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Preface

This thesis is submitted to fulfill requirements of Master program in Networks and Distributed

Systems at Chalmers University, Computer Science and Engineering department. We propose

Gulliver as a platform for studying vehicular systems in a large scale open source test-bed of low

cost miniature vehicles. This thesis presents the platform, its design and a set of applications that

could be demonstrated by Gulliver [1, 2].
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Abstract

Vehicular system designers often use simulation tools for proving vehicular systems. The compu-

tational complexity of detailed simulations limits the scale of such testings. Therefore, it is often

the case that the first full-scale demonstrations of new concepts for vehicular systems are done in

proving grounds and testing tracks.

We propose Gulliver as a platform for studying vehicular systems in a large scale open

source test-bed of low cost miniature vehicles that use wireless communication and are equipped

with onboard sensors. Our approach provides the possibility for a simpler yet detailed investiga-

tion of vehicular systems. This thesis presents the platform, its design and a set of applications

that could be demonstrated by Gulliver. Gulliver allows the design of vehicular systems to focus

on the cyber-physical aspects of the studied problems. Gulliver lies between computer simulation

and full-scale vehicle models, and as such, it simplifies and reduces the costs of vehicular system

prototyping and development. Note that the cost of each miniature vehicular unit is at least one or

two order of magnitude less than a full-scale vehicular prototyping unit.

We expect that Gulliver will allow a wider range of researchers than today to directly con-

tribute to development of future vehicular systems, such as greener transportation initiatives and

zero fatality objectives.

After designing the proposed toolkit, the miniature vehicles have been studied in order to

shape the design toward the implementing on the test-bed floor. Towards this, we performed exten-

sive experiments with the miniature vehicles. Along with that, we proposed different algorithms

for different components of the toolkit in order to use in the simulation and the platform. In addi-

tion to the theses proposed algorithms, we designed a Virtual Traffic Light algorithm which could

be tested by Gulliver as an application of it. Besides, this proposed Virtual Traffic Light can be

used in Gulliver as a new implementation of the Traffic Light.

iv



1. Introduction

Vehicular systems are expected to ultimately gear vehicles with autopilot capabilities, improve

safety, reduce energy consumption, lessen CO2 omission and simplify the control of traffic con-

gestion. This dramatic change will be the result of advances in driver assistant mechanisms for

navigating, congestion control, steering, speed controlling, lane changing, avoiding obstacles to

name a few (see Figure 1.1). Moreover, other technologies, such as driverless cars and vehicle

platoons, might also appear on the road. Thus, future vehicle systems will be controlled by differ-

ent types of drivers, i.e., driverless, mechanism assisted drivers and nonassisted ones. We propose

to study vehicular systems in a large scale open source test-bed of low cost miniature vehicles that

use wireless communication and geared with onboard sensors, such as cameras, laser, radar, speed

sensors, etc. Our approach provides a simpler yet detailed investigation of vehicular systems that

will be affordable by a wider range of developers than today.

Figure 1.1: Advanced driver assistance mechanisms and their environment

Vehicular system designers often use simulation tools [3–7] for proving new concepts. Sim-

ulation tools allow extensive testing of software components, say, by using fault injection meth-

ods [8, 9]. Simulators can even deal with complex mathematical modeling of physical objects

(e.g., vehicles) and their controlling computer systems (see Figure 1.2). The computational com-

plexity of detailed simulations of future vehicular systems limits the scale of testing and often does

not allow extensive system testing for a large number of vehicles. Additional limitations include

the absence of human in the loop or the assumption that computer programs can always predict

driver reactions.

Due to these limitations, the first demonstrations of new vehicular systems are mostly in

proving grounds and testing tracks. DemonstRator [10] is an example of a platform for prototyping

1
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Miniature Vehicle Platform
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Figure 1.2: Traditional development environment and the Gulliver toolkit are depicted above, and
respectively, below the dashed line. The traditional development environment allows
the vehicular system designer to simulate and visualize components of the vehicular
system before installing it and testing it in proving grounds and testing tracks. The
Gulliver toolkit allows the prototype experimenter to use the test-bed for setting up an
experiment in which the vehicular system is tested over a miniature vehicle platform.
The experiment is logged for later execution visualization by the simulator.

vehicular systems. DemonstRator considers full-scale vehicles, which require isolated testing

grounds and considerable protections against vehicle crashing. Proving ground facilities are not

affordably accessible to a wide range of universities, public research and engineering institutes.

By reducing the demonstration costs, we could allow a greater engineering force to participate in

the efforts for greener transportation systems with near zero fatalities.

1.1 Proposed Toolkit

Recent advances in the field of mobile robots allow the ad hoc deployment of a fleet of

miniature vehicle that are remotely controlled by human drivers or computer programs. These
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affordable miniature vehicles can greatly simplify the development of the cyber-physical [11] layer

of new vehicular systems (see Figure 1.2). Namely, a prototype experimenter can test the vehicle

system that is installed on the miniature vehicle platform. These tests can include onboard fault

injection. Moreover, the experiment execution can be logged and later replayed and visualized in

the simulator.

In order to bring the prototyping of cyber-physical layer into the practical realm, one can

take a range of approaches for emulating and substituting relevant system elements. For example,

the human driver can be included in the loop of the miniature vehicle control via an onboard or

remote computation, hand-held wireless devices, or driver simulation cockpits with multi-angle

video streaming in addition to what looks like, sounds like and feels like emulation of the vehicles

and their environment.

This thesis focuses on the design of the miniature vehicle platform that we name Gulliver.

Gulliver’s greatest strength lies in its ability to prototype cyber-physical technologies for vehicular

systems. We assume that problems related to the interaction among vehicles to the road can be

solved before the prototyping phase (see Figure 1.1). Thus, we can follow the approach in which

miniature vehicles can represent full-scale vehicles in the test-bed.

It is up to the prototype experimenter to decide which relevant parts of the embedded sys-

tem should be included onboard of the vehicle. For example, one of the key difficulties is to

understand the impact of vehicle-to-vehicle communication, such as the IEEE 802.11p stan-

dard, which is inherently subject to interferences and disruption. Vehicular systems have safety

critical requirements that must mitigate uncertainties, such as the communication related ones.

Gulliver can facilitate the study of vehicle-to-vehicle communication at the MAC layer and above,

e.g., dynamic bandwidth allocation, pulse synchronization, contention control, packet routing, to

name a few. We note the physical layer can also be studied in Gulliver. However, the platform

designer should take into account signal shadowing and fading. E.g., the designer can include

signal blocking objects in the test-bed area and onboard the miniature vehicle.

