

MASTER'S THESIS 2019:NN

Self-stabilizing Media Access in Sensor

Networks

ZAHID IQBAL

Department of Computer Science and Engineering

Division of Computing Science

Distributed Computing and Systems Research Group

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2019

 II

Self-stabilizing Media Access in Sensor Networks

© ZAHID IQBAL, 2019

Master's Thesis 2019:NN

Department of Computer Science and Engineering

Division of Computing Science

Distributed Computing and Systems Research Group

Chalmers University of Technology

SE-41296 Göteborg

Sweden

Tel. +46-(0)31 772 1000

Department of Computer Science and Engineering

Göteborg, Sweden 2019

 III

Abstract

We consider the problem of accessing a single shared media in wireless sensor

networks. We assume a fixed communication graph and a globally synchronized

common pulse but no clock synchronization. We implement a silent self-stabilizing

algorithm that allocates time slots in which the nodes broadcast. We empirically

demonstrate that within a constant number of communication rounds, a large number

of nodes communicate successfully, without collisions. Moreover, the ratio between

successful and unsuccessful broadcasts rapidly approaches to 1. The experiments were

carried out using the TOSSIM simulator.

Key words: self-stabilization, random geometric graphs, extended degree,

communication graph, interference graph

 IV

 V

Acknowledgements

This work would not have been completed without help and support of many

individuals. I would like to thank everyone who has helped me along the way.

Particularly: Dr. Elad Michael Schiller for providing me an opportunity to conduct my

master’s research with him and for his guidance and support over the course of my

thesis, Andreas Larsson for helping me with various technical details in the initial

phases of the project, Dr. Philippas Tsigas for serving on my thesis committee, my

present and past roommates for all the memorable times and lastly, my family without

whose support none of this would have been possible.

 VI

 VII

Contents

1 Introduction .. 1

1.1 Networked Wireless Sensor Devices ... 2

1.2 Key Design Challenges .. 3

1.3 Report Organization ... 5

2 The Problems .. 6

3 Background ... 8

3.1 Existing Solutions ... 8

3.1.1 CSMA and CSMA/CA .. 8

3.1.2 CSMA/CD .. 9

3.1.3 Receiver-side Collision Detection ... 10

3.1.4 TDMA ... 10

4 Related Work .. 11

5 Thesis ... 14

5.1 Deterministic Sequential Algorithm .. 15

5.2 Randomized Sequential Algorithm ... 16

5.3 Our Algorithm: Randomized Distributed Algorithm 16

6 Implementation Issues .. 19

6.1 Why can't we just implement the algorithm as it is........................... 19

6.2 Local testing of message arrival is hard .. 20

6.2.1 Broadcast Scenario .. 20

6.2.2 Collision and Reception Scenarios ... 21

6.3 Revised Algorithm.. 23

7 Tools and Modifications ... 26

7.1 Tools.. 26

 VIII

7.2 Modifications ... 27

8 Preliminary Numerical Evaluation ... 29

8.1 The Communication and Collision Graphs .. 29

8.2 Different Sets of Graphs and Number of Repetitions 30

8.2.1 Messages and Data grams ... 30

8.2.2 Transport Layer Messages ... 31

8.2.3 Datagram Messages .. 32

8.2.4 Lost Messages .. 33

8.2.5 Stabilization Time ... 34

8.2.6 Stabilizing Behaviour ... 35

9 Discussion ... 39

9.1 Future Work .. 40

9.2 Conclusions ... 40

Appendix A ... 42

Bibliography .. 44

 IX

 1

1 Introduction

The task in this graduate work has been to develop a media access protocol for

wireless sensor networks. In wireless sensor networks, there is a single shared

medium. The goal is to have sensor nodes broadcast on such medium without

collisions in a fixed number of communication rounds. This thesis is motivated by

the fact that energy is the scarcest source in wireless sensor nodes, and best way to

efficiently utilize this energy is to have efficient media access protocols that are self-

stabilizing and guarantee collision free broadcasts. The implementation of the

protocol is carried out in nesC which is a language intended for embedded systems.

The implementation is tested using TOSSIM (TinyOS Simulator).

The following description in this section would provide an overview of the wireless

sensor networks, their importance, key components making up a wireless sensor

device, and design and implementation challenges while developing a wireless

sensor network application.

A wireless sensor network is an infrastructure comprised of large numbers of

spatially distributed, low-power, inexpensive and autonomous sensor devices

operating together in a wireless network. The envisioned applications of wireless

sensor networks range widely: ecological habitat monitoring, structure health

monitoring, environmental contaminant detection, industrial process control, and

military target tracking among others.

Wireless sensor networks provide bridges between the virtual world of information

technology and the real physical world. They represent a fundamental paradigm

shift from traditional inter-human personal communications to autonomous inter-

device communications. They promise unprecedented new abilities to observe and

understand large-scale, real-world phenomena at a fine resolution. As a result,

wireless sensor networks also have the potential to engender new scientific advances.

Depending on the application, WSN devices can be networked together in a number

of ways. In basic data-gathering applications, for instance, there is a node referred to

as the sink to which all data from source sensor nodes are directed. The simplest

logical topology for communication of gathered data is a single-hop star topology,

where all nodes send their data directly to the sink. In networks with lower transmit

power settings or where nodes are deployed over a large area, a multi-hop tree

structure may be used for data-gathering. In this case, some nodes may act both as

sources themselves, as well as routers for other sources.

Embedded wireless sensor networking devices called motes were developed by

researchers at Berkeley. These were made publicly available commercially along with

TinyOS, an associated embedded operating system that facilitates the use of these

 2

devices. The ongoing wireless networks revolution can be attributed to the

availability of these devices as an easily programmable, fully functional, relatively

inexpensive platform for experimentation.

1.1 Networked Wireless Sensor Devices

As shown in Figure 1.1, there are several key components that make up a typical

wireless sensor network device; a low-power embedded processor to carry out

computational tasks on a WSN device that includes processing of both locally sensed

information as well as information communicated by other sensors. At present,

primarily due to economic constraints, processors are significantly constrained in

terms of computational power i.e. 8 bit, 16 MHz processor. It is due to these

constraints that devices typically run a specialized component based embedded

operating system, such as TinyOS. Memory includes the program memory and data

storage which are constrained due to economic considerations and are likely to

improve over time. Radio transceiver in a WSN device comprises a low-rate, short-

range wireless radio (10–100 kbps, <100m). Radio communication is often the most

power-intensive operation in a WSN device, and hence the radio must incorporate

energy-efficient sleep and wake-up modes. Due to bandwidth and power constraints,

WSN devices primarily support only low-data-rate sensing. Each device may have

several sensors on board depending on the application; for example, temperature

sensors, light sensors, humidity sensors, pressure sensors, chemical sensors, acoustic

sensors, or even low-resolution imagers. For flexible deployment WSN device is

likely to be battery powered [1]. The finite battery energy happens to be the most

critical resource bottleneck in most WSN applications.

 3

Sensors

Memory Processor

Radio transceiver

Power Source

Figure 1.1: Schematic of a basic wireless sensor network device

1.2 Key Design Challenges

Wireless sensor networks are interesting from an engineering perspective, because

they present a number of serious challenges that cannot be adequately addressed by

existing technologies. Below, we discuss some of the design challenges that are

addressed by this thesis work.

Extended lifetime: WSN nodes will generally be severely energy constrained due to the

limitations of batteries. A typical alkaline battery, for example, provides about 50

watt-hours of energy; this may translate to less than a month of continuous operation

for each node in full active mode. Due to potential infeasibility of monitoring and

replacing batteries for a large network, much longer lifetimes are desired. In practice,

it will be necessary to provide guarantees that a network of unattended wireless

sensors can remain operational without any replacements for several years.

