on a Hamming, Euclidean, normalised Hamming distance
or any distance that complies with Definition 1.

Furthermore, we investigate whether brute force attacks can be used
to recover a matching biometric. We describe four strategies: blind brute
force, brute force without replacement, a new algorithm based on a tree
structure and the optimal case. Our results demonstrate that improving
the success rate in these brute force attacks would imply finding a solution
to the NP-complete set-covering problem. Thus, this provides some security
guarantees of existing biometric authentication protocols as long as the
attacker has not access to a matching biometric trait.

A possible countermeasure that could be employed in order to strengthen
existing biometric authentication protocols against centre search attacks
would be the employment of more sophisticated authentication methods.
For example, simply using weighted distances in which the weights are
secret and different for each user may provide sufficient security. Some-
thing similar is already employed in the normalised Hamming distance
for which indeed the centre search attack is feasible but only for a subset
of the components of the stored biometric template. An alternative and
promising direction would be to rely on a mechanism that randomly se-
lects a distance from a pool of distances at each authentication attempt.
However, such measures should be incorporated carefully in order not to
affect the accuracy of the biometric authentication system.
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A Collected proofs

Proof (Theorem 1). By hypothesis d is a leaking distance, hence it is of
the form dpx, yq “ hp

řn
i“1 |xi ´ yi|

kq, for all x, y P Zn2 . Since h : RÑ Rě0
is monotonic, it is bijective on its image, in other words it has an inverse
h´1 : I Ñ R, where I “ Imphq “ tw P Rě0 : w “ hpzq, D z P Ru.
Consider the d ball of radius τ̃ around a point x P Zn2 , namely the set
ty P Zn2 : dpx, yq ď τ̃u. We want to prove this d-ball equals a Hamming
distance-ball centred in x and of radius τ .
Indeed, dpx, yq ď τ̃ ðñ hp

řn
i“1 |xi ´ yi|

kq ď τ̃ . Noticing that h is in-
creasing implies that h´1 is also increasing, one obtains:

řn
i“1 |xi ´ yi|

k ď

h´1pτ̃q. In addition, since |xi ´ yi| P t0, 1u we can ignore the exponent k
in the expression (this is because 0k “ 0 and 1k “ 1,@ k P Qą0). Hence,
řn
i“1 |xi ´ yi| ď h´1pτ̃q, but the left hand side of the inequality is exactly

the Hamming distance between the points x and y.
To summarise, we have dpx, yq ď τ̃ ðñ dHpx, yq ď h´1pτ̃q. Let us put
τ “ h´1pτ̃q, then ty P Zn2 : dpx, yq ď τ̃u “ ty P Zn2 : dHpx, yq ď τu.
That is, any d-ball can be described as a dH -ball (Hamming distance-ball)
and vice versa. [\

Proof (Theorem 2). Step 1. Find a point w that lies just outside the
boundary of Bxpτq.
By hypothesis δxpyq “ 1. Let w be the vector obtained from y by flipping
the first bit, i.e. w1 “ ȳ1 and wi “ yi , @i P t2, . . . , nu. If w is rejected,
that is, if δxpwq “ 0, it means that y is already on the boundary of Bxpτq
and we are done by putting v “ y. Otherwise, proceed by flipping one
more bit of y until it exits Bxpτq. The general step after k ´ 1 trials (flip-
ping bits of y and being accepted) is: set w “ pȳ1, . . . , ȳk, yk`1, . . . , ynq, if
δxpwq “ 0 put v “ pȳ1, . . . , ȳk´1, yk, . . . , ynq. If δxpwq “ 1, go on and flip
the next component. It is quite intuitive that this procedure ends after at
most 2τ ` 1 steps (the worst case is when y is already on the boundary
but we move it in the wrong direction and cross the ball along its diameter).

Step 2. Determine the central point x of Bxpτq.
Note that by Step 1, we already know the value of the k-th component
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of x, namely xk “ vk. For j P t1, 2, . . . , nuztku, consider the vector vpjq
defined as vpjqi “ wi, @ i P t1, . . . , nuztju. If δxpvpjqq “ 1, it means that
vpjq compensates the error (in the k-th component) introduced by w with
a new correct component (the j-th component). Hence xj “ vpjqj . On the
other hand, δxpvpjqq “ 0 implies that the j-th component of w was correct.
Hence, in this case, xj “ 1´ vpjqj . Step 2 ends after n´ 1 queries. [\

Proof (Theorem 3). Let epiq P Znq denote the i-th vector of the canonical
basis, i.e. for each i “ 1, . . . , n, epiqi “ 1 and epiqj “ 0, @j P t1, . . . , nuztiu.
For each of the n components of a biometric template, determine two
vectors vpiq, wpiq P Znq , i “ 1, . . . , n such that: vpiq “ b1 ` λ1epiq and
wpiq “ b1`λ2epiq, with λ1 P tyi, q´ 1´ yiu and λ2 P t0, yi´ 1u. Moreover,
δx
`

vpiq
˘

“ 1 but δx
`

vpiq ` epiq
˘

“ 0, and δx
`

wpiq
˘

“ 1 but δx
`

wpiq ´
epiq

˘

“ 0. Such pair of vectors exists for each component, as Bxpτq is a
bounded subset of Znq and τ ă hpt q2 u

kq. There are two possible situations:

– vpiq and wpiq are on the boundary of the ball Bxpτq. In this case the
centre of the ball x P Znq will have the i-th component equal to the
middle point xi “ pvpiqi ` wpiqiq{2, @i P t1, . . . , nu.

– vpiq and wpiq are not exactly on the boundary of the ball Bbpτq. Since
it is vpiq, wpiq, x P Znq the respective distances from the boundary
εvpiq and εwpiq must be equal (by symmetry). Thus, also in this case
bi “ pvpiqi ` wpiqiq{2, @i P t1, . . . , nu.

There are two efficient strategies to determine the vectors vpiq, wpiq:

– Linear search: in this case the worst case scenario is when y “ x, and
the adversary needs to try all the points (with components in Zq) that
lie in the diameter of the ball Bxpτq, that is at most t2τ u trials.

– Binary search: the adversary performs at most 2 log q trials to deter-
mine each external point, vpiq, wpiq.

Thus, the maximum number of queries (access to the δx function) necessary
in order to recover the centre x of a ball in Znq is bounded by nm, with
m “ mintt2τ u, 2 log qu. [\
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