Our approach enables the vehicular systems designer to focus on the cyber-physical aspects

of problem. Moreover, by including the human driver in the loop, many of the designer assump-

tions about the cyber-physical system and the human driver can be validated. Thus, the Gulliver

test-bed is a multifaceted toolkit for testing, prototyping and demonstrating new vehicular sys-

tems. The test-bed feedback capabilities and human interaction units are imperative debugging

tools for vehicular system developers.
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Figure 1.2: Component diagrams of the Simulator (a) and the Miniature Vehicle Platform (b)

1.2 Our Contribution

Gulliver presents a multifaceted toolkit for testing vehicular systems in a practical realm. It

lies between computer simulation and full-scale vehicle models, and as such, it simplifies and re-

duces the costs of vehicular system prototyping and development. Gulliver’s greatest strength lies

in its ability to prototype cyber-physical technologies for vehicular systems. By that, it allows the

system designer to focus on cyber-physical aspects of algorithmic problems in vehicular systems

and their networks.

In addition to presenting Gulliver as a concept, this thesis outlines the design of its key

components. We explain how the miniature vehicles can follow a strategy that allows them to

safely traverse the test-bed floor along their Route Plan. The strategy is based on mechanisms for

crash avoidance and traffic light signaling (see Section 4).

We report on our implementation efforts. We explain how the prototype experimenter can

assure that the miniature vehicles can drive along the lane markings. We also explore additional

technological challenges (see Section 5).

Future vehicular systems will enable vehicular interaction, cooperation and will be the first

cyber-physical systems to reach the scale of million units. Currently, no safety-critical system

comes close to this scale. Gulliver design is the first to facilitate the detailed investigation of

the vehicle interaction and emerging patterns among hundreds and even thousands of units of

a cyber-physical system. These investigations are imperative for the design and development of

advanced driver assistant mechanisms, such as virtual traffic light, vehicle platooning, coordinated

contention control, coordinated lane change, to name a few.



2. Related Works

Wireless ad hoc networks are often simulated before their installation, e.g., TOSSIM [12], which is

TinyOS mote simulator. Wireless Vehicular Networks (VANETs) are often simulated by systems

that have a wireless ad hoc network simulator, and microscopic traffic flow simulator, such as

SUMO (Simulation of Urban MObility) [13]. It provides information to the vehicles about how

they can traverse along their routes. Similarly, DIVERT (see [14]) is a traffic simulator which

models vehicles mobility and their communication. Gulliver extends the use of simulator and

for the first time allows testing of new concepts in a test-bed that includes miniature vehicles.

The proposed approach allows prototyping of vehicular systems in a more practical realm than

computer simulations.

One of the important issues that future vehicular systems will deal with is accident pre-

vention. In [15], the authors describe a self-organizing virtual traffic light (VTL). VTLs allow

the ad hoc deployment of traffic lights in every road intersection. The authors of [15] use leader

election mechanisms for allowing a single vehicle to serve as the VTL server. It is up to this

server to broadcast the VTL’s status to arriving vehicles. These messages are then displayed to the

drivers. The leader election criterion includes proximity considerations and requires agreement.

Their concept is demonstrated via DIVERT [14] with sampled traffic information.

A more robust approach for VTL construction is presented in [16–18] using Virtual Node

Layer (VNLayer). VNLayer is a programming abstraction in order to have virtual nodes emulated

by physical nodes. They use the VNLayer for emulating the virtual traffic light. The implemen-

tation of traffic light in [16, 18] is deployed via a small set of HP iPAQ hand-held computers that

are mounted on slow moving robots.

We consider a similar accident prevention service for future vehicular systems, namely a

traffic light. However, we demonstrate our concept via extensive testing in a platform that has

many miniature vehicles and a logging/replay mechanism, rather by simulation only or a small set

of traffic scenarios.

5



3. Preliminaries

We list the assumptions, definitions and notations that are used in this thesis.

3.1 Road Map, Route Plan and Lane Marking

We consider drivers of miniature vehicles that plan their way using road maps, which the

prototype experimenter provides. The driver’s route plan sets the course of travel and assists with

the vehicle navigation, e.g., “on the next intersection, turn left!”

The roads include segments that have the index set S = { 1, 2, . . . n}. Each segment,

si ∈ {sk}k∈S , has at least one entrance or exit. We define in(si), out(si) ⊆ S as the sets that

include si’s entrances, and respectively, exits. We define road intersections as segments that have

more than one entrance. A road map is a directed graph G(S, E), in which S = {sk}k∈S is the set

of segments (vertices) and E = {〈su, sw〉 ∈ S × S : in(sw) = u ∧ out(su) = w} (edges), where

su is the segment from which the vehicles can enter segment sw. We note that the prototype exper-

imenter can show the route plan to the driver by presenting a directed path that leads from source

to destination on the graph G(S, E). In our pseudo-code, we use the array RouteP lanvi [] for

listing the segments that vehicle vi should traverse from source, RouteP lanvi [s], to destination,

RouteP lanvi [d], where s = 0 and d = sizeof(RouteP lanvi) − 1.

Given a road map, G(S, E), we require from the prototype experimenter to define how each

segment, si ∈ S, is situated on the test-bed. Lane markings are used to align vehicles on the road,

i.e., the driver should steer the vehicle between two parallel dashed lines that are marked on the

test-bed floor. We also consider virtual lane marking. Namely, the miniature vehicle could aim at

driving along a line in the Euclidean plane that is not marked on the test-bed floor.

We assume that each segment, si, has an index set, Lsi = {1, 2, . . . k} that represents lanes.

For each lane, ` ∈ Lsi , we define in(`), out(`) ⊆ S as `’s entry, and respectively, exit segments

in si, i.e., in(`) ∈ in(si) and out(`) ∈ out(si). For the case of in(si) = ∅ or out(si) = ∅, we

define in(`) = si, and respectively, out(`) = si. Let sf ∈ in(si) and st ∈ out(si). We define

FTsi(sf , st) = {` ∈ Lsi : in(`) = sf ∧ out(`) = st} as the index set of all lanes in segment si

that go from sf to st.

The vehicle may access information that is local to its current segment, CurrentSegmentvi ,

and its lanes, ` ∈ Lsi . Namely, in(si), out(si), in(`) and out(`). When the vehicle current lane is

CurrentLane, it can also query information about other vehicles in its proximity and nearby lanes.

6
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We define the set V as the set of system objects (vehicles, pedestrians, etc) and V (vi) ⊆ V as

the set of object that vehicle vi ∈ V queries about. This information includes vj ∈ V (vi) current

location, locationvj . Moreover, vehicle vi can know if object (vehicle) vj ∈ V (vi) is on its

current trajectory. We require that V (vi) includes all the objects that are on the line of sight with

vi, i.e., any object, vj , for which there is a straight line of bounded length to vi that does not cross

any object between them. Namely, we assume the existence of a primitive, OnTrajectoryvi(vj),

that indicates whether object (vehicle) vj is on vi’s trajectory. We note that the aforementioned

information can be retrieved with the aid of maps, positioning systems, (virtual) lane markings

and additional technologies, such as image recognition, e.g., [19, 20].

