

University of Gothenburg
Chalmers University of Technology

Department of Computer Science and Engineering
Göteborg, Sweden, May 2010

Evaluating New MAC algorithms
for Mobile Ad-Hoc Networks

Master of Science Thesis in the programme Computer Science

GONGXI ZHU

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Evaluating New MAC algorithms for Mobile Ad-Hoc Networks

Gongxi Zhu

© Gongxi Zhu, May 2010.

Examiner: Marina Papatriantafilou

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering

SE-412 96 Göteborg
Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden May 2010

- 1 -

Abstract

The problem of media access control (MAC) implies significant challenges when

considering the relocation of mobile nodes. In the algorithmic arena of MAC solutions,

it is common that when nodes are considered to be non-stationary, designers tend to

assume that some nodes temporarily do not change their location. Further, they assume

that these stationary nodes coordinate the communications among mobile nodes. Thus,

the relation between the performance of MAC algorithms and the different settings by

which the location of the mobile nodes is modeled requires further inquiry.

We study this relationship and suggest an extension of a recently proposed abstract

model, which models the relocation of nodes via a small set of parameters. These

parameters refer to the relocation rate, α, and the similarity ratio, ß. Namely, we assume

that the rate, α, by which the relocation occurs is constant. Moreover, a ratio of at least β

neighbors of any mobile node that relocates from its current neighborhood to a new one,

are going to be in its new neighborhood.

We numerically evaluate the throughput and convergence period of a recently proposed

MAC algorithm. We show that the algorithm’s throughput depends on α and ß, unlike

algorithms such as slotted ALOHA that their throughput is independent of α and ß.

Moreover, we identify critical threshold, ßc, of the similarity ratio above which the

throughput of slotted ALOHA is always lower than the one of the studied algorithm. We

use our results to estimate the throughput of the studied MAC algorithm in vehicular ad-

hoc networks.

Remark: This master project has resulted in two technical reports and a scientific

publication. This report is adapted from the paper “Analyzing Protocols for Media

Access Control in Large-Scale Mobile Ad Hoc Networks’’ published in Self-Organizing

Wireless Sensor and Communication Networks (SOMSED 2009). - 978-3-941492-10-3;

s. 77

- 2 -

Acknowledgements

This project is not possible to be finished without the help and support of many

wonderful individuals. I would like to thank everyone who has helped me along the way.

Particularly: Dr. Elad Michael Schiller for providing me an opportunity to conduct my

master’s research with him and for his guidance and support over the course of my

thesis; Dr. Marina Papatriantafilou for some useful suggestions; Andreas Larsson for

helping me with various technical details; Ning He, my project partner for giving me so

much help and support.

- 3 -

Contents

1. Introduction..- 5 -

2. Communication Model ..- 7 -

3. Modeling the location of mobile nodes ...- 8 -

4. The Studied Algorithm...- 10 -

5. Experimental Analysis using Simulations ...- 12 -

5.1 platform and tools.. - 12 -

5.2 The Simulations .. - 13 -

6. Eventual throughput...- 15 -

7. Convergence period ...- 17 -

8. Conclusions..- 19 -

References..- 20 -

APPENDIX A Architecture and models ...- 21 -

A.1 Architecture ... - 21 -

A.2 Modules ... - 22 -

A.3 Interfaces ... - 22 -

APPENDIX B Codes ..- 24 -

B.1 CarrierSenseModel.nc ... - 24 -

B.2 ReceptionErrorModel.nc ... - 24 -

B.3 SET_Transmission.nc.. - 25 -

B.4 HilTimerMicroC.nc... - 27 -

B.5 DCC.nc .. - 31 -

B.6 FAMA.nc ... - 43 -

- 4 -

List of Figures

Figure 1: throughput ..- 16 -

Figure 2: convergence period ..- 17 -

Figure 3: throughput in a function of rounds ...- 18 -

Figure 4: structure of program ...- 21 -

- 5 -

1. Introduction

We study a MAC algorithm for mobile ad hoc networks (MANETs). The studied

algorithm is the one in Leone et al. [1] that is based on vertex coloring. In that work

the authors suggest a model for relocation analysis in which mobile nodes randomly

change their location according to a constant relocation rate, α. We present

extensions of the relocation analysis of [1]. The extension considers the similarity

ratio, i.e., a bound, β, on the minimal ratio of neighbors that a mobile node maintains

when relocating to a new neighborhood.

In our study, we place emphasis on stabilization concepts, which are imperative in

MANETs. We present an experimental study of the throughput and convergence

period of the algorithm in [1] on the extended model. The results show dependency

between the algorithm’s throughput and the parameters α and ß, unlike algorithms

such as slotted ALOHA [2] that their throughput is independent of α and ß. Moreover,

the results allow us to identify a critical threshold, βc, of the similarity ratio, above

which the throughput of slotted ALOHA [2] is always lower than the one of the

studied algorithm.

Leone et al.’s [1] model focuses on the location of mobile nodes rather than the

“movements of the mobile users”, cf. a survey on mobility model [3]. It is an abstract

model that can also represent existing mobility models. For example, population

protocols [4] can be represented by considering relocation rate of 1 and the similarity

ratio (close to) 0. Moreover, using the extension of similarity rate described here,

random walks can be represented by considering relocation rate of close to 0 and the

similarity ratio close to 1. Thus, in the context of MAC algorithms, the models

presented in [1] and in this dissertation have a clear advantage, because the studied

algorithm can be analyzed for a wider set of scenarios. Moreover, the expressiveness

of the studied model for relocation analysis allows the algorithm designers to follow

- 6 -

an analytical approach, as in [1], and an experimental approach, which is taken in this

dissertation.

The studied model is expressive and allows us to estimate the algorithm’s throughput

in new settings. We demonstrate the expressiveness of the relocation analysis by

considering vehicular ad-hoc networks (VANETs). We show typical examples of road

settings in which the studied algorithm has throughput that is higher than the one o f

slotted ALOHA [2].

- 7 -

2. Communication Model

The system consists of a set of communicating entities, which we call (mobile) nodes.

Denote the set of nodes by P (processors) and every node pi ∈ P with a unique index, i,

that pi can access.

We assume that the MAC protocol is invoked periodically by synchronized common

pulses. The term (broadcasting) timeslot refers to the period between two consecutive

common pulses, tx and tx+1, such that tx+1 = (tx mod T) + 1, where T is a predefined

constant named the Frame Size, i.e., the number of timeslots in a TDMA frame (or

broadcasting round).

We consider a standard radio interference unit that allows sensing the carrier and

reading the energy level of the communication channel. Sometimes, we simplify the

description of our algorithms and relocation models by considering concepts from

graph theory. Nevertheless, the simulations consider a standard physical layer model.

