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Abstract. Self-stabilizing group membership service, multicast service,
and resource allocation service in directed network are presented. The
first group communication algorithm is based on a token circulation over
a virtual ring. The second algorithm is based on construction of dis-
tributed spanning trees. In addition, a technique that emulates, in a self-
stabilizing fashion, any undirected communication network over strongly
connected directed network, is presented.
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1 Introduction

The group communication infrastructure is useful for numerous applications,
starting in (video, audio, multimedia) virtual conferences, and including (safety)
critical tasks that require exactly once transactions. On line on going systems are
prone to unexpected state transition due to transient faults, thus, it is important
to design such systems to recover automatically from any possible state.

Previous research towards self-stabilizing group communication services (in-
cluding membership service, multicast service, and resource allocation services)
considered undirected communication networks and ad hoc networks. It turned
out that the techniques used for achieving self-stabilizing group communication
are different for each such setting. The case of directed networks is important in
heterogeneous communication systems that include base-stations, mobile hosts,
sensors, servers, satellites, etc. Two-way communication is not always possible
in such systems. The focus of this paper is self-stabilizing group communication
services for directed networks.

Previous Work: Self-stabilizing group communication for fixed and dynamic
undirected networks, and for ad hoc networks (in which servers may move) have
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been studied in [11] and [13]. Self-stabilizing algorithms for directed networks
have been addressed in [2, 1, 5, 4, 14].

Self-stabilizing mutual exclusion on directed graphs was considered in [2].
The communication graph is assumed to be a strongly connected directed graph
that requires (non-distributed) preprocessing (see [16] for such an approach).
The authors assume the existence of a distinguish node, a known number n of
processors in the system, and of a central daemon [9, 8]. The first algorithm
uses a token circulation on a virtual ring. Assuming that the degree of at least
two nodes is in Θ(n), it is shown in [2], that the length of the virtual ring is
in Ω(n2). The second algorithm uses a spanning tree. The authors assume that
the processors know the communication diameter d and that processors have
distinct identifiers in the range of {0, . . . , n− 1}. Roughly speaking, the tree is
repeatedly colored by colors in the range {0, . . . , n − 1} in a round robin fash-
ion granting the critical section to the processor with the current tree color.
Thus, a processor must wait O(nd) time (measured in asynchronous rounds) to
reenter the critical section. A self-stabilizing algorithm for leader election and
generic tree construction in a strongly connected directed network is presented
in [1]. The algorithms of [1] stabilize in O(n) time, where n is the number of
processors. (The authors of [1] remark that by a slight change in the algorithm
the stabilization time may be reduced, but this change leads to more complex
proofs). A self-stabilizing algorithm for routing messages in a strongly connected
directed network is presented in [5]. In [5] it is assumed that a distinguish proces-
sor exists and that every processor knows the exact number of processors in the
system. A randomized self-stabilizing mutual exclusion algorithm in a uniform
(directed) networks is presented in [4]. The algorithm uses a virtual ring that is
constructed by keeping a pointer in each node and changing it in a round robin
fashion. Delaet and Tixeuil presented in [14] a self-stabilizing census algorithm
for strongly connected directed networks.

Our Contribution: We introduce the first self-stabilizing algorithms for group
communication in directed networks using new building blocks such as mem-
bership and multicast services. We do not assume the existence of a distinguish
processor, a central daemon, or that the actual number of processors (or the
communication graph diameter) is known. Moreover, we do not require prepro-
cessing. We prove that the length of a virtual ring is in Θ(n2), even when the
degree of every node is in at most three. Simple proofs show that our algorithms
stabilize within the order of the system diameter. A transformer algorithm that
emulates any undirected network over a strongly connected directed network is
presented. In addition, we introduce a resource allocation algorithm for (asyn-
chronous) strongly connected directed networks and (synchronous) weakly con-
nected directed networks.

The rest of the paper is organized as follow. The system settings appear in
Section 2. In Section 3, we specify our requirements from a group communication
system, and design algorithms for achieving these requirements in Section 4.
A general scheme for self-stabilizing emulation, of any undirected communication
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network over the directed network, is presented in Section 5. Resource allocation
schemes appear in Section 6. Concluding remarks are in Section 7. Proofs are
omitted from this extended abstract.