For a vehicle vi ∈ V , we define positionvi that represents vi’s current location, locationvi ,

and heading (the direction in which the vehicle chassis is directed towards).We consider virtual

lane as a sequence of vertices, p (path), that are placed along the lane. Each vertex is associated

with a geographical location and orientation, which is the desired location and heading that the

vehicle should aim when following p. For calculation of the orientation in vertices, suppose that,

all neighbor vertices are connected by vectors and orientation in a vertex is estimated by using the

average of directions of its vectors, [21]. In Figure 3.1, Orientation in vertex B is calculated by

using average of direction of the
−−→
AB and

−−→
BC vectors.

The vertices are defined in such a way that a curve, c(p), could connect all of p’s vertices

and follow their orientations. When a miniature vehicle, vi ∈ V , is changing its lane p1 to lane

p2 or returning to its lane (p1) from a point (point can be defined like a vertex) out of the lane,

we consider positionvi and LaneSuffix(locationvi , lane). LaneSuffix(location, lane) is

the lane’s suffix that starts at nearest point of the lane on c(p) to positionvi . In other words,

LaneSuffix(location, lane) is the sequence of points which are positioned ahead of the vehicle

based on its path.

In both cases, lane changing and lane correction, the vehicle needs to take a maneuver to

the target lane. We call the maneuver, corrective trajectory, which provides a trajectory from

positionvi to the target lane. The corrective trajectory should be smooth which means the cur-

vature of the trajectory should be smooth in order to have a feasible steering. Traversing the suc-

ceeding points of the positionvi guarantees that the vehicle won’t move to the preceding points of

the lane and fulfils the safety requirement to some degree for the vehicle’s maneuver. The safety

requirement refers to the fact that the vehicle should not move back to the lane because it will

cause a car crash with the vehicles on the lane. In corrective trajectory the vehicle can have a

backward movement although it aims to reach the succeeding point, so for having safety, a correc-
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tive trajectory which has no backward movement will be chosen. In other words, the difference

between vehicle’s heading and orientation in the goal point (the corrective trajectory positions the

vehicle at a point on c(p) which is called the target point) should not be more than 90 degrees

otherwise the vehicle will have a backward movement despite the goal point being ahead of the

vehicle. In Figure 3.2 (a), corrective trajectories 1, ..., 4 involve backward movement.

In some situations, like when the heading of the vehicle is significantly different from the

expected heading, the corrective trajectory has a backward movement in order to correct the ve-

hicle’s lane, see Figure 3.2 (b). In such scenarios, the corrective trajectory which positions the

vehicle at the nearest succeeding point, will be chosen.

By traversing a corrective trajectory, the vehicle meets the target lane at a point with a spe-

cific heading and cross track error. The best point on the target lane should be found in order to

move with a safe and smooth maneuver. Finding the best point on the target lane is based on the

proposed approach in [21, 22]. The ProposeManeuver(positionvi , LaneSuffix(locationvi ,

TargetLane)) searches over possible points among LaneSuffix(positionvi , TargetLane),

and minimizes a utility function which penalizes different constraints like cross track error, cur-

vature, heading error and departure time, and returns the optimal corrective trajectory to the lane.

Cross track error refers to the distance of vehicle to the path. The (lane) departure time refers

to the period during which the miniature vehicle is not following its lane, say, due to unexpected

lane departure or intentional lane change. Namely, when the miniature vehicle unexpectedly de-

partures a lane, we consider the time it would take the vehicle to return to its lane from its current

location. Moreover, lane change occurs by replacing the vehicle’s current lane, with the target

lane. Thus, the lane departure time in the latter case considers the total duration it takes to move

between lanes. In both cases, we refer to the trajectory that the miniature vehicle follows as a

corrective trajectory. The departure time for the optimal corrective trajectory should not exceed

the predefined threshold which specifies the maximum duration for traversing a corrective trajec-

tory. If the traversing time for the optimal corrective trajectory is more than the threshold, the

ProposeManeuver(position, LaneSuffix(locationvi , TargetLane)) returns ⊥.

Primitive move(maneuver) sends the steering parameters to the vehicle in order to have

maneuver for traversing the selected corrective trajectory.

3.2 Maneuver Control

We assume that the miniature vehicles are able to perform basic maneuvers, such as keeping

their lanes (KeepLane) and changing their lanes (ChangeLane), see [23]. The pseudo-code uses
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Figure 3.2: Different Corrective Trajectories (a) and Corrective Trajectories with backward move-
ment (b)

the primitive Maneuver(Command) for issuing maneuver commands. For example, the vehicle

will change its lane when using the command ChangeLane, and will instruct the maneuver control

to keep the current lane when using the KeepLane. The maneuver command Stop halts the

vehicle.

Our pseudo-code includes the timer events, timeout(Tag), where Tag is the timers’

name. Timer events are raised by calling the function SetT imer(Tag, Period), where Period

specifies the time period after which a timeout event where Tag is raised.



4. Design Outline

The test-bed includes two subsystems: a Simulator and a Miniature Vehicle Platform (see Fig-

ure 1.2). These subsystems both share several components. We first describe the two subsystems

before looking into the main component, Motion Manager.

4.1 Simulator

The Simulator subsystem allows the vehicular system designer to develop and test new

components (see Figure 1.2 (a)). It has two main components: The Base Station, and the Miniature

Vehicle on its many instances.

The Base Station includes the Experimenter Control that can send to the Motion Manager

the key platform command, Ready, Go and Terminate, for initializing, starting, and respectively,

terminating the experiments. The Base Station also includes the Experiment Manager, which

sends to the Motion Manager all the information that is required for moving the miniature ve-

hicles in the platform according to the experiment plan, i.e., Road Map, Route Plan and Virtual

Lane Marking. The Base Station monitors and controls the experiment execution by periodically

receiving the vehicle’s positing information.

The Miniature Vehicle controls the vehicle motion after receiving data from the onboard

sensors and commands from the Base Station. The Motion Manager is the unit that controls

the vehicle by issuing the commands Move and Halt for steering, and respectively, stopping the

vehicle. These two commands are generated by the Maneuver() primitive and allow each vehicle

to take a sequence of maneuvers from source to destination along the traveling route.

4.2 Miniature Vehicle Platform

This subsystem allows prototype demonstration and testing of vehicular systems together

with its components. During such experiments, the system logs its states for later diagnostics and

playback in the simulator (see Figure 1.2). The logging information can be either stored by the

vehicle processing units or transmitted on the fly. Future extension of our design can also consider

onboard fault injections.

