Random Walk for Self-Stabilizing Group Communication in Ad-Hoc Networks®
(Extended Abstract) '

Shlomi Dolev Elad Schiller
Department of Computer Science,

Ben-Gurion University of the Negev, Israel.
{dolev, schiller}ecs.bgu.ac.il

Abstract

We introduce a self-stabilizing group communication
system for ad-hoc networks. The system design is based on
random walks of mobile agents. Three possible settings for
modeling the location of the processors in the ad-hoc net-
wark are presented; slow location change, complete ran-
dom change, and neighbors with probabilitv. The group
membership algorithm is based on collecting and distribut-
ing information by a mobile agent. The new techniques sup-
port group membership and multicast, and also support re-
source allocation.

1 Intreduction

One of the exciting and fast-moving trends in comput-
ing is ad-hoc communication networks. Recent develop-
memts in wireless networking are making mobile comput-
ing a viable technology [10]. Ad-hoc nerworks [22, 23] do
not use pre-existing infrastructure (such as base stations or
telephone lines), but instead rely solely on wireless links
between mobile computers, resulting in “ad hoc™ network
connectivity topologies. -

With the spread of wireless distributed systems, it is im-
perative to find ways to simplify their programming. One
approach, which has been applied successfully already to
“traditional” wired distributed systems, is to provide com-
munication primitives that hide lower-level complications
that arise due to (partial) failures and asynchrony of dis-
tributed systems. Higher-level applications can then be
built on top of these communication primitives. Supporting
higher-level applications is the goal of group communica-
tion services.

The key features of a group communication facility are
(1) indicating to each node of the distributed system which
“group” it belongs to, that is, with which other nodes it
can currently communicate, and (2) letting nodes within a
group communicate with each other in an ordered and reli-

*Partially supported by NSF Award CCR-0098305.

1060-9857/02 $17.00 © 2002 IEEE

70

_ Jennifer Welch
Department of Computer Science,
Texas A&M University, USA.
welch@cs.tamu.edu

able manner. The (irst feature is called a group membership
facility, while the second feature consists of various kinds
of broadcasts and multicasts.

Fault tolerance is very important in distributed systems
that may experience crashes of processors, failure of com-
munication links, and unexpected noise in message trans-
mission. One kind of processor failure considered in previ-
ous work is when the processor crashes and later recovers
in a state indicating that it has just recovered from a crash;
usually it is assumed that the processor has access to siable
storage which survived the crash. Most previous work on
group communication has assumed processor crashes.

Many fault-tolerant algerithms do not consider the case
of faults that cause a temporary violation of the failure
assumptions made by the algorithm designer. For exam-
ple, most of the algorithms that are designed to cope with
Byzantine faults do not recover if more than one-third of
the processors temporarily experience a fault and then con-
tinue to execute their program starting from the state fol-
lowing the fault. Self-srabilizing [12, 13] algorithms cope
with the occurrence of temporary faults in an elegant way.
A self-stabilizing algorithm can be started in any global
state, which might occur due the occurrence of an arbitrary
combination of failures; from that arbitrary starting point, it
must ensure that the task of the algorithm is accomplished,
provided that the system obeys the designer’s assumptions
for a sufficiently long period. An algorithm is shown to be
self-stabilizing by showing that, starting in an arbitrary state
and assuming no further failures occur, eventually the algo-
rithm solves the problem of interest.

Since a group communication layer is “middleware” for
a distributed system, it is designed to execute forever, like
an operating system. Thus it is highly unlikely that it will
never experience a transient failure, especially in highly dy-
namic wireless mobile networks.

Unlike prior work on self-stabilizing group communi-
cation [14], we will focus on algorithms that fit the spe-
cial characteristics of ad-hoc networks. Mobile commu-
nication networks, by definition, experience movement of

some (or all) of the computing entities. Group communi-
cation services, in such a dynamic environment, must con-
tinuously follow the changing locations of the computers
in the group; thus, geographic location is a new parameter
for problem solutions. As.nodes change location relative to
each other, connections between nodes can go up and down
with-a much higher rate than that experienced in so-called
“dynamic™ (wired) networks subject to link failures and re-
pairs.

.Several algorithms for ad-hoc networks use flooding in
order to reach every processor. This approach results in
heavy traffic that may use up the limited energy of the
mobile processors. In particular, in order to support self-
stabilizing group communicaticn services, a large number
of flooding multicast messages may arrive simultaneously at
a single mobile processor. The receiving mobile processor
may not be able to process these arriving messages. Here,
we take a totally different approach, where one agent is re-
sponsible for broadcasting.

Another approach used for coordinating the operation of
ad-hoc networks is to construct and maintain a distributed
structure such as a spanning directed acyclic graph (e.g.,
TORA [26]). This approach can be too optimistic when
changes are very frequent; for example, the TORA spanning
directed acyclic graph might never be up to date.

In our work we do not assume that processors need to
change their location according to some specific pattern as
suggested in [20] or that there is a set of support hosts [5]
that assist in transferring information using random walks.
In [5] it is assumed that the support hosts move faster than
other hosts, and perform a random walk on a regular span-
ning tree (a tree with a fixed degree for nodes). The ideas of
snakes and runners are presented; both are based on forcing
the processors in the support set to move in a specific way.
In contrast, we analyze particular cases in which the com-
munication graph of the system changes dynamically. We
do not rely on the movements of the processors; instead,
processors send an agent that traverses the (dynamic) graph
in a random walk fashion.

Finally we note that mobile agents in the context of
self-stabilization were first studied in [19] and then in e.g.,
[3, 211. To the best of our knowledge, previous works con-
sidered fixed communication graphs, and did not address
group communication services.

