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ABSTRACT
Vehicular system designers often use simulation tools in or-
der to prove vehicular systems. The computational complex-
ity of detailed simulations limits the scale of such testings.
Therefore, it is often the case that the first full-scale demon-
strations of new concepts for vehicular systems are done in
proving grounds and testing tracks.

We propose Gulliver as a platform for studying vehicular
systems on a large scale open source test-bed of low cost
miniature vehicles that use wireless communication and are
equipped with onboard sensors. Our approach provides a
simpler yet detailed investigation of vehicular systems. This
paper presents the platform with its design and a set of ap-
plications that could be demonstrated by Gulliver. Gulliver
allows the design of vehicular systems to focus on the cyber-
physical aspects of the studied problems.

We expect that Gulliver will allow affordability and flexi-
bility for a wider range of researchers to directly contribute
to the development of future vehicular systems, such as
greener transportation initiatives and zero fatality objec-
tives.

Categories and Subject Descriptors
J.7 [Computers In Other Systems]: Real time

General Terms
Experimentation
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1. INTRODUCTION
Ultimately, vehicular systems are expected to gear vehi-

cles with autopilot capabilities, improve safety, reduce en-
ergy consumption, lessen CO2 omission and simplify the
control of traffic congestion. This dramatic change will be
the result of advances in driver assistant mechanisms for
navigating, congestion control, steering, speed controlling,
lane changing, avoiding obstacles to name a few (see Fig-
ure 1). Moreover, other technologies, such as driverless cars
and vehicle platoons, might also appear on the road; giving
way to future vehicle systems that will be controlled by dif-
ferent types of drivers, i.e., driverless, mechanism assisted
drivers and nonassisted ones. We propose to study vehicu-
lar systems of low cost miniature vehicles that use wireless
communication on a large scale open source test-bed. The
test-bed may be geared with onboard sensors, such as cam-
eras, laser, radar, speed sensors, etc. Our approach provides
a simpler yet detailed investigation of vehicular systems that
will be affordable by a wider range of developers than avail-
able today.

Figure 1: Advanced driver assistance mechanisms
and their environment

Vehicular system designers often use simulation tools [5,
14, 17, 20, 30] to prove new concepts. Simulation tools allow
extensive testing of software components, say, by using fault
injection methods [1, 13]. Simulators can also deal with com-
plex mathematical modeling of physical objects (e.g., vehi-
cles) and their controlling computer systems (see Figure 2).
The computational complexity of detailed simulations of fu-
ture vehicular systems limits the scale of testing and often
does not allow extensive system testing for a large number
of vehicles. Additional limitations include the absence of hu-
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Figure 2: Traditional development environment and
the Gulliver toolkit are depicted above, and respec-
tively, below the dashed line. The traditional de-
velopment environment allows the vehicular system
designer to simulate and visualize components of the
vehicular system before installing it and testing it
in proving grounds and testing tracks. The Gulliver
toolkit allows the prototype experimenter to use the
test-bed for setting up an experiment in which the
vehicular system is tested over a miniature vehicle
platform. The experiment is logged for later execu-
tion visualization by the simulator.

mans in the loop or the assumption that computer programs
can always predict driver reactions.

Due to these limitations, the first demonstrations of new
vehicular systems are centered around proving grounds and
testing tracks. DemonstRator [24] is an example of a plat-
form that provides a prototype for vehicular systems. It
considers full-scale vehicles, which require isolated testing
grounds and considerable protections against vehicle crash-
ing. Proving ground facilities are not affordably accessible to
a wide range of universities, public research and engineering
institutes. By reducing the demonstration costs, we could
allow a greater engineering force to participate in the efforts
for greener transportation systems with near zero fatalities.

1.1 Proposed toolkit
Recent advances in the field of mobile robots allow the ad

hoc deployment of a fleet of miniature vehicle that are con-
trolled remotely by human drivers or computer programs.
These affordable miniature vehicles can greatly simplify the
development of the cyber-physical [18] layer of new vehicular
systems (see Figure 2). Namely, a prototype experimenter
can test the vehicle system that is installed on the miniature
vehicle platform. These tests can include onboard fault in-
jection. Moreover, the experiment execution can be logged
and later replayed and visualized in the simulator.