Hardware improvements in battery design and energy harvesting techniques will

offer only partial solutions. This is the reason that most protocol designs in wireless

sensor networks are designed explicitly with energy efficiency as the primary goal.

Since with self-stabilizing media accesses, there are successful broadcast and

collisions avoidance thus leading to energy efficiency in saturated situations.

Responsiveness: The network lifetime can be extended by having the nodes operate in

a duty-cycled manner with periodic switching between sleep and wake-up modes.

While synchronization of such sleep schedules is challenging in itself, a larger

concern is that arbitrarily long sleep periods can reduce the responsiveness and

effectiveness of the sensors. In applications where it is critical that certain events in

the environment be detected and reported rapidly, the latency induced by sleep

schedules must be kept within strict bounds, even in the presence of network

congestion.

Robustness: The use of large numbers of inexpensive devices in wireless sensor

networks is motivated by the vision to provide large-scale, yet fine-grained coverage.

 4

However, inexpensive devices can often be unreliable and prone to failures. Also, in

harsh or hostile environments, the rates of device failure will be high. Protocol

designs must therefore have built-in mechanisms to provide robustness. Further, it is

often desirable that the performance of the system degrade as gracefully as possible

with respect to component failures. Under current settings, the developed system

assumes globally synchronized pulses and stabilizes. Future work would consider to

extend the algorithm for most realistic settings of fluctuating clock skews but still

offering stabilization and hence robustness of the wireless sensor network.

Scalability: Wireless sensor networks have the potential to be extremely large scale

(tens of thousands, perhaps even millions of nodes in the long term). Protocols will

have to be inherently distributed, involving localized communication, and sensor

networks must utilize hierarchical architectures in order to provide such scalability.

However, visions of large numbers of nodes will remain unrealized in practice until

some fundamental problems, such as failure handling and in-situ reprogramming,

are addressed even in small settings involving tens to hundreds of nodes. Under the

current limitation of simulation, we have managed to test the algorithm with varying

sizes of network and the performance of the algorithm remains consistent.

Self-configuration: Because of their scale and the nature of their applications, wireless

sensor networks are inherently unattended distributed systems. Autonomous

operation of the network is therefore a key design challenge. From the very start,

nodes in a wireless sensor network have to be able to configure their own network

topology; localize, synchronize, and calibrate themselves; coordinate inter-node

communication and determine other important operating parameters.

Self-optimization and adaptation: Traditionally, most engineering systems are

optimized a priori to operate efficiently in the face of expected or well-modelled

operating conditions. In wireless sensor networks, there may often be significant

uncertainty about operating conditions prior to deployment. Under such conditions,

it is important that there be in-built mechanisms to autonomously learn from sensor

and network measurements collected over time and to use this learning to

continually improve performance. Also, besides being uncertain a priori, the

environment in which the sensor network operates can change drastically over time.

WSN protocols should also be able to adapt to such environmental dynamics in an

on line manner. With some ideal assumptions, the protocol self-stabilizes when

started in arbitrary configurations. We aim to extend the same algorithm for self-

stabilization under more realistic scenarios.

Synchronization: also becomes a problem within sensor networks since the

requirement for low cost devices often necessitates the use of lower precision

hardware. The developed protocol assumes globally synchronized common pulse for

all the nodes. Therefore, future work entails providing self-stabilization using

realistic clock values.

 5

1.3 Report Organization

This report will start by introducing the main issues and problems regarding

wireless communication in sensor networks in chapter 2, followed by a discussion of

existing medium access protocols for sensor networks in chapter 3. In Chapter 4, we

discuss the related work in the area of self-stabilizing media access in sensor

networks and compare it with our developed approach. Chapter 5 gives the thesis

statement, and provides the pseudo code of the developed algorithm. The

implementation issues and improvements in the algorithm have been presented in

the form of a revised algorithm in the chapter 6. The following chapter details the

tools used for the project and the modifications we had to incorporate to the existing

tools. Chapter 8 presents the experiment settings, and details the results of

preliminary numerical evaluation. The report ends in chapter 9 with a discussion

regarding the obtained results, conclusions made, and future work suggested.

 6

2 The Problems

Wireless communication is the key to the flexibility of sensor networks and their low

cost deployment. However, wireless link conditions vary due to multi-path

propagation effects. This offers a significant challenge to the performance of

protocols designed for sensor networks. In the Ideal Model, two nodes have a perfect

link (100 % packet reception rate), if they are within communication range R of each

other, and a non-existent link (0% packet reception rate) if they are outside the

reception range. This model, while simple to implement and reason about, has little

basis in reality [3].

Empirical observations reveal that the packet reception contour formed by receptions

at different locations from the same transmitter is not isotropic. Link quality

distributions are highly dependent on environmental and individual hardware

differences. Indoor office environments, for instance, show worse link quality

distributions than clutter-free outdoor settings. There are three distinct regions of

link quality; a nearby connected region where packet reception rates are consistently

high, beyond this lays a transitional region where reception rates are highly variant,

and beyond that there is a disconnected region where transmissions from this node

cannot be heard. In the transitional region, there can be links that have excellent

quality, although the node pairs are relatively far apart, and conversely there can be

weak links that have poor quality, despite the relative proximity of the node pairs [1].

Hardware variations cause node pairs to have different SNR curves, but for any

given pair the curve is precise [3]. Experimental studies indicate strongly that the

specific hardware combination of sender and interferer change the measured SINR

threshold (signal to interference plus noise ratio). Most research regarding network

interference assumes one of two interference models: protocol model or the physical

model. In protocol model which is implemented by many simulators, concurrent

transmissions from any sender within a given range (referred to as the interference

range) of receiver will cause a collision that results in the loss of packet from the

corresponding sender. The physical model considers "the capture effect", also called

co-channel interference tolerance, which is the ability of certain radios to correctly

receive a strong signal from one transmitter despite significant interference from

other transmitters. With capture effect, simultaneous successful receptions are

possible so long as SINR is sufficiently high at each receiver [5].

Wireless sensor networks often have the hidden node problem and the exposed node

problems. The hidden node problem is illustrated in Figure 2.1 (a); here, node A is

transmitting to node B. Node C, which is out of the radio range of A, will sense the

channel to be idle and start packet transmission to node B too.

 7

Figure 2.1: Problems in wireless environment: (a) hidden node (b) exposed node

The exposed node problem is illustrated in Figure 2.1 (b). Here, while node B is

transmitting to node A, node C has a packet intended for node D. Because node C is

in range of B, it senses the channel to be busy and is not able to send. However, in

theory, because D is outside of the range of B, and A is outside of the range of C,

these two transmissions would not collide with each other. The deferred

transmission by C causes bandwidth wastage. These problems are duals of each

other in a sense: in the hidden node problem packets collide because sending nodes

do not know of another ongoing transmission, whereas in the exposed node problem

there is a wasted opportunity to send a packet because of misleading knowledge of a

non-interfering transmission.

In the presence of aforementioned problems, it is not straightforward to avoid

collisions in wireless sensor networks.

C B A

 (a)

C B A D

 (b)

 8

3 Background

Limited energy, computational, and communication resources complicate the

protocol design within sensor networks. Constraints on sensor node cost further

restrict which technologies sensor network may utilize. The goal of long term,

independent operation of large scale sensor networks under such restrictions is yet to

be achieved. Medium access protocols provide the greatest influence over

communication mechanisms and hence the utilization of the transceiver, the largest

energy consumer in most sensor nodes [4].

3.1 Existing Solutions

An essential characteristic of wireless communication is that it provides an inherently

shared medium. All medium-access control (MAC) protocols for wireless networks

manage the usage of the radio interface to ensure efficient utilization of the shared

bandwidth. MAC protocols designed for wireless sensor networks have an

additional goal of managing radio activity to conserve energy. Thus, while

traditional MAC protocols must balance throughput, delay, and fairness concerns,

WSN MAC protocols place an emphasis on energy efficiency as well.