Our Contribution: We present a new approach for achiev-
ing a self-stabilizing group communication service in ad-
hoc networks, Our approach is based on a random walk
of an agent, therefore, we do not have to maintain a dis-
.tributed structure, such as a directed acyclic graph, in a
self-stabilizing manner. Three possible settings for model-
ing the location of the processors in the ad-hoc network are
presented: slow location change, complete random change,
and neighbors with probability. The group membership al-

71

gorithm is based on collecting and distributing information
by a mobile agent. We detail the way the new techniques
support group membership and multicast, and an applica-
tion -— resource allocation.

The rest of the paper is organized as follows, The system
settings appear in Section 2. In Section 3 we discuss and
analyze random walks under different assumptions on the
mobility pattern exhibited by an ad-hoc network. The group
membership algorithm is presented in Section 4, The group
multicast algorithm is presented in Section 5. The resource
allocation algorithm is presented in Section 6. Concluding
remarks are in Section 7.

2 The System Settings

In this section we detail the settings of the ad-hoc com-
munication system. An ad-hoc communication systerm does
not assume the existence of a fixed communication infras-
tructure.

The system consists of communicating entities, which
we call processors. We denote the set of processors by P,
where [P} = n < N. N is an upper bound on n, the actual
number of processors in the system, and unlike # is known
to the processors. We assume that n is fixed during the pe-
riod of interest. In addition we assume that every processor
has a unique identifier.

Every processor p; executes a program that is a sequence
of steps. For ease of description we assume the interleaving
model where steps are executed atomically, a single step at
any given time. A step of p; includes the execution of a se-
quence of starements. In addition, p; may receive and send
{from/to a neighboring processor) a special message, called
an agent, as the first and the last, respectively, operation of
astep. An agent is a program coupled with a program state
(the program state is also called briefcase). In contrast, a
token does not carry a program to be executed. The use of
agents allows us to change the algorithm on the fly with-
out re-programming all the ad-hoc units. The agent pro-
gram may be repeatedly copied from a reliable and updated
source, such as a fixed base station. Whenever the agent ar-
rives at such a station the new program is overwritten cn the
agent program.

Processors use the agents to communicate with each
other. The program of the agent may have permission to
read and write variables of the processors. In this way, pro-
cessors and agents change one another’s state. Agents that
arrive at a processor p; are stored in a set .4;. We assume
that |A4;| < (A + 1), where A is the maximal possible de-
gree of a node in the graph,

Whenever «; is in 4; we say that a; visits p; and p;
hests a;. p; executes steps in its own program and steps
of an agent from .A;. During the execution of a step of the
program of p;, p; may receive new agents and then access
and modify A;. For example, p; may recognize that two

agents should “collide™ and merge these agents into a single
agentin A;.)

When p; executes a step of a; it changes the state of a; to
be the state of the program of a; following this step execu-
tion. Then p; sends ¢; to a neighboring processor preq:. In
the sequel we choose press randomly among the neighbors
of p;, and hence perform a random walk.

The state s; of a processor p; consists of the value of
all the variables of the processor including the value of
its program counter. Every execution of a step in the al-
gorithm changes the state of a processor (in particular it
may change the value of 4;). A full description of the
state of an ad-hoc system at particular time is a vector
¢ = (51,82, -, 8q, G{(V.£)) of the siates of the proces-
sors and the topology of the current communication graph
G(V,E), where V is the set of processors with their coordi-
nates in the plane, and £ is the set of edges implied by the
location of the processors and the common (or individual)
communication radius r of the processors. In other words,
anode p; € V represents a processor with its coordinates
in the plane and an edge (p;.p;) € £ represents the fact
that p; and p; can communicate with each other. Note that
we do not assume that processors are aware of their loca-
tion. We assume that p; executes an algorithm that discov-
ers the neighbors; set, such that the geographical distance
between p; and p; € neighbors; is no more than some 7.
neighbors; is symmetric, that is p; € neighbors; implies
pi € neighbors;. The term system configuration is used
for ¢ = (s1,82,°+,8,.G(V,£)). Note that we assume
that messages (agents) in transit arc part of the state (input
buffers) of the receiving processors, and therefore the vec-
tor of processor states and the current communication graph
fully describes the system state.

We define an execution E = ¢g.58¢,€1,; 81---- as an al-
ternating sequence of system configurations ¢; and steps s;,
such that each configuration ¢;1, (except the initial config-
uration cg) is obtained from its former conﬁgui‘ation ¢; by
the execution of the step s;. Note that s, is either a step of
the program of a processor p or an agent activation by p; in
the latter case an agent may be sent to a processor that is a
neighbor of p (where neighbors are defined by the commu-
nication graph in ¢;}. In addition, s; may cause a change in
the communication graph. Thus, the only components that
can be changed due to the execution of s; are the state of
p, the state of a neighbor of p (D,ex¢) and the communica-
tion graph G(V,£}). An execution is fair if every processor
executes a step infinitely often.

In this work we use random walks for broadcasting in-
formation. Thus, we consider (fair} executions in which the
random walk succeeds in arriving at all nodes in the system.
We define a nice execution to be an execution in which: (1)
there exists a single agent, and (2) the single agent arrives
at every processor in at most every M consecutive moves,

72

where M is a constant.

In the sequel (in Section 3) we compute the probability
of having a nice execution in several common cases. The
probability is calculated assuming an arbitrary configura-
tion with an arbitrary number of agents. Then we prove
that every nice execution must eventually solve the task, as
explained below.

One key issue that suppotts nice executions is the radius
of the transmission. Note that a large radius essentially re-
sults in a complete graph (in which there is high probabitity
for nice executions). Another mechanism, described in the
sequel, is the time-out mechanism which enables the cre-
ation of an agent when no agent exists.