At any instance of time, the directly communicating ability of any pair of nodes is

defined by the set, Ni (subset of P), of neighbors that node pi in P can communicate

with directly. Wireless transmissions are subject to collisions and we consider the

potential of nodes to interfere with others' communications. We say that nodes A

(subset of P) broadcast simultaneously if the nodes in A broadcast within the same

timeslot. We denote by Mi = {pk ∈ Nj : pj ∈ Ni ∪ { pi }}\{ pi } the set of nodes that

may interfere with pi's communications when any nonempty subset of them, A ⊆ Mi :

A ≠ ∅, transmit simultaneously with pi. We call Mi the interference neighborhood of

node pi ∈ P, |Mi| the interference degree of node pi is in P.

- 8 -

3. Modeling the location of mobile nodes

Let us look into scenarios in which each mobile node randomly moves in the

Euclidian plane and in which two mobile nodes can directly communicate (or

interfere with each other’s communications) if their distance is less than a threshold χ.

This scenario can be modeled by a sequence of evolving graphs; at time instant t, the

communication graph, G(t)=(V,E(t)), includes the set of mobile nodes, V, and the set

of edges, E(t), which represents pairs of processors that can directly communicate at

time t.

Let us consider two consecutive communication graphs, G(t), G(t+1), of the evolving

graph. In this short run, it can be expected that many of the mobile nodes have similar

neighborhoods in G(t) and G(t+1), say, when the threshold χ is large. In the long run,

this similarity may disappear because there are (independent) random relocations of

the mobile nodes due to their random motion, e.g., G(t) and G(t+x) are independent

when x goes to infinity. These properties of neighborhood similarity and (independent)

random relocation motivate the studied system settings.

To model the evolution of the communication graphs, Leone et al. [1] assume that

between every two consecutive communication graphs, G(t), G(t+1), a fraction of the

mobile nodes, α, relocates from their neighborhood, where 0≤α≤1 is the relocation

rate. We extend the model of Leone et al. [1]. Let us consider a mobile node, pi, that

relocates from its current neighborhood, Mi, to a new one, M’i. We assume that a ratio

of β neighbors of pi in its current neighborhood is going to be in its new neighborhood,

i.e., β≤|Mi∩M’i|/|M’i|, where β in [0,1] is named the similarity ratio.

The relocating nodes and their new neighborhoods are chosen randomly. This leads to

a mixed property of short-term (independent) random relocation and long-term

neighborhood similarity. The mix is defined by the relocation rate, α, and the

- 9 -

similarity ratio, β. The relocation rate can be viewed as the ratio of non-stationary

nodes over (temporarily) stationary ones. The similarity ratio can be related to an

upper bound on the mobile nodes’ speed. In other words, the slower mobile nodes

move the higher the similarly ratio gets.

On one hand, when the value of α is unbounded and the value of β is small, the

property of short-term (independent) random relocation can be more dominating than

the property of long-term neighborhood similarity. For example, Leone et al. [1] show

that in this case, efficient MAC algorithms should employ a strategy similar to the one

of slotted ALOHA [2], which ignores the history of broadcasts among neighbors. On

the other hand, when the dominating property is neighborhood similarity, i.e., α is

bounded and β is far from 0, the algorithm can allow each mobile node to effectively

learn the history of the neighbors’ broadcasts, say, using the algorithm in Leone et al.

[1] that is based on vertex coloring.

- 10 -

4. The Studied Algorithm

We consider settings in which the relocation rate α and the similarity ratio β are

bounded. Leone et al. [1] explain how in these settings, mobile nodes are able to learn

some information about the success of the neighbors’ broadcasts. The algorithm

divides the radio time into timeslots. Moreover, it is based on vertex coloring; nodes

avoid broadcasting in the timeslots in which their neighbors successfully broadcast.

Given a broadcasting round, we define the throughput as the number of mobile nodes

that successfully transmit at least once in that round divided by the number of mobile

nodes in the entire system.

Keeping track of broadcast history is complicated in the non-stationary settings of

MANETs, because of node relocations and transmission collations. The studied

algorithm presents a randomized solution that respects the recent history of the

neighbors’ broadcasts. This information is inaccurate. However, when the relocation

rate is not too high and the similarity ratio is not too low, the timeslots can be

allocated by the studied algorithm.

The algorithm in Leone et al. [1] uses a randomized construction that lets every node

inform its interference neighborhood on its broadcasting timeslot and allows the

neighbors to record this timeslot as an occupied/unused one. The construction is based

on a randomized competition among neighboring nodes that attempt to broadcast

within the same timeslot. When there is a single competing node, that node is

guaranteed to win. Namely, the node succeeds in informing its interfere nce

neighborhood on its broadcasting timeslot and letting the interference neighborhood

mark its broadcasting timeslot as an occupied one. In the case where there are x>1

competing nodes, there might be more than one winner. However, most of the

competitors are expected to lose. The nodes that have lost mark their broadcasting

timeslot as unused (when there is more than one winner). Thus, on the next broadcast,

- 11 -

it is expected that only a few of the losing nodes will compete for the same timeslot

again; they are expected to re-choose their timeslots. Why this is guaranteed to

converge is showed in [1].

- 12 -

5. Experimental Analysis using Simulations

5.1 platform and tools

TinyOS is designed for wireless sensor networks. It is written in nesC programming

language and is a component-based operating system [10].

TinyOS uses a component-based architecture. These components are abstractions of

hardware. By interfaces, different components are connected together in TinyOS.

TinyOS implements an even-driven programming model. In this project, we use

TinyOs 2.1.x.

TOSSIM is an embedded simulator in TinyOS, which is used for simulating entire

TinyOS applications. It offers a simulation environment, which is easier to be

controlled and monitored.

TOSSIM is based on event driven system. When it runs, it pulls events of the event

queue and executes them. There are two programming interfaces to TOSSIM: python

and C++. In our implementation, we use python.

In order to simulate, network topology is needed, such as the size and shape of the

network. The topology will be reflected in terms of gain value which represents the

transmit signal strength between any pair of nodes. The default values for TOSSIM's

radio model are based on the CC2420 radio, used in the micaZ, telos family.

- 13 -

5.2 The Simulations

Recall that the studied model extends the one presented in [1]; the relocation analysis

in [1] considers the relocation rate, α, and we consider the similarity ratio, β, in

addition. The studied algorithm is a randomized one that requires a convergence

period.

We show that after a convergence period, the throughput is within a bounded range

and its expected value is asymptotically constant. Moreover, the value of the

throughput is a function that monotonically decreases as α increases and increases as

β increases. In addition, we explain the relation between the throughput asymptotical

value and the convergence period.

