
Report Fully Homomorphic Encryption

Elena Fuentes Bongenaar

July 28, 2016

1 Introduction

Outsourcing computations can be interesting in many settings, ranging from a client
that is not powerful enough to perform certain computations itself, to situations
where different large datasets need to be combined in calculations but are stored at
various locations. Along with outsourcing comes a privacy concern: should the input
and/or output be revealed to the third party which will perform the computations?
In case this is not desirable one would like to encrypt the data before sending it to
this third party, under a key this party does not know. This is not a straight forward
solution: usually computations on ciphertexts will yield nothing meaningful, but
fortunately there is an exception: homomorphic encryption. This type of encryption
will allow certain operations to be performed on ciphertexts and after decryption
give the result as if the operations were performed on the plaintexts.

There are different flavors of this type of encryption; the scheme can support
either multiplication or addition or both. Furthermore a distinction can be made be-
tween schemes that allow an arbitrary number of operations versus limited ones. The
’holy grail’ among them is Fully Homomorphic Encryption (FHE), which allows an
arbitrary number of additions and multiplications to be performed on the ciphertexts.

A year after the publication of RSA the notion of homomorphic encryption was in-
troduced by Rivest, Adleman and Dertouzos [18], calling it ’privacy homomorphisms’.
According to them one of the requirements for such a system is that encryption and
decryption should be easy to compute. In order to make it cost-wise interesting to
outsource computations this requirement must be met otherwise it would be just as
efficient to do the computation yourself.

It has taken many years before the first FHE scheme was actually realized; this
was done by Craig Gentry in 2009 [9] when writing his PhD thesis. Gentry’s scheme
used lattice-based cryptography and the security is partially based on the hardness
of certain problems over ideal lattices. This breakthrough marked the beginning
of much research on this topic and the proposal of multiple new schemes, many of
which are based on the Learning With Errors (LWE) problem, which reduces to hard
problems in lattices. One of those FHE schemes, BGV [4], has been implemented in
an open source library: HElib [10].

In 2012 the notion of multi-key FHE was introduced, and realized, by [13]. This
is a special type of FHE scheme that allows computations on ciphertexts that are
encrypted under different keys. There are various scenarios imaginable in which this
can be a powerful tool, for example to calculate health care statistics based on data
from different hospitals or performing a test on distance between people without

1

disclosing exact locations or distance.

The goal of this report is to give an introduction to FHE, multi-key FHE and
give a feeling of how some of the schemes work. The focus lies on understanding
what techniques and tricks are used, rather than on performance or implementation.
A high level overview of the first FHE scheme by Gentry is given, the scheme itself
is not very efficient but is has been a breakthrough result and the structure has set
the tone for many schemes that followed. Then the focus will be on some (R)LWE
schemes which we will dive into further. Still there will be many details that need to
be right in order for a scheme to work, which can be found in the original schemes.
Finally the notion of multi-key FHE is discussed as well as the few multi-key FHE
schemes that exist.

2 (Fully) Homomorphic Encryption

The term homomorphic encryption is inspired by ring homomorphisms. A map
f : P → C is called a homomorphism if the following holds for all a, a′ ∈ P :

1. f(a ·P a′) = f(a) ·C f(a′)

2. f(a+P a
′) = f(a) +C f(a′)

Where ·P ,+P are operations in P and ·C ,+C in C [7]. This means it doesn’t matter
if you apply an operation on two elements first in P and then go to C through the
homomorphism f , or first go to C through the homomorphism with both elements
and then perform the operation on the resulting elements in C. In the setting of
encryption P would be the space of plaintexts and C of ciphertexts, while ideally
the homomorphism is encryption. This would allow us to perform operations on the
ciphertexts that will still decrypt correctly.

Even though the idea of a fully homomorphic scheme was already introduced
in the seventies, the breakthrough came only came in the beginning of this cen-
tury. Before that only partially homomorphic schemes were known, which allow
either multiplication or addition on ciphertexts. An easy example is RSA: given
ciphertexts Ci(= me

i mod n) encrypted under key (n, e) we can multiply them,
which gives the encryption of the multiplication of the plaintexts:

∏
i Ci =

∏
im

e
i

mod n = (
∏
imi)

e mod n.

A Fully Homomorphic Encryption (FHE) scheme E will consist of four algo-
rithms; E = (KeyGen, Enc, Dec, Eval) [9], where Eval is the function that makes
this encryption scheme special. We consider the public key setting, thus encryp-
tion is done with public key pk and decryption with secret key sk. Also there will
be a set of parameters specific to a scheme which will be implicit inputs to the al-
gorithms. The input of Eval will consist at least of a function f that has to be
evaluated and a number of ciphertexts where f should be applied to. To allow
computations on the ciphertexts we require for every function f and ciphertexts
c1 = Enc(m1, pk), . . . , cn = Enc(mn, pk) that the following holds:

cnew = Eval(f, c1, . . . , cn)⇒ Dec(cnew, sk) = f(m1, . . . ,mn)

Note that the plaintexts have to be encrypted with the same public key and the
output of Eval is again encrypted under that same key. To make using such a scheme

2

interesting the complexity of Enc and Dec shouldn’t depend on the functions that
will be performed on the encrypted data. Ideally it would be possible to perform ar-
bitrary computations, but in some situations this will not even be necessary. In this
case Somewhat Homomorphic Encryption (SHE) will do: the homomorphic proper-
ties of the scheme work for a certain range of functions (with a certain complexity).

Next to somewhat and fully homomorphic encryption there is a notion of a leveled
FHE scheme, in this case the depth of the circuits that can be evaluated influence
how parameters should be set.

3 Preliminaries

A vector (v1, . . . , vn) ∈ Zn is represented as v, with vi being the ith component.

Arithmetic circuits So far it has been discussed a function f with ciphertexts as
input can be performed by a homomorphic encryption scheme. A more precise way
to define such a function can be given by arithmetic circuits [12]. A circuit consists
of logical gates which are connected in a directed way. We can relate standard oper-
ations to these gates, i.e an AND gate does multiplication and a XOR gate addition.
All computations we would like to do on data can be seen as evaluating polynomials
and these can be built up by a combination of additions and multiplications. An
arithmetic circuit can represent such a polynomial. The depth of the circuit is the
longest path from input to output, but more important is the multiplicative depth:
the maximum number of multiplication gates from input to output. This notion is
used often, because multiplication tends to be the restricting factor in homomorphic
schemes before addition. The size of the circuit is the amount of gates and the degree
of the circuit is equal to the degree of the polynomial that is evaluated by the circuit.

Analysis of complexity To compare execution time of algorithms usually Big-O
notation is used. By describing the behavior of the functions it gives a way to express
the running time of an algorithm depending on the input given to it. A function f ,
informally, runs in O(g) when it doesn’t grow faster than g. This can be expressed
as follows:

f ∈ O(g)⇔ ∃c ∈ R>0,∃n ∈ N s.t ∀ni ≥ n : 0 ≤ f(ni) ≤ c · g(ni)

Lattices Gentry’s first FHE scheme is based on (ideal) lattices, and as mentioned
before, the (R)LWE problem reduces to hard problems on lattices. However, for the
purpose of this report it is not needed to know many details about lattices because
one can work on (R)LWE schemes without knowing lattices and Gentry’s scheme
will only be considered on a high level. Thus solely a definition of a lattice and hard
problems concerning lattices will be given.

For a set of linearly independent vectors V = {v1, . . . , vn} in Rm a lattice in
this space is formed by all the linear combinations of these vectors:
L(V) = {

∑n
i=1 zivi : zi ∈ Z} [15]. In this case V is called the base of the lattice.

Some lattice problems that are assumed to be hard [15]:

• Shortest Vector Problem (SVP). Given lattice base V find the shortest non-zero
lattice vector v. Thus it should hold that ∀w ∈ L(V) : ||v|| ≤ ||w||.

• Approximate SVP (GapSVPγ). Given lattice base V give a γ-approximation
of the shortest vector. Thus it should hold that ∀w ∈ L(V) : ||v|| ≤ γ||w||.

3

• Closest Vector Problem (CVP). Given lattice base V and a vector y ∈ Rm, find
a vector v ∈ L(V) which is closest to y. Thus it should hold that ∀w ∈ L(V) :
||v − y|| ≤ ||w − y||.