The task of an ad-hoc system is defined by a set of legal
executions LE. A configuration ¢ is safe with regard to a
task, and the ad-hoc system, if every nice execution that
starts from ¢ belongs to LE.

We require that a self-stabilizing ad-hoc system will sat-
isfy: (1} starting from any arbitrary configuration, eventu-
ally the execution becomes nice (for a long enough peried)
with some positive probability. (2) Then we require abso-
lutely that every nice execution eventually reaches a safe
configuration, and thus satisfies the task.

An ad-hoc self-stabilizing system recovers from tran-
sient faults that disturb its behavior for a limited period of
time. The correctness of self-stabilizing ad-hoc systems is
demonstrated by considering every nice execution that starts
in a configuration that follows the last transient fault {note
that topology changes are not considered transient faults).
The system should exhibit the desired behavior for an in-
finitely long period after a finite convergence period.

The time complexity of an asynchronous self-stabilizing
distributed algorithm is measured by asynchronous cycles
in a nice execution. Note that every processor executes a
step infinitely often in every infinite nice execution. The
first asynchrenous cycle of a nice execution F is the short-
est prefix, E', in which every processor executes at least
one step. The second asynchronous cycle of E is the first
asynchronous cycle of E"” where E = E'E”. The next
asynchronous cycles are defined analogously.

3 Random Walks of Agents

The dynamic nature of ad-hoc networks does not allow
us to collect information concerning the current topoiogy of
the system. An attempt to collect such information will of-
ten result in out-of-date information. Thus, we propose to
use random walks (see e.g., [1]) as the main tool for trans-
ferring information.

We now describe a random walk of an agent over a dy-
namic graph. A processor, p, that is about to send an agent,
randomly chooses a processor, fi,ez¢. among the processors
that it can directly communicate with. Then p sends the

agent 10 Puext.

The above simple random walk procedure is used for
covering the graph (broadcasting). We define the cover time
of a graph to be the expected number of movements by a
single agent that is required in order to visit every processor
at least once. For calculating the cover time we choose a
starting point that results in the maximal value for the cover
time”. We assume that a processor p that holds an agent
sends the agent to ppeye within a constant number of its
own steps. Thus, the cover time can be described in terms
of asynchronous cycles instead of agent movements.

Some of our algorithms assume the existence of a single
agent in the system. A self-stabilizing system can be started
in an arbitrary configuration where no agent exists or sev-
eral agents exist. We use a time-out mechanism in order
to address the first situation. When a processor p; does not
receive an agent for a pre-defined period of time, p; pro-
duces an agent. Agent collisions are used to make sure that
a single agent survives. We assume that all the agents move
from one processor to a neighboring processor in a single
asynchronous cycle. The meeting time is an upper bound
on the expected number of asynchronous cycles until a sin-
gle agent exists. Note that the meeting time is a function
of the number of agents in the first configuration of the ex-
ecution. In the sequel, we show that the complexity of the
meeting and cover time in the graphs that we consider is the
same.

We next show that it is impossible to ensure that the
agent visits every processor in the system, when the changes
in the communication graph are arbitrary (and controlled by
an adversary). Then we present common cases in which
the random walk succeeds in visiting all the processors. In
the later cases, the resulting executions are nice executions.
{Note that Sections 4 through 6 build group communication
services for the set of nice executions.)

3.1 Impossibility result

Suppose that processors py, p2 and p3 are connected in
aring topology. Assume that ps frequently moves towards
1, losing connection with g3, and then moves back to p;,
reestablishing the connection with p3 and losing connection
with p;. Note that the communication graph is always con-
nected and forms a chain of processors — either p3, p1, pa
(when the connection between ps and ps is not active) or
=, P3, 1 (when the connection between p) and p» is not
active). Assuming the above topology changes there is an
execution in which the agent never visits po. In detail, the
agent visits py whenever p, is not connected to p;, and vis-
its p3 whenever py is not connected to p;.

3.2 Viable communication graph

Here we consider the case where an agent infiniteiy often
covers the system.

“There exist graphs for which the caver time ditfers for different start-
ing points.

73

‘We say that the link between processors p; and p; is vi-
able in an execution F if and only if (1) an agent visits
both p; and p; infinitely often and (2) p; € neighbors;
in an infinite number of visits of the agent in p; and, (3)
p; € neighbors; in an infinite number of visits of the agent
m pj .

We define T = py,,- -+, py 10 be a viable path between
Pip and py if the links between p;; and p;;,, are viable
(wherep;, € Tand1 <j <I-1)

We note that unless there is a viable path between p; and
pj, there is eventually a permanent cut in the communica-
tion graph, such that p; is in one portion of the graph and p;
is in another portion of the graph. Note that in the example
used for the impossibility result in Section 3.1 there is no
viable path between p; and pa.

In order to implement a group communicalion service, it
is not sufficient to have a viable path between every pair of
processors. Processors need to make sure that the agent cov-
ered the graph before concluding that the membership has
changed. Thus, we restrict our discussion to cases in which
there is an expected upper bound for the number of agent
moves that are required for covering the graph. Note that
the expected upper bound for the number of agent moves
can be either given or estimated during the execution.

We now turn to describe several cases in which the agent
does visit all the processors in the system. First we consider
the case in which the location changes of the mobile hosts
are slow.

3.3 Fixed communication graph

The value of the communication radius r can influ-
ence the frequency of changes in the communication graph
G(V,£). At one extreme, r is big enough to always reach
every other processor. In this case, the communication
graph is always a fully connected graph. If the commu-
nication radius is close enough to the value that is required
to reach every processor then only very few changes in the
communication graph are allowed. Another consideration is
the velocity of processors with relation to the velocity of an
agent. We may assume a fixed communication graph when
the agent is much faster than the processors. This is the
case when the time in between two changes in the commu-
nication graph is larger than the expected time required for
the agent to perform a random walk that covers the graph.
The above motivates us to also consider the case of a fixed
communication graph.