We identify a critical threshold, βc=50%, of the similarity ratio, above which the

throughput of slotted ALOHA [2] is always lower than the one of the studied

algorithm. We use the algorithm of slotted ALOHA [2] as a benchmark because its

throughput is independent of α and ß (unlike the studied algorithm).

Our experiments were conducted using TOSSIM [6]. All experiments had 400 nodes.

At any time, the location of a node is uniquely associated with an entry in a 20 by 20

grid. The selected communication and interference ranges are such that there are at

most five nodes within the communication range and at most 20 nodes with the

interference range. The size of the interference neighborhoods defines the number of

timeslots in every broadcasting round. We assume zero propagation delay (due to the

short transmission range). The transmit-to-receive turnaround time is 176 μs (i.e.,

TOSSIM’s default value when configured to act as the standard TinyOS 2.0 with the

CC2420 stack.)

The number of nodes that take a relocation step is defined by the relocation rate. A

relocation step is carried out by selecting two random nodes and swapping their

- 14 -

locations. The maximal distance between two nodes that we swap is bounded, so that

a desirable similarity ratio is achieved.

In the starting configuration, we let every node choose its broadcasting timeslot, say,

uniformly at random or uniquely to its interference neighborhood. In the following

configurations, the nodes select their broadcasting timeslots according to the studied

algorithm. Moreover, relocation steps change the locations of mobile nodes. We note

that these relocation steps change the broadcasting timeslots of the neighboring nodes.

In order to study the throughput, we conduct experiments that differ in their starting

configurations and the values of α and β (i.e., the timeslots can be chosen uniformly at

random or uniquely to their interference neighborhood).

- 15 -

6. Eventual throughput

The aim of this experiment is to understand the relationship between the throughput

and the parameters α and β. We present the results of an experiment that demonstrate

that the value of the throughput is a function that monotonically decreases as α

increases and increases as β increases.

We conduct an experiment in which every mobile node in the starting configuration

has a timeslot that is unique to its neighborhood. Then, during the system run, the

mobile nodes have to rechoose their timeslots due to the random relocation. In the

experiment, the relocation rate, α, increases from 0% to 100% in steps of 1% every 10

broadcasting rounds. We consider five different similarity ratios: 6%, 12%, 25%, 50%

and 62%. (For each similarity ratio, we instantiate different experiment, i.e., there are

five experiments and the value of the similarity ratio, β, is fixed throughout each

instance of the experiment.)

The results of the experiment are presented in Fig. 1 and show that the throughput is

almost 100% when α=0. Moreover, the throughput monotonically decreases as the

relocation rate increases. However, only for the similarity ratios that are above

βc=50% the throughput of the studied algorithm is always higher than the throughput

of the slotted ALOHA [2] algorithm.

- 16 -

25%

50%

75%

100%

0% 25% 50% 75% 100%

Slotted Aloha

62%

50%

25%

12%

6%

Fig. 1 Throughput of the studied algorithm and slotted aloha [2]. The throughput values (y

axis) are depicted as a function of the relocation rate α (x axis). Throughput of slotted

Aloha [2] is depicted by the dashed horizontal line. The other lines depict the logarithmic

trend line of the throughput for the similarity rat ios: 6%, 12%, 25%, 50% and 62%.

- 17 -

7. Convergence period

The studied algorithm is a randomized one that requires a convergence period. During

the convergence period, the throughput changes and might eventually converge to a

narrower range. We study the relationship between the convergence period and the

parameters α and β by examining different starting configurations for which we

assume that the broadcasting timeslot are selected uniformly at random. The results of

the examinations are presented in Fig. 2. The results show that required convergence

period decreases as the relocation rate, α, increases.

Fig. 2 The convergence period of the studied algorithm. The number of broadcasting

rounds needed before the mobile nodes has access to at least 97% of the eventual

throughput values (y axis). These values are depicted as a function of the relocation rate α

in logarithmic scale (x axis).

- 18 -

One way to explain these results is presented in Fig. 3. That figure considers different

values of relocation rate and a single value of similarity ratio, β=6%. The chart shows

the for these relocation rates, the throughput the first broadcasting round is about 50%.

This is because the starting timeslot values follow a uniform random distribution. In

the later broadcasting rounds, it seems that the required convergence period is directly

influenced by the time it takes to reach the (eventual) throughput value from the

starting configuration.

Fig. 3 The throughput of the studied algorithm (y axis) is depicted by the dotted lines (and

their polynomial trends in solid lines) as a function of the number o f broadcasting rounds

from the starting configuration (x axis). The chart considers similarity rat io of 6%. The

chart’s lines from top to bottom respectively represent relocation rates from 0% to 60% in

steps of 10%.

25%

50%

75%

100%

0 5 10 15

- 19 -

8. Conclusions

This work is a numerical study of the relationship between a fundamental protocol for

MANETs and the settings that model the location of mobile nodes. We present an

extension to an abstract model of Leone et al. [1] for relocation analysis. The

abstractions in the model enable a detailed numerical analysis of the MAC algorithm

in [1]. Namely, we study the eventual throughput as well as the convergence period.

This dissertation explains how to estimate the algorithm’s throughput in typical

settings of VANETs using results from the abstract model of relocation analysis. The

studied examples suggest the usefulness of the studied algorithm in VANETs.

We expect that our relocation analysis may be used for the design and understanding

of other protocols in the context of MANETs.

- 20 -

References

[1] P. Leone, M. Papatriantafilou and E. M. Schiller, “Relocation Analysis of

Stabilizing MAC Algorithms for Large-Scale Mobile Ad Hoc Networks,” in:

ALGOSENSORS, 2009. Also appears as a technical report 2008 :23, Department

of Computer Science, and Engineering, Chalmers University of Technology

(Sweden), Sep. 2008.

[2] N. Abramson. “Development of the ALOHANET.” IEEE Information Theory,

31(2):119–123, 1985.

[3] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad hoc

network research,” Wireless Communications & Mobile Computing (WCMC):

Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications

2 (2002), no. 5, 483-502.

[4] I. Chatzigiannakis, O. Michail and P. Spirakis, “Recent Advances in Population

Protocols,” in: 34th International Symposium on Mathematical Foundations of

Computer Science (MFCS), pages 56-76, Springer-Verlag Berlin Heidelberg,

Novy Smokovec, High Tatras, Slovak Republic, 2009.

[5] C. Avin, M. Kouck´y, and Z. Lotker. “How to explore a fast-changing world

(cover time of a simple random walk on evolving graphs).” In ICALP (1), LNCS

5125:121–132. Springer, 2008.