In order to bring the prototyping of cyber-physical layer
into the practical realm, one can take a range of approaches
for emulating and substituting relevant system elements.
For example, the human driver can be included in the loop
of the miniature vehicle control via an onboard or remote
computation, hand-held wireless devices, or driver simula-
tion cockpits with multi-angle video streaming in addition
to what looks like, sounds like and feels like emulation of the
vehicles and their environment.

This paper focuses on the design of the miniature vehicle
platform that we name Gulliver. Gulliver’s greatest strength
lies in its ability to prototype cyber-physical technologies for
vehicular systems. We assume that problems related to the
interaction among vehicles on the road can be solved before
the prototyping phase (see Figure 1). Thus, we can follow
the approach in which miniature vehicles can represent full-
scale vehicles in the test-bed.

It is up to the prototype experimenter to decide which rel-
evant parts of the embedded system should be included on-
board of the vehicle. For example, one of the key difficulties
is to understand the impact of vehicle-to-vehicle communica-
tion, such as the IEEE 802.11p standard, which is inherently
subject to interferences and disruption. Vehicular systems
have safety critical requirements that must mitigate uncer-
tainties, such as the communication related issues. Gulliver
can facilitate the study of vehicle-to-vehicle communication
at the MAC layer and above, e.g., dynamic bandwidth allo-
cation, pulse synchronization, contention control and packet
routing, to name a few. We note that the physical layer
can also be studied in Gulliver. However, the platform de-
signer should take into account signal shadowing and fading.
E.g., the designer can include signal blocking objects in the
test-bed area and onboard the miniature vehicle.

Our approach enables the vehicular systems designer to
focus on the cyber-physical aspects of the problem. More-
over, by including the human driver in the loop, many of the
designer assumptions about the cyber-physical system and
the human driver can be validated. Thus, the Gulliver test-
bed is a multifaceted toolkit for testing, prototyping and
demonstrating new vehicular systems. The test-bed feed-
back capabilities and human interaction units are imperative
debugging tools for vehicular system developers.

1.2 Related work
Wireless ad hoc networks are often simulated before their

installation, e.g., TOSSIM [21], which is TinyOS mote sim-
ulator. Wireless Vehicular Networks (VANETs) are often
simulated by systems that have a wireless ad hoc network
simulator, and a microscopic traffic flow simulator, such as
SUMO (Simulation of Urban MObility) [15]. It provides in-
formation to the vehicles about how they can traverse along
their routes. Similarly, DIVERT (see [8]) is a traffic simula-
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Figure 3: Component diagrams of the Simulator (left) and the Miniature Vehicle Platform (right).

tor that models vehicles’ mobility and their communication.
For the first time, Gulliver extends the use of simulators
and allows testing of new concepts in a test-bed that in-
cludes miniature vehicles. The proposed approach allows
prototyping of vehicular systems in a more practical realm
than computer simulations.

1.3 Our contribution
Gulliver presents a multifaceted toolkit for testing vehic-

ular systems in a practical realm. It lies between computer
simulation and full-scale vehicle models, and as such, it sim-
plifies and reduces the costs of vehicular system prototyp-
ing and development. Gulliver’s greatest strength lies in its
ability to prototype cyber-physical technologies for vehicular
systems. By that, it allows the system designer to focus on
cyber-physical aspects of algorithmic problems in vehicular
systems and their networks.

In addition to presenting Gulliver as a concept, this paper
outlines the design of its key components. We explain how
the miniature vehicles can follow a strategy that allows them
to safely traverse the test-bed floor along their Route Plan
(see Section 3).

We report on our preliminary implementation efforts. We
explain how the prototype experimenter can assure that
the miniature vehicles can drive along the lane markings.
We also explore additional technological challenges (see Sec-
tion 4).