We also note that the graph is fixed for an agent when
the agent traversal does not visit a node more than once. In
other words, changes in the unvisited portions of the graph
do notinfluence the assumption that the graph is fixed. Sim-
ilarly, changes in portions of the graph that were visited and
are not visited again are also allowed.

For completeness we point out the meeting time and
cover time of fixed graphs. The meeting time and the cover

time of a fixed graph are well studied. In [8] it is shown that
within O(n?) agent movements, there is a single agent a. In
[15} it is shown that the cover time is O(n®) agent moves.

34 Random changes in the graph

Here we assume the other extreme where the graph is
always connected but can be totally changed in between two
successive moves of the agent. This is essentially a random
walk on a complete graph. The choice of movement to a
neighbor can be viewed as a random choice of the current
neighbors and then a randem choice of a neighbor from the
neighbors set.

The cover time for a complete graph is O(n logn) [16].
In the following lemma we show that within expected
O{nlogn) agent movements, there is a single agent a.
Thus, the expected meeting time of n agents is O(nlogn)
agent moves.

Lemma 3.1 Ler E be a fair execution, such that there are
k > 1 agents in the first configuration of E, and no other
agent is produced in E. Then within expected O(nlogn)
agent moves, there is a single agent in the system.

Proof: Without loss of generality, we may assume that
k < n, because agents in the same processor collide 1o a
single agent.

Suppose that « is the first agent to move in E. Then the
probability that « chooses to move to processor p; that hosts
another agent is (k —1}/(n — 1). Therefore, (n 1) /(k—1)
is the expected number of agent movements in E before we
have a configuration with k& -- 1 agents. Since for every
1 < k < n wehave (k—1)/{n— 1) > 0, then the expected
number of agent movements it takes for k agents to collide
to one agent is £iZ}_| (n — 1)/i, whichis O(rlogn). =

3.5 Neighborhood probability

Here we consider the case in which, for each i, there is
a (maximal) set A; of processors, such that each processor
in V; has a probability 1/]|V;| of being a neighbor of p;
when p; chooses ppez:. This case corresponds to situations
where processors are always close to their “home location”
and therefore have a fixed set of neighbors. An argument
similar to the one used in the previous case can be used to
prove a reduction to a fixed graph in which p; is a neighbor
of the processors in ;.

Note that it is possible that the probability tor each pro-
cessor to be in V; when p; chooses p,..; may not [be the
same. For instance, these probabilitiescanbe ¢, ¢2..... 4
(g; > 0) for the processors py, po, -+ -, pr, respectively. In
this case. the agent can choose p; t0 be pner: with proba-
bility (1/¢;)/{Z4=, (1/@)). Moreover p; may repeatedly
collect data concerning the neighborhood relation in order
Lo estimate g; on-line. p; may count during a particular time
period the number of times each neighbor has been con-
nected to it and use these numbers to estimate ¢;.

74

4 Membership Service by Random Walks

To state the requirements for the self-stabilizing group
membership service, we first define the view identifier vid
of a group. Every processor p; in the system has a boolean
flag g; that indicates whether it wishes to be a member of
g. Group membership can change during the execution, as
processors may join and leave a group. Changes in the set
of members cause the establishment of a new view for the
group. A view of a group g is a list of the members in g
(Jrmembers,| < N)and a view identifier vid, We assume
that the agent has a variable in which the vid is stored. We
note that a new wid is chosen by incrementing the previous
vid modulo a big encugh number ¥ that ensures the or-
dering between the existing views in the system. Views are
eliminated from the system following a certain time interval
(more details follow).

Group Membership Requirements:

Requirement 4.1 For every nice execution, E, and every
p;i € P if g, has a fixed value during E, then E has a suffix
such that p; appears in memnbers, if and only if y; = lrue.

Requirement 4.2 Every nice execution in which all the ¢,
variables have fixed values has a suffix such that vid is not
changed.

Since there is no interaction between groups, we con-
sider a specific group g and describe the membership ser-
vice for g.

We use an idea that is similar to the time to live approach
(see e.g., [30]). The agent carries a list, membersg, of
members in the group g and a list of corresponding coun-
ters lus — a counter value, lv;, for each p; € members,.
Whenever an agent visits p;, p; assigns a predefined value
t4l; 10 lv;. The value of il; is a function of the (expecied)
number of agent moves required for covering the commu-
nication graph; this value can be changed by p; when the
estimate of the number of nodes is adjusted (see below).
The value of each lv; € lvs is decremented by 1 whenever
the agent is reccived by a processor. We say that p; is an
active member in g when the value of lv; > 0. In the sequel
we describe our method for the cases in which the expected
cover time is O(N3). Cases in which the expected cover
time is smaller or bigger are handled analogously. We sug-
gest using kN3, for some k > 1, as an upper bound for both
ttl; and lv;, where k is a security parameter on the expected
cover time. The bigger k is, the more likely that a node will
not be falsely assumed to have dropped out because of an
unfortunately long random walk, but on the other hand new
views may not be established in a timely fashion when pro-
cessors are disconnected. In the context of a self-stabilizing
algorithm we have to bound the value of the variables. We
note that the values of t[; and [v; cannot exceed kN3,

In the previous section we assumed the existence of a
single agent. Since we are intcrested in a self-stabilizing

membership algorithm, we now present techniques that en-
sure the existence of a single agent. There are two cases to
consider:

No agent exists in the system: Here, we suggest using
timers rather than an asynchronous distributed algorithm for
detecting the fact that no agent exists. The reason is that our
approach can be applied to ad-hoc networks with changes
that are too frequent for performing an asynchronous dis-
tributed algorithm to detect the above situation.