• Approximate CVP (GapCVPγ). Given lattice base V and a vector y ∈ Rm,
find a vector v ∈ L(V) which is a γ-approximation of the closest vector to y.
Thus it should hold that ∀w ∈ L(V) : ||v − y|| ≤ γ||w − y||.

4 The first FHE scheme

The first fully homomorphic scheme was proposed by Gentry and the structure of
his solution has been used in various schemes later on as well. Here follows a very
general overview.

First, Gentry constructed a SHE scheme using ideal lattices which can evaluate
function of a certain (low) complexity. A ciphertext looks like x + e, where x
is in the ideal lattice while we can see e as an error to encode this. The error
should hide what lattice vector it concern exactly, but can’t be too large otherwise
decryption will not hold the correct message. It turns out to be possible to perform
addition and multiplication on the ciphertexts and still be able to decrypt, however
this comes with a cost: the error vector grows with every computation, especially in
the case of multiplication. When the error becomes too big decryption will not be
possible anymore and the data goes lost. This makes the scheme so far somewhat
homomorphic.

If there would be a way to reduce the error in between the computations and
thus allowing more complex functions to be applied, the scheme would become fully
homomorphic. The best way to ’take away’ the error is to decrypt the ciphertext
since e has to be removed completely to reveal the original text. Gentry’s ingenious
insight was that this can be achieved by making use of the homomorphic properties
of the scheme: perform the Dec function homomorphically! More precisely, the ci-
phertext is decrypted with the necessary secret key and once again encrypted under
a new secret key; now the error is relatively small again because no computations
have been performed on this ”fresh” ciphertext. Of course this should all be done
without the party performing the computation actually knowing the secret key and
thus it is done homomorphically. This process of decryption and again encrypting a
ciphertext homomorphically is usually called re-encryption or bootstrapping.

To see how re-encryption works exactly consider public keypairs (pk1, sk1), (pk2, sk2)
and let {m}pk1 = Enc(m, pk1). We know that for function f , Eval will per-
form f on the ciphertexts (encrypted with the same key) that are given as in-
put. Now take f = Dec and ciphertext inputs {sk1}pk2 = Enc(sk1, pk2) and
{{m}pk1}pk2 = Enc({m}pk1 , pk2). Then we have:

Eval(Dec, {{m}pk1}pk2 , {sk1}pk2) = Enc(Dec({m}pk1 , sk1), pk2)

= Enc(m, pk2)

= {m}pk2

A scheme can only perform Dec homomorphically if the complexity of this func-
tion is lower than what the scheme can handle. If this is the case, we call such

4

a scheme bootstrappable. Note that this process of bootstrapping requires an extra
assumption of circular security, because we encrypt the new secret key with the en-
cryption scheme itself.

In the case of Gentry’s scheme, decryption was a too complex function to evalu-
ate and thus the scheme was not bootstrappable. To achieve this, another important
technique was introduced: squashing the decryption circuit. The computationally
expensive decryption algorithm is split into an intensive preprocessing phase, ideally
performed by the cloud, and a lighter final decryption phase. This idea of splitting
the computation comes from server-aided cryptography, where a computationally
weak device needs to outsource some part of the computation to a more powerful
server. For the second part the secret key is needed, while the first phase will only
use certain ’hints’ on the secret key, since the party performing this doesn’t have any
access to secret keys. More specifically a set of elements S is added to the public key,
for which it holds that there is a sparse subset S′ such that adding the elements in S′

gives the secret key. Then the new secret key is the indication of which elements of
the larger set are contained in S′. The high level idea is that the cloud computes the
decryption of a ciphertext taking each element of S as the secret key, resulting in a
sequence of ’decryptions’. Then the pieces corresponding with decryptions based on
elements in S′ have to be put together correctly, resulting in the actual decryption.
This makes it possible to bring down the complexity of the decryption circuit and
make the scheme bootstrappable. The security of this adjustment is based on the
hardness of the sparse subset problem, which means retrieving the secret key from
these ’hints’ is infeasible.

As mentioned before, the structure of Gentry’s solution has been very important
and re-used many times in follow-up schemes: first make a SHE scheme, make it
bootstrappable by squashing the decryption circuit, and then use bootstrapping to
make it a FHE scheme.

5 Learning with errors (LWE)

Many recent proposed schemes base their security on the hardness of the learning
with errors problem introduced by Regev [17]. A basic definition is given here, for
details we refer to Regev’s paper. Given an integer q, a (Gaussian) distribution χ on
{−d q−12 c, . . . , d

q−1
2 c}, and dimension n, the decision LWE problem is to distinguish

between the following distributions, for a fixed s uniformly sampled from Znq :

(1) (ai, bi) sampled uniformly from Zn+1
q

(2) (ai, bi), where ai is sampled uniformly from Znq , ei is sampled from χ and we
set bi = 〈ai, s〉+ ei

The search variant of LWE would be to find s from arbitrarily many pairs (ai,
bi = 〈ai, s〉 + ei). We can see this as solving a ”noisy” linear system of equations
〈ai, s〉 ≈ bi. The error ei should be small in order to solve this correctly, that is why
it is sampled from a Gaussian distribution centered around 0.

For different parameters there exists a quantum and a classical reduction to
GapSVPγ [6, 17].

5

5.1 Regev’s standard cryptosystem

In the paper where the LWE problem was presented by Regev [17], he also gave a
public key cryptosystem based on the hardness of this problem, which has formed the
base of later proposed FHE schemes. With the discussed parameters, n is the security
parameter of the cryptosystem. Additionally let integer m = (1 + ε)(n+ 1) log p for
an arbitrary positive constant ε, then key generation, encryption and decryption go
as follows:

• KeyGen: sample private key s uniformly from Znq . For i ∈ {1, . . . ,m} choose
ai ∈ Znq independently from the uniform distribution. Sample e1, . . . , em from
χ. Now the public key is a vector of entries as described in (2).
Output: (sk, pk) = (s, (ai, bi)

m
i=1)

• Enc(bit, pk): choose a random set S of all subsets of {0, . . . ,m}m.
Output: (

∑
i∈S ai,bit · bp2c+

∑
i∈S bi)

• Dec((x, y), sk): calculate z = y − 〈x, sk〉 = y − 〈x, s〉.
Output: If z is closer to 0 than to bp2c output 0, otherwise 1.

In de decryption procedure we evaluate the following:

y − 〈x, s〉 = y −
m∑
j=1

xj · sj

= y −
m∑
j=1

(
∑
i∈S

ai)j · sj

= y −
∑
i∈S
〈ai, s〉

= bit · bp
2
c+

∑
i∈S

(〈ai, s〉+ ei)−
∑
i∈S
〈ai, s〉

= bit · bp
2
c+

∑
i∈S

ei

This can be decrypted correctly as long as the error
∑
i∈S ei is small enough.

Regev proved that his choice of parameters would assure correct decryption with a
probability of 1− δ(n) for some negligible function δ(n) [17].

5.2 A Regev-like FHE scheme

Brakerski and Vaikuntanathan proposed a FHE scheme based on LWE in [3]. Through
a technique called relinearization they were able to base the security of the scheme on
LWE, instead of on ideal lattices which was usual until then. Furthermore a second
technique, dimension-modulus reduction, was introduced, making the scheme boot-
strappable without needing to squash the decryption circuit. Using the symmetric
key variant of the scheme both new techniques will be explained. The scheme can
be turned into a public key scheme easily.
The scheme used is similar to Regev’s scheme; a bit m ∈ {0, 1} is encrypted with
a secret key s ∈ Znq by choosing a ∈ Znq and error e ∈ χ randomly and set the
ciphertext to be:

(a, b = 〈a, s〉+ 2e+m)

6

Decryption is done by computing b− 〈a, s〉 mod 2.

Relinearization reduces the size of a ciphertext, for which a price must be paid:
the publication of a sequence of so-called evaluation keys at the moment of key
generation. We see how this technique works and why it is needed by looking at the
homomorphic operations of the scheme:

• Eval:add, add entry-wise, i.e addition of (a, b) and (a’, b′) gives (a+a’, b+b′).