In addition, one can validate the designer assumptions regarding the behavior of the human

driver. Our implementation considers hand-held wireless devices (see Figure 1.2 (b) and Sec-

tion 5). Future extensions can use driver cockpits with multi-angle video streaming in addition to

10
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Algorithm 1: Traffic light mechanism for road intersections

Input Intersection: ID of segment in which the traffic light resides;
Local LightState: Set of tuples, 〈Segment, Status〉, where

Segment ∈ in(Intersection) is an incoming road segment and
Status ∈ {Green,Orange,Red} is a traffic signal for Segment;

Local ActiveIncoming: Active incoming road segment that is about to receive the
GREEN signal, or it just did. We assume that the system initialize to one of the
incoming road segments, in(Intersection);

Local NextIncoming: Next active incoming road segment;
Constant GreenPeriod, GreenTag and OrangePeriod, OrangeTag: Two pairs of

timer periods and tags. These timers are used for assuring that the incoming
vehicles have sufficiently long periods for crossing the intersection, and
respectively, preparing for the traffic light change. We assume that the
system periodically assures that at any time either the timer GreenTag or
OrangeTag is set (but never both of them);

Upon timeout(TimerTag)
begin

case TimerTag = GreenTag ; /* Start the green light period
by setting green to the active incoming segment and red
to all other segments */

LightState←{〈ActiveIncoming,Green〉}∪{〈Segment,Red〉:Segment ∈
in(Intersection)\{ActiveIncoming}} ;
SetT imer(OrangeTag,OrangePeriod); /* Set the timer to the
next light period, orange */

case TimerTag = OrangeTag ; /* Start the orange light period
by setting orange to the active and the next incoming
segments and red to all other segments */

NextIncoming ← next(in(Intersection), ActiveIncoming); /* Find
the next incoming segment */
LightState← {〈ActiveIncoming,Orange〉, 〈NextIncoming,Orange〉} ∪
{〈Segment,Red〉 : Segment ∈
in(Intersection) \ {ActiveIncoming,NextIncoming}};
ActiveIncoming ← NextIncoming; /* Set the active incoming
segment */
SetT imer(GreenTag,GreenPeriod); /* Set the timer to the
next light period, green */

Function TrafficLight(Segment)
begin

if Intersection = Segment∧ | in(Intersection) |> 1 then
return LightState ; /* When querying Intersection’s traffic
light, return its state */

return ∅ ; /* Otherwise, indicate that there is no traffic
light for this segment */
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what looks like, sounds like and feels like emulation of the vehicles and their environment.

4.3 Motion Manager

This key component is mounted on the miniature vehicle and is in charge of receiving sen-

sory information, which includes the vehicle location, and deciding which maneuver the vehicle

should take. The maneuvers are controlled by the Maneuver(Command) primitive (see Sec-

tion 3). It is up to the Maneuver Strategy to decide on which Command each miniature vehicle

should take. The Maneuver Strategy must make sure that the miniature vehicle does not crash

when traveling to its destination. In order to do that, we use two mechanisms for crash avoidance

and traffic light signaling. Next, we present these mechanisms before presenting the Maneuver

Strategy itself.

4.3.1 Crash Avoidance Mechanism for Miniature Vehicles

Gulliver considers miniature vehicles that are remotely controlled either by computers or

human drivers. Human drivers may ignore the system warning or behave in an unexpected manner.

Therefore, there is a need for keeping the equipment safe by using a crash avoidance mechanism.

In current vehicular technology, crash avoidance mechanisms assist actively the driver to

avoid accidents by detecting obstacles, pedestrians and other vehicles by using (infrared) vision

technology and sensors that are based on laser and radar. Upon detection of the mechanism who

may warn the driver, assist the driver in steering and even breaking. In addition, such mechanisms

can include adaptive cruise control, lane departure warning systems, to name a few. We do not

assume that all of the aforementioned sensory information and mechanisms are accessible onboard

the miniature vehicle.

Therefore, we present a (default) crash avoidance mechanism that is based merely on the

vehicle location and the OnTrajectoryvi(vj) primitive, see Section 3. We consider the aforemen-

tioned sensory information and mechanisms as the basis for possible extensions. The default

crash avoidance mechanism for vehicle vi does not allow the vehicle to get too close to object that

resides on its trajectory, see Algorithm 3.

4.3.2 Traffic Light Mechanism for Miniature Vehicles

Traffic lights assure that at any time, no two vehicles from conflicting directions may enter

the intersection [see 24]. In the proposed platform, traffic lights are important for assuring that

the miniature vehicles do not crash when entering intersections, i.e., a road segment with more

than one entry. One can implement the needed traffic light by placing a mote near the intersection
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and letting it communicate with arriving vehicles via periodic beacons that encode the traffic light

state. This state, of course, needs to be displayed by the human driver units. Another way to go

is to let the arriving vehicles communicate among themselves and emulate a virtual traffic light,

see [15, 16]. We consider both choices of design, but refer to former alternative as the default.

We note that the latter design alternative can be implemented by emulating the default traffic light

over virtual stationary automaton [17], as in [16].

The proposed base station traffic light is depicted by Algorithm 1. We assume that the base

station periodically broadcasts LightState, the beacon, to all arriving vehicles. A timer mechanism

is used trigger the light changes. The timer considers two periods: green and orange. In the green

period the traffic light lets the active incoming segment to receive the green light, while all other

road segments get the red signal. The orange period allows the traffic light to safely change the

active incoming segment. We iterate over the set of the incoming segments and find the next

segment to be active. The traffic light signals orange to both the active segment and the next

segment, while all other road segments get the red signal. Both periods end by setting a timer for

the next one.

We assume that the vehicles, vi, cash the beacons received from the base station. Vehicle vi

can query the traffic light state by executing the function TrafficLight(CurrentSegmentvi).

4.3.3 Maneuver Strategy

The strategy allows the miniature vehicle to safely traverse the test-bed floor along the

Route Plan. We present the maneuver strategy in Algorithm 2. The algorithm consists of a single

action, which we assume to be fired periodically.

Before and after taking this update action, the algorithm tests that vehicle vi satisfies safety

conditions, such as crashing avoidance requirements, the traffic light state and the instructions of

the prototype experimenter.

The action starts by testing that the vehicle has not reached it destination and that it follows

its route plan correctly. Then, the algorithm deterministically selects a lane that leads vehicle vi

to its destination. Different cases of lane selections are considered: (1) No lane in the current

segment can lead the vehicle to the next correct segment, (2) The current lane is the correct one,

and (3) Vehicle vi is required to perform a lane change maneuver in order to reach its destination.

