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Abstract. This paper presents the first algorithm for implementing self-
stabilizing group communication services in an asynchronous system.
Our algorithm converges rapidly to a legal behavior and is communi-
cation adaptive. Namely, the communication volume is high when the
system recovers from the occurrence of faults and is low once a legal
state is reached. The communication adaptability is achieved by a new
technique that combines transient fault detectors.

1 Introduction

Group communication services are becoming widely accepted as useful build-
ing blocks for the construction of fault-tolerant distributed systems and com-
munication networks. Designing robust distributed systems is one of the most
important goals in the research of distributed computing. One way to simplify
the design and programming process of a distributed system is to design a use-
ful set of programming high-level primitives that forms a robust set of tools. A
group communication system enables processors that share a collective interest,
to identify themselves as a single logical communication endpoint. Each such
endpoint is called a group, and is uniquely identified. A processor may become
a member of or departure a group, by issuing a join/leave request to the group
membership service. The membership service reports membership changes to the
members, by delivering views. A view of a group includes a set of members and
a unique identifier. A processor may send a message to a group, using a group
multicast service.

A very important property in the implementation of the primitives of group
communication services is its fault tolerance and robustness. It is assumed that
processors leave and join the group either voluntarily or due to crashes or re-
coveries. The distributed algorithms that implement these services assume a
particular set of possible failures, such as crash failures, link failures or messages
loss. The implementing algorithms should provide the specified services in spite
of the occurrence of these failures. The correctness of the implementing algo-
rithms is proved by assuming a predefined initial state and considering every
possible execution that involves the assumed possible set of failures.
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The abstraction that limits the possible set of failures is convenient for es-
tablishing correctness of the algorithm, but it can at the same time be too
restrictive. Group communication service is a long-lived on-line task and hence
it is very hard to predict in advance the exact set of faults that may occur.
Therefore, it may be the case that due to the occurrence of an unexpected fault,
the system reaches a state that is not attainable from the initial state by the pre-
defined transitions (including the predefined fault occurrences). Self-stabilizing
systems [11, 14] can be started in any arbitrary state and exhibit the desired
behavior after a convergence period. Thus, self-stabilizing group communication
services can automatically recover following the occurrence of such unexpected
faults.
Related Work: The Isis system [8] is the first implementation of group commu-
nication services that triggered researchers and developers to further examine
such services. Cristian [9] formalized a definition of group communication for
synchronous systems. Group communication services were implemented with dif-
ferent guarantees for reliability and message delivery order. For example, Isis [8],
Transis [17], Totem [23], Newtop [19], Relacs [7], Horus [25] and Ensemble [26].
None of the above implementation is self-stabilizing. A specification that guar-
antees performance once the system stabilizes to satisfy certain properties is
presented in [20]. This is a consequence of existing impossibility results for re-
quirements that hold in all possible executions e.g., [10]. Still it is assumed in [20]
that the system is started in a certain global state, and the transitions are from
a predefined set of transitions — thus the specification and algorithm presented
in [20] are not designed for self-stabilizing systems.

A different approach (part of which is randomized) is used in [27]. Every
processor periodically transmits a list of the processors that it can directly com-
municate with. A processor is consider “up” and connected as long as it can
successfully transmit a “fresh” time-stamp; otherwise it will be eventually dis-
carded from the system. The algorithm presented in [27] may be a base for a
self-stabilizing algorithm, if for example, each processor has access to a local
pulse generator, such that the maximum drift between the pulse generators is
negligible.

Congress [2] is an elegant protocol for registration of membership informa-
tion at (hierarchically organized) servers. Hierarchy of servers improves scala-
bility. Users send a message to servers with join or leave requests. The servers
maintain the membership information. The design fits wide area network using
virtual links to define neighboring relation.

Moshe [21] is a group membership service implementation, that considers an
abstract network service (such as Congress [2]). The network service monitors the
up and connected members of every group and delivers multicast messages to the
members of a group. The common cases of membership changes (joins/leaves)
are considered in order to achieve scalability. The group membership algorithm
of Moshe uses unbounded counters.