[6] P. Levis, N. Lee, M. Welsh, and D. Culler. “TOSSIM: Accurate and Scalable

Simulation of Entire TinyOS Applications.” ACM Conference on Embedded

Networked Sensor Systems, 2003.

- 21 -

APPENDIX A Architecture and models

A.1 Architecture

As shown in Fig. 4, we defined several modules and interfaces, which could be wired

together with TOSSIM (through default interfaces in TOSSIM like Packet, Receive,

etc.).

Figure 4: Structure of our program

The studied algorithm

(DCC.nc)

FAMA

(FAMA.nc)

SET_Transmission

TOSSIM

CarrierSenseModel ReceptionErrorModel

Packet

AMSend

Receive

- 22 -

A.2 Modules

Modules Description

DCC.nc
Implementation of non-oblivious algorithm of Leone

et al. [1].

Responsible for controlling the whole program,

sending packets to FAMA level, and process all the

received packets.

FAMA.nc
Implementation of FAMA algorithm.

Responsible for RTS/CTS exchange procedure

before transmitting the packets passed from DCC,

signal SET_carrier_sense() and SET_

reception_error () to DCC.

A.3 Interfaces

Interfaces Description

SET_Transmission.nc
Responsible for interaction between DCC.nc and

FAMA.nc, including methods:

 SET_carrier_sense() is used to signal the event

SET_carrier_sense() of Leone et al. [1].

 SET_reception_error() is used to signal the event

SET_ reception_error () of Leone et al. [1].

 SET_broadcast() is used to transmit packets to

the other processors.

 SET_receive() is used to pass received packets to

DCC.nc.

- 23 -

CarrierSenseModel.nc
Responsible for signaling the event carrier_sense()

from interference model of TOSSIM to packet- level

radio component;

And signaling the event carrier_sense() from packet-

level radio component of TOSSIM to FAMA.

ReceptionErrorModel.nc Responsible for signaling the event reception_error()

from interference model of TOSSIM to packet- level

radio component;

And signaling the event reception_error () from

packet- level radio component of TOSSIM to FAMA.

- 24 -

APPENDIX B Codes

B.1 CarrierSenseModel.nc

interface CarrierSenseModel{

 /**

 * signal a carrier_sense event to upper-layer

 * @author gongxi zhu

 **/

 event void senseCarrier();

}

B.2 ReceptionErrorModel.nc

interface ReceptionErrorModel{

 /**

 * signal a reception_error event to upper-layer

 * @author gongxi zhu

 **/

 event void reception_error();

}

- 25 -

B.3 SET_Transmission.nc

interface SET_Transmission{

 /**

 * inform other components that program is booting

 * @author gongxi zhu

 **/

 command void start();

 /**

 * signal a SET_carrier_sense event to upper-layer

 * @author gongxi zhu

 **/

 event void SET_carrier_sense();

 /**

 * signal a SET_reception_error event to upper-layer

 * @author gongxi zhu

 **/

 event void SET_reception_error();

 /**

 * signal a SET_receive event to upper-layer, a message is received

 * @author gongxi zhu

 * @param msg received message

 * @param payload data payload of received message

 * @param len length of payload

 * @return received message

 **/

 event message_t* SET_receive(message_t* msg, void* payload, uint8_t len);

 /**

 * send a message

 * @author gongxi zhu

 * @param msg message

 * @param len length of payload

 * @param t imeslot to whom I should send my RTS

 * @param competingRnd how many competit ion rnds I used

 **/

 command void SET_broadcast(message_t* msg, uint8_t len, int timeslot, int competingRnd);

 /**

- 26 -

 * inform other components the beginning of a timeslot

 * @author gongxi zhu

 * @param myslot the broadcasting timeslot I am using

 * @param round current broadcasting round

 * @param t imeslot current broadcasting timeslot

 **/

 command void setTimeslot(int myslot, int16_t round, int16_t timeslot);

 /**

 * indicates a message has been broadcasted successfully

 * @author gongxi zhu

 **/

 event void successBroadcast();

}

- 27 -

B.4 HilTimerMicroC.nc

#include <Timer.h>

module HilTimerMicroC {

 provides interface In it;

 provides interface Timer<TMicro> as TimerMicro[u int8_t num];

}

implementation {

 enum {

 TIMER_COUNT = uniqueCount(UQ_TIMER_MICRO)

 };

 typedef struct tossim_timer {

 u int32_t t0;

 u int32_t dt;

 bool isPeriodic;

 bool isActive;

 sim_event_t* evt;

 } tossim_timer_t;

 tossim_timer_t timers[TIMER_COUNT];

 sim_time_t initTime;

 void in itializeEvent(sim_event_t* evt, uint8_t timerID);

 sim_time_t clockToSim(sim_time_t clockVal) {

 return (clockVal * sim_ticks_per_sec()) / (1024 * 1024);

 }

 sim_time_t simToClock(sim_time_t sim) {

 return (sim * (1024 * 1024)) / sim_ticks_per_sec();

 }

 command erro r_t Init.init() {

 memset(timers, 0, sizeof(timers));

 initTime = sim_time();

 return SUCCESS;

 }

 command void TimerMicro.startPeriodic[u int8_t id](uint32_t dt) {

- 28 -

 call TimerMicro.startPeriodicAt[id](call TimerMicro.getNow[id](), dt);

 }

 command void TimerMicro.startOneShot[uint8_t id](u int32_t dt) {

 //dbg("Test_FAMA", "Timer %d starts!\n", id);

 call TimerMicro.startOneShotAt[id](call TimerMicro.getNow[id](), dt);

 }

 command void TimerMicro.stop[uint8_t id]() {

 //dbg("Test_FAMA", "Timer %d stops!\n", id);

 t imers[id].isActive = 0;

 if (t imers[0].evt != NULL) {

 timers[0].evt->cancelled = 1;

 timers[0].evt->cleanup = sim_queue_cleanup_total;

 timers[0].evt = NULL;

 }

 }

 // extended interface

 command bool TimerMicro.isRunning[uint8_t id]() {return timers[id].isActive;}

 command bool TimerMicro.isOneShot[uint8_t id]() {return !timers[id].isActive;}

 command void TimerMicro.startPeriodicAt[uint8_t id](u int32_t t0, u int32_t dt) {

 call TimerMicro.startOneShotAt[id](t0, dt);

 t imers[id].isPeriodic = 1;

 }

 command void TimerMicro.startOneShotAt[uint8_t id](uint32_t t0, u int32_t dt) {

 u int32_t currentTime = call TimerMicro.getNow[id]();

 sim_t ime_t fireTime = sim_time();

 call TimerMicro.stop[id]();

 t imers[id].evt = sim_queue_allocate_event();

 init ializeEvent(timers[id].evt, id);

 fireTime += clockToSim(dt);

