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ABSTRACT
Systems of selfish-computers, such as the Internet, are sub-
ject to transient faults due to hardware/software temporal
malfunctions; just as the society is subjected to human mis-
takes due to a moment of weakness. Game theory uses
punishment for deterring improper behavior. Due to faults,
selfish-computers may punish well-behaved ones. This is one
of the key motivations for forgiveness that follows any effec-
tive and credible punishment. Therefore, unplanned pun-
ishments must be proven to have ceased in order to avoid
infinite cycles of unsynchronized behavior of “tit for tat”.

We investigate another aspect of selfish-computer systems.
We consider the possibility of subsystem takeover, say, by
the use of hostile malware. The takeover may lead to joint
deviations coordinated by an arbitrary selfish-computer that
controls an unknown group of subordinate computers.

We present strategies that deter the coordinator (and its
subordinates) from deviating in infinitely repeated games.
We construct deterministic and finite automata that imple-
ment these strategies with optimal complexity. Moreover,
we prove that all unplanned punishments eventually cease
by showing that the automata can recover from transient
faults.
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1. INTRODUCTION
Systems of selfish-computers, such as the Internet, intro-

duce new challenges in distributed computing, game theory,
and computational complexity. They exhibit both cooper-
ative and uncooperative interactions. 1 While cooperative
and uncooperative interactions have been extensively stud-
ied as the two extremes, the study of joint deviations in
uncooperative repeated games has been neglected so far. In
systems of selfish-computers (where out-of-band communi-
cation is possible), it is unlikely that selfish-computers can-
not conspire. Therefore, it is imperative to consider joint
deviations. New models of distributed systems and uncoop-
erative games are needed to consider joint deviations. This
paper presents one such new model of subordinates’ devia-
tions in infinitely repeated games. We find a simple and op-
timal strategy for deterring subordinates’ deviations. More-
over, the strategy allows selfish-computers to recover from
involuntary misbehaver and unplanned punishments.

Subsystem takeovers
Stability and self-enforcement are two of the most attrac-
tive properties that equilibria offer. We consider equilibrium
of strategies that autonomous agents have devised, and all
possible joint deviations by a group of at most D devia-
tors. Stability and self-enforcement are achieved when the
autonomous agents deter the deviation; if any one of all pos-
sible joint deviations happens, then the deviating group will
lose payoff, compared to what they would get by obeying
the equilibrium strategy.

Many noncooperative games follow the assumption of uni-
lateral deviation (e.g., Nash equilibrium in noncooperative
games [34]). In practice, it is unlikely that agents cannot
conspire and coordinate joint deviations. Alternatively, joint
deviations are considered in cooperative games as a compe-
tition among coalitions of agents, rather than among indi-
vidual agents (e.g., strong Nash equilibrium in cooperative
games [6, 38]). Unfortunately, cooperative games enforce
cooperative behavior among agents using mechanisms that
do not exist in selfish-computer systems.

We study the crossover between noncooperative and coop-

1Cooperative interactions refers to scenarios in which con-
tracts among selfish-computers are usually held on to and
can be made legally binding; uncooperative interactions
refers to scenarios in which there is mistrust and no external
enforcement mechanisms are available.



erative games. We consider noncooperative games in which
every joint deviation is coordinated by an arbitrary agent
– the coordinator. The coordinator selects the actions of
its subordinates, and has no control over the autonomous
agents. The coordinator and autonomous agents maximize
their individual payoffs by a deliberate and optimized se-
lection of actions. The autonomous agents cannot enforce
coordinated behavior, and have no a priori knowledge about
the identities of the coordinator and its subordinates. Stabil-
ity and self-enforcement are achieved when the autonomous
agents deter the coordinator (and its subordinates) from de-
viating.

Subsystem takeovers can model scenarios in which users
abuse their access privileges to remote machines. (Such priv-
ileges might be gained by hostile malware.) The abuser (i.e.,
the coordinator) deprives the individual benefit of an arbi-
trary subset of agents (i.e., the remote machines). We as-
sume that the coordinator does not compensate its subordi-
nates for their losses. Therefore, the notion of subordinates’
deviation should be modeled by games that have no side
payments or transferable utilities (similar to the definitions
in [7]). Hence, neither the sum nor the maximum of the
deviators’ payoffs should be considered (our approach is dif-
ferent than [29]).

Corollary 1 (Lemma 1 of Section 4).
Autonomous and selfish agents can deter joint devia-
tions of the subordinate groups using deterministic and
finite automata.

Complexity issues of games with subsystem
takeovers
Computational game theory has several ways of measuring
complexity (see [35]). The two most related to games with
subordinates’ deviations are:
◦ Costs of finding strategies The computational com-
plexity of a game model describes the asymptotic difficulty
of finding a solution as the game grows arbitrarily. We give
the shared responsibility game as an example for which it is
possible to efficiently find strategies that deter subordinates’
deviations. Unfortunately, this is not the general case; find-
ing strategies that deter joint deviations is at least as hard
as finding a Nash equilibrium, which is known to also be
computationally intractable for infinitely repeated games,
see [19, 13].
◦ Costs of implementing strategies What is the mini-
mal amount of memory required for implementing a given
strategy? Kalai and Stanford [30] answer this question in
the context of finite-state machines, and show that it is the
size of the smallest automaton that can implement the strat-
egy. 2 The difficulty that Corollary 2 raises is that selfish-
computers that try to deter subordinates’ deviations may
exhaust their resources.

Corollary 2 (Lemma 2 of Section 5). Strategies
for deterring subordinates’ deviations have the complexity
of Θ(D

(
n
D

)
), where n is the number of agents, and D is an

upper bound on the size of the subordinate group.

Tolerating transient faults
When designing a distributed system of selfish-computers,
it is unsuitable to assume that failures never occur (see [23,

2The size of an automaton is the cardinality of its state set.