A self-stabilizing group membership service for synchronous systems is con-
sidered in [3]. A common periodic signal initiates a broadcast of local topology
of every processor. Every processor uses the local topologies in order to compute



84 Shlomi Dolev and Elad Schiller

the connected component to which it belongs. Unbounded signal numbers are
used and changes in the group are discovered following a common signal.
Our Contribution: this paper presents the first algorithm for implementing a
self-stabilizing group membership service in asynchronous systems. We assume
that processors eventually know the set of non-crashed processors with which
they can communicate directly. We show that once every processor knows the
correct set, the membership task is achieved within the order of the diameter of
the communication graph. Moreover, the activity of the processors is according
to the required group membership service. Our algorithm converges rapidly to a
legal behavior and is communication adaptive. Namely, the communication vol-
ume is high when the system recovers from the occurrence of faults and is low
once a legal state is reached. The communication adaptability is achieved by a
new technique that combines transient fault detectors. Furthermore, randomized
techniques can be used to dramatically reduce the communication complexity of
the deterministic transient failure detector.

Our group membership service can be extended to implement different levels
of broadcast services, such as single-source FIFO; totally ordered; and causally
ordered.

The rest of the paper is organized as follows. The system settings appear in
Section 2. Our algorithms for implementing a self-stabilizing group membership
service appear in Section 3. Concluding remarks are in Section 4. The proofs are
omitted from this extended abstract, more details can be found in [18].

2 The System

The distributed system consists of a set of P communicating entities. We call
each entity a processor, and assume that 1 ≤ |P | = n ≤ N , where N is an upper
bound on the number of processors. The processors may represent a network of
real physical CPU, or correspond to an abstract entity like a process or thread in
a timesharing system. Processors are connected by communication links through
which they communicate by exchanging messages. neighborsi is the set of pro-
cessors that processor pi can directly communicate with. The communication
link may represent a (real physical) communication channel device attached to
the processor, a virtual link, or any inter-process communication facility (e.g.,
UDP, or TCP connections).

It is convenient to represent a distributed system by a communication graph
G = (V,E), where each node represents a processor and each edge represents a
communication link. Let pi, pj ∈ P , pj ∈ neighborsi iff (pi, pj) ∈ E.

The system is asynchronous. We assume however that processors eventually
identify the crashed/non-crashed status of their attached links and neighbors.
We sometime use the term time-out in the code of the processors for a repeated
action of the processors. In fact, a zero time-out period will result in the desired
behavior as well. The time-out period may only reduce the number of messages
sent when processors have access to a time device.

A state machine models each processor. The communication links are mod-
eled by two anti-directed FIFO queues. We use a (randomized) self-stabilizing
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data-link algorithm on every link [1]. The existence of the self-stabilizing data-
link algorithm ensures that when a message is sent it arrives to its destination
before the next message is sent. Thus, input communication buffers or com-
munication registers (when buffers contain at most one message and when the
content of an arriving message replaces the previous content of the buffer) can
be assumed whenever it is convenient instead of message passing.

The system configuration is a vector of the states of the processors and the
values of the queues (the messages in the queues).

A communication operation is an operation in which a message is sent or a
message is received. We also allow a processor to send the same message to every
one of its neighbors in a single communication operation. A step of a processor
consists of internal computations that are followed by a single communication
operation. A system execution is an alternating sequence of configurations and
(atomic) steps.

Processors may crash and recover during the execution. The neighbors of a
crashed processor eventually identify the fact that it is crashed.

The program of a processor used here consists of a do-forever loop that in-
cludes communication step with every neighboring processor. Let R be an exe-
cution and let A be a connected component of the system such that no processor
in A is crashed during R. The first asynchronous cycle of A in R is the minimal
prefix of R such that each processor pi in A communicates with every of its
neighbors: At least one message mj is sent by pi to every neighbor pj, such that
pj receives mj during the asynchronous cycle.

The number of messages sent over a particular communication link during an
asynchronous cycle is a function of the number of loop iterations the attached
processors execute during this asynchronous cycle (note that a processor may
execute any number of iterations before another processor completes a single
loop iteration). Thus we consider a special execution to measure the communi-
cation complexity of an algorithm. A very fair execution is an execution in which
every processor executes exactly a single iteration of its do-forever loop in every
asynchronous cycle. The communication complexity is the total number of bits
communicated over the communication links in a single asynchronous cycle of a
very fair execution.

The set of legal executions includes all the executions that exhibit the desired
behavior (input output relation) of the system for a task τ . For example, if τ is
the mutual exclusion task, then at most one processor is executing the critical
section in any configuration of a legal execution.

A safe configuration of the system is a configuration from which only legal
executions, with respect to τ , start.