• Eval:mult, like we did in the previous scheme consider the input vectors to be
polynomials in some variable z, then the encryption of the multiplication of the
ciphertexts is equal to the coefficients in the resulting multiplied polynomial.

To see that addition works consider the decryption of 2 added ciphertexts:

b+ b′ − 〈a+a’, s〉 mod 2 = b+ b′ −
∑

(a + a’)[i]s[i] mod 2

= b+ b′ −
∑

a[i]s[i]−
∑

a’[i]s[i] mod 2

= (b−
∑

a[i]s[i]) + (b′ −
∑

a’[i]s[i]) mod 2

= m+m′

For two multiplied ciphertexts we need to get the following:

(b−
∑
i

a[i]s[i])(b′ −
∑
j

a’[j]s[j]) = bb′ − b
∑
j

a’[j]s[j]− b′
∑
i

a[i]s[i] + (
∑
i

a[i]s[i])(
∑
j

a’[j]s[j])

= c0 +
∑
i

cis[i] +
∑
i,j

cijs[i]s[j]

For certain coefficients c0, ci, cij . Thus we see this expression contains a linear and a
quadratic part in entries of s and for each of the terms we need to know the coefficient.
These coefficients must be stored in the ciphertext resulting from Eval:mult. This
means that the ciphertext would grow, which is ideally avoided. But what if we
could rewrite this expressions in a linear way, thus requiring us to know only all
coefficients for the linear part (the ci’s)? In this way the length of the ciphertext
would be reduced. It turns out this can be done with the use of evaluation keys that
are encryptions of the secret key s under a new secret key t. More specifically all
linear and quadratic terms s[i] and s[i]s[j] are being published encrypted under the
new key. This means for certain a* ∈ Znq , e∗ ∈ χ we get ciphertexts of the form:

• (a*, b∗ = 〈a*, t〉+ 2e∗+s[i]s[j]) or;

• (a*, b∗ = 〈a*, t〉+ 2e∗+s[i])

In the first case the following holds: s[i]s[j]≈ b∗−〈a*, t〉 and the same can be done for
the second case, the encryptions of s[i]. The trick is to replace all s[i] and s[i]s[j] in
the long ciphertext with the corresponding b∗−〈a*, t〉, making it a linear expression
in t. With this technique a shorter ciphertext is obtained, which is encrypted under
the new secret key t, allowing more levels of multiplications to be performed.

To make the SHE scheme bootstrappable it must be able to evaluate its own
decryption algorithm. This is made possible with the second new technique is intro-
duced: dimension-modulus reduction.

7

To reduce parameter n and log q the change in ciphertext during relinearization
is used. First of all the key under which the new ciphertext is encrypted will have
a lower dimension k < n; thus the ciphertext will have a lower dimension as well.
Additionally the ciphertext is scaled down to modulus p instead of modulus q, where
p < q. This is done by scaling the entries of the evaluation key by p

q which will
result in a ciphertext that is also scaled down by the same fraction. After these
changes the result is a ciphertext in Zkp ×Zp instead of Znq ×Zq, bringing complexity
of decryption down. When the parameters are set correctly, the ciphertext will still
decrypt in the right way inspite of the change in dimension and modulus. Also
in the paper it was shown also for the new parameters the LWE problem is still
hard, which makes it the sole assumption where security is based on. After applying
dimension-modulus reduction the complexity of decryption is low enough, making
the SHE bootstrappable and thus able to be turned into a FHE scheme.

5.3 Approximate eigenvector scheme (GSW)

In the GSW scheme, named after the authors Gentry, Sahai and Waters, the cipher-
texts are matrices and the homormorphic operations are simply matrix addition and
multiplication. The idea comes from nice properties of eigenvectors for matrices: if
v is an eigenvector of matrix A, that means there is a scalar λ such that Av=λv and
in this case λ is the eigenvalue. If we have matrices C1, C2 with the same eigenvector
v for certain eigenvalues respectively m1,m2 then the following holds:

• v is an eigenvector for C1 + C2 for eigenvalue m1 +m2

• v is an eigenvector for C1 · C2 for eigenvalue m1 ·m2

This looks like the homomorphic properties we would want for ciphertexts C1, C2

and messages m1,m2 encrypted under v. Unfortunately we can not use exactly this
setting because for a given matrix it is easy to find eigenvectors and eigenvalues. For
this scheme instead of the secret key being an actual eigenvector, an approximate
eigenvector is considered, for example C1v=m1v+e for a certain small error e and
thus C1v≈ m1v. If ciphertexts C1, C2 are added we get: (C1 + C2)v = C1v+C2v=
(m1 +m2)v + e1+ e2, which will decrypt correctly if the original errors e1 and e2

are small enough. Multiplication of the same ciphertexts gives:

(C1 · C2)v = (m1 ·m2)v +m2 · e1 + C1 · e2

This situation is different: the new error also depends on the message and the ci-
phertexts. The message will be 0 or 1 and thus the part m2·e1 will not be large.
This does not necessarily hold for the part of the error that depends on the first
ciphertext; the ciphertext might have large entries. To ensure the entries will be
small and thus the error doesn’t grow too much a gadget matrix is used.

A gadget matrix G (i.e ∈ Zm×nq) and corresponding inverse transformation G−1

(i.e Zm×nq → Zm×mk , n < m and k < q) have the following properties for a matrix
A ∈ Zm×nq :

• G−1(A) has small entries

• G−1(A)×G = A

By applying the transformation G−1 the entries are guaranteed to be small, at
the cost of a larger dimension for the matrix. The way this is used in GSW is
by letting G be a matrix with every column containing the powers of 2, and G−1

8

the transformation that turns a matrix into a larger one with every element in its
binary representation. Then if you multiply this larger matrix with G, the original
matrix is obtained. More formally: let a be a vector in Zmq for integers q,m. Let
l = blog2 qc+ 1 and N = m · l, the number of bits needed to represent an element in
Zq and a complete vector in Zmq respectively. Let b ∈ ZNq . Define:

• BitDecomp(a) = (a1,0, . . . , a1,l−1, a2,0, . . . , am,l−1), the binary representation
of vector a with LSB first. Input has dimension m, output N .

• BitDecomp−1(b) = (
∑l−1
j=0 b1,j , . . . ,

∑l−1
j=0 bm,j), which is also well defined if

input isn’t a binary vector. Input has dimension N , output m.

Thus G−1 is BitDecomp and to apply BitDecomp−1, one can multiply by
gadget matrix G that contains the powers of 2.

Now we have the tools to define the scheme. Let χ be a B-bounded distribution.
We consider a message m ∈ {0, 1}.

• KeyGen: choose t ∈ Zn−1q and set s=(-t,1) ∈ Znq . Sample uniformly matrix
B from Zm×n−1q and e from χm.

Set b = Bt+e and A =

[
B
b

]
. Note that As=e

Output: (sk, pk) =(s, A)

• Enc(m, pk): sample uniformly R ∈ {0, 1}m×m. Set C = RA+mG.
Output: C

• Dec(C, sk): define w=[0, . . . , 0, d q2e]
T ∈ Zq and compute µ = 〈Cs, G−1(w)〉.

Output: b µ
q/2e

• Eval:add(C1, C2): Output: (C1 + C2)

• Eval:mult(C1, C2): Output: (C1G
−1(C2))

Because no evaluation key is used in this scheme when applying multiple ho-
momorphic operations (which is necessary for relinearization), GSW gives rise to
identity-based FHE (IBFHE) schemes. Only the ID would be needed to perform
evaluation on ciphertexts instead of an encryption of the secret key which is exactly
what we want in identity-based encryption (IBE). They described a compiler that
can turn known LWE-based IBE schemes that have certain properties into IBFHE
schemes.

6 Ring Learning with Errors (RLWE)

Hardness of the LWE problem made it very interesting for cryptographic applications
but efficiency turned out to be a problem. An algebraic variant of this problem also
gives hardness guarantees and is a more practical base for such systems [14]. This
ring-based variant was proposed by Lyubashevsky, Peikert and Regev. Now we
consider the ring R = Zq[x]/〈xn + 1〉 with n a power of 2 and an error distribution
χ over R that is concentrated on ’small’ elements. Note that the elements in R are
polynomials of degree (n−1) or lower. For s sampled uniformly from R the (decision)
RLWE problem is to distinguish between:

9

• (a, b), with a, b sampled uniformly from R

• (a, b), with a again sampled in the same way and e from χ. Set b = a · s+ e.