22, 24]). Most of the existing literature on repeated games
considers agents that have identical views on the history of
actions. In practice, it is unlikely that all selfish-computers
never fail to observe an action in an infinite system run.
Once a single selfish-computer misinterprets an action, the
outcome of the game cannot be predicted by the current
theory.

Transient faults are regarded as faults that temporarily
violate the assumptions made by the system designer about
the game model and the system settings. For example, the
system designer may assume the existence of a constant up-
per bound, D, on the size of the subordinate group. In this
case, a transient fault could be a joint deviation of more
than D agents. (Recall that Corollary 2 implies a possible
failure in allocating sufficient memory as D grows.) Actions
that some agents misinterpret are transient faults as well.
Thus, a transient fault is defined as an arbitrary violation
of the designer’s assumptions for a finite period. Transient
faults imply an arbitrary starting state after the system has
returned to obey the designer’s assumptions for an infinitely
long period.

Self-stabilization
Self-stabilizing systems [20, 21] can recover after the oc-
currence of transient faults. These systems are designed
to automatically regain their consistency from any starting
state of the automaton. The arbitrary state may be the
result of violating the assumptions about the game model
or the system settings. The correctness of a self-stabilizing
system is demonstrated by considering every sequence of
actions that follows the last transient fault and is, there-
fore, proved assuming an arbitrary starting state of the au-
tomaton. Corollary 3 implies that there are self-stabilizing
systems of selfish-computers that deter subordinates’ devia-
tions.

Corollary 3 (Lemma 3 of Section 6). Self-
stabilizing automata can satisfy the assertion of Corollary 1.

Our contribution
We present deterministic self-stabilizing finite automata for
deterring subsystem takeovers. We show how to deter sub-
system takeovers in uncooperative games using a simple
strategy that can be implemented by finite automata.
• Costs of games with subsystem takeovers We
analyze the complexity of our strategy and demonstrate a
lower bound that asymptotically matches the costs of our
implementation. We note that prior work, such as [38], does
not explicitly bound the complexity of their strategies.
• Self-stabilization The automaton is self-stabilizing
and provides a strategy that deals with deviations, transient
faults, and mistakes that are done at a moment of weakness.
After the occurrence of such mistakes, the system punishes
the deviators for a bounded number of periods. Moreover,
after the occurrence of an unexpected combination of devi-
ations (or transient faults), the system is guaranteed to re-
cover within a bounded number of periods. We believe that
requiring a bounded number of periods of punishment and
recovery is essential within the scope of self-stabilization, be-
cause the system can be started with agents being punished
in spite their excellent past behavior.
• Autonomous systems of selfish-computers While
we do not claim to be the first to bridge game theory and



We describe an example of a system with n selfish-computers. We denote by
N = {1, . . . , n} the set of agents; each represents a selfish-computer. Every
agent decides whether to be a Server or a Client. An agent receives a payoff of
−1 for every period in which it decides to be a Server (independently of the
other agents’ choices). The payoff of a Client depends on the decisions of other
agents.
In every period, every Server i, reveals its access list si of agents that can
access its services. Moreover, every Client j, writes a single agent, say i, in
sj (possibly not matching the access list of agent i). Namely, for Client j,
sj = {i} means that j would like to access i as a server Server. In case that i
indeed chooses to be a Server, then Client j can access i if j ∈ si.
Let G = (V, E) be a directed graph that is induced by the access lists. The set
V is the set of agents, N . Let i ∈ N be a Server and j ∈ N be an agent (that
is either a Client or a Server), then (i, j) ∈ E if, and only if, i ∈ sj ∧ j ∈ si.
See the example of the right.
The Client j receives the payoff of +1 (or 0) if the strongly connected compo-
nent that contains j in the induced graph G includes (respectively, does not

include) the majority of agents in N (i.e., more than |N|
2

).

An example of the induced graph

1

2

3

45

Above is an example of the induced di-
rected graph. Servers 1 and 2 (boxes) re-
ceive the payoff of −1 each. Clients 3 and
4 (ellipses) receive the payoff of +1 each.
Client 5 is not connected to a strongly con-
nected component that includes a major-
ity of agents. Therefore, 0 is the payoff of
client 5.

Figure 1: The shared responsibility n-agent game.

fault tolerance, we believe that our work provides an impor-
tant insight to self-stabilizing distributed systems. On one
hand, we consider joint deviations that are harder to deal
with than deviations in which all deviators are rational (as
in [6, 1, 5]) because we assume that not all deviators are ra-
tional. On the other hand, we offer equilibria that are more
credible than known fault tolerant equilibrium because we
consider new realistic system settings of infinitely repeated
games in which not all deviators are faulty (as in [25, 16, 3,
32, 17, 4]). 3

This work facilitates the design of autonomous systems
that are required to deter subsystems takeovers. Subsystem
takeovers can model scenarios in which users abuse their ac-
cess privileges to remote machines. (Such privileges might
be gained by hostile malware.) We show that a simple strat-
egy can deter subsystem takeovers. Moreover, we are the
first to show that the simple strategy guarantees system re-
covery after the occurrence of an unexpected combination
of deviations.

Document structure
We illustrate the problem at hand (Section 2) before we de-
fine subsystem takeovers (Section 3). Then, we explain the
proofs of Corollary 1 (Section 4), Corollary 2 (Section 5),
and Corollary 3 (Section 6). Lastly, we draw our concluding
remarks. Throughout we follow the definitions and nota-
tions of [36] and for the reader’s convenience, the Appendix
presents a glossary.

2. BACKGROUND OF THE PROBLEM
We illustrate basic notions in game theory and elements

of the problem at hand using an example (a more detailed
tutorial appears in [28]).