We have to solve multiple access issues. There are two different types of protocols to

resolve such issues: random access protocols and channelization protocols. In

random access or contention methods, no station is superior to another station and

none is assigned the control over another. No station permits, or does not permit,

another station to send. At each instance, a station that has data to send uses a

procedure defined by the protocol to make a decision on whether or not to send.

Channelization is a multiple access method in which the available bandwidth of a

link is shared in time, frequency or through code among different stations.

We present a discussion of medium access control concepts in relation to sensor

networks and examine previous wireless medium access control protocols to

illustrate how they do not match the requirements and characteristics of sensor

networks.

3.1.1 CSMA and CSMA/CA

Carrier Sense Multiple Access (CSMA) is the simplest form of medium access. It has

two variations: non-persistent CSMA, and p-persistent CSMA. In non-persistent

CSMA, a station that wishes to transmit senses the channel to see if it is idle. If it

finds the channel busy, it would perform a random back off by waiting before

 9

attempting to transmit again. When it finds the channel idle, it would transmit

immediately. In p-persistent CSMA, the station would continue to sense the busy

channel instead of delaying and checking again later. When the channel is available,

the station transmits with probability p and defers the transmission with probability

1-p. But constant channel sensing prevents sensor nodes to use CSMA without

modifications because the transceiver consumes energy too quickly. Also, when two

or more stations choose transmission times that are close, collisions are bound to

happen.

CSMA with collision avoidance (CSMA/CA) is an extended version of CSMA.

Wireless network attempt to avoid collisions instead of detecting them. One reason is

that data corruption due to collision occurs at the receiver and the sender can not

know of a failed transmission. Another reason is that in wireless LANs it is not

possible to listen while sending; therefore collision detection is not possible. Adding

a full duplex transceiver or a second half duplex transceiver would increase the

monetary and energy costs, and complicate the device design.

CSMA/CA uses control messages to reserve the link. The sender who wishes to

transmit first performs basic CSMA to find an appropriate transmission time and

then transmits an RTS (request to send) control message to the intended receiver. The

receiver can reply with CTS (clear to send) message. The reception of a CTS indicates

that the receiver is able to receive the RTS, so the packet (the channel is clear in its

area). At the same time, every node in the range of the receiver hears the CTS (even if

it doesn't hear the RTS), so understands that a transmission is going on. The nodes

hearing the CTS are the nodes that could potentially create collisions in the receiver.

All nodes avoid accessing the channel after hearing the CTS even if their carrier sense

indicates that the medium is free. RTS/CTS have another advantage: it lowers the

overhead of a collision on the medium (collisions are much shorter in time). If two

nodes attempt to transmit in the same slot of the contention window, their RTS

collide and they don't receive any CTS, so they loose only a RTS, whereas in the

normal scenario they would have lost a whole packet.

The RTS/CTS handshaking adds a significant overhead for sensor networks where

data messages have sizes comparable to control messages.

3.1.2 CSMA/CD

CSMA with collision detection (CSMA/CD) is another extended version of CSMA.

Collision detection is used to improve CSMA performance. The sender first performs

the basic CSMA to find an appropriate transmission time, and then starts

transmitting the frame. A transmitting station that detects another signal while

transmitting a frame, stops transmitting that frame, transmits a jam signal, and then

waits for a random time interval (known as "back off delay") before trying to send

that frame again. Back off delay is determined using truncated binary exponential

 10

back off algorithm. CSMA/CD is used on wired network like Ethernet because on a

wire, the transceiver has the ability to listen while transmitting and so to detect

collisions (with a wire all transmissions have approximately the same strength). But,

even if a radio node could listen on the channel while transmitting, the strength of its

own transmissions would mask all other signals on the air [2]. So, the protocol can't

directly detect collisions like with Ethernet.

3.1.3 Receiver-side Collision Detection

Receiver-side collision detection is a better suited technique for wireless sensor

networks with the message collisions being detected at the receiving node. Some

works have made use of receiver side collision detection techniques. [7] Employs this

idea to propose a reliable single hop broadcast solution for sensor networks whereas

[8] uses this technique to offer a fault-tolerant solution to the consensus problems in

the presence of crash-prone sensor nodes. The collision detector in [7] and [8] works

as follows: For every round r of each execution, if a node p does not receive some

messages that were broadcast in r, then p detects a collision in r.

3.1.4 TDMA

Time division multiple access (TDMA) is a channel access method for shared

medium networks. A specific node, the base station, has the responsibility to

coordinate the nodes of the network. The time on the channel is divided into time

slots, which are generally of fixed size. Each node of the network is allocated a

certain number of slots where it can transmit. Slots are usually organized in a frame,

which is repeated on a regular basis. TDMA protocols provide collision free medium

access. However such a system requires efficient time synchronization for the entire

network. Changes in the network topology require a modification in the schedule or

slot allocation. Finally, static allocation of slots can leave many slots unused reducing

the throughput of the network. In TDMA if a user does not have any data to send, no

other user can use their slot. Hence, the full capacity of the Broadcast network or

channel is not fully being exploited.

 11

4 Related Work

We discuss the related work that has been done in the area of self-stabilizing media

access in sensor networks.

Herman and Tixueill [6] present a self-stabilizing algorithm for distributed slot-

allocation in sensor networks. Their algorithm avoids collision as in TDMA but offers

additional features of stabilization in the event of transient faults and topology

changes. This TDMA slot assignment is the vertex colouring problem where we

ensure that no pair of vertices at distances two or less has the same colour [6]. All

nodes share clocks that are synchronized to a common global time. The

communication is half duplex; a node cannot transmit one message and receive

another message concurrently. Therefore collisions are possible. CSMA/CA is used to

avoid collisions: if node p has some message ready to transmit, but is receiving some

signal, then p does not begin transmission until it detects the absence of signal.

Each node is assigned a colour and the colours are used as a schedule for TDMA slot

assignment. Before the colour assignments, radio time is partitioned into two parts:

one part is for TDMA scheduling of application messages known as the TDMA part,

and other part is for the messages of the algorithm that assigns colours to nodes

known as the overhead part. Figure 4.1 shows such arrangement. CSMA is used to

manage collisions in overhead part. TDMA slots do not use random delay and nodes

use relevant slots without collisions.

Simple distance two colouring algorithms may use a large number of colours that is

wastefully large. One approach to use a reasonable number of colours is to choose a

set of leader nodes who dictate the assignment of colours to nodes. This colouring is

minimal. Leaders are chosen through a maximal independent set. An independent

set is a set of vertices in a graph no two of which are adjacent. A maximal

independent set is a set such that adding any other vertex to the set forces it to

contain an edge; in other words, a maximal independent set is the largest

independent set of a graph.

We consider a saturated situation where every node is allocated a single time slot

and data grams are always available. Since, CSMA/CA is used in the overhead

section, which leaves the possibility of longer stabilization time and unfair

bandwidth allocation. We don't use the overhead section, the overhead of our

developed approach is lower after stabilization and there remains a fair bandwidth

allocation to all the nodes.

The work of Demibras and Balachandran [7] addresses the hidden node problem and

proposes single hop reliable broadcast solution for sensor networks. They use

receiver side collision detection [8] and assume globally synchronized rounds where

 12

Figure 4.1: Scheme of radio time partition in Herman and Tixueill design

each round has three phases: RTS (request to send), NCTS (not clear to send) and

Data phases. A node j wishing to transmit data does so by sending a request in RTS

phase. Neighbouring nodes respond to an invalid RTS or collided RTS’s by

transmitting a not-clear-to-send message (NCTS) during the NCTS phase. The

neighbours are able to sense collisions at the RTS phase using receiver side collision

detection techniques. The node j backs off from transmitting the data for this round if

it either receives a NCTS message or detects a collision in the NCTS phase. This

scheme avoids potential collision of data during the Data phase, and ensures reliable

delivery of the payload within single-hop distance of the transmitting node. Figure

4.2 shows the arrangement.