Further, vehicular systems will enable vehicular interac-
tion, promote cooperation and will be the first cyber-physical
systems to reach the scale of millions of units. Currently,
no safety-critical system comes close to this scale. Gulliver
design is the first to facilitate the detailed investigation of
the vehicle interaction and emerging patterns among hun-
dreds and even thousands of units of a cyber-physical sys-
tem. These investigations are imperative for the design and
development of advanced driver assistance mechanisms, such
as virtual traffic lights, vehicle platooning, coordinated con-
tention controls, and coordinated lane changes, to name a
few.

2. PRELIMINARIES
We list the assumptions, definitions and notations that

are used in this paper.

2.1 Road Map, Route Plan and Lane Marking
We consider drivers of miniature vehicles that plan their

way using road maps, which the prototype experimenter pro-
vides. The driver’s route plan sets the course of travel and
assists with the vehicle navigation, e.g., “on the next inter-
section, turn left!”

The roads include segments that have the index set S =
{1, 2, . . . n}. Each segment, si ∈ {sk}k∈S , has at least
one entrance or exit. We define in(si), out(si) ⊆ S as the
sets that include si’s entrances, and respectively, exits. We
define road intersections as segments that have more than
one entrance. A road map is a directed graph G(S, E), in
which S = {sk}k∈S is the set of segments (vertices) and E =
{〈su, sw〉 ∈ S×S : in(sw) = u∧out(su) = w} (edges), where
su is the segment from which the vehicles can enter segment
sw. We note that the prototype experimenter can show the
route plan to the driver by presenting a directed path that
leads from source to destination on the graph G(S, E). In
our pseudo-code, we use the array RouteP lanvi [] for listing
the segments that vehicle vi should traverse from source,
RouteP lanvi [s], to destination, RouteP lanvi [d], where s =
0 and d = sizeof(RouteP lanvi) − 1.

Given a road map, G(S, E), we require the prototype ex-
perimenter to define how each segment, si ∈ S, is situated
on the test-bed. Lane markings are used to align vehicles
on the road, i.e., the driver should steer the vehicle between
two parallel dashed lines that are marked on the test-bed
floor. We also consider virtual lane marking. Namely, the
miniature vehicle could aim at driving along a line in the
Euclidean plane that is not marked on the test-bed floor.

We assume that each segment, si, has an index set, Lsi =
{1, 2, . . . k} that represents lanes. For each lane, ` ∈ Lsi , we
define in(`), out(`) ⊆ S as `’s entry, and respectively, exit
segments in si, i.e., in(`) ∈ in(si) and out(`) ∈ out(si). For
the case of in(si) = ∅ or out(si) = ∅, we define in(`) = si,
and respectively, out(`) = si. Let sf ∈ in(si) and st ∈



out(si). We define FTsi(sf , st) = {` ∈ Lsi : in(`) = sf ∧
out(`) = st} as the index set of all lanes in segment si that
go from sf to st. Moreover, we define OrderedLanessi =
{`left, . . . , `right ∈ Lsi} is an index list of lanes in segment si
that is ordered from left most `left to the right most `right.

The vehicle may access information that is local to its
current segment, CurrentSegmentvi , and its lanes, ` ∈ Lsi .
Namely, in(si), out(si), in(`) and out(`). When the vehicle
current lane is CurrentLane, it can also query information
about other vehicles in its proximity and nearby lanes. We
define the set V as the set of system objects (vehicles, pedes-
trians, etc) and V (vi) ⊆ V as the set of object that vehicle
vi ∈ V queries about. This information includes vj ∈ V (vi)
current location, locationvj . Moreover, vehicle vi can know
if object (vehicle) vj ∈ V (vi) is on its current trajectory. We
require that V (vi) includes all the objects that are on the
line of sight with vi, i.e., any object, vj , for which there is
a straight line of bounded length to vi that does not cross
any object between them.