Our example of a system of selfish-computers considers the
shared responsibility service, which is presented in Figure 1.
We model the service as an uncooperative game among n

3 One may think about a subordinate agent as a faulty one.
The reason is that a subordinate agent does not selfishly
promote its own benefit, because it is controlled by another
selfish (non-faulty) agent, i.e., the coordinator. However,
subordinate agents do not present an arbitrary behavior (as
in [25, 16, 3, 32, 17, 4]).

agents. An agent decides whether it would participate as
a server or as a client. Servers specify their access list; the
list restricts the access of other agents (clients or servers).
Clients benefit the most whenever they can access a majority
of selfish-computers via a server that relays the communica-
tions.

Single stage games
The payoff matrix that considers a 3-agent instance of the
game is presented in Figure 2. The matrix describes the
payoff that agent 1 gets for every possible combination of
actions that the agents may take. We note that the payoff
of any server is less than the payoff of any client (in the
single stage game). Therefore, all agents decide to be clients
and thus receive the payoff of 0. 4 This is Nash equilibrium.

Infinitely repeated games
If the single stage game is repeated infinitely, the agents can
benefit from a sequence of cooperation steps in which the
agents take turns for responsibility. A possible cooperation
sequence is presented in Figure 3(a). In this sequence of
cooperation, every agent is supposed to eventually receive
the average payoff of (|N | − 2)/|N |. 5 In that sense, if all
agents “play along” then (|N | − 2)/|N | is a feasible payoff.
Unfortunately, the selfish agent j might deviate from the
sequence of cooperation. Suppose that j knows that all other
agents would always allow j to access their services. Then
agent j can decide to deviate and be a client whenever it is
the turn of j to be a server.

Punishment
In uncooperative games, all agents must monitor the actions
of agent j, and deter j from deviation by punishment. The
punishment should hold j to the minimal payoff value that
the punishing agent can enforce. In the shared responsibil-

4Starting from any entry of the matrix, consider a sequence
of (unilateral) changes to the agents’ choice of action. Once
every agent was able to change its choice, all agents choose
to be clients.
5In every |N | periods of the cooperative sequence there are
N −1 periods in which agent i ∈ N is a Client (that is served
by others) and a single period in which the payoff of agent
i is −1.
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〈Server, {3}〉 -1 -1 -1 -1 -1
〈Server, {2, 3}〉 -1 -1 -1 -1 -1
〈Client, {2}〉 +1 0 +1 0 0
〈Client, {3}〉 +1 +1 +1 +1 +1

(a) Agent 3: 〈Server, {1}〉 or 〈Server, {1, 2}〉
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〈Server, {2}〉 -1 -1 -1 -1 -1
〈Server, {3}〉 -1 -1 -1 -1 -1
〈Server, {2, 3}〉 -1 -1 -1 -1 -1
〈Client, {2}〉 +1 0 +1 0 0
〈Client, {3}〉 0 0 0 0 0

(b) Agent 3: 〈Server, {2}〉, 〈Client, {1}〉, or 〈Client, {2}〉
Figure 2: The payoff matrices of the shared responsibility game with 3-agents. The headings of tables, columns and rows are
in the form of 〈a, s〉, where a is the action, and s is the access list of agent 1. The matrix is symmetrical and thus the payoffs
of agents 2 and 3 are, in fact, described as well.

ity game, j receives a minimal enforceable payoff when the
punishing agents take a sequence of steps in which: (1) they
exclude j from their access list, and (2) they “play along”
among themselves. A punishing sequence in which the pay-
off of 0 is enforced on agent 3 is shown in Figure 3(b). In
that sense, 0 is an enforceable payoff.

Grim trigger strategies
One can consider the following strategy. Initially, agent i
follows the sequence of cooperation. However, as soon as
agent j defects, agent i follows the punishment scheme that
forever holds j down to its minimal enforceable payoff. In
the shared responsibility game, agent j cannot benefit from
defecting, because the punishment eventually reduces j’s av-
erage payoff from (|N | − 2)/|N | to 0. Thus, agent j would
prefer to cooperate. Thus, the grim trigger strategy is Nash
equilibrium for infinitely repeated games.

There is a clear disadvantage to the grim trigger strategy;
while the agents hold down j to its minimal payoff, their
payoff might be reduced as well. The equilibrium will con-
tinue to be played forever, even if j defects only once. Thus,
the threatened response may seem unreasonable, especially
when it is too costly to the punishing agents. In other words,
the knowledge that the punishing agents will respond to j’s
defection by an unrelenting punishment is what keeps j from
defecting. However, if j does in fact defect, it may no longer
be beneficial for the punishers to punish. That is what makes
the grim trigger strategy unbelievable.

The perfect folk theorem
In the context of repeated games, Nash equilibrium can be
refined to exclude strategy such as the grim trigger strategy
(see subgame perfect equilibrium [40, 36]). Roughly speak-
ing, the “refined equilibrium” represents Nash equilibrium
in every “stage” of the repeated game. And thus, if agent j
defects only once, then the punishing agents would punish
j merely for a finite period. At the end of the punishment
period, all agents return to cooperate.

The perfect Nash Folk theorem provides strategies that
can deter an agent from deviating unilaterally (see [36], and
references therein). A sketch of a strategy is presented in
Figure 4. The strategy is a deterministic and finite automa-
ton that plays the sequence of cooperation as long as there
are no deviations. The automaton retaliates to the devia-
tion of an agent with a punishment for a sufficiently long
(but finite) period.

3. SUBSYSTEM TAKEOVERS
The perfection property is a key feature of the notion of

subgames. This property specifies that a strategy profile
is Nash equilibrium in every subgame. Given a game Γ =
〈N, H, �〉, we define the strategy profile st = (sti)i∈N as a
subgame perfect equilibrium that is t-defendable from joint
deviations of any subordinate group s ∈ S(t), where t ∈
[1, |N |) is a constant and S(t) = {s : s ∈ 2N \{∅, N}∧|s| ≤ t}
is the set of all possible subordinate groups. 6 (Recall that
throughout we follow the definitions and notations of [36]
and that the Appendix presents a glossary.)