The latter case requires the algorithm to test safety conditions that concerns the distance between

vi and any other object, vj , on its current lane or the lane to which it is moving into.
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Algorithm 2: Maneuver Strategy for Vehicle vi

Input V (vi): Set of vehicles that are on vi’s line of sight;
Input RoutePlan[]: Array of segments that defines vi’s route plan;
Input CurrentSegment: ID of vi’s current segment;
Input CurrentLane: ID of vi’s current lane;
Input locationvi : Current geographical location of vehicle vi;
Side effects Maneuver(Command): Maneuver control primitive. The commands

KeepLane, Stop, and ChangeLane are used for keeping the current
lane, stopping, changing to lane;

External TrafficLight(): Red, Orange and Green are the three Traffic Light signals;
External CrashAvoidance(): Red and Green are the two Crash Avoidance signals;
External ExperimenterControl(): Ready, Go and Terminate are the three External

Control commands;
Local Cursor: Iterator for vi’s RouteP lan. Initialized to the first element, 0;
Local TargetLane: When vi is changing lane, this is the ID of the lane which vi will

use;
Local distance(locA, locB): Euclidean distance between locations locA and locB;
Constant SafeDistance: Minimum required distance between any two vehicles that are

moving in different lanes;
Alias PreviousSegment = in(CurrentLane), NextSegment = RoutePlan[Cursor+1]: IDs

of previous, and respectively, next segments that for vi to traverse;

Action : Maneuver Strategy;

Precondition : ((ExperimenterControl() = Go) ∧ (CrashAvoidance() =
Green)) ∧ ((in(CurrentSegment) =
∅) ∨ (〈PreviousSegment,Green〉 ∈
TrafficLight(CurrentSegment)));

Postcondition : CrashAvoidance() = Green;

begin
Candidates← argmin|CurrentLane−`|({` ∈
FTCurrentSegment(PreviousSegment,NextSegment)} ∪ {∞});
case Candidates = {∞}: ManeuverControl(Stop, CurrentLane);
case Candidates = {CurrentLane}:
ManeuverControl(KeepLane,CurrentLane);
otherwise if ∃CandidateLane ∈ Candidates ∧
LaneChangeCrashAvoidance(CurrentLane,CandidateLane) = Green
then ManeuverControl(ChangeLane,CandidateLane);

Function LaneChangeCrashAvoidance(CurrentLane, TargetLane)
begin

if {vj ∈ V (vi):CurrentLanevj ∈ {CurrentLanevi , TargetLane} ∧
distance(locationvj , locationvi)<SafeDistance}=∅ then return Green;
/* Change lane only when no vehicle resides on vi’s
trajectory */
return Red ; /* current or target lanes, resides behind the
safety distance */
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Algorithm 3: Crash avoidance mechanism for vehicle vi

Input V (vi): Set of vehicles that are on vi’s line of sight;
Input locationvj : Current geographical location of vehicle vj ∈ V (vi) in the

Euclidean plain;
Output Red and Green are the two signals, which respectively stand for “no go”, and

“ok to go”;
Local distance(locA, locB): Returns Euclidean distance between locations locA and

locB;
Constant SafeDistance: Minimum required distance between any two vehicles that are

moving in the same lane;
if ∃vj ∈ V (vi) : OnTrajectoryvi(vj) ∧ distance(locationvi , locationvj ) ≤
SafeDistance then return Red
return Green ; /* Go only when no vehicle on vi’s trajectory
resides behind the safety distance */



5. Implementation Challenges

Recent advances in the field of mobile robots allow the ad hoc construction of affordable test-beds

at your own parking lot. In fact, converting RF miniature vehicles to be a WiFiBot [25] controlled

is a popular student project. In this section, we report on our preliminary implementation efforts

that uses the Vaillante WiFi [26] as the bases for the miniature vehicle unit.

Vaillante is an off the shelf product. Each remotely controlled miniature vehicle (1/16

scale) can go up to 30 Km/h, and can be equipped with several onboard sensors, such as a camera,

MicaZ 2.4 GHz motes and localization sensors, e.g., [27]. Each miniature vehicle is remotely

controlled by either a human driver or machine (computer program). The human driver controls

the vehicle via the drivers interface. Vaillante has its own iPad app interface to which one can

consider a video streaming extension by mounting a WiFi camera.

One challenge that the prototype experimenter faces is how to draw the lane markings that

the miniature vehicles can drive along. For example, the steering of the Vaillante vehicles does

not allow driving along very sharp curves even at their slowest speed. Therefore, we require that

every lane marking could be the result of connecting road building blocks.

We considered a set of standard road building blocks. We explain how for the proposed set

of building blocks the Vaillante vehicle can follow the lane marking with the aid of mechanisms

for lane detection and tracking [19, 20, 23].

In addition, we explore key technological challenges.

5.1 Standard Road Building Blocks

The miniature vehicles follow road markings in order to keep their lanes. All vehicle ma-

neuvers, such as intersection crossing and lane changing, should follow the shortest possible path

between the vehicle current and target positions, while keeping safety distance from all other ve-

hicles. Given the fact that we wish to use inexpensive miniature vehicles that move quickly in the

test-bed, we have to endure a degree of unpredictability in the vehicle motion. Namely, different

miniature vehicles respond differently to the driver’s commands and the same miniature vehicle

may behave differently under very similar conditions.

Road marking that follows a straight line is rather simple to follow. Therefore, our im-

plementation study mainly considered curves of different angles. Here, the vehicle needs to take

several steps before it meets the required angle. Next, we present our single-step experiments

16
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Figure 5.1: Measured behavior of the Vaillante miniature vehicles. The rotation angle as a function
of the vehicle steering value is depicted on the top figure. The latitudinal and the
longitudinal distances are depicted by the middle, and respectively, the bottom figures.

before discussing the case of step sequences.

We have experimented with the Vaillante miniature vehicles and measured the behavior of

three units. All experiments considered a single speed value, 7, and a variety of steering values.

For a given steering value, x ∈ [−15, 15], Figure 5.1 and equation (5.1) estimates the values of

the rotation angle, and the distances (latitude and longitude), see Figure 5.2. We have observed
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that a single vehicle step is of 197 cm on average and has a divination of 15 cm (when moving on a

straight line, the battery is fully-charged, and the steering value is between +2 and +7, depending

on the Vaillante unit).
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Figure 5.2: Measured vehicle steps. The miniature vehicle is moving on a curve and covers the
traversed distance from point p1 to point p2. Note that the traversed distance is longer
than the shortest distance between p1 and p2, which is the areal distance. The latitu-
dinal and the longitudinal distances consider a coordinate system in which point p1 is
the origin and the latitude line are perpendicular to the pre-motion vehicle direction,
i.e., the vehicle chassis. The vehicle rotation angle refers to the post-motion angle of
the vehicle and the longitudinal line.