 // Be careful about signing and casts, etc.

 if (currentTime > t0) {

 fireTime -= clockToSim(currentTime - t0);

 }

 else {

 fireTime += clockToSim(t0 - currentTime);

 }

- 29 -

 t imers[id].evt->time = fireTime;

 t imers[id].isPeriodic = 0;

 t imers[id].isActive = 1;

 t imers[id].t0 = t0;

 t imers[id].dt = dt;

 sim_queue_insert(timers[id].evt);

 }

 command uint32_t TimerMicro.getNow[uint8_t id]() {

 sim_t ime_t nowTime = sim_time();

 nowTime -= in itTime;

 nowTime = simToClock(nowTime);

 return nowTime & 0xffffffff;

 }

 command uint32_t TimerM icro.gett0[u int8_t id]() {

 return timers[id].t0;

 }

 command uint32_t TimerMicro.getdt[uint8_t id]() {

 return timers[id].dt;

 }

 void tossim_timer_handle(sim_event_t* evt) {

 u int8_t* datum = (uint8_t*)evt->data;

 u int8_t id = *datum;

 //dbg("Test_FAMA", "Timer %d fires!\n", id);

 if(timers[id].isActive)

 signal TimerMicro.fired[id]();

 // We should only re-enqueue the event if it is a fo llow-up firing

 // of the same timer. If the timer is stopped, it's a one shot,

 // or someone has started a new timer, don't re -enqueue it.

 if (t imers[id].isActive &&

 timers[id].isPeriodic &&

 timers[id].evt == evt) {

 evt->t ime = evt->t ime += clockToSim(timers[id].dt);

 sim_queue_insert(evt);

 }

 // If we aren't enqueueing it, and nobody has done something that

 // would cause the event to have been garbage collected, then do

 // so.

 else if (t imers[id].evt == evt) {

 call TimerMicro.stop[id]();

- 30 -

 }

 }

 void in itializeEvent(sim_event_t* evt, uint8_t timerID) {

 u int8_t* data = (uint8_t*)malloc(sizeof(uint8_t));

 *data = t imerID;

 evt->handle = tossim_timer_handle;

 evt->cleanup = sim_queue_cleanup_none;

 evt->data = data;

 }

 default event void TimerMicro.fired[u int8_t id]() {}

}

- 31 -

B.5 DCC.nc

module DCC

{

 uses interface Boot;

 uses interface Packet;

 uses interface SET_Transmission;

 uses interface SplitControl as AMControl;

 uses interface Timer<TMicro> as Timer_Pulse;

 uses interface Timer<TMicro> as Timer2;

}

implementation

{

 message_t packet;

 int16_t counter;

 int16_t NumSlot = FRAME_SIZE;

 /**

 * index of broadcasting timeslot

 **/

 int16_t current_slot;

 /**

 * index of broadcasting round

 **/

 int16_t current_round;

 /**

 * am I still competing for this broadcasting timeslot

 **/

 bool competing;

 /**

 * the broadcasting timeslot I am using

 **/

 int16_t s = -1;

 /**

 * exposure time

 **/

 int16_t e = EXPOSURE_TIME;

- 32 -

 /**

 * index of current competition round

 **/

 int k;

 /**

 * to whom I should send my RTS

 **/

 int ds_timeslot;

 /**

 * is this "ds_timeslot" available: if not, choose a new "ds_timeslot"

 **/

 bool avail_ds;

 bool isUnique;

 bool unused[FRAME_SIZE];

 int terminated = 0;

 FAMAMsgA_t* sopkt_a;

 FAMAMsgB_t* sopkt_b;

 FAMAMsgC_t* sopkt_c;

 FAMAMsgD_t* sopkt_d;

 FAMAMsgE_t* sopkt_e;

 FAMAMsgF_t* sopkt_f;

 /**

 * init ilizat ion

 **/

 void init(){

 int i;

 current_slot = FRAME_SIZE;

 current_round = -1;

 //MaxRound = 5;

 avail_ds = FALSE;

 counter = 0;

 for(i = 0; i < NumSlot; i ++){

 unused[i] = TRUE; // should each timeslot be unused?

 }

 call SET_Transmission.start();

 }

 event void Boot.booted() {

- 33 -

 call AMControl.start();

 }

 event void AMControl.startDone(error_t err) {

 if (err == SUCCESS) {

 dbg("Boot", "Node %d boots!\n", TOS_NODE_ID);

 init();

 call Timer_Pulse.startPeriodic(TIMER_PERIOD_MICRO);

 }

 else {

 call AMControl.start();

 }

 }

 event void AMControl.stopDone(error_t err){

 }

 bool test(){

 return isUnique;

 }

 uint16_t get_random_all(){

 double randomseed;

 double dslot;

 randomseed = fabs(RandomUniform());

 if(randomseed >= 1 || randomseed < 0){

 randomseed = 0;

 }

 dslot = floor(randomseed * NumSlot);

 return (uint16_t)dslot;

 }

 int16_t get_random_unused(){

 double randomseed;

 int i = 0;

 int j = 0;

 int unused_num = 0;

 uint16_t dslot;

 uint16_t dslot_index;

 while(i < NumSlot){

 if(unused[i] == TRUE){

 unused_num ++;

 }

- 34 -

 i ++;

 }

 if(unused_num == 1){

 i = 0;

 while(i < NumSlot){

 if(unused[i] == TRUE){

 dslot = i;

 break;

 }

 i ++;

 }

 }else if (unused_num == 0){

 //dslot = get_random_all();

 dslot = -1;

 }else{

 randomseed = fabs(RandomUniform());

 if(randomseed > 1){

 randomseed = 1;

 }else if(randomseed < 0){

 randomseed = 0;

 }

 dslot_index = (uint16_t)(floor(randomseed * unused_num));

 if(dslot_index == unused_num){

 dslot_index = dslot_index - 1;

 }

 i = 0;

 while(i <= dslot_index){

 while(j < NumSlot){

 if(unused[j] == TRUE){

 j ++;

 break;

 }

 j ++;

 }

 i ++;

 }

 dslot = -- j;

 }

 return dslot;

 }

 int16_t get_random_used(){

 double randomseed;

- 35 -

 int i = 0;

 int j = 0;

 int unused_num = 0;

 uint16_t dslot;

 uint16_t dslot_index;

 while(i < NumSlot){

 if(unused[i] == FALSE){

 unused_num ++;

 }

 i ++;