Joint strategies
Let s ⊆ N be any group of agents, sts = (sti)i∈s their joint
strategies and h ∈ H a history of the extensive game Γ =
〈N, H, �〉. We denote by Γ(h) the subgame that follows the
history h. Moreover, denote by sts|h the joint strategies that
sts induces in the subgame Γ(h) (i.e., sts|h(h′) = sts(h, h′)
for each h′ ∈ H|h). We denote by Oh the outcome func-
tion of Γ(h). Namely, Oh(st−s|h, sts|h) is the outcome of
the subgame Γ(h) when the agents take the strategy profile
(st−s|h, sts|h).

Perfect and t-defendable subgame equilibria
Given a number t ∈ [1, |N |), we say that the subgame
st = (sti)i∈N cannot recover from a joint deviation of a
subordinate group s ∈ S(t), if there is a joint deviation st′s
of the agents in s, such that for any h ∈ H \Z it holds that
for an arbitrary agent icoord ∈ s (the coordinator) we have
Oh(st−s|h, st′s|h) 
icoord |h Oh(st−s|h, sts|h). When the
subgame st can recover from any joint deviation of the sub-
ordinate groups, s ∈ S(t), we say that st is a t-defendable
equilibrium.

We note that while the joint deviation st′s is required to
guarantee the benefit of coordinator, there are no guarantees
for the benefits of the subordinates. In more detail, there
could possibly exist a subordinate agent jsubor ∈ s\{icoord},
such that Oh(st−s|h, st′s|h) ≺jsubor |h Oh(st−s|h, sts|h).
We mention that joint deviations in which agent jsubor may
exist are not considered by [5, 38, 6, 1, 12, 33] (see the
discussion in Section 7).

6We do not consider the case of s = N , because it refers to
a system that is controlled by a single agent.



Period Agent 1 Agent 2 Agent 3
1 〈Server, {2, 3}〉 〈Client, {1}〉 〈Client, {1}〉
2 〈Client, {2}〉 〈Server, {1, 3}〉 〈Client, {2}〉
3 〈Client, {3}〉 〈Client, {3}〉 〈Server, {1, 2}〉
...

...
...

...

(a) A sequence of cooperation for 3 agents.

Period Agent 1 Agent 2
1 〈Server, {2}〉 〈Client, {1}〉
2 〈Client, {2}〉 〈Server, {1}〉
...

...
...

(b) A scheme for punishing agent 3.

Figure 3: Two examples of cooperation sequences. The entry format follows that of Figure 2.

s-enforceable payoff profiles
To support a feasible outcome, each subordinate group and
its coordinator must be deterred from deviating by being
“punished”. The concept of enforceable payoff profiles con-
siders a single agent that may deviate (see [36]). We extend
that concept to consider the deviation of subordinate groups.

Define minmax payoff in game Γ of a subordinate group
s ∈ S, denoted vi|s, to be the lowest payoff that the au-
tonomous agents N ′ = N \ s can force upon the coordinator
i ∈ s:

vi|s = min
a−s∈A−s

max
as∈As

ui(a−s, as). (1)

Given a minmax payoff profile vi |s, the payoff profile w|s
is called strictly s-enforceable if wi|s > vi |s for all i ∈ s. De-
note by p−s ∈ A−s one of the solutions of the minimization
problem on the right-hand side of equation 1.

4. FOLK THEOREM FOR GAMES WITH
SUBSYSTEM TAKEOVERS

The folk theorem is a class of proofs which show that every
feasible and enforceable profile of payoffs can be achieved
by a subgame perfect equilibrium (see [36], and references
therein). In this section, we present Lemma 1, which is a
folk theorem for games with subsystem takeovers.

Joint deviations are more complex than unilateral ones.
The coordinator of a subordinate group can synchronize its
subordinates’ deviations and divide them in groups: a group
of provoking agents, and a group of “fifth column” agents. 7

For example, suppose that in the shared responsibility
game the subordinate is s = {j1, j2}. The coordinator can
synchronize the following deviation: Agent j1 provokes the
autonomous agents by not following its duty to be a Server.
The autonomous agents retaliate by punishing agent j1. We
note that the deviation of the provoking agents does not
reveal the fact that the “fifth column” agent, j2, is the co-
ordinators’ subordinate. Therefore, the autonomous agents
expect j2 to participate in the punishment of its fellow mem-
ber j1. Alas, the agent j2 betrays the autonomous agents;
while the autonomous group is punishing, agent j2 deviates
from punishing and enters j1 in its access list. Hence, the
synchronized deviation can protect j1’s profit.

Lemma 1 considers the payoff profiles that the au-
tonomous group can guarantee in the presence of subsystem
takeovers. A payoff profile w that is strictly s-enforceable
∀s ∈ S(D) is called strictly D-defendable. If a ∈ A is an
outcome of Γ for which u(a) is strictly D-defendable in Γ,

7Fifth column [14]: Clandestine group of subversive agents
who attempt to undermine a nation’s solidarity by any
means.

then we refer to a as a strictly D-defendable outcome of Γ.

Lemma 1 (Corollary 1). Let Γ be an infinitely re-
peated game of G = 〈N, (Ai), (ui)〉 with the limit of means
criterion. Every feasible and strictly D-defendable payoff
profile of Γ has a subgame perfect equilibrium payoff profile
that is D-defendable.

Proof outline The strategy profile of the automata,
(atmi)i∈N , is illustrated in Figure 5. We use the constant
m∗ that we now turn to estimate. After the first deviation,
the sequence of punishment starts, during which, the coor-
dinator might increase its benefit for � periods of betrayal,
where 0 ≤ � ≤ |s′ \ s|. However, a suffix of the punishment
sequence is guaranteed to include |s′|m∗ periods in which
there are no further betrayals and the automaton plays vi|s′ .
Thus, the coordinator’s potential benefit is (γ +�)g∗, where
g∗ is the maximal amount that any coordinator j ∈ N can
gain when any subordinate group s ∈ S(D) deviates from
any action profile in G. (Namely, g∗ is the maximum of
uj(a−s, a

′
s) − uj(a) over all j ∈ N , s ∈ S(D), a′

s ∈ As and
a ∈ A. Moreover, we assume that g∗ is given.)