RotationAngle(x) = 0.0003x4 + 0.003x3 − 0.053x2 + 4.956x− 12.991 (5.1)

Longitude(x) = 0.107x3 − 4.14x2 + 42.343x+ 86.449

Latitude(x) = 0.005x5 − 0.151x4 + 2x3 − 12.584x2 + 10.773x+ 148.85

Equation (5.1) facilitates the estimation of the vehicle’s post-motion position. Therefore,

we can estimate the vehicle position after taking a number of steps. Such step sequences facilitate

the set of maneuvers, which maneuver controller carries out (cf. Maneuver() in Section 3).

Namely, each step takes into consideration the post-motion position of its predecessor.

We use such step sequences when proposing our set of building blocks. This set offers a

large variety of rotation angles as presented by Figure 5.3. The figure also suggests boundaries for

the rotation angle, as well as the number of steps and size of areas that are required for completing

the maneuver. However, as the number of steps grows, so does the deviation from the expected

vehicle location. Thus, the Maneuver() primitive must use localization [27] and lane tracking
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Figure 5.3: Number of steps (a) and size of areas (b) that are needed for the completion of simple
turning maneuvers

technologies [19, 23] for aligning the vehicle position and adjusting its maneuvers according to the

route plan. The idea of the set of building blocks could facilitate drawing both virtual and physical

lane markings. A sequence of building blocks makes a feasible lane marking for performing

maneuvers by the vehicle. Moreover, the set of building blocks could be used for finding the best

maneuver in lane correction and lane changing situations by miniature vehicles.

In order to examine feasibility of the building block set, we implemented two different vir-

tual lane markings, circle lane and eight shape lane. The circle lane facilitates a feasible lane

marking simulation and test-bed floor. The eight shape lane provides the simplest form of inter-

section which the miniature vehicle moves within a loop. Our experiments shows that this model

is feasible both in simulation and test-bed floor.

5.2 Estimation of the Miniature Vehicle’s Heading

One of the challenges in using vehicles is estimation of the vehicle’s heading without using

the assistant technologies. We assumed that an accurate localization exists and we know the

positionvi (location and heading of the vehicle vi) before taking the step and vi’s location after

taking the step.

Miniature vehicle traverses a curve in each step. This curve can be represented as part of

circumference of a circle. Heading of the vehicle at the end of the step is estimated by using slope

of the tangent line to the curve in that point. Having two points, start and end point of the step, is

not enough to interpolate the circle uniquely. Infinitive number of circles can pass through these

two points and heading of the vehicle at the end of the step is varied for each curve. But, if we

have the coordination of another point on the curve then we can have a unique curve which passes



20

l´

l

P1

P2

P´ 

Figure 5.4: Vehicle vi traverses a step from P1 to P2, we can estimate its heading in point P2

through these three points. Third point can be an intermediate point between start and end point,

P1 and P2, which we call it P ′ = (x′, y′). P ′’s location can be received from Base Station during

traversing from P1 to P2. Lets assume line l is perpendicular bisector of the line which is passed

through P1 and P ′, with slope m. Respectively l′ is perpendicular bisector of the line which is

passed through P2 and P ′, with slope m′ (see Figure 5.4). Intersection of l and l′ is the center

of circle (xc, yc) which passes through P1, P2 and P ′ points. After finding coordination of the

circle’s center, it can be used in equation of the circle. Then, heading of the vehicle in point P2 is

calculated by using slope of the tangent line in P2. The calculation for finding coordination of the

center is as following:

l : y = m(x− x1 + x′

2
) +

y1 + y′

2
(5.2)

l′ : y = m′(x− x2 + x′

2
) +

y2 + y′

2

By intersecting lines l and l′, we have:

xc =
m(x1 + x′)−m′(x2 + x′) + y2 − y1

2(m−m′)
(5.3)

yc = m(
m(x1 + x′)−m′(x2 + x′) + y2 − y1

2(m−m′)
) +

y1 + y′

2
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Radius of the circle can be calculated as distance between center of circle and one the points, P1,

P2 or P ′ which is called r. The heading of the vehicle can be calculated by using derivation of

circle’s equation in point P2:

(x− xc)
2 + (y − yc)

2 = r2 (5.4)

Slope of tangent in P2 =
xc − x2
y2 − yc

Heading of the vehicle in P2 = arctan(
xc − x2
y2 − yc

)

5.3 Safely Following of Virtual Lane Marking with Lane Change Maneuvers

The miniature vehicles follow road markings in order to keep their lanes. All vehicle ma-

neuvers, such as intersection crossing and lane changing, should follow a short path that safely

leads from the vehicle’s current position to its target. Namely, a safe distance from all other ve-

hicles must be kept, the lane orientation should be kept and, while changing lanes, the departure

time should be short. Given the fact that we wish to use inexpensive miniature vehicles that move

quickly in the test-bed, we have to endure a degree of unpredictability in the vehicle motion.

Namely, different miniature vehicles respond differently to the driver’s commands and the same

miniature vehicle may behave differently under very similar conditions. Therefore, we design an

algorithmic mechanism for following the virtual lane marking and changing lanes. The mech-

anism merely considers the current position of the miniature vehicle and the virtual lane that it

wishes to follow (and does not consider the travel history of the miniature vehicle). Our design

criteria satisfy the safety requirements of lane change maneuvers and provide resilience to some

degree of unpredictability in the vehicle motion.

We wish to allow the miniature vehicles to perform basic maneuvers, ManeuverControl-

(ManeuverCommand, Lane), such as keeping their lanes (KeepLane), changing their lanes

(ChangeLane), or halt (Stop) as in [23] where full-scale vehicles are considered. The proposed

mechanism for lane maintenance with lane changing consider a set of maneuvers that satisfy the

safety criteria, see Algorithm 4. It calls ProposeManeuver which selects the optimal maneuver

in order to positions the vehicle in Lane. ProposeManeuver generates different trajectories that

can meet position and curvature constraints. The ProposeManeuver chooses optimum trajectory

among aforementioned trajectories by minimizing an utility function that penalizes cross track

error, curvature, heading error and departure time [22]. see Figure 3.2 in Section 3.
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Algorithm 4: Maneuver Control algorithm, code for miniature vehicle vi ∈ V

Input positionvi : Current geographic location of the vi, locationvi and its heading;
Input Lane: The lane which the vehicle aims to move to;
Input LaneSuffix(locationvi , Lane): Returns set of all vertices on the Lane, which

are positioned ahead of the vehicle vi;
Local ProposeManeuver(positionvi , LaneSuffix(locationvi , Lane)): Returns the

optimal maneuver from positionvi to the Lane with respect to the heading error,
lane cross error and departure time;