2.2 Maneuver control
We assume that the miniature vehicles are able to perform

basic maneuvers, such as keeping their lanes (KeepLane)
and changing their lanes (RightChangeLane and LeftCha-
ngeLane), see [6]. The pseudo-code uses the primitive Mane-
uverControl(ManeuverCommand) for issuing maneuver co-
mmands. For example, the vehicle will change its lane to the
right one when using the command RightChangeLane, and
will instruct the maneuver control to keep the current lane
when using the KeepLane. The maneuver command Stop
halts the vehicle.

3. DESIGN OUTLINE
The test-bed includes two subsystems: a Simulator and

a Miniature Vehicle Platform (see Figure 2). Both these
subsystems share several components. We first describe the
two subsystems before looking into the main component,
Motion Manager.

3.1 Simulator
The Simulator subsystem allows the vehicular system de-

signer to develop and test new components referred as the
Base Station, and the Miniature Vehicle (see Figure 3 left).

The Base Station includes the Experimenter Control that
can send to the Motion Manager the key platform command,
Ready, Go and Terminate, for initializing, starting, and re-
spectively, terminating the experiments. The Base Station
also includes the Experiment Manager, which sends to the
Motion Manager all the information that is required for mov-
ing the miniature vehicles in the platform according to the
experiment plan, i.e., Road Map, Route Plan and Virtual
Lane Marking. The Base Station monitors and controls the
experiment execution by periodically receiving the vehicle’s
positioning information.

The Miniature Vehicle controls the vehicle motion after re-
ceiving data from the onboard sensors and commands from
the Base Station. The Motion Manager is the unit that con-
trols the vehicle by issuing the commands Move and Halt
for steering, and respectively, stopping the vehicle. These
two commands are generated by the ManeuverControl()
primitive and allow each vehicle to take a sequence of ma-
neuvers from source to destination along the traveling route.

3.2 Miniature Vehicle Platform
This subsystem allows prototype demonstration and test-

ing of vehicular systems together with its components. Dur-
ing such experiments, the system logs its states for later
diagnostics and playback in the simulator (see Figure 2).
The logging information can be either stored by the vehicle
processing units or transmitted on the fly. Future extensions
of our design can also consider onboard fault injections.

In addition, one can validate the designer assumptions re-
garding the behavior of the human driver. Our implementa-
tion considers hand-held wireless devices (see Figure 3 right).
Future extensions can use driver cockpits with multi-angle
video streaming in addition to what looks like, sounds like
and feels like emulation of the vehicles and their environ-
ment.

3.3 Motion Manager
This key component is mounted on the miniature vehi-

cle and is in charge of receiving sensory information, which
includes the vehicle location, and deciding which maneu-
ver the vehicle should take. The maneuvers are controlled
by the ManeuverControl(ManeuverCommand) primitive
(see Section 2). It is up to the Maneuver Strategy to de-
cide on which Command each miniature vehicle should take.
The Maneuver Strategy must make sure that the miniature
vehicles do not crash when traveling to their destinations. In
order to do that, we use two mechanisms for crash avoidance
and traffic light signaling. Next, we present these mecha-
nisms before presenting the Maneuver Strategy itself.
Crash avoidance mechanisms for miniature vehicles.
Gulliver considers miniature vehicles that are remotely con-
trolled either by computers or human drivers. We assume
the existence of crash avoidance mechanism that can assist
in keeping people and equipment safe.

We consider a crash avoidance mechanism for vehicle vi
that warns the vehicle when it gets too close to objects that
reside on its trajectory. Algorithm 1 refers to the function
CrashAvoidance(). The function returns Green as long as
vi keeps a safe distance from any vehicle on vi’s trajectory.
When the safe distance is violated, the function returns Red.
See [23] for more details about CrashAvoidance().
Traffic light mechanisms for miniature vehicles.

Traffic lights assure that at any time, no two vehicles from
conflicting directions may enter the intersection, see [2]. In
the proposed platform, traffic lights are important for as-
suring that the miniature vehicles do not crash when enter-
ing intersections. We assume the existence of traffic light
mechanisms that periodically broadcast their signal state
to all arriving vehicles. The arriving vehicle, vi, caches
the state encoded by the traffic light beacons. Vehicle vi
can query the traffic light state by executing the function
TrafficLight(CurrentSegmentvi).