A processor, p;, uses a long time-out period ¢p; (thatis a
function of the cover time for a graph of IV nodes) to pro-
duce an agent.

A processor p; for which 4; = @ measures the period

of time since the last time an agent visited p;. p; produces
a new agent when the above period of time is greater than
tp; . We note that the case of multiple agent creation is
easily handled using agent collisions as we next describe.
The value of members, of the new agent includes only i,
the identifier of the processor that created the agent, and the
value of lv;.
Several agents in the system: We use the fact that agents
collide during their random walks to ensure the reduction of
the number of agents. The collision occurs when the agents
are listed together in the set A; of a processor p;. For sim-
plicity we assume that the value of members, of the new
agent includes only the identifier of the processor, p;, that
created the agent and the value of [v;.

Whenever processor p; that holds an agent discovers that
the set of members in the group has changed, it chooses a
new view identifier. A change in the set of members can
be due to the fact that a processor voluntarily changes its
membership status in group g, or an identification of a con-
nection loss with a processor pg (when vy < 0).

The formal description of the algorithm appears in Fig-
ure 1. Upon agent a's arrival, we decrement every lv
counter by one (line 1.1} and add a to A4; (line 1.2). When
ip; expires, we create a new agent (line 2). We use the func-
tion create_an_ugent for this task. A new agent is created
when agents collide (line 3.1.1). The newly created agent
replaces all the agents in .4;. Line 3.2.2 stores the current
list of members (later used in line 3.2.6). Lines 3.2.3 to
3.2.3.2 removes a node that has been flagged as discon-
necied. Lines 3.2.4 t0 3.2.4.2 (3.2.5 to 3.2.5.1) adds (re-
moves, respectively) i to (from) members upon a request.
Line 3.2.6 creates a new view if the list of members has
changed. Lines 3.2.11 to 3.2.12 forward the agent to a ran-
domly chosen neighbor. Lines f.1 to f.2.3 create a new
agent.

Next we prove that our algorithm satisfies the member-

"To avoid simulianeous creation of many agenis one may choose tp; 10
be also-a function of the identifier of p;, for example in case the expected
cover lime is C' and the identifiers are small {say in the range 1 to /V) then
we may.choose {0 assign #p; := 7 - C, where 1 is the identifier of p;.

75

Global Constants:
ttl;: time to live, k times the expected cover time
V': upper bound on the number of view identifiers
that can be concurrently active
Agent Data Structure has Fields:
a.membersgy: the set of processors in group g)
a.lv;: (where p; are the processors in a.membersy)
counter for the time to live of p;
a.vid: identifier for the current view of the group
Local variables of processor p;:
g;: boolean indicating whether or not p; is in the group
Aji: set of agents currently at processor p;
last.vidg: the value of the vid for group g recorded at p;

1. Upon Agent Arrival:

1.1 for-every a.lv; € alvs adv; + adv; -1
{a is the arriving agent}

1.2 Ai+— A Ua

1.3 reset timeout

2. Upon Timeout tp;:

2. a +— create-an.agent
2.2 Ai+—a
23 reset timeour

3. Execute an agent step:;

3] if [A;] > 1 then

311 A; + create_an_agent
32 if | 4;] = 1 then

321 remove the agent a from A;

322 members + a.membersg

323 for every adv; < 0

3.2.3.1 remove j from g.membersy
3232 remove lv; from e.lvs

324 if g; = irue then

3.2.4.1 add ¢ to a.mernbersg

3242 add lv; = ttl; to a.lvs

325 else (9; = false)

3251 remove i from a.membersg
326 if members # a.mernbersy then
3.26.1 a.vid + a.vid + 1 modulo V'
3.2.10 last vidg + a-wid

32l choose Prezt

3212 send @ 1O Prext

f. Function create_an_ageni:
fl if g¢; = true then

f2.1 a.vid + last.vidg + 1 modulo V'
fz.1 a.membersg i

f2.2 alyy « 1t

f2.3 return a

Figure 1, Self-stabilizing Membership Service

by Random Walk, Code for p;

ship service requirements. Recall that we define a nice exe-
cution to be an execution in which (1} there exists a single
agent and (2) the single agent visits every processors in the
system within at most every M consecutive moves, where
M is a constant.

Lemma 4.3 Every nice execution of our algorithm satisfies
requirement 4.1 and requirement 4.2.

Proof: Let E be a nice execution, and « be the agent.

We first prove that requirement 4.1 holds. Within Af
agent steps, « visits p;.

Suppose that ¢; = true throughout. Then in every visit
of a to p;, lines 3.2.4.1 and 3.2.4.2 are executed, and line
3.2.5.1 is not executed. Therefore, immediately after the
first visit of the agent at p;, it holds that p; appears in
members,. The fact that ttl; > M implies that a visits
p; again before a.lu; < 0. Therefore, after the first visit of
ain p;, lines 3.2.3.1 and 3.2.3.2 are not executed in E.

Suppose that g; = false throughout. Then in every visit
of & to p;, lines 3.2.4.1 and 3.2.4.2 are not executed, and
line 3.2.5.1 is executed. Therefore, after the first visit of the
agent to p;, p; does not appear in mernbers,.

The proof is completed since lines 3.2.3.1, 3.2.4.1, and
3.2.5.1 are the only lines in the algorithm that remove or
add 1o meernbers.