The RLWE assumption is that this is a hard problem; in [14] a quantum reduction
of this problem to SVP in the worst case on ideal lattices is given. Compared to LWE
in most cases n noisy LWE equations can be replaced by 1 noisy RLWE equation
which obviously improves in terms of efficiency.

6.1 BV: A cryptoscheme based on RLWE

Brakerski and Vaikuntanathan present a SHE cryptoscheme (BV) based on RLWE
[5], that could be turned into a FHE scheme using the standard techniques boot-
strapping and squashing. For all schemes so far an extra assumption was required to
include squashing in the scheme, namely circular security. In this case they proved the
scheme is circular secure w.r.t linear functions of the secret key. Furthermore, not just
one bit gets encrypted but a polynomial with binary coefficients m ∈ Z2[x]/〈xn+ 1〉.
As we will see, performing multiplication on ciphertexts outputs a longer ciphertext.
There will be a bound B ∈ N to how many times this can be done and B + 1 will
thus be the maximal length of a ciphertext. When multiple ciphertexts of differents
lengths serve as input for a function we can pad with extra zeroes, except when we
perform multiplication: in this case the difference in length is no problem. Also the
secret key is extended to have length B+1 and for decryption we can assume without
loss of generality that ciphertext length is B + 1. Now follows the proposed scheme:

• KeyGen: sample s uniformly from χ. To extend the length of the secret key
we set s = (1, s, s2, . . . , sB). A public key is formed by sampling a from R, e
from χ set b = as + 2e and output: (a, b). We can not reuse this public key,
but it’s easy to generate new pairs given the first one. Sample v, e′ from χ and
e′′ from χ′, which is distribution like χ but with a larger standard deviation.
Now set a′ = av + 2e′, b′ = bv + 2e′′. Then we have a new pair (a′, b′) of the
same form as the original pair:

b′ = bv + 2e′′ = (as+ 2e)v + 2e′′

= avs+ 2ev + 2e′′

= avs+ 2e′s+ 2ev + 2e′′ − 2e′s

= (av + 2e′)s+ 2ev + 2e′′ − 2e′s

= a′s+ 2(ev + e′′ − e′s)

In a lemma the authors show that these newly generated pairs are computa-
tionally indistinguishable from the desired distribution.
Output: (sk, pk) = (s, (a, b))

• Enc(m, pk): generate a pair pk = (a′, b′) as explained above and set x = b′+m
and y = −a′.
Output: (x, y)

• Dec(x, s): we assume length x is B + 1, because we can pad with zeroes.
Compute z = 〈x, s〉 mod 2.
Output: z

• Eval:add(x, y): add every coordinate separately. If the input vectors don’t
have the same length we pad with zeroes. Assume x, y have length b ≤ B + 1

10

after padding.
Output: (x1 + y1, . . . , xb + yb)

• Eval:mult(x, y): the output will be a longer tuple where every entry is one of
the coefficients if we would see this as polynomial multiplication. For example,
if input is (x1, y1), (x2, y2), output is (x1x2, x1y2 +x2y1, y1y2). In general if we
see x = (x1, . . . , xb1), y = (y1, . . . , yb2) and we see them as polynomials in a

that we want to multiply; (
∑b1
i=1 xia

i)(
∑b2
i=1 yia

i) =
∑b1+b2
i=1 cia

i then output
is c = (c1, . . . , cb1+b2). Thus length of output is b1 + b2− 1 for inputs of length
b1 and b2.
Output: c

When the correct parameters are chosen the LWE assumption holds, thus the
secret key s, and specifically s, will be difficult to find when given public key (a, b).

Decryption for a fresh ciphertext (x, y) works as follows: z = x ·1+y ·s mod 2 ≡
(b′ + m) − a′ · s ≡ (a′ · s + 2e + m) − a′ · s ≡ m if error 2e is small enough. To see
that Eval:add works correctly we look at the easiest situation after adding 2 fresh
ciphertexts (x1, y1) and (x2, y2) and try to decrypt:

x1 + x2 + (y1 + y2) · s = (a1 + a2) · s+ 2(e1 + e2) + (m1 +m2) + (−a1 − a2) · s
= 2(e1 + e2) + (m1 +m2)

≡ m1 +m2 mod 2

Which shows this homomorphic operation indeed works if the new error e1 + e2
is small enough. This can easily be extended to larger ciphertexts, in which case the
error will also grow faster. Also for Eval:mult we consider an easy example that can
be extended to longer ciphertexts. Again we have the two ciphertexts (x1, y1) and
(x2, y2) and if they get multiplied the outcome is (x1x2, x1y2+x2y1, y1y2). Decryption
is given by 〈(x1x2, x1y2+x2y1, y1y2), s〉 mod 2 which can be split up in the following
three terms:

1. x1x2 = (a1s+ 2e1 +m1)(a2s+ 2e2 +m2)
= a1a2s

2+2(a1e2+a2e1)s+(a1m2+a2m2)s+2(e1m2+e2m1)+2(2e1e2)+m1m2

2. (x1y2 + x2y1)s = (−(a1s+ 2e1 +m1)a2 − (a2s+ 2e2 +m2)a1)s
= −2a1a2s

2 − 2(e1a2 + e2a1)s− (a1m1 + a2m2)s

3. y1y2s
2 = a1a2s

2

Adding these together most of the terms cancel out:

x1x2 + (x1y2 + x2y1)s+ y1y2s
2 = 2(e1m2 + e2m1) + 2(2e1e2) +m1m2

= 2(e1m2 + e2m1 + 2e1e2) +m1m2

≡ m1m1 mod 2

This will decrypt correctly as long as the new error term 2(e1m2 + e2m1 + 2e1e2)
is not too big. For longer ciphertexts decryption goes in a similar way. Again we
see that the growing error term when performing Eval is the reason why we cannot
execute arbitrary functions and only have a somewhat homomorphic scheme so far.
As mentioned before, by using the techniques squashing and bootstrapping also this
scheme can be turned into a FHE scheme.

11

6.2 FHE without bootstrapping based on LWE or RLWE

Brakerski, Gentry and Vaikuntanathan constructed the first FHE scheme that doesn’t
need bootstrapping [4]. This is achieved by relying heavily on the modulus-switching
technique from the previous discussed scheme based on LWE by Brakerski and
Vaikuntanathan, as well as their key switching technique. Ironically it is possible
to use bootstrapping as an optimization. The scheme provides the option to base se-
curity on LWE or RLWE, the latter providing better performance. This scheme has
been implemented in the open source library HElib [10] along with many proposed
optimizations.

Basic scheme First the basic encryption scheme BGV is based on is given, which
is extended to a FHE scheme. Choose integers q and d and set R = Z[x]/〈xd + 1〉,
Rq = R/qR. Furthermore χ is a distribution on Rq and N = d(2n + 1) log qc. For
now we will focus on the RLWE setting and thus n = 1.

• KeyGen: sample s′ ∈ χ and set sk = s = (1, s′). Generate uniformly at
random B ∈ RNq and error vector e ∈ χN . Set b = Bs′ + 2e and A = [b,−B].
Output:(sk, pk) = (s, A)

• Enc(m, pk): for message m ∈ R2, set m=(m, 0). Sample r ∈ RN2 and set
c = m +AT r = (c0, c1).
Output: (c0, c1)

• Dec(c, sk): compute z = [[〈(c0, c1), (1, s′)〉]q]2.
Output: z

Turning it into a FHE scheme Addition of ciphertext can simply be defined
by adding the different entries; if we add ciphertexts (c0, c1), (d0, d1) in this way and
decrypt, we get the following:

〈(c0+d0, c1+d1), (1, s′)〉 = c0+c1s
′+d0+d1s

′ = 〈(c0, c1), (1, s′)〉+〈(d0, d1), (1, s′)〉 ≈ m1+m2

Multiplication is slightly trickier, and will show the need for dimension reduction.
Denote the inner product calculated during decryption as a linear equation based on
the ciphertext c: Lc(x) = c0 + c1x. Then homomorphic multiplication of ciphertexts
c1 and c2 is defined as Lc1(x)Lc2(x), for ciphertexts encrypted under the same key,
which gives a quadratic equation in x, or a linear equation in x⊗ x = (1, x, x2):

Lc1(x)Lc2(x) = (c0+c1x)(d0+d1x) = c0d0+(c0d1+c1d0)x+c1d1x
2 = Qc1,c2(x) = Lc1,c2(x⊗x)

If we consider the last representation of the homomorphic product, it becomes clear
that this growth in dimension for the ciphertext and secret key has to be managed.
The solution here is a key-switching procedure which allows to change a ciphertext c
encrypted under key s1 to a ciphertext c′, encrypted under a different and possibly
shorter key s2. For the concrete implementation we need the BitDecomp as defined
for the GSW scheme and additionally the following function:

PowersOf2(x ∈ Rq, q): output (x, 2x, 22x, . . . , 2blog qcx) ∈ Rblog qcq .