 }

 if(unused_num == 1){

 i = 0;

 while(i < NumSlot){

 if(unused[i] == FALSE){

 dslot = i;

 break;

 }

 i ++;

 }

 }else if (unused_num == 0){

 dslot = get_random_all();

 }else{

 randomseed = fabs(RandomUniform());

 if(randomseed > 1){

 randomseed = 1;

 }else if(randomseed < 0){

 randomseed = 0;

 }

 dslot_index = (uint16_t)(floor(randomseed * unused_num));

 if(dslot_index == unused_num){

 dslot_index = dslot_index - 1;

 }

 i = 0;

 while(i <= dslot_index){

 while(j < NumSlot){

 if(unused[j] == FALSE){

 j ++;

 break;

 }

 j ++;

 }

- 36 -

 i ++;

 }

 dslot = -- j;

 if(dslot == s){

 //dslot --;

 i = 0;

 while(i < NumSlot){

 if(unused[i] == FALSE && dslot != s){

 dslot = i;

 break;

 }

 i ++;

 }

 }

 }

 if(unused_num == 0 || unused_num == 1){

 while(dslot == s){

 dslot = get_random_all();

 }

 }

 return dslot;

 }

 bool prob(double possibility){

 double randomseed = fabs(RandomUniform());

 if(possibility >= 1 || possibility <= 0){

 return possibility;

 }else{

 if(randomseed < possibility){

 return 1;

 }else{

 return 0;

 }

 }

 }

 /**

 * start competition, send different packets according to how many competition rnds are us ed

 **/

 void send(sim_event_t* evt){

 int i = 0;

 int unused_num = 0;

 int comprnd = 0;

 if(!avail_ds){

- 37 -

 while(i < NumSlot){

 if(unused[i] == TRUE){

 unused_num ++;

 }

 i ++;

 }

 dbg("Test_DCC", "Node %d has %d unused slots!\n", TOS_NODE_ID, unused_num);

 ds_timeslot = get_random_used();

 }

 avail_ds = FALSE;

 k = 1;

 competing = TRUE;

 isUnique = TRUE;

 if(k <= MaxRound && competing){

 if(prob(pow(2.0, k - MaxRound))){

 competing = FALSE;

 if(k == 5){

 sopkt_a = (FAMAMsgA_t*)(call Packet.getPayload(&packet, NULL));

 if (sopkt_a == NULL) {

 return;

 }

 sopkt_a->nodeid = TOS_NODE_ID;

 sopkt_a->counter = counter;

 sopkt_a->pkt_len = sizeof(FAMAMsgA_t);

 counter ++;

 call SET_Transmission.SET_broadcast(&packet, sizeof(FAMAMsgA_t), ds_timeslot, k);

 }else if(k == 4){

 sopkt_b = (FAMAMsgB_t*)(call Packet.getPayload(&packet, NULL));

 if (sopkt_b == NULL) {

 return;

 }

 sopkt_b->nodeid = TOS_NODE_ID;

 sopkt_b->counter = counter;

 sopkt_b->pkt_len = sizeof(FAMAMsgB_t);

 counter ++;

 call SET_Transmission.SET_broadcast(&packet, sizeof(FAMAMsgB_t), ds_timeslot, k);

 }else if(k == 3){

 sopkt_c = (FAMAMsgC_t*)(call Packet.getPayload(&packet, NULL));

 if (sopkt_c == NULL) {

 return;

 }

 sopkt_c->nodeid = TOS_NODE_ID;

 sopkt_c->counter = counter;

 sopkt_c->pkt_len = sizeof(FAMAMsgC_t);

- 38 -

 counter ++;

 call SET_Transmission.SET_broadcast(&packet, sizeof(FAMAMsgC_t), ds_timeslot, k);

 }else if(k == 2){

 sopkt_d = (FAMAMsgD_t*)(call Packet.getPayload(&packet, NULL));

 if (sopkt_d == NULL) {

 return;

 }

 sopkt_d->nodeid = TOS_NODE_ID;

 sopkt_d->counter = counter;

 sopkt_d->pkt_len = sizeof(FAMAMsgD_t);

 counter ++;

 call SET_Transmission.SET_broadcast(&packet, sizeof(FAMAMsgD_t), ds_timeslot, k);

 }else if(k == 1){

 sopkt_e = (FAMAMsgE_t*)(call Packet.getPayload(&packet, NULL));

 if (sopkt_e == NULL) {

 return;

 }

 sopkt_e->nodeid = TOS_NODE_ID;

 sopkt_e->counter = counter;

 sopkt_e->pkt_len = sizeof(FAMAMsgE_t);

 counter ++;

 call SET_Transmission.SET_broadcast(&packet, sizeof(FAMAMsgE_t), ds_timeslot, k);

 }

 return;

 }else{

 call Timer2.startOneShot(e);//wait(e);

 }

 k ++;

 }

 }

 event void Timer2.fired() {

 int comprnd = 0;

 if(k <= MaxRound && competing){

 if(prob(pow(2.0, k - MaxRound))){

 competing = FALSE;

 if(k == 5){

 sopkt_a = (FAMAMsgA_t*)(call Packet.getPayload(&packet, NULL));

 if (sopkt_a == NULL) {

 return;

 }

 sopkt_a->nodeid = TOS_NODE_ID;

 sopkt_a->counter = counter;

 sopkt_a->pkt_len = sizeof(FAMAMsgA_t);

- 39 -

 counter ++;

 call SET_Transmission.SET_broadcast(&packet, sizeof(FAMAMsgA_t), ds_timeslot, k);

 }else if(k == 4){

 sopkt_b = (FAMAMsgB_t*)(call Packet.getPayload(&packet, NULL));

 if (sopkt_b == NULL) {

 return;

 }

 sopkt_b->nodeid = TOS_NODE_ID;

 sopkt_b->counter = counter;

 sopkt_b->pkt_len = sizeof(FAMAMsgB_t);

 counter ++;

 call SET_Transmission.SET_broadcast(&packet, sizeof(FAMAMsgB_t), ds_timeslot, k);

 }else if(k == 3){

 sopkt_c = (FAMAMsgC_t*)(call Packet.getPayload(&packet, NULL));

 if (sopkt_c == NULL) {

 return;

 }

 sopkt_c->nodeid = TOS_NODE_ID;

 sopkt_c->counter = counter;

 sopkt_c->pkt_len = sizeof(FAMAMsgC_t);

 counter ++;

 call SET_Transmission.SET_broadcast(&packet, sizeof(FAMAMsgC_t), ds_timeslot, k);

 }else if(k == 2){

 sopkt_d = (FAMAMsgD_t*)(call Packet.getPayload(&packet, NULL));

 if (sopkt_d == NULL) {

 return;