2 The System

The system consists of a set P of communicating entities, that we call processors.
A processor is either a physical CPU or a process (a thread). There are n < N
processors in the system each processor has a distinct identifier. We represent
the system by a communication graph G(V , E), where every node in V represents
a processor and every directed link in (i, j) ∈ E represents the possibility of pi

to communicate information to pj. The device that conveys the information
from pi to pj can be based on either wire or wireless technology. We model
a communication link (i, j) by a buffer (or communication register) that stores
the last message sent by pi to pj , and was not yet received. Thus, there is at
most one message in every link and this message is stored in bufferij with an
indication of whether pj has already received it (one may assume that send
operations from pi to pj are spread enough to allow a message to arrive before
the next message is sent).

The in-neighborsi is a set that consists of all the nodes pj such that the di-
rected link (j, i) is in E . The out-neighborsi set is defined analogously. Processors
may crash and recover during the execution. However, we concern ourselves with
a period of time in which the communication graph is fixed for a long enough
period that allows each processor to identify the correct in-neighborsi and out-
neighborsi sets. The processors execute atomic steps. An atomic step consists
of internal computations followed by a single communication operation. A com-
munication operation of pi through the out-going link (i, j) is a message send
operation (a write to bufferij). A communication operation of pi through the
in-going link (j, i) is a message receive operation (a read from bufferji).

We define a system configuration as a vector of states of all the processors and
the content of every buffer. A system execution (or run) R = (c1, a1, c2, a2, · · · ) is
an alternating sequence of configurations and steps. The system is asynchronous
(though we remark that synchronous settings are considered in Section 6). The
delay in message delivery (completeness of a write operation) is unbounded but
finite. We measure the time complexity by the number of asynchronous cycles
in an execution. Let R be an execution, and let S be a strongly connected
component of the communication graph. We assume that no processor in S
crashes during R. The first asynchronous cycle of S in R is a minimal prefix
of R such that each processor pi in S communicates with every neighbor: At
least one message mj is sent by pi to every neighbor pj in out-neighborsi, such
that pj receivesmj during the first asynchronous cycle. The second asynchronous
cycle of S in R is the first asynchronous cycle in the execution R′, which starts
in the configuration that immediately follows the first asynchronous cycle of S
in R. In a similar manner, we define the rest of the asynchronous cycles. A fair
execution is an execution with infinite number of asynchronous cycles.
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The task τ of the system is defined by a set of legal executions LE. A config-
uration c is safe with relation to τ , and the system, if every execution that starts
from c belongs to LE. We require that a self-stabilizing algorithm reaches a safe
configuration within a certain number of asynchronous cycles in any execution
that starts in an arbitrary initial configuration.

3 Group Communication Specifications

Group communication system typically provides various types of multicast ser-
vices to a specific (dynamic) interest group. A member in the group may specify
that a message should be delivered to the rest of the group members with cer-
tain reliability requirements and ordering guarantees. The multicast service is
then responsible for delivering this message to the application layer of the group
members under the defined requirements.

Several groups may coexist simultaneously in the system. However, we as-
sume that no interaction among groups exists. Therefore, we choose a single
group index g. A boolean variable memberi is defined to (logically) represents
the intention of pi to be included in g. We use vi = 〈vidi,membersi〉 to repre-
sent the view maintained by processor pi, where vidi is a unique bounded integer
view identifier, and membersi is a list of processors indices. Roughly speaking,
view identifier is used to distinguish two different incarnations of groups with
the same set of members. Our requirements for message delivery are related to
the view in which the message has been sent; requiring that every processor that
belongs to the view in which the message has been sent and to every following
view (if such views exist) will receive the message. For example, assume that
message m has been sent by processor pi when the view was 〈22, {i, j, k}〉 and
later only two more new views 〈23, {i, j}〉 and 〈24, {i, j, k}〉 were established,
then pk will not necessarily receive m. pk can conclude that messages sent in
view 〈22, {i, j, k}〉 may not reach it. On the other hand, if the view identifier of
the first (namely, 22) and the last (namely, 24) views were identical pk could not
conclude that some messages may never reach it. Another aspect of the above
observation is that these definitions allow us to garbage collect old views (and
messages) from the history.

Self-stabilizing algorithms use bounded variables, since a transient fault (or
initial state) may corrupt the variable value and cause the variable to have the
biggest value at once. Thus, we increment the view-identifier using a modulo
operation over a bound V . We assume that all the processors participate pe-
riodically in establishing a view. This periodic establishment ensures conflict
resolution among view identifiers (if exists) and allow the use of the modulo
operation without losing the ordering among views. As we show in the sequel
the participating process will rapidly have consistent histories.