In this paper, the requirements are related to the eventual behavior of the
system when the execution fulfills certain properties (unlike the requirements
discussed in [10] see also [24]). We require that a self-stabilizing algorithm for
group communication service will reach a safe configuration within a certain
number of asynchronous cycles in any execution (that starts in an arbitrary con-
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figuration) such that each processor pi has a fixed set of non crashed neighbors
during the execution1.

We allow simultaneous existence of several groups. We do not consider how-
ever, interaction between the groups. Therefore, we choose a specific group g
for describing the membership service. A boolean variable memberi (logically)
represents the intention of pi to be included in g. A partition of the network may
cause a “partition” of g as well. Therefore, we associate the set of legal execu-
tions for the group membership task, with the processors of a (fixed) connected
component A, and include execution R such that the following properties hold:

1. If the value of memberi = true (memberi = false) is fixed during R then
there exists a suffix of R, in which pi appears (does not appear, respectively)
in all the views of group g in the connected component A.

2. If the value of memberi of every processor pi of group g in the connected
component A is fixed during R then there exists a suffix, in which all the
views of group g in connected component A are identical, the views have the
same list of members and the same view identifier.

We note that the length of the prefix of R before the suffix mentioned in the
above requirement is achieved by our algorithms is Θ(d) (which is the fastest
possible).

The communication of a self-stabilizing algorithm is adaptive if the maximal
communication complexity after reaching a safe configuration is smaller than the
maximal communication complexity before reaching a safe configuration.

3 Self-Stabilizing Group Membership Service

In this section we present the first communication adaptive self-stabilizing al-
gorithm for the membership service. Roughly speaking, a spanning tree of the
system is constructed. This tree is used to execute the membership management
tasks. The root of the tree is responsible for the management of the membership
requests, and establishing new views. Several transient fault detectors monitor
the consistency of the tree and the membership information. The transient fault
detectors give fast indication on the occurrence of transient faults. Once a fault is
detected the system changes state to a safe configuration executing a propagation
of information with feedback (PIF) procedure [28,13], for several times (choosing
random identifiers for these executions to ensure eventual stabilization).

The update algorithm informs each processor with the nodes in its connected
component. The update algorithm stabilizes fast, as it takes Θ(d) asynchronous
cycles before reaching a safe configuration. We use d to denote the actual diam-
eter of the connected component. Unfortunately, the communication complexity
of the update algorithm is O(|E|n log n) before and after a safe configuration is
reached. In this section we present an algorithm that reduces the communication
complexity to O(|E| log n + n2 logn) = O(n2 logn) once a safe configuration is
reached.
1 We note that we do not consider the time required to identify the status of the links
and neighbors.
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A transient fault detector is composed with the update algorithm to achieve
the communication adaptability property (see [4,6,5] for definitions of transient
fault detectors). The transient fault detector signals every processor whether or
not it needs to activate the update algorithm. Our transient fault detector itself
is obtained by using a new technique for composing transient fault detectors.

Roughly speaking, whenever a processor detects, by use of the transient fault
detector, that the update algorithm is not in a safe configuration, the processor
signals the processors in the system to start the activity of the update. The
processor stops signaling the other processors to operate the update algorithm
when it receives an indication that a safe configuration is reached.

3.1 Self-Stabilizing Update

We use the self-stabilizing update algorithm of [12,15]. We now sketch the main
ideas used by the update algorithm. We start with the data structure used by a
processor. Each processor has a list of no more than N tuples 〈id, dis, parent〉.
When the update algorithm stabilizes it holds that the list of a processor pi

contains n tuples, exactly one tuple 〈j, dis, k〉 for each processor pj that is in the
same connected component with pi. The value of dis is the number of edges in a
shortest path from pi to pj and pk is a neighbor of pi that is in a shortest path
to pj . Thus, when the algorithm stabilizes every processor knows the identities
of the other processors in its connected component.

The processors that execute the update algorithm repeatedly receive all the
tuples from the tables of their neighbors and use the value received to calculate a
new table (note that the current table is not used in calculating the new table).
Every time a processor pi finishes receiving the tuples of its neighbors it acts as
follows: Let T U i be the set of all tuples that a processor pi reads from its neigh-
bors. pi adds 1 to the dis field of every tuple in T U i. pi adds a tuple 〈i, 0, nil〉
to T U i. If there are several tuples with the same id in the resulting T U i then pi

removes every such tuple except a single tuple among these tuple, a tuple with
the minimal dis value. Finally, pi removes every tuple 〈id, dis, parent〉 such that
there exists a positive z < dis and there is no tuple with dis = z in T U i. The
resulting set in T U i is the new table of pi.