The coordinator cannot increase its benefit during the
punishment suffix, which has no further betrayals. We ex-
plain how to choose a large enough m∗ so that the punish-
ment is effective. The alternative payoff of the coordinator
is at least the sum of wj −vj |s′ taking over all |s′|m∗ periods
of the punishment suffix. Since w is strictly D-defendable
and s ∈ S(D), then w|s is s-enforceable and wj |s > vj |s (re-
call vj |s from Equation 1). Therefore, there exists an integer
m∗ ≥ 1 that is an integral multiple of γ, such that for all
j ∈ N and s′ ∈ S(D):

g∗(γ + D − 1) < m∗(wj − vj |s′). (2)

The proof specifies the strategy described above. More-
over the proof verifies that in the case where there are no
deviations, the automaton follows the sequence of cooper-
ation. In addition, for any non-empty subordinate group
that deviates, the automaton follows a finite and effective
sequence of punishment.

We note that existing work on joint deviation in repeated
games, such as [38, 1], does not bound the costs that are
related to the strategy complexity. The finite automaton
that is considered by Lemma 1 allows us to present such
bounds (see Section 5).

5. STRATEGY COMPLEXITY OF GAMES
WITH SUBSYSTEM TAKEOVERS

Computational game theory has several ways of measur-
ing complexity of games (see [35]). In Section 1, we men-
tioned the computational complexity of games with subsys-
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On the right side of this figure, we sketch an automaton for agent i ∈ {1, 2, 3}. For brevity, the
sketch merely considers a specific deviating agent j ∈ {1, 2, 3}, such that i �= j. †

• Norm (normal) states The set Norm includes the states q1, q2, and q3. The Norm
states emulate the cooperation sequence of Figure 3(a). The automaton starts from state q1 and
chooses its action according to the first row of the table in Figure 3(a). As long as agent j does
not deviate, the automaton stays in the Norm states. Namely, if all agents choose their actions
according to the sequence of cooperation, then from Norm state qk the automaton moves to
state qk+1 mod 3.

‡

• The Norm-d (deviated) states Suppose that agent j deviates while the automaton is
in a Norm state, qk, where k ∈ {1, 2, 3}. In this case, the automaton moves to state qk+3. The
set Norm-d includes the states q4 and q5. The Norm-d states emulate the cooperation sequence
of Figure 3(a). However, all of the Norm-d states lead to the punishment periods. We use ∗
to denote an arbitrary output of the automaton. Namely, regardless of the choice of the other
agents, the automaton moves from state q4 to q5 and then to q6, which is the starting state of
the punishment.
• The P (punishing) states The state that emulates the punishment scheme q6, q7, qm+5.
A scheme for punishing agent 3 appears in Figure 3(b). (It is easy to describe similar schemes
that punish any other agent.) The automaton starts punishing agent j in state q6 and chooses
its action according to the first row of the table in Figure 3(b). Regardless of the choice of the
other agents, the automaton moves from state qk to the state qk′ , where k ∈ [6, m + 5] and
k′ = k + 1 mod m + 5.
• Estimating the constant m∗ We note that the maximum benefit of agent j from a single
deviation is 1. Moreover, a complete cycle of the cooperation sequence provides the payoff of
frac13 (see Figure 3(a)), whereas in every period of punishment j’s payoff is 0 (see Figure 3(b)).
Therefore, agent j receives a benefit of 1 − fracx3 whenever j is being punished for x periods.
Thus, m ≥ 3 is any integer that is an integral multiple of 3.
———————————————————
† We note that this sketch can be completed easily by considering any deviating agent. Moreover,
we consider all the transitions that the figure on the right does not describe. The state q6 (double
circled) is the state to which all non-described transitions go. ‡ We define m( mod g) to be the integer q with 1 ≤ q ≤ γ
satisfying m = �γ + q for some integer � (e.g., γ( mod γ) = γ).

Figure 4: A sketch of a strategy for the shared responsibility game with 3 agents.

tem takeovers. We now turn to consider the strategy com-
plexity of these games. Kalai and Stanford [30] define the
complexity of an individual strategy as follows. Let (sti)i∈N

be a subgame perfect equilibrium. Then, the complexity of
an individual strategy, sti, is the number of distinct strate-
gies, |{sti|h : h ∈ H}|, induced by sti in all possible sub-
games. The size of an automaton is the cardinality of its
state set. Kalai and Stanford [30] show that the complexity
of a strategy equals the size of the smallest automaton that
can implement the strategy.

Lemma 2 (Corollary 2). The complexity of a strat-
egy that deters subordinates’ deviations is in Θ(D

(
n
D

)
),

where n is the number of agents, and D is an upper bound
on the size of the subordinate group. 8

Proof outline A strategy that deters subordinates’ devia-
tions is presented in Section 4. The automaton that imple-
ments these strategies requires O(D

(
n
D

)
) states. The lower

bound part of this lemma is demonstrated by considering
every subordinate group, s ∈ S(D), and all the possible se-
quences of deviations. There are at least

(
n
D

)−1 subordinate
groups. The proof verifies the existence of at least D differ-
ent periods in which the deviators may deviate before all of
them deviate. Only after the last deviation, can the strat-
egy complete the punishment of the subordinate. Therefore,

8The lower bound holds when considering t-strong [5] or
t-resilient [1] equilibria, because the t-defendable property
implies the t-strong and t-resilient properties (see Section 7).

there are at least D(
(

n
D

) − 1) different subgames in which
a subordinate group deviates. Thus, by [30] the strategy
complexity is in Θ(D

(
n
D

)
).