They contend that at any time only one node in single hop neighbourhood is in the

Data phase. Hence, there is no possibility of a node receiving concurrent

transmissions from two nodes which are hidden from each other. We consider a

saturated situation where data grams are always available. In such a situation, there

will be significant collisions in RTS phase. This would let the transmitters back off

and thereby lead to delays. It is not clear, if the back off time is random since a

random back off time leaves a possibility of longer stabilization time. Moreover, we

see that saturated situations would incur large overheads even after the network has

been stabilized and every time a significant delay would be involved before

stabilization. Again, our protocol performs better under such scenario; stabilization is

quick and there are only low overheads after stabilization.

 13

Figure 4.2: Synchronized rounds in Demibras and Balachandran design

 14

5 Thesis

We develop a distributed media access algorithm and we empirically demonstrate

that within a constant number of communication rounds, a large number of nodes

communicate successfully, i.e. without collisions. Moreover, the ratio between

successful and unsuccessful broadcasts rapidly approaches to 1. We employ the

technique of receiver-side collision detection. In receiver side collision detection, the

receiving node reports the collision to all the neighbouring nodes. We consider the

pros and cons of such an algorithm:

 Wait at least 1 round before detection is delivered

The node chooses a new slot when there is collision but it skips one round.

Thus it has to wait for the duration of a round before broadcasting in the

chosen slot.

 The algorithm can emulate pair wise independent choices

Each node chooses a time slot uniformly at random independently of the

neighbouring nodes. While there remains the probability of two or more

nodes selecting the same time slot to broadcast and thus causing collisions.

But eventually, all nodes broadcast successfully since after the collision, the

nodes make a new random choice for the broadcast time slot.

 There is no need for clock synchronization

Our algorithm assumes that the clocks of all the nodes are synchronized to a

common global pulse.

 This presents a more realistic CSMA/CD with current HW

The CSMA/CD algorithm is not feasible with current HW of sensor nodes as a

node cannot listen to the medium while it is transmitting. Since the collision

detection in our algorithm is carried on the receiver side, our simulation

presents a more realistic solution for the sensor devices.

 We have lower overheads after stabilization

There are little or no overheads after stabilization due to self-stabilizing

nature of the algorithm.

 The algorithm presents a more decentralized and robust solution

 15

There is no central node to assign bandwidth. Each node makes its own

bandwidth allocation based on the slot information of neighbouring nodes in

the communication graph. If a transient fault causes two or more nodes to

send messages concurrently over the shared media, collisions would occur. In

such an event, the algorithm ensures that the system rapidly returns to a

stabilized state where no collisions occur.

Tiny artifacts use wireless communications over a shared media, e.g., radio

broadcasting, in which messages collide when sent concurrently. We assume the

existence of an ideal environment that has access to synchronized clocks and perfect

collision detectors. We assume that the system is synchronous and that all processors

share a common source of global pulses. We call the period between two pulses as

time slot, and assume that any message sent during a particular time slot is received

at most once within that time slot, but not in any other time slot. We assume that

when two neighbouring processors broadcast concurrently, their messages collide. If

two processors don't share an immediate neighbour then they can broadcast

concurrently. Immediate neighbours of a particular processor are at distance one

from that processor.

Before presenting the algorithm, it may be helpful to consider the relationship

between the slot assignment to nodes and the standard problem of graph colouring.

Algorithmic research relates the problem of slot assignment to minimal graph

colouring where the colouring constraint states that no two nodes within distance

two have the same colour. This constraint comes from the well known hidden

terminal problem in sensor networks. This leaves us to choose D (upper bound on

the round size) to be not the size of communication graph but a number represented

by maximum of node plus immediate neighbours plus neighbours of immediate

neighbours taken uniquely referred to as the second or extended degree in our

discussions.

We look into what algorithms exist for distance-two unique time slot allocation.

5.1 Deterministic Sequential Algorithm

The deterministic sequential algorithm can be represented in the following way:

Figure 5.1: Deterministic Sequential Algorithm

Do forever for each node v
 Does v have a unique color among its neighbors?
 No: find the first color not used by its neighbors

 16

Here, we assume that the colours are ordered in sequence and a particular vertex v

gets the colour not already assigned to its neighbours. As sensor nodes are deployed

in large numbers, it may not be possible to collect the entire topology at a single node

and apply the algorithm. The sequential algorithms are not fast enough in the

distributed world.

5.2 Randomized Sequential Algorithm

The randomized sequential algorithm can be represented in the following way:

Figure 5.2: Randomized Sequential Algorithm

These algorithms employ a degree of randomness in their logic. These algorithms can

quickly assign unique colours with high probability. This algorithm performs better

than deterministic sequential algorithm but is not good in deployments of very large

number of sensor nodes due to its sequential nature.

5.3 Our Algorithm: Randomized Distributed Algorithm

The randomized distributed algorithm can be represented in the following way:

Figure 5.3: Randomized Distributed Algorithm

Every processor v tests that its color is unique among its neighbors
No: select a tentative color uniformly at random from the entire
set of colors that are not used by its neighbors

Every processor v tests that its tentative color is unique among its neighbors
 No: set color to ''no color''
 Yes: set color to the tentative color

Do forever for each node v
 Does v have a unique color among its neighbors?

No: select a color uniformly at random from an entire
set of colors that are not used by neighbors

 17

Distributed algorithms suit a sensor networks' application better than the sequential

algorithms. There are two steps in the distributed algorithm presented above. In the

first step, every node chooses a tentative colour that is unique among its neighbours.

We contend that a node cannot confirm the uniqueness of its colours until after a

successful broadcast. So when a node chooses a colour for the first time, this colour is

only a tentative colour for that node and not a permanent one. If choice of this colour

leads to a successful broadcast, then the node will make this colour its permanent

colour otherwise it will again choose a new tentative colour uniformly at random.

Choice of colours uniformly at random leads to the probability of two or more nodes

selecting the same colour. Nodes learn that the colour was not unique through a

collision that occurs due to concurrent broadcasts in the same time slot.

We propose a self-stabilizing broadcast scheduler. The algorithm is presented in

Figure 5.4. Every node pi uses a time slot si є [0, D-1], in a round of D time slots. Node

pi counts the number of pulses module D (the variable ci). Node broadcasts when ci =

si. In case of collision, pi uses a technique for uniformly selecting an empty time slot.

We say that a time slot is empty from perspective, if no neighbor to pi successfully

broadcasts in that time slot. In other words, a time slot is empty if no neighboring

nodes broadcasts or a neighbor broadcasts a message that collides. Nodes use a

single index; li to uniformly sample an item from an unbounded sequence. Nodes

count the number ti, of empty time slots in every round. Starting from the beginning

of round, the node assigns the value of si to li and 1 to ti. Whenever node notices that

time slot x = ci is empty, it increments ti by one and pi assigns ci to li with probability

1/ti.