To allow key-switching from s1 to s2, additional information is added to the pub-
lic key of s1, which is produced in the routine SwitchKeyGen. In a later stadium

12

this additional information is used in SwitchKey to do the actual switching.

SwitchKeyGen(s1, (s2, A2)): add PowersOf2(s1) to the first column of A2,
call this matrix τs1→s2 and output it.

SwitchKey(τs1→s2 , c): output τs1→s2BitDecomp(c)T .

For proof of correctness see [4]. On the cost of a slightly larger error the key can
be switched to a shorter one and thus also the ciphertext is shortened. During the
key generation, instead of a single secret key, a sequence of public/private keypair
is generated, along with the additional information τ that allows to switch from key
sj ⊗ sj to the next key sj+1.

The other main technique used in the BGV scheme is modulus-switching, in order
to reduce the noise. If we have a ciphertext c mod q and want to transform this
into a new ciphertext c′ mod p for modulus p < q, we simple scale down: p

q · c and

round to the closest integer which we call c′. Then with the following lemma we see
that for a small key s the noise also scales down.

Lemma modulus switching [4]. For p, q odd moduli and c an integer vector,
define c′ as above, such that c = c′ mod 2. Then for any s with |[〈c, s〉]q| < q

2−
q
p l1(s)

we have the following:

[〈c, s〉]q = [〈c′, s〉]p mod 2 and |[〈c′, s〉]p| <
p

q
|[〈c, s〉]q|+ l1(s)

A proof is given in [4]. If we assume l1(s) is small enough and p and q are
chosen such that p is sufficiently smaller than q we see that the noise scales down
by approximately a factor of p

q . The ratio noise/modulus doesn’t change but the
following example will show how we can use this switching to our advantage, because
of the decreasing noise magnitude.
Consider a sequence of moduli (Qd, Qd−1, . . . , Q0) defined as Qd = xd+1, Qj−1 =
Qj/x for integers x and d. Assume we have 2 ciphertexts c1, c2 both with noise of
magnitude x and will compare the following 2 situations:

(a) Calculate c3 = c1c2, c4 = c3c3 and c5 = c4c4

(b) Do the same calculation but after every operation switch from modulus Qj to
Qj−1

For procedure (a) we get noise level x2 for c3 mod Qd, x
4 for c4 mod Qd and

x8 for c5 mod Qd.
With (b) we start with noise level x2 for c3 mod Qd and then scale down to noise
level x for c′3 mod (Qd/x). We continue with squaring c′3 and get ciphertext c4
mod (Qd/x) with noise level x2. Scale this down to noise level x for c′4 mod (Qd/x

2).
Finally the noise level for c5 = c′4c

′
4 mod (Qd/x

2) is x2 and after scaling down it
becomes x for c′5 mod (Qd/x

3).
Now compare the noise/modulus ratio of the final outcome of (a): x8/Qd and (b):
x/(Qd/x

3) = x4/Qd. This shows that by decreasing the magnitude of the noise, even
though the ratio after switching stays the same, we can reduce the pace in which
the noise ceiling is achieved and thus perform more multiplications. By using this
technique a leveled FHE scheme without bootstrapping can be achieved.

13

BGV scheme Putting all the pieces together, we can now define the BGV leveled
FHE scheme. According to the number of levels L the ladder of decreasing moduli
{qL, . . . , q0} will be constructed, with qL consisting of (L+ 1)µ bits and q0 µ bits.

• KeyGen: for j = L to 0 repeat: get keypair (sj , Aj) from the basic scheme.
Set s′j = BitDecomp(sj ⊗ sj) and compute τs′j→sj−1

with SwitchKeyGen

(omit this final step for j = 0).
Output : (sk, pk) = ((sL, . . . , s0), (AL, . . . , A0, τs′L→sL−1

, . . . , τs′1→s0))

• Enc(pk,m): as in basic scheme.

• Dec(C, sk): as in basic scheme.

• Eval:add(c, d): for c = (c0, c1), d = (d0, d1) add every entry.
Output : (c0 + d0, c1 + d1)

• Eval:mult(pk, c, d): set c3 to be the coefficient vector of Lc,d(x ⊗ x). Set
c′3 = Powersof2(c3) and for c′3 switch from the current modulus qj to the
smaller modulus qj−1 as described before. Finally apply SwitchKey on the
ciphertext using the correct τ from the public key pk, and output this result.

After addition also key and modulus switching could be done, by interpreting the
new ciphertext as encrypted under key s′j = sj ⊗ sj instead of under sj (which is
possible because s′j contains all the powers sj contains and more).

7 Multi-key FHE

So far we have been looking at the single-user setting, where all ciphertexts must
be encrypted under the same key. It is also interesting to look at the situation
where we don’t necessarily need the same key for all messages, in order to outsource
computations on data coming from different sources. The notion of multi-key FHE
encryption was introduction in [13] and realized for any number of keys based on
the NTRU cryptoscheme [11]. Furthermore it was shown that every FHE scheme
can be made multi-key for a constant number of keys, a high level overview of this
construction will follow. Clear and McGoldrick proposed in [8] a multi-key variant
based on Learning With Errors (LWE) which was followed by a simpler version in [16].

In the multi-key FHE setting we have N participants with their own keypair
(ski, pki) and message mi, who want to perform computations on all data without
revealing any private information to each other. After the computation decryption
should only be possible when all the secret keys that were used to encrypt the mes-
sages are involved.

In [13] a construction is given to make any FHE scheme multi-key for a constant
number of keys. This is achieved by making use of an ’onion’ encryption and de-
cryption, where ciphertext are repeatedly encrypted or decrypted with a sequence of
keys. In a standard FHE scheme a message m ∈ {0, 1} is encrypted into a ciphertext
c ∈ {0, 1}λ. If a ciphertext has to be encrypted, under a different key, we need a def-
inition for encrypting x ∈ {0, 1}l. Let x1, . . . , xl be the bits of x then let encryption
be as follows:

Enc(pk, x) = (Enc(pk, x1), . . . ,Enc(pk, xl))

Now we define ”onion” encryption Enc∗ for k ∈ N recursively:

14

Enc∗(pk,m) = Enc(pk,m)

Enc∗(pk1, . . . , pkk,m) = Enc∗(pk1, . . . , pkk−1,Enc(pkk,m))

= Enc(pk1,Enc(. . .Enc(pkk,m) · · ·)

Note that a ciphertext produced by Enc∗ encrypting a message under N keys
has size λN .
In a similar way we define decryption:

Dec∗(sk, c) = Dec(sk, c)

Dec∗(sk1, . . . , skk, c) = Dec∗(sk2, . . . , skk,Dec(sk1, c))

= Dec(skk,Dec(. . .Dec(sk1, c)) · · ·)

A ciphertext ci encrypting message mi with public key pi can be turned into a
new ciphertext zi that is encrypting the same message under keys p1, . . . , pk. This is
done by homomorphically evaluating the function Enc∗(pi+1, . . . , pN , ci) which gives
Enc∗(pi, . . . , pN ,mi). Then encrypt this new ciphertext with the remaining keys to
obtain Enc∗(p1, . . . , pN ,mi).