6. SELF(ISH)-STABILIZATION
Lemma 3 extends Lemma 1 by showing that the automata

can be made to recover from transient faults.

Lemma 3 (Corollary 3). Let Γ be an infinitely re-
peated game of G under the limit of means criterion. Then,
there are self(ish)-stabilizing automata that implement sub-
game perfect equilibria that are D-defendable in Γ.

Proof outline Let us construct an additional sequence of
punishment using the states P (∅, k), where k ∈ [1, Dm∗].
In these states the automaton plays according to a D-
defendable Nash equilibrium. Without the loss of gener-
ality, suppose that the states P (d, Dm∗) : d ∈ S(D) ∪ {∅}
are distinguishable from all the other states. 9

Self-stabilization requires the properties of closure and
convergence that can be verified by a variant function
(see [21]). Every step of the automata monotonically de-
creases the value of the variant function until it reaches zero,

9This assumption can be implemented, for example, by let-
ting all selfish-computers to broadcast the indices of their
current states at the end of every period. We note that any
additional costs that the broadcast induces can be compen-
sated by selecting a larger m∗.
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On the right, an automaton for agent i ∈
N is sketched. For brevity, the automa-
ton considers: a single subordinate group,
s′ ∈ S(D), † and a sequence of cooperation
that consists of the repetition of a single
outcome, i.e., γ = 1. ‡

• Norm (normal) states The au-
tomaton starts from Norm state, q1, and
chooses its action according to the profile
of actions, a = (ai)i∈N , that guarantees
the strictly D-defendable outcome, w. As long as no subordinate group deviates, the automaton stays in the Norm state
q1. In the case where the subordinate group s deviates from a, then the automaton moves to state qs

m∗ from which the
punishment of s begins.
• P (punishing) states For each subordinate group, d ∈ S(D), the set P includes the punishing states
{qd

k}d∈S(D),k∈[2,Dm∗]. The punishment of the subordinate group s ∈ S(D) uses a payoff profile, p−s that is s-enforceable. §

As long as the agents in N ′ = N \ {s} do not deviate from the punishment scheme p−s, the automaton moves from qs
k to

qd
k′ , where k ∈ [2, Dm∗] and k′ = k +1 mod m∗. ‡ Suppose that while the automaton is in state qs

k, the agents s′ \ s betray
the autonomous group N ′ and deviate from the punishment scheme p−s. In this case, the automaton moves from state qs

k

to state qs′
�m∗ , where s′ is the set of exposed deviators, and � = |s′|.

———————————————————
We note that: † This sketch can be easily completed by considering any subordinate group. Moreover, we consider all the
transitions that the figure above does not describe. The state q1 (double circled) is the state to which all such non-described
transitions go. ‡ The more general case appears in Figure 4. § Use m( mod g) as defined in Figure 4.

Figure 5: A strategy sketch for a repeated game with n agents and the limit of means criterion.

which implies the end of the stabilization period. In order
to define the potential function, we represent the automata
as directed graphs.
◦ The automaton as a graph The graph Φ = (V, E) has
the set of states as the set of vertices, V . Moreover, the
transitions function, τ(), induces directed edges of E, i.e.,
(v, u) ∈ E ↔ ∃a ∈ A : τ(v, a) = u.
◦ The variant function We define LongDistance(qj) to
be the length of the maximal simple and directed path in
graph Φ, from state qj to state P (∅, Dm∗). (A simple and
directed path is one without any directed cycles.) We define
the variant function Φ() to be 0 if all automata (atmi)i∈N′
are in the same state, where s ∈ S(D) is the subordinate
group and N ′ = N \ s. For all other cases, we define Φ(c) =
maxj∈N′ LongDistance(qj). It can be observed in Figure 5
that 0 ≤ Φ(c) ≤ (γ + m∗D2).
◦ Closure Suppose that Φ() = 0, which mean that
automata (atmi)i∈N′ are in the same state. Since the au-
tomata are deterministic they all move to the same state,
and Φ() = 0 holds.
◦ Convergence The proof verifies this property by showing
that all steps decrease the value of Φ(). Let us construct
the automaton, such that all undefined transitions move to
state P (∅, Dm∗). In particular, the automaton moves to
state P (∅, Dm∗) when more than D deviators are observed.
The proof verifies that if automaton atmi : i ∈ N ′ is in
any punishing state, then all automata (atmi)i∈N′ move to
state P (∅, Dm∗), and stay in P (∅, Dm∗), until all automata
(atmi)i∈N′ move to state P (∅, Dm∗).

We follow the spirit of Kalai and Stanford [30] and define
the strategy complexity of a self-stabilizing strategy, sti, as
the number of distinct strategies induced by sti in all pos-
sible subgames that start after stabilization. In that sense,
Lemma 3 shows a self-stabilizing strategy that has asymp-
totically the same complexity as the non-self-stabilizing one

(presented in Lemma 1).

7. RELATED WORK
The solution concepts of strong Nash equilibrium [5, 38,

6] aims at deterring a coalition of deviators that may all
benefit from their joint deviations. Moreover, the solution
concepts of resilient Nash equilibrium [1] aims at deterring
a coalition of deviators that may increase the payoff of at
least one deviator, but committed to keep the benefits of all
the other deviators. We mention that coalition-proof strate-
gies consider agents that can communicate prior to play, but
cannot reach binding agreements (see [12, 33]). In the con-
text of repeated games, the collective dynamic consistency
(of coalition-proof strategies) considers equilibria for which
agents do not wish to jointly renegotiate throughout the
course of the game (see [11]). This work considers harder
deviations, in which the coordinator benefit and the subor-
dinates may lose payoff. Therefore, our strategy can deter
the deviations that are mentioned above.