We now turn to prove that requirement 4.2 holds as well.
Suppose all g; variables have fixed values. Since require-
ment 4.1 holds, we can conclude that after M agent moves
pi appears in mernbers, if and only if g; = true. There-
fore, u.mnernbers, is tixed after M agent moves, and line
3.2.6.1 is not executed. Hence both ¢.vid and a.members,
are fixed after A agent moves. n

Note that p; appears in (resp., is removed from)
anemnbers, following £tl; agent moves, in which the value
of g; is true (resp., false). Thus the time it takes to reach
a legal execution in which the values in a.members, and
a.vid reflects a traversal of the agent in an initialized exe-
cutrion (an execution in which a single group exists and this
group does not include any processor).

Accelerating stabilization by estimating n:

‘We now show that is possible to estimate the actual num-
ber of nodes 7: in the connected component (see e.g., [17])
and not use the upper bound N when calculating the values
of tp;, lvs, and ttl;. Having a more accurate upper bound
on 12 will ensure that the system will react faster to changes
such as addition/removal of a processor.

The briefcase of the agent includes a list of (no more than
N) indices and time stamps (step counters), such that each
index is associated with a time stamp. The list is sorted
such that the most recently visited processor appears first.
In other words, the index of node p; is the ith element in the
list, if the agent visited ¢ — 1 distinct processors following
its last visit to p;. To estimate the current number of proces-
sors, 1, we suggest ignoring the suffix of the list that starts

76

at the t’th element in the list such that there is a large enough
gap between the time stamps of the £'th and the ¢ — 1'th ele-
ments in the list. Roughly speaking, we choose a gap in the
time stamps of the t’th and (t— 1)'¢h elements such that this
gap is larger than the expected number of steps required to
explore (in a random walk fashion) a connected component
of ¢ processors.

5 Group Multicast

In this section we show how the membership service de-
scribed in the previous section can be used to support mul-
ticast services.

Past work on total ordering has yielded several ap-
proaches which use a roken that traverses a (virtual) ring,
to implement the total order. These algorithms have two
approaches, one in which totally ordered message delivery
is achieved by continually circulating a token through all
the nodes of the network in a virfual ring (e.g., [27, 2]).
The token circulates around the virtual ring carrying a se-
quence number. When a node receives the token, it assigns
sequence numbers {carried with the token) to its messages,
and then multicasts the messages to the group members.
The sequence number carried in the token is incremented
once for each message sent by the node holding the token.
Since the messages are assigned globally unique sequence
numbers, total order can be achieved. (Additional mech-
anisms are needed depending on the desired level of reli-
ability.) An alternative approach (e.g., [18, 9]) is to store
the messages in the token itself — since the token visits all
nodes in a virtual ring, the messages will eventually reach
all the nodes, the order in which messages are added to the
token determining the order in which they are delivered to
the nodes. :

Here we use a scheme in which the agent carries the mes-
sages. Any processor p; that wishes to multicast a message
e, waits for the membership agent and augments it with the
multicast message. .

Group Multicast Requirements; Let E be a nice execu-
tion of the membership algorithm presented in Figure 1.
Requirement 5.1 Suppose that processor p; is a member
of every view in E. If wn is a message sent by a member of
g during E, then m is delivered to p;.

Requirement 5.2 Suppose that the messages my and my
are delivered to processors p; and pj during E. If myp is
delivered 1o p; before m, Is delivered, then my is delivered
to p; before) is delivered.

Since we have a single agent, we can accumulate the his-
tory of the membership views and the multicast messages
within each view in the agent. The views and messages are
stored in the order that they were sent, and delivered in a
first-in first-out manner.

Whenever an agent arrives at a processor the processor
can receive all the multicast messages that are related to

3262 a.history « a.history + (a.vid, members)

327 if p; wishes 10 send a multicast message mn then

3271 add m to a.messages

3.2.8 for every non delivered v € a.history
application_layer « »

329 for every non delivered m € a.messages
application_layer +- m

Figure 2. Self-stabilizing Multicast Service by
Random Walk

views of which it is a member. Morcover, the processor
can deliver these messages in order and with the appropriate
view identifier.

A view of a group becomes old when a new view has
been established to the same group. An old view view, and
the multicast messages (within this view) are removed from
the agent a, when for every processor p; that is a memberin
view, the multicast messages of this view have been deliv-
ered to p;, or there is an indication that p; is not in the same
connected component with the agent .

‘We call the above multicast service best effort multicast.
We note that the multicast service is optimal if old views
are not eliminated from the agent unless all the members re-
ceived the multicast messages (ignoring indication of non-
connectivity),

The history length is bounded; the bound is a function of
the maximal activity in the system in terms of multicast and
view establishments during k¥'* agent moves. Note that an
old view is eliminated when there are kN3 steps following
the establishment of a new view — the reason is that either
every processor in the old view is visited or is considered
not connected. In addition the current view may accumulate
at most kN? multicast messages (a message in every agent
move) when all the processors in the view are considered
connected and active.

The formal description of the multicast algorithm ap-
pears in Figure 2. This description extends the code of Fig-
ure 1. A new view is added to the history of an agent «,
upon the history creation (line 3.2.6.2). If processor p;
wishes to send a multicast message 1, then 1 is added to
the messages of a (line 3.2.7.1). Every view (resp., mes-
sage) that processcr p; has not yet received, is delivered to
the application layer in line 3.2.8 (resp., 3.2.9).

It is possible to extend the multicast service to support
indication of the delivery to all the processors in the group
(in the spirit of safe delivery [6]) and an indication of the
fact that all the processors are aware of the current view
(in the spirit of view agreement [6]}). The idea is to add an
indication for each delivery of a message or a view (o a pro-
cessor, and use these indications to conclude safe delivery
or view agreemert.

Next we prove that our multicast service algorithm satis-
fies requirements 5.1 and 5.2.

77

Lemma 5.3 Every nice execution of our algorithm satisfies
requirement 5.1 and requirement 5.2.