Statements of requirements for self-stabilizing group communication appear
in [11] and [13]. The first requirement is that in a legal execution every processor
that wishes to join (or leave) the group eventually appears (respectively, does not
appear) in the list of members membersi of every configuration. In addition, if
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processors do not change their membership, then the view identifier of the group,
vidi, is eventually fixed.

The set of legal executions LEmem for the group membership task, is asso-
ciated with S, and includes executions R satisfying Requirements 1 and 2.

Requirement 1: If the value of memberi = true (memberi = false) is fixed
during R then there exists a suffix of R, in which pi appears (respectively, does
not appear) in all the views of group g in the connected component S.

Requirement 2: If the value of memberi of every processor pi of group g in
the connected component S is fixed during R then there exists a suffix, in which
all the views of group g in the connected component S are identical, the views
have the same list of members and the same view identifier.

The set of legal executions LEmcast for the group multicast task, is a subset
of LEmem, and includes executions R satisfying Requirements 3, 4 and 5.

Requirement 3: Suppose that two processors pi and pj are members of every
view in R. If m is a message sent by pj during R, then m is delivered to pi.

Requirement 4: Suppose that the messages m0 and m1 are delivered to pro-
cessors pi and pj during R. If m0 is delivered to pi before m1 is delivered to pi,
then m0 is delivered to pj before m1 is delivered to pj.

Requirement 5: If a processor pi is a member of two successive views of
a group, vj and vj+1, then all messages sent in the group while vj was the view
of the group, have been delivered to pi.

Let m be a message sent by processor pi, when vi = v, then v is the sending
view of m. If a message m is delivered to the application layer of every member
in its sending view, then we say that m is stable. The system delivers a safety
delivery indication (for m) to the application layer when m is stable. We view
this indication as a best effort service; we do not require a delivery of a safety
delivery indication, for every stable message.

In the sequel, we present self-stabilizing group communication algorithms in
directed network that can achieve requirements 1, 2, 3, 4 and 5.

4 Group Communication Algorithms

In this section, we present two approaches for achieving self-stabilizing group
communication in directed network. Token circulation (e.g., [6, 13]) is used in the
first approach, while the second approach employs a distributed tree structure
(e.g., [11]). Both approaches use the self-stabilizing update algorithm in directed
network as a building block.
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Update in Directed Networks: The update algorithm [7, 10] (for undirected
networks) is useful for routing messages, collecting data, and distributing in-
formation. We present a version that is suitable for directed networks and can
achieve topology update in directed networks. Then we use the resulting algo-
rithm for achieving a variety of self-stabilizing algorithms: Ring construction,
group membership, group multicast, β-synchronizer, general network topology
emulation and resource allocation.

For the sake of completeness, we now present the basic ideas used by the
(undirected) update algorithm of [7, 10]. Each processor pi maintains a list Ui

of no more than N tuples 〈id, dis, parent〉. In a legal execution, it holds that Ui

lists the processors in S. For every processor pj ∈ S, there is exactly one tuple
〈j, dis, k〉 ∈ Ui. The value of dis is the number of edges in a shortest path from pi

to pj, and pk is a neighbor of pi that is in a shortest path to pj .
Every processor repeatedly sends U to its neighbors, and accumulates the re-

ceived lists of its neighbors in T U i. The content of T U i is an input to a procedure
that calculates Ui. The value of the dis field of every tuple in T U i is incremented
by one. Then, the tuple 〈i, 0, nil〉 is included in T U i. For every specific id, we
select the tuple with the minimal dis value, and remove the rest from T U i. We
remove every tuple 〈id, dis, parent〉 such that there exists a positive z < dis and
there is no tuple with dis = z in T U i. Finally we assign the value of T U i to Ui.

We now slightly change the update algorithm so that it fits directed networks.
We extend the tuples of the update algorithm with a fourth field named in-
neighbors. The field in-neighbors in the tuple 〈i, 0, nil,in-neighbors〉 ∈ Ui consists
of the in-neighborsi list. Processor pi repeatedly sends Ui to every pj ∈ out-
neighborsi. The procedure that calculates Ui from T U i, is the same for both
directed and undirected versions of the update algorithm. The value of the list
in-neighborsi of every processor propagates to the entire connected component.