When the ciphertexts involved have been changed into ciphertext encrypting the
same message under all keys, it is possible to perform homomorphic operations on
them, keeping in mind the order of the keys involved. Since the size of a ciphertext
zi is λN and N is the number of keys, this can only be efficient if N = O(1); in other
words only a constant number of keys can be involved. More details can be found in
[13].

7.1 Multi-key NTRU

NTRU was introduced as a public key cryptosystem in the nineties [11]. When it was
shown that a modified version of the NTRU scheme [19] can actually be used for FHE,
it turned out it could support multiple keys [13]. The security is based on RLWE
and the Decisional Small Polynomial Ratio (DSRP) assumption that is the following.

DSPR assumption [13] Define ring R = Z[x]/〈φ(x)〉 for φ(X) ∈ Z[x] a poly-
nomial of degree n. Let q ∈ Z be a prime integer and χ a distribution over R.
Furthermore Rq = R/qR. Then the DRPRφ,q,χ says it is hard to distinguish be-
tween these distributions:

• polynomial h, where h = [2gf−1]q for f = 2f ′ + 1 and f ′, g sampled from χ
(and f−1 is the inverse of f in Rq)

• polynomial u, sampled uniformly at random from Rq

First the modified NTRU scheme is given, followed by the multi-key fully homo-
morphic version.

Modified NTRU scheme Define ring R = Z[x]/〈xn + 1〉 for n a power of 2. Let
q ∈ Z be an odd prime integer and χ a B-bounded distribution over R (B � q),
which means the magnitude of the coefficients of a polynomial sampled from χ is less
than B.

15

• NTRU.KeyGen: sample f ′, g from χ. Set f = 2f ′+1 (note that f mod 2 ≡
1). If f is not invertible resample, otherwise compute f−1 and set h = [2gf−1]q.
Output: (sk, pk) = (f, h)

• NTRU.Enc(m, pk): for m ∈ {0, 1}, sample s, e from χ and parse h = pk.
Output: c = [hs+ 2e+m]q

• NTRU.Dec(c, sk): parse f = sk and compute z = [fc]q.
Output: µ = z mod 2

Decryption works as follows:

µ = z mod 2

= [fc]q mod 2

= [fhs+ 2fe+ fm]q mod 2

= [2gs+ 2fe+ fm]q mod 2

Because all elements f, g, s, e come from χ and B � q, there is no reduction mod q.
Furthermore recall that f ≡ 1 mod 2. Then we get:

µ ≡ 2gs+ 2fe+ fm ≡ fm ≡ m mod 2

Multi-key FHE based on NTRU In the multi-key fully homomorphic setting
we have two ciphertexts that encrypt different messages m1,m2 with different public
keys h1, h2. Thus we have the ciphertexts c1 = [h1s1 + 2e1 +m1]q and c2 = [h2s2 +
2e2 +m2]q. If we simply add them and try to decrypt with the joint secret key f1f2,
we get the following:

f1f2(c1 + c2) = f1f2h1s1 + 2f1f2e1 + f1f2m1 + f1f2h2s2 + 2f1f2e2 + f1f2m2

= f1f2h1s1 + f1f2h2s2 + 2f1f2e1 + 2f1f2e2 + f1f2(m2 +m1)

= 2(g1f2s1 + g2f1s2 + f1f2e1 + f1f2e2) + f1f2(m2 +m1)

= 2eadd + f1f2(m2 +m1)

Which will decrypt correctly if the new error eadd is not too large. This is possible
because si, ei, f

′
i and gi were sampled from χ and fi = 2f ′i + 1, and thus are all

relatively small. Now we repeat the same for multiplication:

f1f2(c1c2) = f1f2(h1s1 + 2e1 +m1)(h2s2 + 2e2 +m2)

= (f1f2h1s1 + 2f1f2e1 + f1f2m1)(h2s2 + 2e2 +m2)

= f1f2h1h2s1s2 + 2f1f2h1s1e2 + f1f2h1s1m2 + 2f1f2h2s2e1 + 4f1f2e1e2 + 2f1f2e1m2

+ f1f2h2s2m1 + 2f1f2m1e2 + f1f2m1m2

= 4g1g2s1s2 + 4g1f2s1e2 + 2g1f2s1m1 + 4g2f1s2e1 + 4f1f2e1e2 + 2f1f2e1m2

+ 2g2f1s2m1 + 2f1f2m1e2 + f1f2m1m2

= 2emult + f1f2m1m2

Again, it must hold that the new multiplication error is not too large and thus χ
must be chosen appropriately.

16

For one addition and multiplication this simple approach seems to work. Apart from
being able to do the computation this scheme allows the use of multiple keys for
multiple ciphertexts, which thus makes it a multi-key scheme. It becomes more tricky
when this is extended to circuits where multiple of these operations are performed.
First of all it is clear only a limited number of operations can be performed, because
of the growing error term. More importantly consider a situation where we have
3 ciphertexts c1, c2, c3, similarly to the situation above, encrypted under 3 different
keys f1, f2, f3. Say we have computed c1c2 and c2c3, which then respectively need
key f1f2 and f2f3 for decryption. With these ciphertexts we compute c1c2 + c2c3
and want to decrypt with the new key f1f2f3:

f1f2f3(c1c2 + c2c3) = f3(f1f2c1c2) + f1(f2f3c2c3) = f3(2emult1 + f1f2m1m2) + f1(2emult2 + f2f3m2m3)

= 2eadd′ + f1f2f3(m1m2 +m2m3)

This works, so it seems in general we can make a new keys by appending all keys
that were used for encryption of the involved ciphertexts. However, for c1c2 · c2c3
the key f1f2f3 will not work! We need the key f1f

2
2 f3:

c = f1f
2
2 f3(c1c2 · c2c3) = (f1f2c1c2)(f2f3c2c3) = (2emult1 + f1f2m1m2)(2emult2 + f2f3m2m3)

= 2emult′ + f1f
2
2 f3(m1m2 ·m2m3)

This shows that it is necessary to be aware of the circuit that was evaluated on
the ciphertexts and additionally the size of the key grows faster than just the number
of different keys involved.

To solve these problems, the authors used the key-switching technique from Brak-
erski and Vaikuntanathan [3], also known as relinearization. An evaluation key is
added to the public key, that is a ”pseudo-encryption” of the powers of 2 of the secret
key: ekf = [hs+2e+Pow(f)]q, for newly sampled s, e ∈ χ. This is not a real encryp-
tion because we have defined decryption only for a binary message, which the secret
key is not. When ciphertexts encrypted under the set of keys F1 = {f1i , . . . , f1k} and
F2 = {f2j , . . . , f2l} are multiplied, the keys in F1 ∩ F2 would appear as a square in
the new key. For each of those keys the ciphertext is ”corrected” with the evaluation
key, such that the power of this key goes down in the new key. More precisely, the
inner product is taken between the bitexpansion of the ciphertext and each of the
evaluation keys. In our example that gives the following: c’ = 〈Bit(c), ekf2〉 mod q
with ekf2 = [hs+ 2e+ Pow(f2)]q. Then c’ can be decrypted with the key f1f2f3 as
desired.
This gives the following multi-key FHE scheme:

• KeyGen: run NTRU.KeyGen to obtain (sk, pk) and additionally sample
s′, e′ ∈ χ and compute ek = [hs′ + 2e′ + Pow(f)]q.
Output: (sk, pk, ek)

• Enc(m, pk): run NTRU.Enc to obtain c.
Output: c

• Dec(c, sk1, . . . , skN): compute z = [f1 · · · fNc]q.
Output: µ = z mod 2

• Eval:add(c1, c2): cadd = [c1 + c2]q.
Output: cadd

17

• Eval:mult((c1, F1), (c2, F2)): where F1 = {pk1, ek1} denotes the set of public
keys and corresponding evaluation keys associated with ciphertext c1 and F2

similarly for c2. Let c0 = [c1c2]q and F1 ∩ F2 contain the evaluation keys
{eki1 , . . . , ekil}. Set j = 1 and repeat until j = l: cj = [〈Bit(cj−1), ekij 〉]q and
set cmult to the resulting cl.
Output: cmult

7.2 Multi-key GSW

Clear and McGoldrick presented a masking scheme that can be used to make identity
based FHE (IBFHE) schemes which use LWE for security, support multiple keys
[8]. In an identity based cryptoscheme the public key for a specific person can be
deduced from the publicly known user-identity, without any interaction necessary
with the individual. GSW was the first scheme that allowed an IBFHE scheme,
because no evaluation keys were necessary to perform homomorphic operations on
the ciphertexts, which was always the case in previous schemes. Such an evaluation
key cannot be computed with an ID by a third party as is the case for a public key,
which makes schemes involving evaluation keys unfit to become an IBFHE scheme.