 18

Figure 5.4: The initial Self-stabilizing medium access algorithm

Upon pulse
if e = true thenMonitorEmpty()
else if c = s then (l,t) ← (c,1)
c ← c + 1 mod D
if c = s then
 if b = false then send(fetch())
 (b,e) ← (false,false)
else
 e ← true

Upon receive(m)
deliver(m)
e ← false

Upon collHappened()
e ← true

Function MonitorEmpty()
if (c = s and b = false) then (s,b) ← (l,true)
else
 t ← t + 1
 if Select([1,t])= 1then l ← c

Constants:
D = upper bound on neighboring nodes' umber

TIME_SLOT_SIZE = slot size in time units

Types:
rnd : [0,D-1] = round size
param_t = protocol parameter structure

Variables:
c: rnd = current slot in use
round:rnd = current round of communication
s:rnd = broadcast time slot
t:rnd = empty time slot counter
e:Boolean = indicates that the previous time slot is

empty
b:Boolean = indicates to skip the first round when s

is fresh

Macros and inlines:
slot(t) : (((t) / TIME_SLOT_SIZE) mod D)
round(t) : ((t) / (TIME_SLOT_SIZE * D))

External functions:
initParam() : initialization of the protocol

parameters
Select() : uniform selection of an empty time slot
fetch()/deliver(m):gets/delivers a message

from/to the upper layer
send(m) : broadcast a message to media

receive(m) : receive a message from media
collHappened() : indicates a collision

 19

6 Implementation Issues

In this section, we present the implementation details and also describe the

challenges one faces when implementing a distributed sensor network

implementation.

6.1 Why can't we just implement the algorithm as it is

There are many niceties that one needs to consider before implementing a protocol

for sensor networks.

We see that [6] assume pair wise independent choices. By pair wise independent

choice we mean that two or more nodes are likely to broadcast with equal probability

and will always have the same transmit signal strength. But as we know, this

assumption is hard to verify with the underlying environment. Sensor networks are

characterized by unattended operation where there are harsh environmental

conditions and node failures. Suppose we have two nodes A and B which are at

geographically different location from a destination node C. If A and B broadcast

concurrently, then the level of attenuation in their transmit signals would be different

depending on their distance form C. In such scenario, the closer node would always

take the bandwidth.

The existing solutions [6] and [9] use TDMA. The strict time synchronization

requirement in TDMA does not sit well with the distributed nature of the sensor

networks where there is a high probability of topology change as well. In distributed

systems, there is no global clock or common memory. Communicating synchronized

time slots across all the nodes is not straightforward.

Another issue comes when the nodes have to choose a colour. The nodes first choose

a tentative colour. We call this colour tentative because a node can not confirm this to

be its permanent colour until after it has been able to make a successful broadcast

using this colour. One must note that colour is actually the time slot assignment for

the node. So how does a node compare its tentative colour with those of its

neighbours? We say that the node broadcasts using the tentative colour and then if

there was a collision then it would know that this colour was also chosen by another

node. Then it would choose a different colour uniformly at random. So collision

detection plays the key to choosing unique colours.

As we saw in chapter 3, CSMA/CD is not useful for collision detection in senor

networks. CSMA/CD is used on wired network like Ethernet because on a wire, the

transceiver has the ability to listen while transmitting and so to detect collisions (with

 20

a wire all transmissions have approximately the same strength). But, even if a radio

node could listen on the channel while transmitting, the strength of its own

transmissions would mask all other signals on the air [2]. So, the protocol can't

directly detect collisions like with Ethernet.

Sensor networks have a bandwidth limitation. CSMA/CA techniques are hence slow

and inefficient for sensor networks. CSMA/CA makes random choices before

transmitting second time leaving a probability of collision even at later tries. Thus it

is a probabilistic strategy that might prove too slow or inefficient for many

applications.

6.2 Local testing of message arrival is hard

Local testing of message arrival can play an important role to decide if the broadcast

message was successful or not. A sensor node can not test if its broadcast indeed

arrive at all the other nodes because transmitting node cannot sense the channel

whereas in Ethernet, when a station is ready to send, it senses the channel. In case of

a free channel, it transmits data and keeps on sensing. If it does not detect any

collisions then it completes its transmission successfully and concludes that the

message indeed arrive without collisions. Even if it detects collision midway its

transmission, it would back off.

Below we present a block diagram of how our algorithm works. There are three

interesting primitives to consider in the implementation.

1. Nodes' broadcast scheduling on clock pulse: broadcast scenario

2. Nodes' action(s) on collision: collision scenario

3. Nodes' action(s) on successful receipt: reception scenario

6.2.1 Broadcast Scenario

Figure 6.1 shows the broadcast scenario. Upon every clock pulse, a node first of all

checks to see if there was a collision in the previous time slot. If there was a collision

and this node was involved in that collision then this node has to choose a different

colour or time slot. So it chooses a new time slot uniformly at random. Nodes detect

the collision by checking a local variable that is set every time there is a collision.

Then the node increments the local time slots counter and checks if this value is the

same as my chosen time slot number. If the local time slot counter equals the chosen

slot value then the node should broadcast. Following this the node would check if it

has to skip this round. If it does not need to skip the current round then it would

broadcast. Why skipping the round can be helpful for fast stabilization is given in the

discussion section of the report.

 21

Figure 6.1: Self-stabilizing medium access algorithm: the broadcast scenario

6.2.2 Collision and Reception Scenarios

Figure 6.2 shows the collision scenario and the reception scenario. Our

implementation contains a collision model. Before describing how we use this

collision model, it is important to describe that we use TOSSIM for simulating our

application. There is an event queue present in TinyOS. TOSSIM and TinyOS will be

discussed in more detail in chapter. All the events are inserted in that queue indexed

by time. These events are pulled from this queue by TOSSIM based on the time.

Whenever there is a collision we insert the relevant collision information in the event

queue. When this collision event occurs, the node marks the relevant entry in its

broadcast array with collision indication. The collision model is given in Appendix A

at the end of the report. Likewise in the case of a successful receipt, the node updates

the relevant entry in its broadcast array with successful receipt indication. Since

every node also sends its broadcast array as part of the payload. Therefore, the node

also updates its broadcast array with that of the received array. Another important

decision regarding slot change is also made here. If this node chose a tentative slot to

broadcast but has not done so yet and receives a packet in this slot then this means

that the sending node chose this slot before me. In this case, this node changes its slot

and instead chooses a new slot uniformly at random. The notion of broadcast and

received array are part of the revised algorithm that is discussed in detail in the

following section.

 23

Figure 6.2: Self-stabilizing medium access algorithm: collision and reception scenarios

6.3 Revised Algorithm

We propose a revised self-stabilizing broadcast scheduler. We say that the

stabilization becomes faster when every node has a local knowledge about the time

slots of other nodes in the communication graph. For this purpose, every node

maintains two arrays: a broadcast array and a received array both of size D where D

is the extended degree of the communication graph. Each slot in this array contains

one of the values: 0x00, 0x01, and 0x02 to indicate an empty time slot, a successful

broadcast or a collision indication respectively.

The algorithm is presented in Figure 6.3. Every node pi uses a time slot si є [0, D-1], in a

round of D time slots. Node pi counts the number of pulses module D (the variable

curSloti). Node pi broadcasts when curSloti = si. Upon successful receipt, node pi

updates information in two ways: update of this slot due to a successful receipt in

that slot, and update by the received array from the other node.

It must be noted that broadcast array is part of the packet payload and pi copies it to

the payload before it broadcasts. So the received array is actually the broadcast array.

This presents a solution to the hidden node problem. Since, the array pi receives from

its distance-1 neighbours contains the slot information maintained by its distance-1

neighbours about their distance-1 neighbours. This enables pi to determine the slots

chosen by its distance-2 neighbours and thus the information at pi becomes globally

more accurate.

 24

In case of collision, pi uses a technique for uniformly selecting an empty time slot. We

say that a time slot is empty from pi’s perspective, if no neighbour to pi successfully

broadcasts in that time slot. In other words, a time slot is empty if no neighbouring

nodes broadcasts or a neighbour broadcasts a message that collides. In the revised

algorithm, pi updates the broadcast array when there is collision. So nodes count the

number of empty time slots in their broadcast arrays and assign to li a slot chosen

uniformly at random.

There is another interesting case: nodes choose tentative slots; if a node chooses a

time slot and then receives a broadcast in that slot before it could broadcast in that

slot then it changes it slot by uniformly selecting an empty time slot. Following are

two possibilities in which a node may choose a colour already used/chosen by some

other node:

Case 1: It is a distance-2 neighbour, and my distance-1 neighbour has not yet reported

its slot information.