3.2 Transient Fault Detectors for Reducing Communication
Overhead

The communication complexity of the update algorithm is O(|E|n log n). Note
that a naive approach for designing a transient fault detector is to repeatedly
send T U i to every neighbor. A fault will be detected whenever there should be
a change in the value of T U i (according to the update algorithm) when a mes-
sage with T Uj arrives from a neighboring processor pj . This approach results in
communication complexity that is identical to the communication complexity of
the update algorithm.

In this section we present a fault detector that reduces the communication
complexity of our algorithm when the algorithm stabilizes (reaches a safe config-
uration). The communication complexity of the algorithm when a fault detector
is used is O(n2 logn).
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The update algorithm informs each processor with the nodes in its connected
component. The task of the transient fault detector is to detect a fault whenever
there exists at least one processor that does not know the set of processors in
its connected component.

We present a new scheme for combining fault detectors that results in low
communication complexity. In order to reduce the communication complexity,
we combine two transient fault detectors. The first one communicates short mes-
sages over all the links of the system and ensures that there is a marked rooted
spanning tree. The short messages consist of the identifier of the common leader
and the distance of the processor from this leader. The second transient fault
detector assumes the existence of a spanning tree and communicates larger mes-
sages over the links of this tree. In fact, these messages consist of the description
of the rooted spanning tree.
Transient Fault Detector for the Existence of a Tree Rooted at a
Leader: The code for the first part of the transient fault detector appears in
Figure 1. In the code we use the input 〈leaderi, disi, parenti〉 which is defined
by the output of the update algorithm. Let 〈l, d, p〉 be the tuple in T U i, such
that l is the maximal value among the values of the leader variables in T U i. The
value of 〈leaderi, disi, parenti〉 is assigned by the values of 〈l, d, p〉. A change in
the value of 〈leaderi, disi, parenti〉 as well as in the neighborsi set triggers fault
detection.

Lines 1 and 1a of the code ensure that the information for detection of a
fault is sent from every processor to its neighbors once every timeout period.
Line 1b ensures that the processor for which leaderi = i has the value 0 in its
dis variable and the value nil in the parenti variable. Line 2a ensures that all
the processors have the same value in their leader variable and the distance of
the parent of each (non-leader) processor pi is one less than the distance of pi

from the leader.

Input: 〈leaderi, disi, parenti〉 (* updated by lower level *)

1. Upon timeout:

(a) for each j ∈ neighborsi send 〈leaderi, disi, parenti〉.
(b) if leaderi = i and (disi �= 0 or parenti �= nil) then fault is detected.

2. Upon receiving 〈l, d, p〉 from pj

(a) if (l �= leaderi) or ((j = parenti) and (disi �= d + 1)) then fault detected.

Fig. 1. Transient Fault Detector of pi, for the Existence of a Tree Rooted at a
Leader.

Define the directed graph T = (V,E) as follows: each node of the graph V
represents a processor in the system (and vice versa). There exists a directed
edge (i, j) ∈ E if and only if the value of the parent field of the processor pi, in
the tuple of T U i with the maximal id, is pj.
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Definition 1. A directed graph is an in-tree if the undirected underlying graph
is a tree and if every edge of the tree is directed towards a common root.

To prove the correctness we show that if no processor detects faults during
an asynchronous cycle, then T is an in-tree rooted at the common leader (the
processor with the maximal identifier).
The Tree Update Algorithm: Before we continue with the transient fault
detector, let us add a mechanism to distribute the description of T to every
processor in the system. We augment each processor pi with a variable Ti that
should contain the description of T .

Let Ti(pj) be the component of Ti that is connected to pi when the link
from pi to pj is removed from Ti. pi repeatedly sends Ti(pj) to every proces-
sor pj ∈ ({parenti} ∪ childreni). parenti is defined by the value pj of the tu-
ple 〈l, d, pj〉 in T U i such that l = leaderi. The childreni set includes every
neighbor pj from which the last table T Uj received, includes a tuple 〈l, d, pi〉
where l = leaderi. pi repeatedly computes Ti using the last values of Tj(pi)
received from every processor pj ∈ ({parenti} ∪ childreni). pi construct Ti

from the above Tj(pi) adding the links connecting itself to the processors in
({parenti} ∪ childreni).

Input: Ti, parenti, childreni (* updated by lower level *)

1. consistent← true
2. if Ti does not encode a spanning in-tree then consistent← false
3. if childreni is different from the set of processors that are the

children of pi in Ti then consistent← false
4. if parenti = nil and pi is not the leader of Ti then consistent← false
5. if parenti �= nil and parenti is not the parent of pi in Ti

then consistent← false
6. return consistent

Fig. 2. Consistency Test Function.