Mukherjee and Wichs gave an implementation of the masking scheme for the
GSW scheme [16] and gave the option to perform a 1-round decryption protocol
where every party computes and broadcasts a partial decryption which are finally
combined to give the resulting plaintext. Their scheme will be discussed.

Intuition The GSW scheme was making use of eigenvectors properties for matri-
ces. Because of the involvement of gadget matrices we have the following property
for a ciphertext C: Csi=mGsi+e for secret key si, a small error e, gadget matrix
G and message m. In the multi-key situation we would like to achieve a similar
situation, with the new secret key s=(s1, . . . , sk)T , larger ciphertext C ′ and larger
gadget matrix G = G · Ik: C ′(s1, . . . , sk)T=mG(s1, . . . , sk)T+e’.
This will be achieved by transforming an existing ciphertext that encrypts a message
m under a certain key si into a new ciphertext encrypting m under the concate-
nated key s. To achieve this, every ciphertext will carry additional encryptions of
the randomness matrix R used to encrypt m, which will allow the correct expansion
to be performed. Once the expanded ciphertext satisfies said property, homomor-
phic operations can be done on it as in the single key GSW scheme (with larger
parameters).

To achieve the multi-key setting, 2 major changes are applied to the GSW-scheme:
the public keys of the participants will depend on each other and, as said, additional
information is added to every ciphertext. First we elaborate on the public keys, later
it will become clear what the extra information has to be.

Public and secret keys The public keys of the participants will be related to
each other in the sense that a part of it will be exactly same. Recall that if the secret

key is s=(-t,1), the corresponding public key is A =

[
B
b

]
for b=Bt+e.

The LWE assumption states that finding the secret key is hard when given the public
key. The crucial observation is that security will not be weakened if the same random
matrix B is used for all the public keys of participants of the scheme.
Fix uniformly sampled matrix B ∈ Zn−1×m, and for every secret key si=(-ti,1)

calculate bi=Bti +ei and set the public key pki to be Ai =

[
B
bi

]
.

18

Expanding ciphertext First we will focus on the situation for 2 participants
and then extend this to k participants. We have an encrypted message m1 as a
ciphertext C1 and want to expand this ciphertext into C ′1 to make it satisfy the
property C ′1(s1, s2)T=m1G(s1, s2)T+e≈ m1G(s1, s2)T . The message is encrypted
with public key A1 and randomness matrix R. The expanded ciphertext C ′1 will

have the form

(
C1 X
Y C1

)
and we want it to satisfy the following:

C ′1

(
s1
s2

)
=

(
C1 X
Y C1

)(
s1
s2

)
≈ m1G

(
s1
s2

)
This means we need the following two properties:

1. C1s1 +Xs2 ≈ m1Gs1

2. Y s1 + C1s2 ≈ m1Gs2

The first property is satisfied if X is a matrix with every entry 0, for ease this is
denoted as X = 0. The second case is more difficult, but it is helpful to see what
happens when trying to ’decrypt’ C1 with the incorrect key s2:

C1s2 = (RA1 +m1G)s2 = RA1s2 +m1Gs2

Furthermore we know A1 =

[
B
b1

]
, A2 =

[
B
b2

]
and s2=(-t2, 1). We would like

the term RA1s2 to actually be RA2s2 because this would give a small error, while
we cannot say anything about the size of RA1s2. This means that the actual and
the ideal term only differ a factor of R:

RA2s2+m1Gs2 = R(A2−A1)s2+RA1s2+m1Gs2 = R(b2−b1)+RA1s2+m1Gs2

Now the challenge is to construct R(b2 − b1) without knowing R.
It turns out there is a trick we can use for this; write δ = b2 − b1, which can be
done without any knowledge of the secret key because b1, b2 are parts of the public
keys B1, B2. Let ri,j be the entries of matrix R and let participant 1 encrypt every
one of them with B1 and a fresh randomness: Ui,j = R′B1 + ri,jG. Furthermore
let matrices Zi,j have entries all 0 except for the last column, which is equal to the
vector δ. Apply G−1 to get Z ′i,j = G−1(Zi,j). Now we have:

Z ′i,jUi,js1 ≈ Z ′i,jri,jGs1

≈ ri,jG−1(Zi,j)Gs1

≈ ri,jZi,js1
≈ ri,jδ

If this is done for all i, j and put together, the complete term R(b2 − b1) = Rδ
can be recovered by multiplying with secret key s1. Fortunately this is exactly what
we want, since the intention is to have Y s1 + C1s2 ≈ m1Gs2 and the term C1s2
differs about R(b2 − b1) from the ideal outcome m1Gs2.
In conclusion to find matrix Y we needed encryptions of ri,j and the difference
between public keys B1, B2. Thus participant 1 should include the encryptions of
ri,j along with the ciphertext C1, producing a tuple of ciphertexts rather than a single
ciphertext. Then the expansion of ciphertext C1 to C ′1 means calculating matrices
Z ′i,j and Ui,j and put it together in a new matrix:(

C1 0∑
i,j Z

′
i,jUi,j C1

)

19

Including the encryptions of ri,j will not weaken the security of the scheme because
of the security of GSW encryption. Also, expansion of ciphertexts can be done by
any party because no secret keys are involved, which is very convenient.

k participants So far only 2 participants were involved in the multi-key GSW
scheme, but this can be extended to k participants. The expanded ciphertext grows
with the number of participants but it will have the same form. Assume we again
have a ciphertext C1 encrypted with B1 which must be expanded, this time to a
ciphertext that can only be decrypted by the concatenation of all k keys. This
expanded ciphertext will look like this:

C1 0 . . . 0
Y2 C1 . . . 0
...

. . .
...

Yk 0 . . . C1


The first column contains the ciphertext C1 and the ’correction’ matrices Yj that
will give the correction factors R(bj − b1) when multiplied with key s1. Note that
these matrices can be determined just as in the 2-key scheme, only with different
δ = bj − b1 for different rows j. In general for a message encrypted by participant
i, column i will contain correction matrices Yj for all j 6= i and the diagonal of the
matrix will consist of the original ciphertext Ci.

’Threshold’ decryption This multi-key scheme gives the possibility for ’thresh-
old’ decryption; every participant should do a piece of the decryption with its own
key and these partial decryptions together make it possible to retrieve the message.
To allow this process we need the following lemma, to make sure no secret keys can
be deduced from the ciphertexts and partial decryptions.

Smudging noise lemma[16]. For I1, I2 positive integers and e1 ∈ [−I1, I1]
fixed integer, choose e2 ∈ [−I2, I2] uniformly at random. Then the distribution of e2
is statistically indistinguishable from that of e1 + e2 if B1/B2 = negl(λ) where negl
is a negligible function.

A proof can be found in [2]. Now the adjusted decryption process can be de-
scribed. Assume we have a ciphertext C ′ in the expanded form (possibly homo-
morphic computations have been performed on it). This can be seen as a vector of
submatrices: C ′ =

(
M1 . . .Mk

)
where every Mi is a ’column’ of matrices. Now ∀i

participant i :

1. receives Mi

2. computes p′i = 〈Misi, G
−1(w′)〉 for w′ a vector with all zeros and last entry

d q2e

3. adds ’smudging noise’ e ∈ Zq, set pi = p′i + e, and outputs pi

Finally the message can be retrieved from p =
∑k
i=1 pi through dividing by q

2 and
rounding correctly. This smudging noise will make sure the secret key si cannot be
deduced from Mi and pi. The correct parameters with respect to the original noise
and the lemma must be used to generate this noise.