Proof: We first prove that requirement 5.1 holds. A mes-
sage mn sent by p; is not removed from the agent for kN3
agent moves. Clearly, if a visits p; during these kN? moves
then 71t is delivered to p;. Since p; must choose ttl; < kN3,
and p; is not removed from v during E then the agent must
arrive at p; following the delivery of i and before it is re-
moved.

We now show that requirement 5.2 holds. Send opera-
tions are executed during the visit of the (single) agent and
therefore can be {totally) ordered. Assume that mg is sent
in E before ny is sent and let p; and p; be two processors
that delivers . Every processor p; that receives an agent
and delivers o, either finds 7n; as well in the agent (in this
case 1) has been sent before 1y is delivered by p;) and de-
livers 7 and then iy, or p; does not find vy in the agent
(in this case i, has not been sent yet) and delivers rup only
in a subsequent visit of the agent — a visit that follows the
delivery of 1ny. Thus, the order of delivery of the messages
1t and 11ty by every processor p is identical to the order of
the send operations of 1 and ;. []

Up to this point we always assumed that there exists a
single agent in the system and used an “empty”™ agent to re-
place colliding agents. Let us remark that a technique sim-
ilar to the one presented in [14] can be used to resolve his-
tory conflicts upon agent collisions and decide on a single
non-empty history.

6 Resource Allocation

The random walk of the agent and the membership ser-
vice can support not only a multicast service, but also an-
other application — a resource allocation service. For the
sake of simplicity, we assume that there is no interaction
between different resources. In other words, we handle a
single resource in the system.

The problem of resource allocation has been extensively
studied (e.g., [24, 28, 7, 11, 13]). In [29] the task of resource
allocation is considered in the context of group communica-
tion: three different group membership protocols are used to
solve a resource allocation problem named Bancomat. The
different solutions vary in communication characterizations
and their ability to decide independently. The design of [29)
is for an advanced resource allocation task, but is not self-
stabilizing. Here in contrast we present a self-stabilizing
solution for a basic resource allocation task.

Resource Allocation Requirement:

Requirement 6.1 Let E be a nice execution, such that ev-
ery processor that possesses the resource releases it after
B asynchronous cycles, for some finite constamt B, Then
every processor p; that wishes to possess the resource in-
finitely often, possesses the resource infinitely often.

The communication graph of an ad-hoc system may be
partitioned into multiple mutually disconnected connected
components. Here we describe an algorithm for resource
allocation, despite such dynamic communication graph par-
tition.

Group membership services have two approaches for
coping with partition scenarios. Partitionable membership
services allow multiple disjoint views of the same group to
exist concurrently, each view for a different component [6].

In contrast, primary component membership services al-
low only one component, called the primary component, 10
have group views and the full set of allowed operations,
while other componentis are considered to be non-primary
and are limited to executing a reduced set of operations [6].

We note that the self-stabilization property imposes the
requirement that the number of processors of any primary
view must include the majority of processors in the system
(| V/2] +1). Suppose that we do not require primary views
to include the majority of processors and that for every set
of processors there is an execution in which this set of pro-
cessors {maybe the only active processors) forms a primary
view. Consider an execution E) in which 4 is a primary
view that consists of a set of processors, and consider a dif-
ferent execution £ in which A’ is a primary view that con-
sists of a totally disjoint set of processors. Note that by our
assumption any set of processors can form a primary view.
Consider an execution E3 with two disjoint “primary” con-
nected components A and A’ in the first configuration of an
execution 3. Since there is no communication between the
two components, then the system may never detect the fact
that both components are considered primary.

We define a group, ¢,.u. that includes all the proces-
sors. This group will be used to indicate whether the con-
nected component is a primary component. The agent has a
boolean flag a.prisnary that is true if and only if the num-
ber of members in gey is greater than | N/2]|. The agent
decides on the list of processors in the connected compo-
nent by the membership procedure described above.

Processors that request the resource join the group
Gresource- 1he agent can order the processors in the
Yresource Members set by the order in which they join the
set; in this case the set is essentially a request queue.

The agent ¢ of the primary component allocates the re-
source to the processor p,. that is at the head of the request
queue. The resource is released when p, leaves ¢rosources
Pr leaves goyy. or w.primary is false.

The next lemma proves that our algorithm satisfies the
resource allocation requirement.

Lemma 6.2 Every nice execution of our algorithm satisfies
requirement 6.1.

Proof: Let p; a processor that wishes to possess the re-
source in E. Then by the algorithm it joins ¢reseupce- Since
(1} gresource 15 @ quene with at most NV requests, (2) the

78

agent cover time is bounded by M, and (3) the time that
a processor possesses the resource is bounded by B, then
within O{M N B) asynchronous cycles, the agent allocates
the resource to p;.]

7 Concluding Remarks

We suggest using a random walk of an agent to cope with
the uncertainty and the dynamic nature of ad-hoc networks.
The random walk of the agent is used to implement a proba-
bilistic group communication service. The membership ser-
vice, multicast service and resource allocation service that
we present meet their requirements with high probability.
We emphasize that the communication, time and space re-
sources for operations can be tuned by varying the probabil-
ity. The requirements will hold with higher probability it we
increase the value of the transmission radius r, enlarge the
parameter k for ensuring cover time, and use longer histo-
ries in the agents. We argue that our new approach for a best
effort service matches the nature of the ad-hoc system and
the limitations (e.g., {4, 25]) of the group communication
service. The traversal of the system by a single agent lim-
its the number of simultancous messages that are needed to
support the group communication service at any given time.
Thus, it limits the resources (processing capabilities) of the
mobile agent needed to support these services.
Acknowledgment: Many thanks to Uriel Feige for helpful
discussions and Lyn Pierce for improving the presentation.