Case 2: It is a distance-1 neighbour but this is its tentative colour and I have not yet

received in that slot.

We see that concurrent broadcasts lead to collision and hence choice of new tentative

colours. This covers the first case. The second case has two variants:

1. Both nodes chose the same tentative colour in the same round. This would

result in concurrent broadcast and hence choice of new tentative colours.

2. One node chooses a tentative colour. Some other nodes choose that colour in

the subsequent round since so far there has been no broadcast in that slot and

that slot is considered as an empty slot. Since, the node that chose that colour

first is bound to broadcast first, the receiving nodes that chose this as their

tentative colour needs to change slot thereby avoiding the possibility of

collisions in subsequent round and leading to faster stabilization.

The pseudo code of the revised algorithm is presented in Figure 6.3.

 25

Figure 6.3: The revised Self-stabilizing medium access algorithm

Constants:
N = total number of nodes in the communication graph
D = extended degree of the communication graph
TIME_SLOT_SIZE = slot size in time units
b_array[D] = broadcast array to keep track of the

status of each slot
r_array[D] = received array to keep track of what is

the status of slots at neighboring nodes

Types:
rnd : [0,D-1] = round size
param_t = protocol parameter structure

Variables:
curSlot: rnd = current slot in use

myRound:rnd = current round of communication

s:rnd = broadcast time slot

e:Boolean = indicates that the previous time slot is

empty

b:Boolean = indicates to skip the first round when s is

fresh

Macros and inlines:
slot(t) : (((t) / TIME_SLOT_SIZE) mod D)
round(t) : ((t) / (TIME_SLOT_SIZE * D))

External functions:
initParam() : protocol parameters initialization
VSelect() : uniform selection of an empty time slot
changeSlot() : changing slot upon successful

receipt in chosen slot
emptySlots() : total available empty slots
assignedEmptySlot() : assigns an empty slot

chosen uniformly at random
updateArray () : Updates current slot information

in broadcast array
updateArrayCmp() : Updates broadcast array

after it receives an array from neighboring nodes
fetch()/deliver(m):gets/delivers a message

from/to the upper layer
send(m) : broadcast a message to media
receive(m) : receive a message from media
collHappened() : indicates a collision

Upon pulse
 let cT = read(native_clock)
 if e = true then MonitorEmpty()

 else if curSlot = s then (l, t) ← (curSlot,1)
 curSlot ← slot(cT)
 myRound ← round(cT)
 if c = s then

 if b = false then send(fetch())
 (b,e) ← (false,false)

 else
 e ← true

Upon receive(m)
 let cT = read(native_clock)
 deliver(m)
 updateArrayCmp()
 updateArray()
 if s = slot(cT) then

 changeSlot()
e ← false

Upon collHappened()
 updateArray()
 e ← true

Function MonitorEmpty()

if (curSlot = s and b = false) then

 l = assignedEmptySlot(
Vselect(emptySlots())

)
 (s,b) ← (l,true)

Function changeSlot()

s = assignedEmptySlot(
Vselect(emptySlots())

)

 26

7 Tools and Modifications

There are different language options available for programming for wireless sensor

networks like C, DCL (Distributed Compositional Language), galsC, SNACK, SQTL,

nesC. Most of these languages are extensions to C programming language. We use

nesC to develop our application. We know that operating systems for sensor

networks are less complex than general purpose operating systems both because of

the special requirements of the sensor network applications and because of the

resource constrains in sensor network hardware platform. TinyOS is the first

operating system designed specifically for sensor networks. TinyOS is based on

even-driven programming model. Hence, the programs are composed into event

handlers and tasks. Thus, both TinyOS and the program written for TinyOS are

written in nesC which is a special programming language. We use nesC because of

the fact that the real motes on which the applications are to be tested come with

TinyOS operating system. Following sections describe in detail the tools that we have

used particularly the simulation tool TOSSIM and also present the modifications we

had to make for our application.

7.1 Tools

The application is developed in nesC, a language intended for embedded systems.

The empirical evaluation of the algorithm is run on the TOSSIM simulator. TOSSIM

(TinyOS simulator) is a discrete event simulator for TinyOS sensor networks. Instead

of compiling a TinyOS application for a mote, one can compile it into the TOSSIM

framework, which runs on a PC. This allows debugging, testing, and analyzing

algorithms in a controlled and repeatable environment. As TOSSIM runs on a PC,

one can examine the TinyOS code using debuggers and other development tools.

TinyOS’s event-driven execution maps well into a discrete event simulator. The

entire application is event driven where hardware interrupts are modeled as

simulator events. TOSSIM complies directly from TinyOS source and replaces

hardware with software components.

There is an event queue in TOSSIM, where events are inserted prioritized by time.

Time is maintained as simulation ticks per second. There are 4 x 106 simulation ticks

per second. Network in TOSSIM is modelled in the form of a communication graph.

When TOSSIM runs, it pulls events of the event queue (sorted by time) and executes

them. There are two programming interfaces to TOSSIM; python and C++. In our

implementation we have used the python interface.

 27

By default, no nodes can communicate with other nodes in TOSSIM. In order to

simulate the network behaviour we have to specify a network topology. We can

specify how we want the underlying network to be laid. We can specify the entire

connectivity of the communication graph; fully connected or partially connected.

Moreover we can specify the gain values on each link. Gain is the magnitude of

attenuation in the transmit signal strength when it reaches the receiver. The default

values for TOSSIM's radio model are based on the CC2420 radio, used in the micaZ,

telos family. It uses an SNR curve derived from experimental data collected using

two micaZ nodes, RF shielding, and a variable attenuator.

TOSSIM also simulates the RF noise and interference a node hears, both from other

nodes as well as outside sources. It uses the Closest Pattern Matching (CPM)

algorithm. CPM takes a noise trace as input and generates a statistical model from it.

This model can capture bursts of interference and other correlated phenomena, such

that it greatly improves the quality of the RF simulation.

The default MAC object has a large number of functions, for controlling the back off

behaviour, packet preamble length, radio bandwidth, etc. All time values are

specified in terms of radio symbols, and one can configure the number of symbols

per second and bits per symbol. By default, the MAC object is configured to act like

the standard TinyOS 2.0 CC2420 stack: it has 4 bits per symbol and 64k symbols per

second, for 256kbps. One can change the back off behaviour using a subset of the

MAC functions.

It is possible to inject packets in the running network with TOSSIM. This is useful

when one wants to communicate the degree of the communication graph to the

entire set of nodes. TOSSIM also allows inspecting variables which is useful to

control the simulation. For example, we want to stop the simulation when all nodes

start to broadcast successfully in each round. Each node has only a local knowledge

which it can convey by setting a local variable. We can stop the simulation when all

nodes in the communication graph have set their variables.

7.2 Modifications

We make the following modifications to TOSSIM.

1. We modify the default packet-level radio component in TOSSIM. This

component by default implements a basic CSMA algorithm. In this algorithm

a node transmits if and only if it measures a clear channel min_free_samples

() in a row. One can set the value of min_free_samples which currently is 2.

The node sample up to max_iterations () times. If it does not detect a free

channel in this time, it reports channel busy and the send is not successful.

Otherwise it transmits followed by a back off period. We completely remove

the back off behaviour. In our implementation, a mote sends information on

 28

the data link layer regardless of the fact that the channel might be busy (i.e.

when it has something to send, and is able to send from the transport layer).

Then, we use the receiver side collision detection to report collisions. And

thus nodes choose their slots accordingly (uniformly at random) on next

pulse.

2. We incorporate a collision model in the interference model of TOSSIM. We

insert a collision indication event in the event queue under the following

scenarios.

a. A mote loses a packet from another mote due to being in the midst of

reception.

b. A mote loses a packet when it receives a concurrent stronger packet.