 }

 sopkt_d->nodeid = TOS_NODE_ID;

 sopkt_d->counter = counter;

 sopkt_d->pkt_len = sizeof(FAMAMsgD_t);

 counter ++;

 call SET_Transmission.SET_broadcast(&packet, sizeof(FAMAMsgD_t), ds_timeslot, k);

 }else if(k == 1){

 sopkt_e = (FAMAMsgE_t*)(call Packet.getPayload(&packet, NULL));

 if (sopkt_e == NULL) {

 return;

 }

 sopkt_e->nodeid = TOS_NODE_ID;

 sopkt_e->counter = counter;

 sopkt_e->pkt_len = sizeof(FAMAMsgE_t);

 counter ++;

 call SET_Transmission.SET_broadcast(&packet, sizeof(FAMAMsgE_t), ds_timeslot, k);

 }

 return;

- 40 -

 }else{

 call Timer2.startOneShot(e);//wait(e);

 }

 k ++;

 }

 }

 /**

 * a message has been broadcasted successfully, I could successfully send my data packet after RTS-

CTS hand shake

 * @author gongxi zhu

 **/

 event void SET_Transmission.successBroadcast(){

 avail_ds = TRUE;

 }

 /**

 * sense the carrier, and read the energy on the channel

 * @author gongxi zhu

 **/

 event void SET_Transmission.SET_carrier_sense(){

 if(competing){

 isUnique = FALSE;

 }

 competing = FALSE;

 unused[current_slot] = FALSE;

 }

 /**

 * detect reception_error

 * @author gongxi zhu

 **/

 event void SET_Transmission.SET_reception_error(){

 unused[current_slot] = TRUE;

 }

 sim_event_t* allocate_send_event(sim_time_t endTime) {

 sim_event_t* evt = (sim_event_t*)malloc(sizeof(sim_event_t));

 evt->mote = sim_node();

 evt->time = endTime;

 evt->handle = send;

 evt->cleanup = sim_queue_cleanup_event;

 evt->cancelled = 0;

 evt->force = 1;

- 41 -

 return evt;

 }

 /**

 * start a timeslot

 **/

 event void Timer_Pulse.fired() {

 uint32_t time1;

 sim_event_t* evt;

 if(current_round > TestRnd){

 call Timer_Pulse.stop();

 call Timer2.stop();

 terminated = 1;

 return;

 }

 if(current_slot < FRAME_SIZE - 1){

 current_slot ++;

 if(TOS_NODE_ID == 0)

 dbg("Test_DCC", "=============Slot %d ===============\n", current_slot);

 }else if (current_slot >= FRAME_SIZE - 1){

 current_slot = 0;

 current_round ++;

 if(TOS_NODE_ID == 0){

 dbg("Test_DCC", "=============Round %d Starts===============\n", current_round);

 dbg("Test_DCC", "=============Slot %d ===============\n", current_slot);

 }

 }

 if(current_slot == 0){

 if(!test() || s == -1){

 s = get_random_unused();

 dbg("Test_DCC", "Node %d chooses slot %d in round %d!\n",TOS_NODE_ID, s,

current_round);

 }

 isUnique = FALSE;

 }

 unused[current_slot] = TRUE;

 call SET_Transmission.setTimeslot(s,current_round, current_slot);

 if(s != -1 && current_slot == s){

 evt = allocate_send_event(10 + sim_time());

 sim_queue_insert(evt);

 }

 }

- 42 -

 event message_t* SET_Transmission.SET_receive(message_t* msg, void* payload, uint8_t len){

 return msg;

 }

}

- 43 -

B.6 FAMA.nc

module FAMAC

{

 uses interface Packet;

 uses interface AMSend;

 uses interface Receive;

 uses interface Timer<TMicro> as Timer;

 uses interface CarrierSenseModel as CarrierSense;

 uses interface ReceptionErrorModel as ReceptionError;

 provides interface SET_Transmission;

}

implementation

{

 bool locked = FALSE;

 message_t* pkt;

 message_t spkt;

 message_t rts;

 message_t cts;

 int state;

 uint8_t length;

 bool dflag = FALSE;

 int my_slot;

 int this_slot;

 int ds_slot;

 int16_t current_round = 0;

 int16_t current_slot = 0;

 bool canReceptError = FALSE;

 uint16_t Ta = 0;

 bool recording = FALSE;

 int competingRnd = -1;

 void passive();

 void rts_f(uint16_t);

 void transmitRTS();

 uint16_t getRandomBackoff(u int32_t time1){

 double randomseed;

 double factor;

 randomseed = fabs(RandomUniform());

 factor = randomseed * 10.0;

- 44 -

 time1 = (uint16_t)(floor(time1 * factor)) ;

 return time1;

 }

 /**

 * init ialize the FAMA

 **/

 command void SET_Transmission.start(){

 state = START;

 call Timer.startOneShot(1);

 }

 /**

 * inform the beginning of a timeslot

 **/

 command void SET_Transmission.setTimeslot(int myslot, int16_t round, int16_t timeslot){

 current_round = round;

 current_slot = timeslot;

 my_slot = myslot;

 dflag = FALSE;

 recording = FALSE;

 Ta = 0;

 competingRnd = -1;

 call Timer.stop();

 passive();

 }

 /**

 * start FAMA

 **/

 command void SET_Transmission.SET_broadcast(message_t* msg, uint8_t len, int timeslot, int rnd){

 ds_slot = timeslot;

 pkt = msg;

 length = len;

 competingRnd = rnd;

 canReceptError = FALSE;

 if(state == PASSIVE){

 transmitRTS();

 }

 }

 /**

 * transmmit RTS

- 45 -

 **/

 void transmitRTS(){

 FAMARTS_t* myrts = (FAMARTS_t*)(call Packet.getPayload(&rts, NULL));

 myrts->receiver = ds_slot;

 myrts->sender = TOS_NODE_ID;

 if (call AMSend.send(AM_BROADCAST_ADDR, &rts, sizeof(FAMARTS_t)) == SUCCESS) {

 }

 }

 /**

 * turn to PASSIVE state

 **/

 void passive(){

 state = PASSIVE;

 }

 /**

 * turn to RTS state

 **/

 void rts_f(uint16_t time1){

 state = RTS;

 call Timer.startOneShot(time1);

 }

 void backoff(){

 state = BACKOFF;

 call Timer.startOneShot(getRandomBackoff(CTS_SIZE));

 }

 /**

 * transmmit packets

 **/

 void transmitData(){

 FAMAMsgA_t* sopkt;

 if (call AMSend.send(AM_BROADCAST_ADDR, pkt, length) == SUCCESS) {

 sopkt = (FAMAMsgA_t*)(call Packet.getPayload(pkt, NULL));

 signal SET_Transmission.successBroadcast();