The correctness proof starts in the observation that following the first asyn-
chronous cycle the tuples with distance field value 0 are correct, namely for
every i there is a single tuple in Ui with distance 0, the tuple 〈i, 0, null,in-
neighborsi〉. Then, in the following cycle the tuples with distance field value 1
are computed using the tuples of the neighbors that have a distance value 0 and
therefore are correct. The proof is completed by an induction over the value of
the distance fields. The proof shows that within the order of the diameter of
the graph, Ui contains the local topology of every processor pi, and therefore,
the connected component of pi is known to pi. The arguments are almost iden-
tical to the arguments presented in [8] for the undirected case, see also [14] for
a similar proof for the census task (note that the census task, does not notify
the processors with the system topology).

Next we describe how the directed version of the update algorithm is used
as an underlying layer by several algorithms.

4.1 Token Algorithm:

The pioneering self-stabilizing algorithm of Dijkstra [9] uses a token ring. To-
ken ring circulation was previously used by group communication algorithms
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(e.g., [6]). We describe how to construct a ring in a directed network, and the
way to use it for a self-stabilizing membership and multicast services.

Token Ring Construction: A virtual ring construction (in a directed network)
is defined by a function nexti(pj), a function from in-neighborsi to out-neighborsi.
We use the virtual ring definition to forward a token T (a short message) that
arrives to pi from pj , to nexti(pj).

We call the forwarding process of T a walk. A walk defines a ring if, and
only if, T arrives at every processor in the system at least once before returning
to the processor in which the walk started in. Moreover, we require that a dis-
tinguish processor will be defined in the ring. Every processor pi may access
a predict distinguishi, and there is exactly one processor in the system, such
that distinguishi = true.

We now present a straightforward approach for constructing a virtual directed
ring (later we present more sophisticate schemes). List the processors according
to their identifiers’ value, and find a directed path from every two neighboring
processors in the list (the graph is strongly connected and hence such a path
must exist). Note that every processor can compute the virtual ring using the
output of the self-stabilizing update algorithm. The number of nodes in the
virtual ring is at most N2. The distinguish (virtual) processor (represented by)
the processor with the maximal identifier according to the update information,
is defined to be the first processor in the virtual ring.

The algorithm in [9] is used on top of the virtual ring. Each processor pi

may act as several virtual processors pi1, pi2, · · · , pil, where l is the number of
times pi is visited during the walk. pi maintains a variable xij for each pij . xij

stores an integer value that is no smaller than zero and no larger than 2N2 + 1
(there are at mostN2 buffers in the virtual ring and N2 local read values, we add
one more possible value to ensure the existence of a missing value [8]). To define
the configuration of the virtual ring we order the values of the xkj variables
according to their order of appearance in the (virtual) ring. pi acts for every
virtual node pij , repeatedly sending the value of every xij variables to the next
node in the virtual ring. The message sent with xij carries additional values
that may be interpreted as the values carried by a token. A token T arrives at
the (virtual) distinguish node pij , if the value of xij is the same as the value
in the arriving message sent by the (virtual) node pkm that precedes pij in the
virtual ring. A token T arrives at a (virtual) non-distinguish node pij , if the
value of xij differs from the value arriving to pij in the message sent by the
(virtual) node pkm that precede pij in the (virtual) ring. In the sequel T .y refers
to the value of the y field in the token T .

Upon the arrival of the token at the distinguish node pij , pij increases xij

by one modulo 2N2 + 1. Upon a token arrival at a non-distinguish node pij , pij

assigns the value T .x to xij . A node pij (distinguish or not), repeatedly sends
the value of xij together with the rest of the fields (that may form a token) to
the next node in the virtual ring.
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lg n / 4lg n / 4

n − 3n / 4 + 2

Fig. 1. A lower bound for the length of a ring

Tight Lower Bound for the Length of the Virtual Ring: We now turn
to examine the problem of forming a virtual ring in a directed network. An
Euler tour over a spanning tree of an undirected network forms a virtual ring of
Θ(n) virtual nodes. We next show that the length of a virtual ring in a strongly
connected directed network is Θ(n2). Our lower bound proof uses only constant
degree nodes in the system, as opposed to the assumption of degree in the order
of n made in [2].

Assume that n = 2i for some integer i > 1. We construct two full binary
trees of depth d = lg(n/4) one directed from the root to the leaves and the
other from the leaves to the root. The number of leaves in each tree is 2d = n/4.
Then we fuse the leaves of the trees one by one to form the directed diamond
structure like the one presented in Figure 1. The diamond structure includes
2n/4− 2 + n/4 = 3n/4− 2 processors. In addition, we connect the roots of the
(fused) trees by a chain of n− 3n/4 + 2 processors.