Self(ish)-stabilization [23, 22, 18, 24, 15] was earlier con-
sidered for single stage games. The game authority [23, 22,
24] verifies that no agent violates the game model of the
stage game. Spanning trees among selfish parties are stud-
ied by [18]. Reactive systems that are inspired by game
theory appear in [15].

The research path of BAR fault tolerance systems [4]
studies cooperative services that span multiple administra-
tive domains, such as: a backup service [3], a peer-to-peer
data streaming application [32], and Synchronous Terminat-
ing Reliable Broadcast [16]. BAR fault tolerance systems
consider a minority of Byzantine computers that deviate ar-
bitrarily and a single selfish deviator (out of the set of all
selfish-computers). Between every pair of selfish-computers,
the grim trigger strategy is used, which suffers primarily
from the inability to recover from transient faults (see [10]).



In other words, an agent that (involuntarily) deviates once
is punished forever. We consider the more realistic model of
infinitely repeated games, in which any group of D agents
can always deviate. We offer a more sensible solution; the
system punishes the deviators for a bounded period after
the last betrayal. This type punishment better fits the cases
of non-deliberate misbehavior of selfish-computers and tran-
sient faults.

Discussion
• Why the model of repeated games is consid-
ered? In distributed systems, single stage games re-
flect tasks that are less common compared to settings of
infinitely repeated games. Repeated games are best-known
for their ability to model cooperation among selfish agents.
For example, the perfect folk theorem (see [9, 39]) presents
a strategy where its payoff in infinitely repeated games is
better than the payoff of the single stage Nash equilibrium.
The theorem can explain periods of war and peace among
selfish agents that can deviate unilaterally. For this reason,
the model of repeated games is regarded as more realistic
than the model of single stage games.
• Why using DFA and not Turing machines? De-
terministic and finite automata (DFA) can implement the
strategies of the folk theorem (see [36], and references
therein). The literature considers strategies that can be im-
plemented by deterministic and finite automata as a sepa-
rate and “simpler” class of strategies (see [8, 37]). In fact,
there is evidence that this class is strictly weaker than the
class of strategies that Turing machines can implement (see
the survey [27] and references therein).

We note that some of the existing results (such as [1, 2])
consider poly-time (or probabilistic) Turing machine, which
can be emulated by finite (or probabilistic) automata. The
reduction increases the number of states that the automa-
ton uses by a non-polynomial factor. We present simpler
implementations.
• Why not to consider coalitions in which all agents
are faulty? 3 Eliaz [25] and later [16, 3, 32, 17, 4]
consider coalitions in which all of the deviators may possibly
be faulty. 3 The inherent difficulty is that no punishment
deters a coalition in which all agents are Byzantine. In this
case, the literature proposes either to use strategies for single
stage games, or grim trigger strategies.

In distributed systems, single stage games reflect tasks
that are less common compared to settings of infinitely re-
peated games. Lack of credibility is the Achilles’ heel of grim
trigger strategies; deviating agents are forever punished due
to mistakes that are made at the moment of weakness. Fur-
thermore, the system cannot recover from transient faults in
these settings.

We assume that a single rational agent controls a set of
deviators and propose a perfect strategy that deters the de-
viators with a finite period of punishment. Thus, in the
context of self-stabilization it is essential to require that not
all deviators are faulty. 3

• Why not to consider coalitions in which all agents
are rational? A coalition in which all deviators are
rational is required to promote (or at least protect) the ben-
efit of its members (see [5, 38, 6, 1, 12, 33], and references
therein). This is not the case with subsystem takeovers;
here the coordinator dictates the actions of its subordinates
and ignores their benefits. Therefore, by assuming that not

all deviators are rational, it is “harder” for the autonomous
(non-deviating yet selfish) agents to protect their benefits,
because the requirements regarding joint deviations are ex-
plicitly less restrictive.

We do not claim to be the first to consider strategies for
protecting the benefit of the autonomous (non-deviating yet
selfish) agents (see [1, 5]). However, we present strategies
for protecting the benefit of autonomous agents in the pres-
ence of deviating coalitions that do not protect the social
benefit of all deviators. It is important to see that previous
works [1, 5] consider strategies for protecting the benefit of
autonomous agents in the presence of deviating coalitions
that indeed protect the social benefit of all deviators.
• Are there strategies for coping with more
than one rational deviator within the subordinate
group? Our definition of subsystem takeovers has a
straightforward extension that considers collations of k ra-
tional agents that collectively and totally control t subordi-
nate agents. For example, the rational agent 1 controls the
subordinating agents 11, 21 and 31, and the rational agent
2 controls subordinating agents 12, 22 and 32. Another ex-
ample is when agents 1 and 2 reach an agreement about the
behavior of their subordinates. Our strategies can deter such
deviations because we consider an arbitrary coordinator and
punish the entire subordinate group.

Generally speaking, given an integer t ∈ [1, |N |], we have
that a t-defendable Nash equilibrium is a t-resilient Nash
equilibrium, and a t-resilient Nash equilibrium is a t-strong
Nash equilibrium. Also, let X be any of the properties de-
fendable, resilient, and strong . Then, for any t ∈ [2, |N |], we
have that a (t + 1)-X Nash equilibrium is also a t-X Nash
equilibrium. Therefore, a 1-X Nash equilibrium [34] is the
conventional Nash equilibrium, and n-X Nash equilibrium
is the conventional strong Nash equilibrium [6, 38].
• Are the assumptions on synchrony and observable
actions holds in distributed system? These are
well-known settings that can be realized; every period can
be defined to be sufficiently long to allow the stabilization of
the underlying protocols (i.e., the actions’ implementation).
This behavior can be facilitated by game authority [23, 22,
24] in which a self-stabilizing Byzantine clock synchroniza-
tion protocol periodically restarts a Byzantine agreement
protocol. The agreement explicitly facilitates observable ac-
tions, and the synchronization protocol overcomes timing
failures.