We now prove the correctness of the tree update algorithm. In the proof we
consider an execution that starts in a safe configuration of the update algorithm
and prove correctness of the tree update in such executions. A safe configuration
of the update algorithm is a configuration in which the values of the tuples of all
the processors are correct (and therefore are not changed in any execution that
starts in such a safe configuration).

In the lemma we use the term height of a processor pi in an in-tree for the
maximal number of edges in a path from a leaf in the tree to pi, such that the
path does not include the root of the tree.

Lemma 1. Consider any execution R of the tree update algorithm that starts in
a safe configuration of the update algorithm and consists of at least l + 1 asyn-
chronous cycles. Let pj be a processor such that T (pj) is a sub-in-tree of T (the
in-tree defined by the update algorithm) that is rooted at pj, and the height of
T (pj) is at most l. Let Tj(pj) be the description of the tree rooted at pj in the
variable Tj of pj. It holds that T (pj) = Tj(pj) in the last configuration of R.
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A configuration, c, is safe with relation to the tree update algorithm iff c is
safe for the update algorithm and for every processor pi Ti = T . Moreover, in
any execution that starts in c the value of Ti is not changed (this last require-
ment implies, in fact, that any message in transit from pi to pj contains Ti(pj)
that is the portion of T connected to pi when the link from pi to pj is removed).

Corollary 1. The tree update algorithm reaches a safe configuration follow-
ing the first O(d) asynchronous cycles and its communication complexity is
O(n2 logN).

Transient Fault Detector for Correct Description of the Tree: The sec-
ond transient fault detector assumes the existence of a rooted spanning tree T
that is defined by the child parent relation and ensures that every processor pi

has the description of T in Ti. Thus, ensures that every processor knows the set
of processors in its connected component.

Let us first describe the consistency test function in Figure 2 that is used by
our transient fault detector. In the code we use the input Ti, parenti, childreni

which is defined by the output of the tree update algorithm. The consistency
test function uses a boolean variable consistent. First pi assigns true to the
consistent variable (line 1 of Figure 2). In line 2, pi checks Ti to be a spanning
in-tree — a directed tree for which every edge is directed towards a common
root. Lines 3, 4 and 5 test the child parent relations of pi (according to the
update algorithm) to be correct in Ti. The function returns the final value of
consistent.

The transient fault detector is presented in Figure 3. The fault detector will
ensure that all local values of T are identical and that every processor local tree
neighborhood appears in T . In the code we use the input Ti, parenti, childreni

which is defined by the output of the tree update algorithm (see the description
of the code of Figure 2 for the values of the above inputs).
pi repeatedly executes line 1a and 1b. In line 1a pi sends Ti to its parent

and children. pi checks the consistency of Ti according to the consistency test
described in Figure 2 and detects a fault accordingly. Whenever pi receives Tj

from pj , pi checks whether Ti = Tj and detects a fault if this equation is not
true (line 2a of the code).

Input: Ti, parenti, childreni (* updated by lower level *)

1. Upon timeout:

(a) for each j ∈ {parenti} ∪ childreni send Ti to pj .
(b) if Ti is inconsistent then detected a fault.

2. Upon receiving Tj from pj

(a) if Ti �= Tj then detected a fault.

Fig. 3. Transient Fault Detector of pi, for Correct Description of the Tree.

We prove the correctness of the second fault detector assuming that no fault
is detected by the first transient fault detector.
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Lastly, we combine both the fault detectors; the first fault detector messages
are augmented with the second fault detector messages. (Note that the second
fault detector sends messages only on tree links. The messages sent by the first
fault detector on non-tree links are not augmented by a message of the sec-
ond fault detector). We conclude the presentation and correctness proof of the
transient fault detectors by the following corollary.

Corollary 2. (1) The combined fault detector detects a fault during a single
asynchronous cycle whenever there exists a processor pi such that Ti does not
consist of the processors in pi’s connected component, and (2) The communica-
tion complexity of the combined fault detector is O(n2 logN).