3.3.1 Maneuver Strategy
This strategy allows the miniature vehicle to safely tra-

verse the test-bed floor along the Route Plan. We present
the maneuver strategy in Algorithm 1. The algorithm con-
sists of a single action, which we assume to be fired period-
ically.

Before and after taking this update action, the algorithm
tests whether or not vehicle vi satisfies safety conditions,
such as, crash avoidance requirements, the traffic light state,
and the instructions of the prototype experimenter.



The action starts by testing that the vehicle has not reached
its destination and that it follows its route plan correctly.
Then, the algorithm deterministically selects a lane that
leads vehicle vi to its destination. Different cases of lane
selections are considered: (1) No lane in the current seg-
ment can lead the vehicle to the next correct segment, (2)
The current lane is the correct one, and (3) Vehicle vi is re-
quired to perform a lane change maneuver in order to reach
its destination. The latter case requires the algorithm to
test safety conditions that is concerned with the distance
between vi and any other object, vj , on its current lane or
the lane to which it is moving into.

4. IMPLEMENTATION CHALLENGES
Recent advances in the field of mobile robots allow the ad

hoc construction of affordable test-beds at your own parking
lot. In fact, converting RF miniature vehicles to be a WiFi-
Bot [25] controlled is a popular student project. We explain
how the miniature vehicles can follow the lane markings, and
we explore key technological challenges.

4.1 Following the lane marking
The miniature vehicles follow road markings in order to

keep their lanes. All vehicle maneuvers, such as intersection
crossing and lane changing, should follow the shortest pos-
sible path between the vehicle current and target positions,
while keeping a safe distance from all other vehicles. Given
the fact that we wish to use inexpensive miniature vehicles
that move quickly in the test-bed, we have to endure a de-
gree of unpredictability in the vehicle motion. Namely, dif-
ferent miniature vehicles respond differently to the driver’s
commands and the same miniature vehicle may behave dif-
ferently under very similar conditions.

One challenge that the prototype experimenter faces is
how miniature vehicles can drive along the lane markings.
For example, the steering of the miniature vehicles might not
allow driving along very sharp curves even at their slowest
speed.

The implementation details that this paper considers are
mainly focused on road designs that allow the maneuver
strategies to follow the (virtual) road marking. The detailed
report on our preliminary implementation efforts appears
in [23]. We explain how the vehicles can follow the lane
marking with the aid of mechanisms for lane detection and
tracking [6, 22, 29].

4.2 Technological challenges
It is imperative to assure that the miniature vehicles do

not crash due to the possible failure of system components,
such as (clock) synchronization, communication and local-
ization. Unlike the synchronization, communication and lo-
calization requirements in the case of fully deployed vehic-
ular systems, some of the needed autonomic characteristics
can be simplified in the case of Gulliver. Therefore, we ex-
plain the implementation of these primitives using a coordi-
nating base-station (and consider that as the default imple-
mentation) before considering the possible extensions that
have autonomous characteristics.

4.2.1 Clock synchronization
Synchronization mechanisms can simplify the design of

the communication primitives and applications for vehicular
systems. We base our implementation on the self-stabilizing

and autonomous design of Herman and Zhang [11]. Their de-
sign is based on the converge-to-the-max technique in which
all mobile motes adjust their internal clocks to the maximal
time value that they have recently seen.

4.2.2 Communications
Vehicle to vehicle (V2V) communications are carried out

via message passing (radio transmissions). Using these mes-
sages, the vehicles coordinate their “world” perception and
decide on their joint actions. Existing ad hoc communica-
tion mechanisms, such as CSMA/CA, can implement V2V
communication and facilitate clock synchronization mecha-
nisms [16, 26]. Greater efficiency can be achieved when using
a coordinating base station [10]. Recent developments con-
sider media access control with higher predictability [19, 28].
This is another way to go toward an autonomous implemen-
tation.