 }

 }

 /**

 * turn to REMOTE state

 **/

 void remote(uint16_t time1, bool flag){

- 46 -

 state = REMOTE;

 dflag = flag;

 Ta = t ime1;

 call Timer.startOneShot(time1);

 }

 /**

 * turn to XMIT

 **/

 void xmit(){

 state = XMIT;

 call Timer.startOneShot(1);

 }

 event void Timer.fired(){

 switch(state){

 case START:

 passive();

 break;

 case RTS:

 passive();

 break;

 case CTS:

 case XMIT:

 transmitData();

 break;

 case REMOTE:

 passive();

 break;

 case BACKOFF:

 if(pkt != NULL)

 transmitRTS();

 break;

 }

 }

 event void AMSend.sendDone(message_t* msg, error_t err) {

 if (&rts == msg) {

 rts_f(TXRX_TURNAROUND + PROCESSING_TIME_CS + 2 * MAX_PROPA_DELAY +

CTS_SIZE);//+ 100

 }else if (&cts == msg) {

 remote(2 * MAX_PROPA_DELAY + PROCESSING_TIME_CS + TXRX_TURNAROUND,

TRUE);

- 47 -

 }else if (pkt == msg) {

 pkt = NULL;

 passive();

 //locked = FALSE;

 }

 }

 /**

 * sense the carrier

 * @author gongxi zhu

 **/

 event void CarrierSense.senseCarrier(){

 if(state == START){

 call Timer.stop();

 remote(MAX_PACKET_SIZE + 2 * MAX_PROPA_DELAY + PROCESSING_TIME_CS +

TXRX_TURNAROUND, TRUE);

 }else if(state == PASSIVE){

 //dbg("Test_FAMA", "Node %d changes to state remote!\n", TOS_NODE_ID);

 canReceptError = TRUE;

 signal SET_Transmission.SET_carrier_sense();

 remote(MAX_PACKET_SIZE + 2 * MAX_PROPA_DELAY + PROCESSING_TIME_CS +

TXRX_TURNAROUND, FALSE);

 }else if(state == BACKOFF){

 remote(MAX_PACKET_SIZE + 2 * MAX_PROPA_DELAY + PROCESSING_TIME_CS +

TXRX_TURNAROUND, FALSE);

 }else if(state == RTS){

 call Timer.stop();

 }else if(state == REMOTE){

 call Timer.stop();

 }

 }

 /**

 * can not lock the signal, so signal reception_error

 * @author gongxi zhu

 **/

 event void ReceptionError.reception_error(){

 if(state == REMOTE){

 if(canReceptError){

 dbg("Test_FAMA", "Node %d reception error remote!\n", TOS_NODE_ID);

 canReceptError = FALSE;

 signal SET_Transmission.SET_reception_error();

 }

- 48 -

 remote(MAX_PACKET_SIZE + 2 * MAX_PROPA_DELAY + PROCESSING_TIME_CS +

TXRX_TURNAROUND, TRUE);

 }else if(state == PASSIVE){

 if(canReceptError){

 canReceptError = FALSE;

 signal SET_Transmission.SET_reception_error();

 }

 }else if(state == RTS){

 remote(MAX_PACKET_SIZE + 2 * MAX_PROPA_DELAY + PROCESSING_TIME_CS +

TXRX_TURNAROUND, TRUE);

 }

 }

 event message_t* Receive.receive(message_t* msg, void* payload, uint8_t len){

 FAMARTS_t* ropkt;

 FAMACTS_t* copkt;

 FAMAMsgA_t* mopkt;

 message_t* message = NULL;

 if (len == sizeof(FAMARTS_t) && state == REMOTE) { //receive RTS

 call Timer.stop();

 ropkt = (FAMARTS_t*)payload;

 if(dflag){

 remote(Ta, TRUE);

 return msg;

 }

 canReceptError = FALSE;

 if(ropkt->receiver == my_slot){

 FAMACTS_t* mycts = (FAMACTS_t*)(call Packet.getPayload(&cts, NULL));

 mycts->receiver = ropkt ->sender;

 mycts->sender = TOS_NODE_ID;

 mycts->slot = my_slot;

 recording = TRUE;

 if (call AMSend.send(AM_BROADCAST_ADDR, &cts, sizeof(FAMACTS_t)) == SUCCESS) {

 }

 }else{

 remote(CTS_SIZE + 2 * MAX_PROPA_DELAY + PROCESSING_TIME_CS +

TXRX_TURNAROUND, TRUE);

 }

 }else if(len == sizeof(FAMACTS_t) && state == RTS){ //receive CTS

 copkt = (FAMACTS_t*)payload;

 if(copkt->receiver == TOS_NODE_ID){

 xmit ();

 }

- 49 -

 else{

 remote(MAX_PACKET_SIZE + 2 * MAX_PROPA_DELAY + PROCESSING_TIME_CS +

TXRX_TURNAROUND, TRUE);

 }

 }else if(len == sizeof(FAMACTS_t) && state == REMOTE){ //receive CTS

 call Timer.stop();

 copkt = (FAMACTS_t*)payload;

 remote(MAX_PACKET_SIZE + 2 * MAX_PROPA_DELAY + PROCESSING_TIME_CS +

TXRX_TURNAROUND, TRUE);

 return msg;

 }else if((len == sizeof(FAMAMsgA_t)

 ||len == sizeof(FAMAMsgB_t)

 ||len == sizeof(FAMAMsgC_t)

 ||len == sizeof(FAMAMsgD_t)

 ||len == sizeof(FAMAMsgE_t)

 ||len == sizeof(FAMAMsgF_t)) && state == REMOTE){ //receive msg

 call Timer.stop();

 mopkt = (FAMAMsgA_t*)payload;

 if(recording){

 recording = FALSE;

 }else{

 }

 canReceptError = FALSE;

 message = signal SET_Transmission.SET_receive(msg, payload, len);

 remote(2 * MAX_PROPA_DELAY + PROCESSING_TIME_CS + TXRX_TURNAROUND,

TRUE);

 }else if(len == sizeof(FAMACTS_t)){

 remote(MAX_PACKET_SIZE + 2 * MAX_PROPA_DELAY + PROCESSING_TIME_CS +

TXRX_TURNAROUND, TRUE);

 }else{

 remote(MAX_PACKET_SIZE + 2 * MAX_PROPA_DELAY + PROCESSING_TIME_CS +

TXRX_TURNAROUND, TRUE);

 }

 return msg;

 }

}