3.3 Lower Bound on the Communication Complexity

We now present a lower bound of Ω(n2 log(N/n−1)) bits on the communication
complexity. The lower bound is for any fault detector that detects a fault within
a single asynchronous cycle (whenever a processor has an inconsistent knowledge
on the set of processors in its connected component or view). Recall that group
membership services notifies the application with the current view. To do so we
consider an asynchronous cycle that starts with all processors sending to every
one of their neighbors (where a processor can send nil messages in case no mes-
sage should be sent to a neighbor), and the cycle terminates after all messages
sent are received. We examine processors p1, p2, · · · pn that are connected by a
chain communication graph. Assume that n is even (a similar argument can be
used for a chain with an odd number of processors).

Letmk,k+1 (mk+1,k) be the message sent from pk to pk+1 (from pk+1 to pk, re-
spectively). We claim that the number of distinct combinations ofmk,k+1,mk+1,k

must be at least Ω(n log(N/n− 1)).
Let pk be a processor in the chain and suppose that k ≤ n/2. Fix a set of k

distinct identifiers for the processors p1, p2, · · · , pk. We prove a lower bound by
using the number of possible choices of different sets of n− k distinct identifiers
for the rest of the processors pk+1, pk+2, · · · , pn.

Let X1 and X2 be two such choices. Now we describe two different systems
that differ in the way we assign identifiers to processors pk+1, pk+2, · · · , pn. The
identifiers of the processors pk+1, pk+2, · · · , pn in the first (second) system are
the identifiers in X1 (X2, respectively). Clearly the communication over the edge
connecting pk to pk+1 must not be the same in the two systems above. Other-
wise we may replace the two different portions of the two systems and no fault
will be detected, while p1 is not aware of the different set of processors in the
system. The case of kn/2 is handled analogously fixing a set of k distinct identi-
fiers for the processors pn−k, pn−k+1, · · · , pn. In both cases we conclude that the
number of communication patterns needed are at least the number of choices
of n − k distinct identifiers for the processors pk+1, pk+2, · · · , pn, out of N − k
identifiers. (N−k)!/((n−k)!((N−k)−(n−k))!) = (N−k)!/((n−k)!(N−n)!) =
((N − n+ 1) · · · (N − k))/(n− k)! ≥ ((N − n+ 1)/(n− k))n−k. We assume that
N ≥ 2n, thus we have that (N − n + 1)/(n − k) ≥ 1. By the assumption that
1 ≤ k ≤ n/2, we have that ((N−n+1)/(n−k))n−k ≥ ((N−n)/n)n/2. Therefore,
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for the communication between mk,k+1,mk+1,k, at least Ω(n log(N/n− 1)) bits
are needed. The communication complexity is a measure that considers all the
links and therefore is Ω(n2 log(N/n− 1)) bits.

3.4 Group Membership and Voluntarily Join/Leave

In a legal execution, only the user is privileged to change his/hers membership
status in a group. Such a change occurs in response to the application requests.
Here we describe how, in a legal execution, processor pi may join (leave) a group
g by locally setting (resetting, respectively) memberi.

We use the self-stabilizing β-synchronizer algorithm [14] to coordinate view
updates. The β-synchronizer is designed to be executed on a spanning tree of the
system, in our case T . There are two alternating phases for the β-synchronizer,
propagation phase and convergecast phase. In a legal execution, processor pl

(the root of T ) is responsible for the membership updates. During the propaga-
tion phase, pl propagates the view it maintains vl. As vl propagates through T ,
every processor pi assigns vl to a local variable vi that maintains its view. The
value of memberi of every processor pi is accumulated during the convergecast
phase. The value of memberl of a leaf in T is delivered to pk the parent of pl. A
parent of a leaf processor pk, concatenates the values of the memberc, received
from its children pc, together with memberk and delivers it to its parent, and
so on. Once the convergecast phase terminates, the root sends the received con-
catenated information on the membership of all the processors, together with
a view identifier (the view identifier is changed whenever the set of members is
changed).

A transient fault detector monitors the consistency of the join/leave and
membership information. Details are omitted from this extended abstract.

Before we turn to describe the actions taken upon a fault detection let us
note that randomized transient failure detector can be used as well. In a legal
execution, our deterministic transient failure detector repeatedly sends the same
message through each link. Thus, the randomized technique proposed in [22],
that uses a logarithmic size of the repeatedly sent message can be used here to
further reduce the size of the messages sent. In such a case the failure detectors
will detect a fault with high probability.