Local move(Maneuver): Sends steering parameters based on the Maneuver;
Function ManeuverControl(ManeuverCommand, Lane)
begin

switch ManeuverCommand do
case ManeuverCommand ∈ {ChangeLane} ∪ {KeepLane} :

AvailableManeuver =
ProposeManeuver(positionvi , LaneSuffix(locationvi , Lane));
if AvailableManeuver 6= ⊥ then move(AvailableManeuver);
else halt; /* There is no maneuver in order to reach
the Lane */

case ManeuverCommand = Stop : halt; /* There is no lane in
order to continue the path */
otherwise halt; /* error: The input is not valid */

5.4 Technological Challenges

It is imperative to assure that the miniature vehicles do not crash due to the possible failure

of system components, such as (clock) synchronization, communication and localization. Unlike

the synchronization, communication and localization requirements in the case of fully deployed

vehicular systems, some of the needed autonomic characteristics can be simplified in the case of

Gulliver. Therefore, we explain the implementation of these primitives using the coordinating

base-station (and consider that as the default implementation) before considering the possible

extensions that has autonomous characteristics.

5.4.1 Clock Synchronization

Clock synchronization can simplify the design of the communication primitives and appli-

cations for vehicular systems. We base our implementation on the self-stabilizing and autonomous

design of Herman and Zhang [28]. Their design is based on the converge-to-the-max technique

in which all mobile motes adjust their internal clocks to the maximal time value that they have

recently seen.
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5.4.2 Communications

Vehicle to vehicle (V2V) communications are carried out via message passing (radio trans-

missions). Using these messages, the vehicles coordinate their “world” perception and decide

about their joint actions. Existing ad hoc communication mechanisms, such as CSMA/CA, can im-

plement V2V communication and facilitate clock synchronization mechanisms [29, 30]. Greater

efficiency can be achieved when using a coordinating base station [31]. Recent developments con-

sider media access control with higher predictability [32, 33]. This is another way to go toward an

autonomous implementation.

5.4.3 Miniature Vehicle Localization

Positioning systems, such as Global Positioning System (GPS), have a wide range of ap-

plications in vehicular systems. Gulliver uses for positioning information in order to inform the

vehicles about the locations of the platform entities: vehicles, road segments, intersections, etc.

We consider a design of the default implementation in which each vehicle sends beacons

to peripheral receivers (anchors) that have known locations. The anchors then report about the

received beacons to a coordinating base station in which a localization algorithm [such as 34] is

used for extracting location information before sending this information to the moving miniature

vehicles. The above centralistic design allows us to use powerful processing at the coordinating

base-station.



6. Virtual Traffic Light

The vehicles moving on roads get signals from traffic light located in each intersection which can

be permission to pass or signal to stop. We have designed a Virtual Traffic Light (VTL) algorithm

which serves the traffic light signaling to the vehicles.

In [17] authors proposed a Timed Virtual Stationary Automata programming layer, which

provides communication between real clients and virtual nodes layer called Virtual Stationary Au-

tomata (VSA). The VSAs are positioned in fixed regions. In our proposed algorithm for Virtual

Traffic Light, we use this programming abstract. Each intersection segment has a predefined ge-

ographic location and different directions (each direction is defined based on the existing lanes

in the intersection area). The vehicles communicate with VSAs, each VSA is associated to a di-

rection. The first vehicle entering a VSA region creates a VSA, all vehicles that come in to the

region will join to the existing VSA. When a vehicle enter to the segment, sends a join message,

if it does not receive a reply, it assumes itself alone in the region, becomes the leader and creates

a new VSA. But, if a leader exists in the region, it replies to the vehicle by last state of the VSA.

The programming abstract supports the dynamic environment like a VANET environment

which vehicles join and leave the regions continuously. When a vehicle leaves the region, it sends

a LEAVE message, and the VSA pops the vehicle’s ID from its queue. If the leader leaves the

the region, other clients should select a new leader. The clients discover the absence of the leader

when they do not receive the periodic messages from the leader. After that, the clients should elect

a new VSA leader; one approach can be selecting the client with lowest ID (see [17]).

In our design, the VSA runs VTL which provides the timing for signaling. Vehicles send

message to their corresponding VSA, and VSA replies with the last state containing the traffic

light state for that direction. See algorithms 5, 6, 7 for proposed design of the Virtual Traffic Light.

First version of traffic light in Gulliver is implemented in form of base station traffic light.

The traffic light consists of a scheduler which determine the signal (Green, Red and Orange)

for each direction. In intersection design we have considered that there are 16 different directions.

The set of directions which can get Green is called unconflicting set. Base station traffic light

broadcasts a vector of all direction states, Red, Green and Orange. Traffic Light Client

receives the broadcasted message periodically, and make a decision to Stop or Go. In fact, the

Traffic Client should retrieve the corresponding field in the vector to its direction. This method

is completely centralized and there is no failure resistance, e.g. crashing the base station. So,

we implemented next version of the traffic light which uses leader election and one node (leader)

24
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Algorithm 5: Function responsible for communicating the vehicles and their corre-
sponding VSA

Input vi: Vehicle ID;
Input positionvi : Geographical location and heading of the vehicle vi;
Input Direction: Represent the ID of direction which the vehicle vi aims to enter, sent

by Experiment Manager;
Output Red, Orange, Green are the three signal, which respectively stand for

”emergency stop”, ”no go”, and ”ok to go”;
Internal event Entering(), Leaving(): Events which are triggered based on position of

vehicle toward the intersection, entering or leaving respectively;
External CompareIntersection(positionvi): A function which checks whether the

vehicle is inside one of the intersection areas or not with respect to the
current position positionvi , if the vehicle is inside the area, function returns
True, otherwise it returns False;

External CompareLocation(positionvi): A function which compares location of the
vehicle vi with geographic info about critical section and returns status of
vehicle toward critical section, LEAVE or ENTER;

External event VSA Update(): A VSA event which returns the VSA state;
Local VSA Send(message): A function responsible for sending messages to VSA

layer;
Local State: The state of the direction which is provided by V SA Update;
Constant Join, Status, Leave: Message tags which represent type of messages sent to

VSA;
Task Background() begin

while (CompareIntersection(positionvi)) do
if (CompareLocation(positionvi) = ENTER) then

raise event Entering();

else if (CompareLocation(positionvi) = LEAV E) then
raise event Leaving();

Upon Entering() begin
V SA Send(〈Join, Direction〉);
V SA Send(〈Status, Direction,ENTER〉); /* After sending Status
massage, VSA Update() will be triggered and will return
the VSA state */

Upon Leaving() begin
V SA Send(〈Status, Direction, LEAV E〉);
V SA Send(〈Leave〉);