In our implementation, we have that a node starts successfully

hearing packet A and during packet A it starts to hear a much

stronger packet B. While B's preamble could be detected, the radio

stack just sees it as a corruption of packet A. Therefore A is lost and B

is not received.

It should however be noted that this indication is done on the receiver side and it is

the receiver who reports this collision to the other nodes in the communication

graph. Collision information has the following structure:

3. By default, TinyOS limits the frame payload to 28 bytes. For our revised

algorithm we needed a bigger packet size since we pass the broadcast array in

the payload. We do so by adding the following in our Makefile

CFLAGS += -DTOSH_DATA_LENGTH=xx

where xx is the desired payload size.

struct collision_info {
int sender;
int receiver;
int slot;
bool collision_flag;
sim_time_t coll_time;
struct collision_info* next;

};

 29

8 Preliminary Numerical Evaluation

We model the system as one that consists of a set of communicating entities, which

we call processors (or motes/nodes). We assume that our clocks are synchronized. In

this regard, all motes use a common source of global pulses available in TOSSIM. We

also assume that our collision model is able to detect all collisions on media access

layer.

8.1 The Communication and Collision Graphs

The real sensor network applications comprise a large number of sensor nodes where

each mote can communicate with a limited number of other nodes due to their

geographical distribution. This motivates to use those communication graphs in our

simulation which are only partially connected. We employ the concept of random

geometric graphs. A random geometric graph is a random undirected graph

generated by placing vertices at random uniformly and independently on the region.

The two vertices are connected if and only if the distance between them is at most a

threshold r. Though the graphs are partially connected but each node is linked with

the other nodes through a bounded number of hops.

Collision graph on the other hand means a set of those nodes in the communication

graph whose concurrent broadcasts would lead to collision due to their being in the

immediate neighbourhood of each other. Our graphs are symmetric meaning that if

there is a communication link between nodes A and B then A communicates with B

and B can communicate with A. Moreover we specify uniform gain values on all the

links. Figure 8.1 represents an example communication graph used in our

simulations.

http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Continuous_uniform_distribution
http://en.wikipedia.org/wiki/Statistical_independence

 30

Figure 8.1: An example random geometric communication graph of ten nodes

8.2 Different Sets of Graphs and Number of Repetitions

We conduct experiments with four set of nodes comprising five, ten fifteen and

twenty nodes. We use the following methodology to calculate results.

For each set of nodes, we generate four random graphs. For every graph, we carry

out five simulations each of two hundred communication rounds. This makes a total

of twenty experiments against each set of nodes. Our result is averaged first for the

five simulations of one graph. Since we have four different graphs, the result is

further averaged for the four graphs.

For comparison purposes we also run the experiments with the existing basic back

off algorithm in TOSSIM. We use two terms ''imposed congestion'' and ''diffused

congestion''. Imposed congestion means that when the algorithm starts, all motes

broadcast in the same time slot. This starting configuration leads to all broadcast

colliding. Diffused congestion on the other hand means that nodes make a random

choice of slots when the algorithm starts. This leads to nodes broadcasts that are

distributed over the whole communication round. We start our algorithm with an

imposed congestion and the basic back off algorithm with a diffused congestion.

Clearly, this configuration gives the basic back off algorithm an advantage over our

algorithm with regards to number of collisions. Since, our algorithm is self-

stabilizing we see that despite starting in an arbitrary configuration, eventually all

nodes broadcast successfully in all communication rounds.

The following section details what data we calculate followed by a discussion of how

our algorithm performs in comparison to the basic back off algorithm.

8.2.1 Messages and Data grams

We calculate the number of transport layers messages delivered by each node

referred to as messages and physical datagram messages received from each node

referred to as data grams. Transport layer message is the message broadcast by a

6

9

4

2 7

8

5 0

1 3

 31

mote. This message is sent from the transport layer to the media access layer.

Datagram message is the physical datagram that each mote who is in the

communication range receives on its media access layer. For each message, a

datagram is sent on all the links of the mote.

8.2.2 Transport Layer Messages

Figure 8.2 shows the percentage of transport layer messages delivered by each set of

motes in two hundred communication rounds. We see that slotted algorithm shows

nearly hundred percent throughputs. The fact that throughput is not hundred

percent is due to the message losses by collisions before stabilization. On the other

hand, back off algorithm could only deliver sixty percent messages. It is interesting

to note that the algorithm perform consistently good with increasing size of the

network.

 32

Figure 8.2: The percentage of transport layer messages delivered with slotted algorithm and back off

algorithm

8.2.3 Datagram Messages

Figure 8.3 shows percentage of message received on the media access layer with each

set of motes. It must be noted that these are the messages received on the media

access layer and not the messages delivered. Slotted algorithm would pass all

messages from the transport layer over to media access layer only after stabilization.

Since increasing number of nodes increases the possibility of collisions, there is a

small decline in the throughput. With back off algorithm, no decision regarding

passing a message to media access layers is made on the transport layer. Hence, back

off algorithm indicates almost hundred percent received data grams.

 33

Figure 8.3: The percentage of data gram messages received with slotted algorithm and back off

algorithm

From Figure 8.2 and Figure 8.3, one can see that with back off algorithm nearly

hundred percent data grams are received but only about sixty percent messages are

delivered. This means that the basic back off algorithm results in about forty percent

of messages being lost in collisions.

8.2.4 Lost Messages

Figure 8.4 shows the number of lost messages in both the algorithms. The messages

are lost primarily due to collisions on the media access layer. One can see that as the

size of the network increases, there is an increase in the number of lost messages as

well. The slotted algorithm shows a consistent pattern in which there is only a small

increase in the number of lost messages with increased size of the network, whereas

in the back off algorithm the number of lost messages is significantly large. It should

be noted that this computation was carried out in a simulation of two hundred

communication rounds.

 34

Figure 8.4: The number of lost messages with slotted algorithm and back off algorithm

8.2.5 Stabilization Time

Stabilization time is the number of communication rounds after which all nodes in

the sensor network are guaranteed to broadcast successfully in each subsequent

round of communication. Figure 8.5 shows the stabilization time curve. We can see

that with an increase in the number of nodes, the curve shows only a small increase.

For our experiments, this has been a very interesting result as for a network of as

large as thirty five nodes, the average stabilization time was never more than

fourteen communication rounds. One should note that our algorithm allows a large

number of nodes to broadcast successfully even before stabilization.

 35

Figure 8.5: The stabilization time for networks of different sizes in a simulation of two hundred

communication rounds

8.2.6 Stabilizing Behaviour

The charts presented in the following figures are for the developed media access

algorithm only since there is no notion of stabilization in the back off algorithm.

Figure shows that the slotted algorithm quickly stabilizes and a large portion of the

messages is delivered after the stabilization.

 36

Figure 8.6: The percentage of transport layer messages delivered with slotted algorithm during and

after stabilization

Figure 8.7 shows the data grams received during and after the stabilization with

slotted algorithm. Again we can see the quick stabilization. An important thing to

note is that unlike the back off algorithm there is no random choice of broadcast time

in our algorithm. Hence, there is always a chosen slot; fixed or tentative in which a

node would broadcast and eventually all the nodes are allocated individual slots to

broadcast. Therefore, during stabilization, the data grams are received for tentative

or fixed slot broadcasts and not all the time. This contributes to showing a small

decrease in the number of data grams received in slotted algorithm as compared to

the back off algorithm as shown in Figure 8.3.

 37

Figure 8.7: The percentage of datagram messages received with slotted algorithm during and after

stabilization

Figure 8.8 shows that there are no message losses after the stabilization. It is

interesting to see that during stabilization too, a large number of nodes are able to

broadcast with success.