Since any virtual ring must include all fused processors, and a path between
any two fused processors is of length greater than n/4 + 2, then the length of
the ring is in Ω(n2). Since a virtual directed ring can be constructed with at
most n2 processors, we conclude that the length of the ring is in Θ(n2).

Optimizing the Length of the Virtual Ring: We now present more sophis-
ticated schemes for token ring configuration in which the length of the ring is
optimized. Note that the virtual ring may include exactly n nodes (when the
directed network is a directed ring). The problem of finding an optimal length
virtual ring in a directed graph is known to be NP-hard [3]. Therefore, we may
use an approximation algorithm to find an efficient virtual ring. Self-stabilizing
update distributes the information on the communication graph to every proces-
sor in the system. Every processor may use a traveling salesman approximation
algorithm (see [3]) as a heuristic method to find a near optimal Hamiltonian
walk. The “salesman” should visit every city (a processor in G) at least once.
The cost of traveling among the cities u and v is ∞, if there is no directed edge
from u to v in G, and one otherwise.

We note that both deterministic and randomized approximation algorithms
for the traveling salesman can be used. If a deterministic approximation algo-
rithm is executed then the resulting virtual ring is identical in every processor.
To use a randomized approximation algorithm we let the distinguish processor
calculate the ring and then propagate it to the rest of the processors using the
spanning tree rooted by itself (defined by the update algorithm). The distinguish
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processor will change the description of the ring that it propagates only when
the current propagated ring has a length greater than the last computed ring.

Membership (Token Algorithm): We describe a membership algorithm that
satisfies Requirements 1 and 2. Since there is no interaction between any two
groups, we consider a specific group g and describe the membership service for g.
We use the algorithm in [9] as an underlying algorithm. During the stabilization
period of the underlying algorithms, there may be more than one token. When
two tokens or more arrive at a single processor, a merge procedure is invoked.
The tokens are merged to a single token where the merged token is either empty
(see [13]), or is the result of resolving the minimum number of conflicts (see [11]).

We use time to live method (e.g., [15]) to remove stalled information from the
token. The token carries a list, membersg, of processors that are members in the
group g. The token also carries a list of corresponding time to live counters lvs;
a counter value, lvj, for each virtual processor in the virtual ring. The virtual
processor pi assigns the length of the virtual ring to lvi, whenever a token arrives
at pi. Whenever a processor in the ring receives a token, it decrements the value
of each lvi ∈ lvs. While lvi > 0, we consider pi as an active member in g.

We note that we can order the virtual processors that each processor acts
for according to the order of their appearance in the virtual ring. Thus, a pro-
cessor pm acting for pm1, pm2, · · · , pml will have only one counter in the lvs
counters. lvm (or lvm1) will be set to n whenever the token arrives at pm1 and
will be decremented by one only when arriving to the first representative of other
processors, for example when arriving to pl1 that represents pl. Here we present
a version in which each virtual processor has its own counter, and an indication
that one virtual processor is not active implies that the acting processor for this
virtual processor is not active.

Processor pi, chooses a new view identifier, whenever it holds a token, and
discovers that the set of members in the group has changed. A change in the set
of members can occur when a processor pi voluntarily changes its membership
status in group g, or there is an identification that processor pk is not active.

The code of the membership algorithm is presented in Figure 2. Upon token
T ’s arrival, we decrement every lv counter by one (line 1.1). Line 1.2 stores
the current list of members (later used in line 1.6). Lines 1.3 to 1.3.2 remove
a processor that has been flagged as not active. Lines 1.4 to 1.4.2 (1.5) adds
(respectively, removes) i to (from) the members list upon a request. In the case,
there were changes to the members of g, we establish a new view (lines 1.6). Line
1.11 forwards the token to the next neighbor in the virtual ring.

Multicast (Token Algorithm): The multicast algorithm that satisfies Re-
quirements 3, 4 and 5. The history is a list of views and messages that should
list the views of the system and the messages sent in each view according to
the order of the view establishments and message send operations within the
views. Whenever the token arrives at a processor pj, the views and messages
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Global constants:
V : upper bound on the number of view identifiers that can be concurrently active
RingLength: the number of nodes in the virtual ring
Token T data structure has fields:
T .membersg: the set of processors in group g
T .lvk: (where pk are the processors in T .membersg) counter
for the time to live of pk

T .vid: identifier for the current view of the group
Local variables of processor pi:
gi: boolean indicating whether pi is a member
vi: the value of the view for group g recorded at pi