3.5 Fast Convergence

So far we have discussed transient fault detection, without describing the action
taken when a fault is detected. The goal of the technique presented here is to
ensure a fast convergence in the cost of a higher communication complexity.
Once the transient fault detector detects a fault, we would like to activate the
self-stabilizing tree update algorithm to regain consistency as soon as possible
and then switch back to use transient fault detector.
Propagation of a Fault Detection: Once a fault is detected by a processor
pi, the processor propagates the fault indication to every other processor. Every
tuple of the update tables is extended to include a state field, where the domain
of the state is {safe, dtc, act}. We use the term the source tuple of pi for the
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single tuple of T U i with i in the id field. pi starts the propagation by assigning
the values 〈i, 0, nil, dtc〉 in its source tuple. In the sequel we use the fourth field
of pi’s source tuple as the state of pi.

Every processor pj that has at least one state field in a tuple of T Uj with a
value not equal safe executes the update algorithm, sending messages through
every attached link. When pi sends the new value of T U i to pj and the state
of pj is safe, pj changes it’s state to dtc. The information on the fact that pi

detected a fault propagates to the entire system in the same way.
Our goal is to ensure that every processor pk verifies that the tuples in the

tables of the processors encode a fixed BFS tree rooted at pk, and therefore the
update algorithm is in a safe configuration. Then we allow the system to switch
back to use the transient fault detector.

A central tool in achieving an indication on the completion of the recon-
struction of the BFS trees is the PIF procedure. The propagation is done by
flooding the system with the new information in the way we described above
(for the case of dtc). The propagating processor, pi, should receive a feedback
on the completion of the propagation before finalizing the PIF procedure. The
feedback is sent to a processor with a smaller distance from pi, which pi selects
to be its parent in the tree. Every processor pj uses the distance variable of the
tuple with id = i in T Uj as its (upper bound on the) distance to pi.

A processor pj sends a feedback only when the maximal distance difference
of pj to pi, and the distance of any neighbor pk of pj to pi is 1. The fact that the
value in the distance fields is an upper bound on the distance from pi guarantees
that every neighbor pj of pi sends feedback when the value of its distance field is 1
and therefore has a fixed parent (namely, pi). Moreover, pj sends a feedback only
when every of its neighbors has distance of at most 2. Thus, processors of dis-
tance 2 have the correct distance and therefore a fixed parent. Similar arguments
hold for processors of greater distances, concluding that a fixed BFS rooted at
pi exists when pi receives the feedback. More details can be found in [13]. We
note that part of the new information that is propagated is a randomly chosen
color that identifies (with high probability) the current PIF execution initiated
by pi, as a new PIF execution.

The fast convergence algorithm should ensure stabilization from an arbitrary
state. We trace the activity of the system from the first fault detection. We would
like the fault detection to ensure that every processor will start a PIF following
the fault detection. Then, when every processor completes the PIF and verifies
that its tree, is a fixed BFS tree we can stop executing the communication
expensive tree update algorithm.

When pi detected a fault it starts a PIF that causes every processor pj either
(1) to change a state from safe to dtc and start a PIF or (2) when pj is in the
state act to execute at least one more complete PIF before changing state to
safe.

The update algorithm is executed by pi whenever there exists a tuple in T U i

with a state field not equal safe. Otherwise, pi responds to any T Uj message
(sent by a neighbor pj) by recomputing T U i accordingly, and sending T U i to
pj exclusively. (Note that the transient fault detector is disabled whenever there
exists a tuple in T U i with a state field not equal safe).
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We may conclude that: once a transient fault is detected and propagated to
the entire system it holds that (1) no processor is in a safe state, and (2) no
transient fault is detected.
Upon Completing the Propagation of a Fault Detection: A processor pi

that has completed propagating the fault indication (completing a single PIF)
changes state to act. Then pi waits for all other processors to complete their
propagation of fault detection, reaching a system state in which no processor
(uses the failure detector to detect a fault and) starts propagating an indication
of a failure. In other words, when pi is in act state pi repeatedly executes PIF
until it receives an indication that no dtc tuple appears in any table.

The indication for the absence of dtc tuples, is collected using a PIF query.
The PIF procedure is used to query the values of the state fields using the follow-
ing procedure: Every tuple of the update tables is extended to include a nodtc bit
field. When pk chooses a new color, pk set the nodtc bit true, and starts a PIF.
A processor pj sets the nodtc bit of every tuple in its table to false, whenever
there exists a tuple with the state dtc in T U j . Whenever pj sends feedback to its
parent (as part of the PIF) pj sends also the and result of the nodtc bit values
of its children tables and its own table. Thus, a single nodtc = false results in
a nodtc = false feedback that arrives to pk.