References

[11 D. Aldous and J. A. Fill, Reversible
Markov Chains and Random Walks on
Graphs {book draft), October 1999,

hitp://www stat. berkeley.cdu/~aldous/book.htm}
2

—

Y. Amir, L. Moser, D. Agrawal, and P. Ciarfella,
*“Fast message ordering and membership using a logi-
cal token-passing ring”, Proc. 13th IEEE International

Conference on Distributed Computing Systems, Pitts-
burgh, PA, pp. 551-560, 1993,

[3]1 J. Beauquier, T. Herault, and E. Schiller, “Easy Self-
stabilization with an Agent” 5th Workshop on Self-

Stabilizing Systems, Lisbon, Portugal pp. 35-50,2001.

[4] T. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-
Bost, “On the Impossibility of Group Membership”,
Philadelphia, PA Proc. ACM Symposium on Principles

of Distribured Computing, pp. 322-330, 1996.
{5

[

I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis,
“An Efficient Communication Strategy for Ad-Hoc
Mobile Networks”, Proc. 15th International Sympo-
sium on Distributed Computing, Lisbon, Portugal, pp.
285-299, 2001.

[6] G. V. Chockler, 1. Keidar, and R. Vitenberg, “Group
Communication Specifications: A Comprehensive
Study”, ACM Computing Surveys, 33(4).1-43, De-
cember 2001,

[7] M. Choy and A. K. Singh, “Efficient fault tolerant
algorithms for distributed resource allocation,” ACM
Transactions on Programming Languages and Sys-

tems, 17(4):535-559, 1995,

[8] D. Coppersmith, P. Tetali, and P. Winkler, “Collisions
among Random Walks on a Graph,” SIAM J. on Dis-

crete Math., 6(3):363-374, August 1993,
{91

F. Cristian and F. Schmuck, “Agreeing on processor
group membership in asynchronous distributed sys-
tems,” Technical Report CSE95-428, Department of
Computer Science, University of California at San

Diego, 1995.

[10] R. A. Dayem, Mobile Data and Wireless LAN Tech-

nologies, Prentice Hall, 1997.

[£1] E. W. Dijkstra, “Hierarchical ordering of sequential
processes,” Acta Informatica, 1:115-138, 1971,

[12] E. W. Dijkstra, “Self stabilizing systems in spite of
distributed control,” Communications of the ACM,
17:643-644, 1974.

[13] S. Dolev, Self-stabilization, MIT Press, 2000.

[14) S. Dolev and E. Schiller, “Communication Adaptive
Self-Stabilizing Group Membership Service,” Proc.
Sth Workshop on Self-Stabilization, WS5'01, LNCS
2194, pp. 81-97, 206! (also BGU TR-02, July 2000).

[15] U. Feige, “A Tight Upper Bound on the Cover Time
tor Random Walks on Graphs,” Random Structures
and Algorithms, 6(4):51-54, 1995,

[16] U. Feige, “A Tight Lower Bound on the Cover Time
for Random Walks on Graphs,” Random Structures
and Algorithms, 6(4):433-438, 1995.

[17] U. Feige “A Fast Randomized LOGSPACE Algorithm
ifor Graph Connectivity”, Theoretical Computer Sci-
.ence, 169:147-160, 1996

{18].A. Fekete, N. Lynch, and A. Shvartsman, “Specify-
‘ing and Using a Partitionable Group Communication
Service,” Proc. 16th Annual ACM Symposium on Prin-
ciples of Distributed Computing, Santa Barbara, CA,
pp- 33-71, 1997.

[19] S. Ghosh, “Agents, distributed algorithms, and sta-
bilization,” Computing and Combinatorics, Springer-
Verlag LNCS:1858, pp. 242-251, 2000.

79

[20] K. P. Hatzis, G. P. Pentaris, P. G. Spirakis, V. T. Tam-
pakas, and R. B. Tan, “Fundamental Control Algo-
rithms in Mobile Networks,” Proc. 11th ACM Sym-
posium on Parallel Algorithms and Architectures, pp.
251-260, 1999.

[21} T. Herman and T. Masuzawa, “Self-stabilizing Agent
Traversal,” Proc. 5th Workshop on Self-Stabilizing
Systems, pp. 152--166,2001.

[22] IETF Mobile Ad-Hoc Networks (MANET) Work-
ing Group, http://www.ietf.org/htm).charters/manet-
charter.html.

[23] T.Imielinskiand H. F. Korth, Mobile Computing, Aca-
demic Publishers, 1996.

124] N.A. Lynch, “Fast allocation of nearby resources in
a distributed system,” Proc. 12th ACM Symposium on
Theory of Computing, pp. 70-81, 1980.

[25] G. Neiger, “A New Look at Membership Service,”
Proc. 15th ACM Symposium on Principles of Dis-

tributed Computing, 1996,

[26] V.D. Park and M. S. Corson, “A Highly Adaptive Dis-
tributed Routing Algorithm for Mobile Wireless Net-

works,” Proc. IEEE INFOCOM, April 1997.

[27] B. Rajagopalan and P. McKinley, “A Token-Based
Protocol for Reliable, Ordered Multicast Communi-
cation,” Proc. 8th IEEE Symposium on Reliable Dis-
tributed Systems, Seattle, WA, pp. 84-93, October

1989.

[28] E. Steyer and G. Peterson, “Improved Algorithms
for Distributed Resource Allocation,” Proc. 7th Sym-
posium on Principles of Distributed Computing, pp.

105-116, 1988.

[29] J. Sussman, and K. Marzullo, “The Bancomat Prob-
lem: An Example of Resource Allocation in a Parti-
tionable Asynchronous System,” Proc. 12th Interna-
tional Symposium on Distributed Computing (DISC),

1998.

[30] A.S. Tanenbaum, Computer Networks, Prentice Hall,
1996.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