1. Upon a token T arrival from pk:
1.1 for-every T .lvk ∈ T .lvs T .lvk ← T .lvk − 1
1.2 members ← T .membersg

1.3 for-every T .lvk ≤ 0
1.3.1 remove k from T .membersg

1.3.2 remove lvk from T .lvs
1.4 if gi = true then
1.4.1 add i to T .membersg

1.4.2 add lvi = RingLength to T .lvs
1.5 else remove i from T .membersg

1.6 if members �= T .membersg then T .vid ← T .vid + 1 modulo V
(∗ For Multicast ∗)
1.11 send T to nexti(pj)

Fig. 2. Self-stabilizing Membership in a Ring Algorithm, code for pi

are delivered in a first-in first-out manner (with an appropriate view identifier)
to pj.

A view of a group becomes old when a new view has been established to
the same group g. An old view viewo is removed from the history, when every
processor pi, member in viewo and in the current view, received all the multicast
messages of viewo (and also their delivery indications). A message is removed
from the history also when the views are not changed following the send opera-
tion of the message, but there is an indication that every processor in the view
received the message (and their delivery indication).

The code of the multicast algorithm is presented in Figure 3. Line 1.6.1
concatenates the current view with the history of views and messages. Line 1.7
adds the message m that pi wishes to multicast to the list of messages of T
that are related to the last established view (current view). Line 1.8 delivers
new views to the application layer (and mark them as delivered to pi, thus they
are not new to pi). Line 1.9 deliver new multicast messages (and mark them as
delivered to pi, thus they are not new to pi). Lines 1.10 to 1.10.1 deliver safe
indication for every view and multicast message that have been delivered to all
the processors that they should be delivered to.
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1.6.1 T .history ← T .history + 〈T .vid, members〉
1.7 if pi wishes to send message m then add m to T .messages of current view
1.8 for-every non-delivered view v ∈ T .history deliver v to the application layer
1.9 for-every non-delivered m ∈ T .messages deliver m to the application layer
1.10 for-every safe x that was not reported (x a safe view or message)
1.10.1 deliver report that x is safe

Fig. 3. Self-stabilizing Multicast in a Ring Algorithm, code for pi

4.2 Tree Algorithm:

The second approach we present is based on a distributed tree structure defined
by the update algorithm, and then the self-stabilizing β-synchronizer in directed
network. The algorithm presented in this section executes the group communi-
cation tasks in the fastest time (in the order of the diameter) while the approach
presented in Section 4.1 responds to a group membership request in time that is
proportional to n the number of processors (or even to n2). We note that the tree
solution allows several messages that carry the group communication activity to
be presented in a configuration, while in the ring solution there is at most one
such message (see [13]).

β-Synchronizer: We use the β-synchronizer to coordinate view-updates in the
membership service. The undirected β-synchronizer algorithm [8], uses a rooted
tree. The processor pl with the maximal identifier in Ui is the root of the tree.
The tree is repeated colored by a finite set of colors.

Here we use two trees to implement the directed version of the β-synchronizer.
Namely, we use the distributed tree structures out-treel, and in-treel. out-treel
is used for broadcasting and in-treel for receiving feedback. Roughly speaking,
the β-synchronizer makes two alternating phases named “propagation phase”
and “feedback phase”. Every pair of consecutive (successful) propagation phase
and (successful) feedback phase is associated with a color chosen by the root pl.

The root pl repeatedly colors out-treel and in-treel. Suppose pf is a leaf pro-
cessor in out-treel, then the color of pl propagates downwards until it reaches pf

(propagation phase). Eventually, after the new color reaches pf , all pf ’s children
in in-treel, have the same color as the color of pf . This color is propagated on the
path of in-treel that is directed from pf to pl (feedback phase). When pl receives
a feedback on the new color propagation via in-treel, it chooses another color (in
a round robin fashion, from a set of 4N colors).

Note that (unlike the undirected version of the algorithm) a legal execution
might include a configuration in which the children of a processor pi in in-treel
are colored with a new color d, where its parent in out-treel is not colored with
color d. This is a consequence of the existence of two different trees; one for
propagation, and another for feedback.



72 Shlomi Dolev and Elad Schiller

Membership (Tree Algorithm): In a legal execution, only the user is privi-
leged to change his/her membership status in a group. Such a change occurs in
response to the application request. Here we describe how processor pi may join
(leave) a group g by local setting (respectively, resetting) memberi. We use the
β-synchronizer to synchronize the changes of views as done in [11].