We may conclude that once the nodtc PIF query procedure is completed
with nodtc = true, then no processor is in a dtc state (and the transient fault
detectors are disabled). Furthermore, let pk be the first processor that changes
its state from act to safe, after processor pi had notified a fault detection. Let
c be the configuration that immediately follows this state change of pk. We will
prove that, (1) the tree rooted at each processor in c is a fixed BFS tree, (2)
the state field of every tuple in every table in c is act and, (3) no transient fault
is detected.
Returning to Normal Operation: Once all the processors are in act state
the system is ready to return to normal operation. A processor pi changes state
to a safe state when pi is in act state and finds out that no dtc state exists in
the system. Still pi does not activate the transient failure detector until all pro-
cessors change state to a safe state. pi repeatedly executes PIF queries until it
finds that the state of all the processors is safe. Thus, when a processor returns
to use the transient failure detector all the processors are in a safe state and
therefore a fault detection will result in a global state change to dtc, then to act
and at last to safe after reaching a safe configuration.

The PIF query initiated by a processor in a safe state uses an additional
allsafe bit field. When pk chooses a new color, pk set both the nodtc and the
allsafe bits to true, and starts the PIF procedure. Recall that a processor pj

sets nodtc bit to false, whenever there exists a tuple with a dtc state in T Uj .
In addition, pj sets the allsafe bit to false, whenever there exists a tuple with a
state not equal to safe in T U j . pk changes it state to dtc whenever there is a dtc
tuple in T Uk, or a feedback with nodtc = false arrives. If the feedback carrying
the allsafe bit is true, then pk stops executing the update algorithm, and starts
using the transient fault detector. If the allsafe bit is false (and the nodtc bit is
true) then pk assigns true to both nodtc and allsafe bits, and repeats executing
the PIF query.



Communication Adaptive Self-Stabilizing Group Membership Service 95

We note that the tree description used by the transient fault detector should
be identical in all the processors before switching back to normal operation.
Thus, the allsafe bit is also used to indicate that the tree description of a pro-
cessor and its neighbors are identical (otherwise the allsafe bit that arrives in
the feedback is false).

We may conclude that when the feedback of the allsafe PIF query is true, it
holds that all the processors are in a safe state. Furthermore, let pk be the first
processor that returns to use the transient fault detector, after pi propagated a
fault detection. Let c be the configuration in which pk returns to use the tran-
sient fault detector. Then in c it holds that the system is in a safe configuration
with relation to the update algorithm.

We now turn to a detailed presentation of the fast convergence algorithm.
The code of the fast convergence algorithm appears in Figure 4. In the code,
we use the PIF and the PIF query procedures. A formal description of the PIF
procedure can be found in [13]. The PIF procedure is extended to PIF queries
(nodtc and allsafe queries) as described above.

Lines 1, 2 and 3 of the code describe the actions pi takes according to it’s
state. When pi is in a dtc state (line 1), pi executes a PIF (line 1a), once the
PIF is completed pi changes its state to act (line 1b). When pi is in act state
(line 2), pi repeatedly executes a PIF query to ensure that no dtc tuple exists
in the system (line 2a). Then, pi changes its state to safe (line 2b). In a safe
state (line 3), pi repeatedly executes a PIF query to ensure that all the states
(of the processors and the state fields of the tuples) are safe states (line 3a). If
there exists a dtc tuple, then pi changes its state to dtc (line 3b). If indeed there
are only safe tuples in the system then, pi returns to use the transient failure
detector (line 3c). Once the failure detector is operating, pi changes its state to
dtc when a fault is detected (line 3c and 3d).

1. state=dtc — (* Notify *)

(a) Execute PIF
(b) state ← act

2. state=act — (* Finish Notification *)

(a) Execute PIF query
until no dtc in the system

(b) state ← safe

3. state=safe — (* Back to TFD *)

(a) Execute PIF query
until all safe or exists dtc

(b) if PIF query results dtc then
state ← dtc

(c) else execute transient failure
detector until fault detection

(d) state ← dtc

Fig. 4. Fast convergence algorithm of pi.
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4 Concluding Remarks

This paper present the first asynchronous self-stabilizing group membership ser-
vice. We believe that the new ideas presented in this paper will enrich the set of
techniques used in the design of robust group communication services. For ex-
ample, we do not utilize the idea of token passing for detecting a crash. Instead
we present a self-stabilizing scheme that detects a fault fast (in a single asyn-
chronous cycle) and is still communication efficient. Our membership service can
serve as the base for additional group communication services.
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