20

7.3 Multi-key B(G)V for logarithmic number of participants

A very limited multi-key version for the BV scheme [5] was proposed in [13], which is
also applicable to the BGV scheme. The addition of ciphertexts c1, c2 will be defined
as (c1, c2), with new secret key (s1, s2). This works because decryption gives the
following:

〈(c1, c2), (s1, s2)〉 = 〈c1, s1〉+ 〈c2, s2〉

For the multi-key setting multiplication of 2 ciphertexts c1, c2 is defined as the
coefficient vector Lc,d(x⊗ y). For decryption set x = s1 and y = s2, in order words
the new key is s1⊗ s2. No key-switching will take place, which means the size of the
key and ciphertext grows. If we have 2 ciphertexts of length l1 and l2 the multiplied
ciphertext will have length l1 · l2. After N − 1 operations the size of the ciphertext
and decryption key can be at most 2N to allow log λ number of participants (keys).
This means one of the ciphertexts involved in multiplication must always be fresh
and thus have size 2. For addition there is no such restriction because the size of the
new ciphertext is always the addition of the sizes of the original ciphertexts. Thus
these small changes result in a scheme that can support O(log λ) keys.

Note that the new secret key is different after addition and multiplication. It is
possible to make this equal, on the cost of also requiring addition to also always have
at least one fresh ciphertext as entry. Define addition of c = (c0, c1), d = (d0, d1) as
(c0 + d0, d1, c1, 0) for new key s1 ⊗ s2 = (1, s2, s1, s1s2). Decryption gives:

〈(c0 + d0, d1, c1, 0), (1, s2, s1, s1s2)〉 = 〈c1, s1〉+ 〈c2, s2〉

Even though this is possible, it is still necessary to know which keys and in which
order were involved in which sequence of operations in order to assemble the correct
decryption key at the end. It is probably simplest to keep track of the form of the
new key and output this additionally to a new ciphertext.

Apart from the fact that the scheme only supports a logarithmic number keys,
also the complexity of the functions that are supported by the scheme is limited,
thus this is merely a SHE scheme. In the multi-key setting it is not clear how to
apply relinearization or squashing. Modulus switching could be a challenge, because
participants would have to settle on a fixed sequence of moduli, but seems to be
possible.

8 Overview

First the notion of FHE was introduced, along with a high level overview of the
first FHE scheme, introduced by Gentry. His solution of taking a SHE scheme and
turning it into a FHE one by squashing the decryption circuit and then bootstrap-
ping has been the blueprint for many schemes that followed. Several LWE/RLWE
based schemes have been discussed which showed different techniques have been in-
troduced along the way to differ from Gentry’s blueprint. Basing the scheme on
LWE or RLWE, rather than on ideal lattices as was the case with Gentry, has made
the systems easier to understand. Among the newly introduced techniques are re-
linearization and modulus-switching from Brakerski and Vaikuntanathan. The first
technique aims to switch keys, from a larger one to a shorter one, while making the
ciphertext shorter in the process. By using modulus switching the noise level grows
at a slower pace than before. Obviously both techniques influence the amount of

21

operations can be performed in a positive way. In the GSW scheme a gadget matrix
was used to keep the noise level down. No key-switching was done in this leveled
FHE scheme, the focus was on developing an easy to understand scheme where ho-
momorphic addition and multiplication corresponded simply with matrix addition
and multiplication. Along with the new scheme a IBFHE compiler was given, making
it possible to turn LWE-based schemes with certain properties into IBFHE schemes.

Fully homomorphic encryption is a very interesting notion by itself, allowing a
variation of applications. With the introduction of multi-key FHE this range of ap-
plication grows further. In such a scheme multiple secret keys are involved, and every
participant encrypts its own message under its own key. Evaluations on ciphertexts
encrypted under different keys are possible in this setting, resulting in a ciphertext
that can only be decrypted with the use of all secret keys that were used to encrypt
the inputs of the evaluation. When the standard cryptoscheme NTRU was made
FHE it turned out to support multiple keys, which gave rise to this new notion. It
turned out every FHE scheme can be made multi-key in an inefficient way, by using
onion encryption and decryption. The IBFHE compiler that was given before was
transformed into a M-IBFHE compiler, showing it was possible to let LWE-based
schemes support multiple keys. An implementation of this for GSW was given,
along with a way to distribute the decryption procedure among the participants. By
definition of M-FHE it is always necessary to use all secret keys involved with the
computation to decrypt the result, while participants of course do not want to share
their key. Making it possible to let each participant do a partial decryption which fi-
nally add up to the actual result is a nice addition to make the scheme more practical.

Still many developments are happening in this area of research, especially because
performance seems to be a bottleneck. This has not been the focus of this report,
but it is worth mentioning there is only one open source library implementing a FHE
scheme (BGV) at this moment (HElib). There are examples of the actual use of
FHE for practical solutions, for example for secure health care monitoring as done
in [1] (it must be mentioned that instead of circuits, branching programs were used
for computations). However, it seems performing statistics on health care data with
the use of multi-key FHE, as suggested in the introduction, has not been done yet
and improvements of the schemes might be necessary to make it realizable.

References

[1] Scott Ames, Muthuramakrishnan Venkitasubramaniam, Alex Page, Övünç Ko-
cabaş, and Tolga Soyata. Secure health monitoring in the cloud using homo-
morphic encryption, a branching-program formulation. 2015.

[2] Gilad Asharov, Abhishek Jain, and Daniel Wichs. Multiparty computation with
low communication, computation and interaction via threshold fhe. 2011.

[3] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) lwe. In Foundations of Computer Science (FOCS), 2011 IEEE
52nd Annual Symposium on, pages 97–106, Oct 2011.

[4] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully ho-
momorphic encryption without bootstrapping. In Proceedings of the 3rd In-
novations in Theoretical Computer Science Conference, pages 309–325. ACM,
2012.

22

[5] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In Advances in
Cryptology–CRYPTO 2011, pages 505–524. Springer, 2011.

[6] A. Sahai C. Gentry and B. Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In
Advances in Cryptology–CRYPTO 2013, pages 75–92. Springer, 2013.

[7] P.K. Cameron. Introduction to algebra. Oxford University Press, 2012.

[8] Michael Clear and Ciarán McGoldrick. Multi-identity and multi-key leveled fhe
from learning with errors. Technical report, Cryptology ePrint Archive, Report
2014/798, 2014. http://eprint. iacr. org.

[9] Craig Gentry et al. Fully homomorphic encryption using ideal lattices. In STOC,
volume 9, pages 169–178, 2009.

[10] Shai Halevi and Victor Shoup. Helib - an implementation of homomorphic
encryption. https://github.com/shaih/HElib, 2013.

[11] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based public
key cryptosystem. In Algorithmic number theory, pages 267–288. Springer, 1998.

[12] Jing Liu. Verifiable delegation of computation in the setting of privacy-
preserving biometric authentication. Master’s thesis, Chalmers University of
Technology, 2015.

[13] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
pages 1219–1234. ACM, 2012.

[14] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In In Proc. of EUROCRYPT, volume 6110 of
LNCS, pages 1–23. Springer, 2010.

[15] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a
cryptographic perspective, volume 671. Springer Science & Business Media, 2012.

[16] Pratyay Mukherjee and Daniel Wichs. Two round mutliparty computation via
multi-key fhe. Cryptology ePrint Archive, Report 2015/345, 2015. http://

eprint.iacr.org/.

[17] Oded Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. Journal of the ACM (JACM), 56(6):34, 2009.

[18] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and
privacy homomorphisms. Foundations of secure computation, 4(11):169–180,
1978.

[19] Damien Stehlé and Ron Steinfeld. Making ntru as secure as worst-case problems
over ideal lattices. In Advances in Cryptology–EUROCRYPT 2011, pages 27–47.
Springer, 2011.

23

https://github.com/shaih/HElib
http://eprint.iacr.org/
http://eprint.iacr.org/

	Introduction
	(Fully) Homomorphic Encryption
	Preliminaries
	The first FHE scheme
	Learning with errors (LWE)
	Regev's standard cryptosystem
	A Regev-like FHE scheme
	Approximate eigenvector scheme (GSW)

	Ring Learning with Errors (RLWE)
	BV: A cryptoscheme based on RLWE
	FHE without bootstrapping based on LWE or RLWE

	Multi-key FHE
	Multi-key NTRU
	Multi-key GSW
	Multi-key B(G)V for logarithmic number of participants

	Overview