In a legal execution, processor pl is responsible for membership updates.
During the propagation phase, pl propagates the view it maintains, vl, together
with a new color. The feedback phase is intended to inform on the completion of
the propagation phase, and to gather membership requests from the application.

The values of memberi are accumulated from every processor in in-treel dur-
ing the feedback phase. Once the feedback phase is completed, the root sends
(during the next coloring phase) the received membership information, together
with a view identifier. The view identifier changes merely when the set of mem-
bers changes. Processor pi accumulates the membership requests in a variable
named requesti. We define requesti[i] to be an alias to memberi. The entry,
requesti[j], is reserved for the value of requestj , where pj is a predecessor pro-
cessor of pi in in-treel. The variable requesti is an array of bits that are associated
with every node in the sub-tree of in-treel that is rooted at pi (the k-th bit in
the array is the k-th processor in a pre-order traversal on this sub-tree). The
members data structure of a view vi is an array of bits with a structure that is
identical to requestl (where pl is the root of in-treel).

The code of the β-synchronizer and the membership algorithm is presented in
Figure 4. In line 1.1, the root (of the trees) tests whether the feedback phase has
just ended. Line 1.1.1 chooses a new color. Line 1.1.2 establish a new view if the
membership group g changes. Lines 1.2 to 1.2.2 are executed by processors other
than the root. A message sent by these lines includes colors (for propagation and
feedback) and the current view. In lines 2 to 2.3, the propagation phase color
and current view are stored. In lines 3 to 3.3, the feedback phase color and
membership requests are accumulated. For the sake of simplicity, we assume
that memberi is updated just before pi reports to its parent in in-treel on the
completion of the feedback phase.

Multicast (Tree Algorithm): Here we describe a multicast algorithm that
delivers messages and feedbacks to the members of the group. For the sake of
simplicity, we assume that there is a single message that a processor pi wishes
to send (maybe an aggregation of several data-messages that are stored between
consecutive feedback phases) whenever a color is changed in dci.

When pi, wishes to send a multicast message it sends it towards pl using in-
treel. Upon the arrival of such a message, pl uses out-treel to deliver the message
to every processor. The change in colors indicates the safe delivery of messages.

We extend the messages of the algorithm presented in Figure 4 with two
additional fields dm (down message), and um (up message). Processor pi stores
its multicast message in um[i]. The messages that are in umj (of every child pj

of pi in in-treel) are sent from pj to pi, and stored in um[j].
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Local variables of processor pi:
in-parent: the successor processor of pi (in-treel)
in-children: the predecessor processors of pi (in-treel)
out-parent: the predecessor processor of pi (out-treel)
out-children: the successor processors of pi (out-treel)
uc, dc, uc[]: two color variables and an array of colors used for synchronization
req[]: array that accumulates membership requests (req[i] is memberi)
1 Upon timeout:
1.1 if out-parent = NULL and ∀pk ∈ in-children dc = uc[k] then
1.1.1 dc← dc + 1 mod 4N
1.1.2 if v.members �= req then v ← 〈Choose(V iewIDs− {v.id}), req〉
1.2 if out-parent �= NULL
1.2.1 if ∀pk ∈ in-children dc = uc[k] then uc← dc
1.2.2 send 〈uc, req〉 to pin−parent

1.3 ∀pk ∈ out-children send 〈dc, v〉 to pk

2 Upon receiving 〈dcj , vj〉 from pout−parent:
2.2 dc← dcj

2.3 v ← vj

3 Upon receiving 〈ucj , reqj〉 from pj ∈ in-childreni:
3.2 uc[j]← ucj

3.3 req[j]← reqj

Fig. 4. The β-Synchronizer and Membership Algorithm on a Tree, code of pi

Eventually, pl receives the messages sent by the processors in the system.
The value m of uml arrives at a processor pi in the system, along with the next
new color nc propagating through out-tree. We note that the propagating phase
that follows the arrival of uml can indicate that m was safely delivered.

The code of the multicast algorithm is presented in Figure 5. In lines 1.1.3
the root (of the trees) orders the messages sent by the processors of the in-treel
(line 1.2.2), before they are sent on the out-treel (line 1.3). Line 2.1 to 2.1.3
deliver the multicast messages and their safe delivery indication. Line 3.1 stores
and accumulates the messages sent on the propagation phase.