4.2.3 Miniature vehicle localization
Positioning systems, such as GPS [12], have a wide range

of applications in vehicular systems. Gulliver uses these po-
sitioning systems to inform the vehicles about the location of
platform entities, like for example vehicles, road segments,
intersections, etc.

We consider a design of the default implementation in
which each vehicle sends beacons to peripheral receivers (an-
chors) that have known locations. The anchors then report
the received beacons to a coordinating base station in which
a localization algorithm [such as 4] is used for extracting
location information before sending this information to the
moving miniature vehicles. The above centralistic design al-
lows us to use powerful processing at the coordinating base-
station. As for future extensions, we plan to consider a more
decentralized design that can lead towards scalable and au-
tonomous implementation.

5. DISCUSSION
After summarizing the paper, we discuss some of the pos-

sible applications that can be studied by Gulliver, before
drawing our conclusions.

5.1 Summary
We presented a design that allows one to conduct a variety

of experiments in areas such as vehicle safety (e.g., crash pre-
vention), energy (e.g., multi-lane vehicle platoon), to name
a few. This inexpensive test-bed facilitates deployment of
testing procedures. For example, protections against vehi-
cle crashing of a miniature vehicle (500 g, 50 cm and 200
to 2k Euro) are simpler than a full-scale vehicle (1 ton, 5 m
and 100k Euro).

Gulliver lies between computer simulation and full-scale
vehicle models, and as such, it simplifies and reduces the
costs of vehicular system prototyping and development. Note
that the cost of each miniature vehicular unit is at least
one or two order of magnitude less than a full-scale vehic-
ular prototyping unit. By simplifying prototype develop-
ment and demonstration processes, Gulliver opens up new
research opportunities and promotes cross-fertilization be-
tween academic and industrial research.

5.2 Possible applications
One of the important issues that future vehicular systems

will deal with is accident prevention. In [9], the authors



Algorithm 1: Maneuver Strategy for Vehicle vi

Input V (vi): Set of vehicles that are on vi’s line of sight;
Input RoutePlan[]: Array of segments that defines vi’s route plan;
Input CurrentSegment: ID of vi’s current segment;
Input CurrentLane: ID of vi’s current lane;
Input locationvi : Current geographical location of vehicle vi;
Side effects ManeuverControl(ManeuverCommand): Maneuver control primitive. The commands KeepLane, Stop,

RightChangeLane, and LeftChangeLane are used for keeping the current lane, stopping, changing to lane
to the right, or respectively, to the left;

External TrafficLight(): Returns a set of 〈Segment, Signal〉, where Segment ∈ in(CurrentSegment) is an incoming
segment, and Signal ∈ {Red,Orange,Green} is a traffic light signal;

External CrashAvoidance(): Red and Green are the two Crash Avoidance signals;
External ExperimenterControl(): Ready, Go and Terminate are the three External Control commands;
Local Cursor: Iterator for vi’s RouteP lan. Initialized to the first element, 0;
Local TargetLane: When vi is changing lane, this is the ID of the lane which vi will use;
Local distance(locA, locB): Euclidean distance between locations locA and locB;
Constant SafeDistance: Minimum required distance between any two vehicles that are moving in different lanes;
Alias PreviousSegment = in(CurrentLane), NextSegment = RoutePlan[Cursor+1]: IDs of previous, and respectively,

next segments that for vi to traverse;

Action : Maneuver Strategy;

/* Before moving, vi checks if the experiment should be carried on, there is no crashing danger, and, in

case vi is approaching an intersection, the traffic light signals green */

Precondition : ((ExperimenterControl() = Go) ∧ (CrashAvoidance() = Green)) ∧ ((in(CurrentSegment) =
∅) ∨ (〈PreviousSegment,Green〉 ∈ TrafficLight(CurrentSegment)));