Conclusions
Decentralized systems consisting of selfish-computers are be-
coming part of reality; new aspects of these systems need to
be exposed and studied. One such an example is subsystem
takeover of a selfish-computer over other computers by the
use of hostile malware. Game theory does not consider this
type of joint deviation.

We investigated infinitely repeated games in the presence
of an arbitrary deviator that controls an unknown group
of subordinates. We consider infinitely repeated games with
the limit of the mean criterion. Interestingly, the strategy for
deterring subordinates’ deviations, in such games, is simple;
it can be described by deterministic and finite automaton.
We discover that the number of states of the automaton is
in Θ(D

(
n
D

)
), where n is the number of agents, and D is an

upper bound on the size of the subordinate group.
In practice, high performance communication networks



process communication by dedicated fast hardware. The
hardware is essentially an implementation of a deterministic
and finite automaton. Therefore, the hardware may cope
with a predefined number of subordinates, D, which is a
bound on the size of a subordinate group. In the very rare
cases in which D exceeds the designed bound, the automata
will not act as desired; due to the loss of synchronization,
the automata may never recover.

Therefore, we must consider the case in which the sys-
tem resources are eventually exhausted, e.g., when an unex-
pected number of computers deviate. We address this prob-
lem by designing self-stabilizing automata that recover once
the system returns to follow the designer’s original assump-
tions. Interestingly, the self-stabilization design criteria pro-
vide an elegant way for designing decentralized autonomous
systems.
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Appendix – Glossary
For the reader’s convenience, we present a glossary.

Throughout we use N to denote the set of agents, Ai the
set of action, and �i the preference relation (where i ∈ N
is an agent). We represent single stage games, G, in their
strategic form as 〈N, A = (Ai), �= (�i)〉 and in their exten-
sive form as 〈N, H, �= (�i)〉. We refer to solution concepts
such as Nash equilibrium, and feasible and enforceable pay-
off profiles.
Profiles We refer to a collection of values of some vari-
able, one for each agent, as a profile. Similar to the single el-
ement profile notation (i.e., x = (xi)i∈N , (x−i, xi), and X−i

of [36]), we consider profile notation for subsets of elements
s ⊆ N . We define profiles xs, x−s to be the list of elements
(xi)i∈s, respectively (xi)i∈N\s for all s ⊆ N . Given a list
of elements x−s = (xi)i∈N\s and a profile xs = (xi)i∈s, we

denote by (x−s, xs) the profile (xi)i∈N . We denote by Xs,
X−s the sets ×j∈sXj , respectively ×j∈N\sXj , where the set
of elements is defined as Xi for each i ∈ N .
Repeated games Throughout we consider the game
Γ = 〈N, H, �= (�i)〉, in which the constituent game G =
〈N, A = (Ai), �= (�i)〉 is repeated an infinite number of
times. We assume that all periods (plays) are synchronous,
i.e., all agents make simultaneous moves. Moreover, by the
end of each round, all agents have observed the actions taken
by all other agents.
Preference relations for repeated games A preference
relation expresses the desire of the individual for one partic-
ular outcome over another. For the constituent game, G, the
relation �i refers to agent i’s preferences. Suppose that �i

can be represented by a payoff/utility function ui : A → R,
for which ui(a) ≥ ui(b) whenever a �i b. We assume that in
Γ, agent i’s preference relation ��

i is based on a payoff func-
tion ui. Namely, (at) ��

i (bt) depends only on the relation
between the corresponding sequences (ui(a

t)) and (ui(b
t)).

The limit of means criterion The limit of the means
criterion [9, 39] treats the future as no more important than
the present. The sequence vt

i of real numbers is preferred to
the sequence wt

i if and only if lim T→∞ ΣT
t=1(v

t
i −wt

i)/T > 0.
lim T→∞ ΣT

t=1(v
t
i − wt

i)/T > 0.
Games in extensive form The extensive form of a game
describes the game as a decision tree, which is directed from
the root downwards. Each node of the tree represents every
reachable stage of the game. Starting from the initial node,
agents take synchronous (simultaneous) choices of actions.
Given any internal node in the tree, each possible action
profile leads from that node to another node. A node is said
to be terminal if it has no outgoing action profiles.

A history is a sequence of action profiles that corresponds
to a directed path from the root of the decision tree. The
set of all histories is denoted by H. We note that history
(ak)k=[1,K] ∈ H is terminal if it is infinite or if there is no

(ak)K+1 such that (ak)k=[1,K+1] ∈ H. The set of terminal
histories is denoted Z. Moreover, for each agent i ∈ N a
preference relation �i is defined on Z. Let h be a history of
length k; we denote by (h, a) the history of length k+1 con-
sisting of h followed by a. We denote an extensive game with
perfect information and synchronous (simultaneous) moves
as Γ = 〈N, H, �= (�i)〉.
Subgames In large (or infinite) decision trees, it is use-
ful to isolate parts of the tree in order to establish simpler
games. When the initial node of a subgame is reached in a
larger game, agents can concentrate on only that subgame;
they can ignore the history of the rest of the game.

Let Γ = 〈N, H, �〉 be an extensive game with perfect infor-
mation and synchronous (simultaneous) moves. Let H|h be
the set of sequences h′ of actions for which (h, h′) ∈ H. We
define �i |h as h′ �i |hh′′ if, and only if, (h, h′) �i (h, h′′).
The subgame Γ(h) of game Γ that follows the history h is
the extensive game 〈N, H|h, �〉. By defining a new decision
tree, H|h in the subgame, agents can concentrate on only
the subgame Γ(h); they can ignore the history of the rest of
the game.
Strategies for individuals Agents protect their ben-
efits by following a long-term plan (or program) of action
selection. We call this plan the (individual) strategy sti of
agent i ∈ N . We define sti as a function that assigns an ac-
tion in Ai to every finite sequence of outcomes in the game
Γ = 〈N, H, �= (�i)〉.