5 Emulating a General Topology

In this section we present a self-stabilizing scheme to emulate any undirected net-
work over a directed network. Thus we can compose a self-stabilizing algorithm
that assumes undirected communication graph with our emulation scheme. In
particular we may combine the self-stabilizing group communication algorithm
presented in [11] with the emulation scheme. Note that the convergence time
and the space complexity of such a composition is usually greater than the ones
of a solution that is build for the specific settings.

Assume that the input for the emulation algorithm is a general topology
graph G = (V , E), known to all processors. Let (i, j) ∈ E be a link from pi to pj
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Local variables of processor pi:
dm, um[]: a variable and array of messages (um[i] ≡ um)
1.1.3 dm← Order(um)
· · ·
1.2.2 send 〈uc, req, um〉 to pin−parent

1.3 ∀pk ∈ out-children send 〈dc, v, dm〉 to pk

2 Upon receiving 〈dcj , vj , dmj〉 from pout−parent:
2.1 if dc �= dcj then
2.1.1 indicate that dm is safe
2.1.2 dm← dmj

2.1.3 deliver dm
3 Upon receiving 〈ucj , reqj , umj〉 from pj ∈ in-childreni:
3.1 if uc[j] �= ucj um[j]← umj

Fig. 5. The Multicast Algorithm on a Tree, code of pi

(such that pi /∈ in-neighborsj). We present two different approaches to provide
an emulation of the edge (j, i) using the directed network.

Communicating over in-treel and out-treel: We use the two anti-directed
paths between pi and pj over in-treel and out-treel (these paths may traverse pl

for) emulating an undirected edge (i, j). The delay cost of message delivery
(measured by the maximal number of hops that a message traverses) is within
the order of the communication graph diameter.

Communicating over the Shortest Path: The update algorithm gathers
and distributes the information concerning the communication graph topology
to every processor in the system. The two shortest paths that are used to emulate
the undirected edge (i, j), can be found by performing BFS twice, once from pi

(until reaching pj) and once from pj (until reaching pi).
In order to ensure eventual delivery of messages, we use a self-stabilizing data

link algorithm [8] over the two shortest paths that implement a virtual undirected
link. Thus, the time complexity for emulating a message send operation over
a link may be proportional to the network diameter, and the space overhead is
related to the space required to implement the update algorithm [8].

6 Resource Allocation

We describe the resource allocation for a particular resource, the extension to the
case in which there are several independent resources, each accessed in a mutual
exclusion fashion, is straightforward.

Strongly Connected Networks: The scheme uses the self-stabilizing β-
synchronizer presented in Section 4.2 for collecting requests for the resource
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and propagating the winning processor, the processor that can use the resource.
Several requests may arrive at pl the root of in-treel and out-treel. pl will store
and manage the requests using a local queue queuel. The feedback phase collects
in a requests list (using in-treel) the current requests in the system. pl removes
from queuel processors that did not request the resource during the feedback
phase. Then pl grants the resource to the processor pi at the head of queuel. pl

sends the identifier of the processor (pi) that is allowed to access the resource to
all the processors during the next propagation phase.

Weakly Connected Networks: We propose a self-stabilizing scheme for the
case of synchronous systems (see e.g., [8]) in which there exists single strongly
connected component from which there is a directed path to every other pro-
cessor. Note that it is possible that a processor pi may be reached from the
strongly connected component but there is no path from pi to any processor in
the strongly connected component.

The processors in the strongly connected component learn the topology of the
strongly connected component using the self-stabilizing directed update. Each
processor pi, that has k ≥ 1 outgoing links that are not part of the strongly
connected component, requests the resource on behalf of itself and on the behalf
of the processors reached through these k outgoing links. We use the term mys-
terious out-going link for each of these k outgoing links. Once pi is granted the
resource (in a procedure that is identical to the one described for the strongly
connected case) pi uses the resource in a fair fashion, say, use the resource once
in every k + 1 successive times in which the resource is granted to it. In each of
the rest of the k + 1 times, pi grants the resource to (the subsystem connected
through) a (distinct) processor (chosen in a round robin fashion) connected via
one of its mysterious edges. pi always release the resource following B time units
knowing that any (processor in such) subsystem that received the grant (lease)
for the resource must release it within B time units.

7 Concluding Remarks

This paper presents schemes for achieving self-stabilizing group communication
services in directed networks. We view our study as an important building block
in understanding the possible and impossible middleware services in a faulty
environment. Our lower bounds and techniques can be used for achieving other
tasks in a directed network, in fact we show that we can simulate any undirected
network over a strongly connected directed network in a self-stabilizing fashion.
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