/* Verify that the crashing avoidance policy was kept */

Postcondition : CrashAvoidance() = Green;

begin
if Cursor < sizeof(RouteP lan)− 1 then

if CurrentSegment = RouteP lan[Cursor] then
Candidates← arg min|CurrentLane−`|({` ∈ FTCurrentSegment(PreviousSegment,NextSegment)} ∪ {∞}) ;
/* Select the closest lanes that leads to the next segment, or ∞ if there are no such lanes

*/

case Candidates = {∞}: ManeuverControl(Stop) ; /* Error: Vehicle vi is moving on the wrong

segment, because there is no lane that leads to the next segment */

case Candidates = {CurrentLane}: ManeuverControl(KeepLane) ; /* Current lane leads to the next

segment */

otherwise if ∃CandidateLane ∈ Candidates : CurrentLane < TargetLane∧
LaneChangeCrashAvoidance(CurrentLane, TargetLane) = Green then ; /* Move to a lane on the

right or the left, after testing the safety conditions */

ManeuverControl(RightChangeLane) ;
else

if LaneChangeCrashAvoidance(CurrentLane, TargetLane) = Green then
ManeuverControl(LeftChangeLane)

else if CurrentSegment = NextSegment then
Cursor ← Cursor + 1 ; /* Vehicle vi traversed one segment and reached next segment of the route

plan */

else ManeuverControl(Stop) ; /* Error: Vehicle vi is moving on the wrong segment */

ManeuverControl(Stop) ; /* Vehicle reached the route’s end */

Function LaneChangeCrashAvoidance(CurrentLane, TargetLane)
begin

if
{vj ∈ V (vi):CurrentLanevj ∈ {CurrentLanevi , TargetLane} ∧ distance(locationvj , locationvi)<SafeDistance}=∅
then return Green; /* Change lane only when there is no vehicle on vi’s trajectory */

return Red



describe a self-organizing virtual traffic light (VTL). VTLs
allow the ad hoc deployment of traffic lights in every road in-
tersection. The authors of [9] use leader election mechanisms
to allow a single vehicle to serve as the VTL server. It is up
to this server to broadcast the VTL’s status to arriving vehi-
cles. These messages are then displayed to the drivers. The
leader election criterion includes proximity considerations
and requires agreement. Their concept is demonstrated via
DIVERT [8] with sampled traffic information.

A more robust approach for VTL construction is presented
in [3, 7, 27] using Virtual Node Layer (VNLayer). VNLayer
is a programming abstraction in order to have virtual nodes
emulated by physical nodes. They use the VNLayer for emu-
lating the virtual traffic light. The implementation of traffic
light in [3, 27] is deployed via a small set of HP iPAQ hand-
held computers that are mounted on slow moving robots.

Gulliver can examine advanced accident prevention ser-
vices for future vehicular systems that are based on VN-
Layer, such as VTL and monitoring lane changes. Gul-
liver can demonstrate such concepts via extensive testing
in a platform that has many miniature vehicles and has a
logging-replaying mechanism, rather by simulation only or
a small set of traffic scenarios.

5.3 Conclusions
The use of automotive technology can increase traffic throug-

hput by improving vehicle density on roads. Safety require-
ments can be met by monitoring drivers’ behaviors with-
out necessarily building new road infrastructures. Thus far,
many of the future vehicular systems are not allowed to oper-
ate on public roads due to the collision risks. Moreover, the
lack of knowledge about the possible emerging patterns in
large scale deployment requires additional testing. Gulliver
provides an open source platform for demonstrating cyber-
physical aspects of vehicular systems, making sure that their
safety requirements are met and that their emerging pat-
terns assure high traffic throughput.

Nowadays, there are 750 million motor vehicles in the
world and the numbers are doubling every 30 years. Vehic-
ular systems will enable vehicular interaction, cooperation
and will be the first cyber-physical systems to reach the
scale of millions of units. Currently, no safety-critical sys-
tem comes close to this scale. Gulliver design is the first to
facilitate the detailed investigation of the vehicle interaction
and emerging patterns among hundreds and even thousands
of units of a cyber-physical system.
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