Upon V SA Update() begin
if State = Red then

V SA Send(〈Status, Direction, CompareLocation(positionvi)〉);
else

return State;
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Algorithm 6: Function for receiving message by VSA; it’s responsible to serve the
vehicles which aim to enter the direction

Input vi: Vehicle ID;
Input Direction: Represent the ID of direction which the vehicle vi aims to enter, sent

by Experiment Manager;
Local State: The state of the direction which is provided by V SA Update;
Constant messageType: Type of the received message, ClientMessage,

V TLMessage, V SAMessage which refer to messages from Client
(vehicle), V TL and respectively V SA;

Upon V SA Receive(message) begin
if messageType = ClientMessage then
〈vi, Direction, Status〉 ← message;
if Direction = V SA ID then

Send V TL(message);

else if messageType = V TLMessage then
〈vi, Direction, State〉 ← message;
return State;

propagates traffic light information. The node with minimum ID becomes the leader. In the startup

all nodes consider themselves as leader but they don’t broadcast traffic light information. They

wait and listen to the other neighbors for a specific time to make sure they have received messages

from all other nodes. Since we have assumed that there is no message lost, so all nodes mark

the node with minimum ID as a leader. The leader starts to propagate the traffic light state for all

directions. If a node with the ID less than the leader’s ID join the segment, then all other neighbors

consider it as the new leader because they check validity of the leader periodically. This method

is more distributed but, in case of leader failure it does not work properly. Assume the leader

crashes or leaves the region, the other nodes will not realize it and wait for leader updates. Hence,

we implemented third version of virtual traffic light which solves the mentioned problem. In this

approach, all nodes send alive messages with their ID and local clock periodically. Moreover, we

have used the converge to the max algorithm for synchronizing the nodes in the region.

TinyOS provides timer interface to have the native clock of the MicaZ node. We have

defined a local clock which initialize by native clock value. The local clock updates by received

local clocks from the neighbors. The nodes send their local clock to all neighbors along with

their ID; the neighbor compares the received clock with its native clock, if the received clock is

larger than the node’s clock then the node’s local clock jumps to the received clock value. In

other words, the node increases the local clock by difference between its native clock and received

clock. Based on this approach, nodes converge to the fastest clock and the approach is called
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Algorithm 7: The traffic light VSA function, sets the traffic light state for all directions

Input vi: Vehicle ID;
Input Direction: The ID of direction that vehicle aims to enter;
Input Status: Sent in Status message by VSA, represents the vehicle status whether it

wants to ENTER or LEAVE the critical section;
Input message: The received message;
Output IntersectionState[]: An array that contains state of all directions in the

intersection area;
Local DirectionSet[]: Contains information about all legal directions in the intersection

area and provided by the Scenario Manager;
Local CarWaiting[]: An array of queues; queue of vehicles which wait for entering to

directions, the array index is direction ID;
Local clock: Is a timer;
Internal event V TL Receive(message): An event which is raised in receiving

messages. The event is triggered by the VSA which makes sure all
messages are delivered in same order in all vehicles;

Constant messageType: Type of the received message, ClientMessage,
V TLMessage, V SAMessage which refer to messages from Client
(vehicle), V TL and respectively V SA;

Constant TimePeriod: The maximum time which traffic light is Green or Orange;
Upon V TL Receive(message) begin

if messageType = V SAMessage then
〈vi, Direction, Status〉 ← message;
if (Status = ENTER) then

CarWaiting[Direction].push(vi);
if (IntersectionState[Direction] = Green) then

if (clock > TimePeriod) then
if (∃direction ∈ DirectionSet ∧ direction 6=
Direction ∧ CarWaiting[direction] 6= empty) then

IntersectionState[Direction]← Orange;

StartClock();

V SA Send(〈vi, Direction, IntersectionState[Direction]〉);
else if (IntersectionState[Direction] = Orange) then

if (clock > TimePeriod) then
IntersectionState[Direction]← Red;

V SA Send(〈vi, Direction, IntersectionState[Direction]〉);
else if (IntersectionState[Direction] = Red) then

if (∀direction ∈ DirectionSet ∧ IntersectionState[direction] =
Red) then

IntersectionState[Direction]← Green;
StartClock();

V SA Send(〈vi, Direction, IntersectionState[Direction]〉);

else if (Status = LEAV E) then
CarWaiting[Direction].pop(vi);
if (CarWaiting[Direction] = empty) then

IntersectionState[Direction]← Orange;
StartClock();
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converge to the max. The nodes keep a list of all alive neighbors and check the list to update

the state of the neighbors periodically (neighbors state can be alive or failed). They calculate

difference between current value of native clock and the value of native clock in receiving the

last alive message from the neighbor, if this value is greater than a predefined threshold, then the

neighbor will be marked as failed. By using this method, if the leader fails then the other nodes

will realize it after a period and re-elect a new leader. By applying this method, virtual traffic light

will be more resilient to the failures.



7. Conclusions

The use of automotive technology can increase traffic throughput by improving vehicle density

in roads. Safety requirements can be met by monitoring driver’s behaviors without necessarily

building new road infrastructures. Thus far, many of the future vehicular systems are not allowed

to operate on public roads due to the collision risks. Moreover, the lack of knowledge about the

possible emerging patterns in large scale deployment requires additional testing. Gulliver provides

an open platform for demonstrating cyber-physical aspects of vehicular systems, making sure that

their safety requirements are met and that their emerging patterns assure high traffic throughput.

We presented a design that allows the conduction of a variety of experiments in areas such

as vehicle safety (e.g., crash prevention), energy (e.g., multi-lane vehicle platoon), to name a few.

This inexpensive test-bed facilitates deployment of testing procedures. For example, protections

against vehicle crashing of a miniature vehicle (500 g, 50 cm and 200 to 2k Euro) are simpler than

a full-scale vehicle (1 ton, 5 m and 100k Euro).

Gulliver lies between computer simulation and full-scale vehicle models, and as such, it

simplifies and reduces the costs of vehicular system prototyping and development. Note that the

cost of each miniature vehicular unit is at least one or two order of magnitude less than a full-scale

vehicular prototyping unit. By simplifying prototype development and demonstration processes,

Gulliver opens up new research opportunities and promotes cross-fertilization between academic

and industrial research.

Nowadays, there are 750 million motor vehicles in the world and the numbers are doubling

every 30 years. Vehicular systems will enable vehicular interaction, cooperation and will be the

first cyber-physical systems to reach the scale of million units. Currently, no safety-critical system

comes close to this scale. Gulliver design is the first to facilitate the detailed investigation of

the vehicle interaction and emerging patterns among hundreds and even thousands of units of a

cyber-physical system.
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