 38

Figure 8.8: The number of lost messages received with slotted algorithm during and after

stabilization

 39

9 Discussion

Media access algorithms in sensor networks have the direct influence on the eventual

energy conservation. Collision detection techniques play a vital role in media access

algorithm design. Traditional carrier sense techniques for collision avoidance such as

CSMA/CA suffer from message delays and long stabilization times. Such techniques

cannot perform well under saturated situations. There are other techniques such as

CSMA/CD which are suitable only for wired networks such as Ethernet. [9] Use

TDMA for media access. The strict time synchronization requirement in TDMA does

not sit well with the fact that topology of the sensor network might change. Under

such situations, we see that receiver side collision detection seems a useful option to

report collision in sensor networks. Moreover, it is the receiver which realizes the

collision making it a natural choice for sensor networks.

We assume an ideal environment that has access to synchronized clocks. We say that

the algorithm can be extended to account for the clock skews of a realistic

environment.

We get a stabilization time curve that is not linear and increases very slightly with

increasing network size. We say that the stabilization can be faster when the size of

the broadcast array is same as the extended degree of the interference graph.

Extended degree is the sum of me, my immediate neighbours and the neighbours of

my immediate neighbours all taken uniquely or in other words the number of nodes

in my distance two neighbourhood? The values in a node’s broadcast array are its

view of the network state. We know that, it is sufficient for a node to test the distance

two neighbourhood in order to choose a time slot that will be safe for successful

broadcast. A smaller size of the broadcast array can actually lead to faster

stabilization. In small networks extended degree equals the graph diameter. But on

large random geometric graphs, a node's extended degree can be much smaller than

the actual diameter of the interference graph. Thus we say that our algorithm can

perform consistently well for large networks and hence is scalable.

In our algorithm we skip a round when the node's chosen a colour is fresh. In a

distributed setting a node can only choose a colour that is tentative i.e. it is not final

until after the node has had a successful broadcast using that colour. Skipping the

round after choosing the colour helps stabilize faster. If the node receives some

packet successfully in its chosen slot and in the round that it is not broadcasting

(skipped round), then this implies that another node already chose this colour and

was able to broadcast with success. In order to avoid collisions in subsequent rounds,

this node then changes it colour by choosing a new colour uniformly at random.

 40

The following two sections describe the extensions that might be added to the

developed algorithm and our conclusions from doing this project.

9.1 Future Work

To make stabilization faster, the idea of local stabilization can be employed. Since we

use the randomized geometric graphs, the geographical distribution of the nodes

reduces interdependence among different network portions. Hence certain portions

of the networks can get stabilized before other network portions. In the current

setting, stabilization time is the number of rounds after all the nodes in the network

has a stabilized view of the network. Since certain applications might require the

network to be stabilized for them to work properly. In such instance, nodes would be

able to declare local stabilization and continue to start such applications.

While currently there is a uniform bandwidth allocation to all the nodes, the

algorithm can be made communication adaptive. Thus, a larger bandwidth may be

allocated to the nodes which are required to participate in the communication more

often depending on the needs of the underlying application.

The communication adaptation can be taken on the same lines as in [6]. Nodes can

elect a local leader. This leader would then allocate bandwidth depending upon the

communication requirements of the nodes.

9.2 Conclusions

We carry out the empirical evaluation of the algorithm using the TOSSIM simulator.

We develop a media access algorithm that does not use the carrier sensing and back

off behaviour on the media access layer and instead uses the receiver side collision

detection. We observe that; there is a rapid stabilization of the network; the networks

can be of varying sizes and random geometries, a large number of nodes are able to

broadcast even during the stabilization, The throughput of the network is nearly

hundred percent and there is only a small overhead after stabilization. Hence, after

the empirical evaluation carried out using a large number of simulations as described

in chapter 8, we contend that the distributed algorithm works using receiver-side

collision detection.

Stabilization time is O ((n + log n)) rounds. This stabilization time is calculated by

running simulation for a network of as large as thirty five nodes. log n is the

dominating factor in experiments; this means that the algorithm is scalable to larger

network sizes.

The algorithm is tolerant towards overheads. The algorithm performs well even

under saturated situations where datagram messages are always available. Given

such starting configuration, the nodes undergo quick stabilization. Then after the

 41

stabilization, the overhead is smaller under such situations as compared to similar

algorithms such as [6] and [8].

 42

Appendix A

Collision Model

// CollisionModel.nc

#include ’’coll.h’’

interface CollisionModel{

command void set_collision(collision_info_t** headRef, int se, int r,
int sl, bool v, sim_time_t t);

event void collHappened(collision_info_t* c);
}

//**
//**

// coll.h

#ifndef COLL_H_INCLUDED
#define COLL_H_INCLUDED

#include <sim_gain.h>

struct collision_info {
int sender;
int receiver;
int slot;
bool collision_flag;
sim_time_t coll_time;
struct collision_info* next;

};

typedef struct collision_info collision_info_t;
sim_event_t* allocate_collision_event(sim_time_t t, collision_info_t* c);
collision_info_t* allocate_coll_info();
void sim_gain_collision_handle(sim_event_t* evt);

/**
Parts of UscGainIntereferenceModelC.nc which implements CollisionModel.nc

**/

 43

// Setting the collision parameters
command void CModel.set_collision(collision_info_t** headRef, int sender, int
receiver, int slot, bool val, sim_time_t tm)
{

collision_info_t* newCollision =
collision_info_t*)malloc(sizeof(collision_info_t));
newCollision->sender = sender;
newCollision->receiver = receiver;
newCollision->slot = slot;
newCollision->collision_flag = val;
newCollision->coll_time = tm;
newCollision->next = *headRef;
*headRef = newCollision;

}

// the collision handler
void sim_gain_collision_handle(sim_event_t* evt){

int id;
collision_info_t* temp = (collision_info_t*)evt->data;
id = evt->mote;
signal CModel.collHappened(temp);

}

// allocating the collision event.
sim_event_t* allocate_collision_event(int node_id, sim_time_t t){

sim_event_t* evt = (sim_event_t*)malloc(sizeof(sim_event_t));
evt->mote = node_id;
evt->time = t;
evt->handle = sim_gain_collision_handle;
evt->cleanup = sim_queue_cleanup_event;
evt->cancelled = 0;
evt->force = 1;
evt->data = head;

return evt;

}

/**
Part of TestC.nc which uses CollisionModel.nc
**/

event void CModel.collHappened(collision_info_t* temp){

uint16_t slot;
uint32_t cT;
if(temp==NULL)

printf("\nEND OF LIST\n");
else

slot = temp->slot;
cT = call Timer0.getNow();
collVar++;
updateArray(0, slot, 2);
prm.e = TRUE;

}

 44

Bibliography

[1]Bhaskar Krishnamachari. Networking Wireless Sensors

[2] Linux Wireless LAN Howto. Available:

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.mac.html

[3] HyungJune Lee, Alberto Cerpa, Philip Levis. Improving Wireless Simulation

through Noise Modeling

[4] Kurtis Kredo, Prasant Mohapatra. Medium Access Control in Wireless Sensor

Networks

[5] Dongjin Son, Bhaskar Krishnamachari, John Heidemann. Experimental Study of

Concurrent Transmission in Wireless Sensor Networks

[6] Ted Herman, Sebastien Tixeuil. A Distributed TDMA Slot Assignment Algorithm for

Wireless Sensor Networks

[7] Murat Demirbas, Srivats Balachandran. RobCast: A Singlehop Reliable Broadcast

Protocol for Wireless Sensor Networks.

[8] Gregory Chockler, Murat Demirbas and Seth Gilbert. Consensus and Collision

Detectors in Wireless Ad Hoc Networks

[9] Khaled A. Arisha, Moustafa A. Youssef* and Mohamed F. Younis*. Energy-Aware

TDMA-Based MAC for Sensor Networks

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Wireless.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.mac.html

