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Abstract. The paper presents a technique for achieving stabilization
in distributed systems. This technique, called agent-stabilization, uses
an external tool, the agent, that can be considered as a special message
created by a lower layer. Basically, an agent performs a traversal of the
network and if necessary, modifies the local states of the nodes, yielding
stabilization.

1 Introduction

Fault tolerance and robustness are important properties of distributed systems.
Frequently, the correctness of a distributed system is demonstrated by limiting
the set of possible failures. The correctness is established by assuming a pre-
defined initial state and considering every possible execution that involves the
assumed set of failures.

The requirements of some distributed systems may include complex fail-
ures, such as a corruption of memory and communication channels. The self-
stabilization methodology, introduced by Dijkstra [3], deals with systems that
can be corrupted by an unknown set of failures. The system self-stabilizing prop-
erty is established by assuming that any initial state is possible, and considering
only executions without transient failures. Despite a transient failure, in a finite
time, a self-stabilizing system will recover a correct behavior.

Self-stabilizing systems are generally hard to design, and still harder to
prove [4]. In this paper, we are proposing to investigate a specific technique
for dealing with the corruption problem. The basic idea appears in a paper of
Ghosh [5] and consists of the use of mobile agents for failure tolerance. A mobile
agent can be considered as an external tool used for making an application self-
stabilizing. The notion that we propose here is different from Ghosh’s notion. A
mobile agent can be considered (in an abstract way, independently of its imple-
mentation) as a message of a special type, that is created by a lower layer (the
outside). We will assume that some code corruption is possible and a mobile
agent (or more simply an agent) can carry two types of data: a code, that can be
installed at some nodes, and some information (referred to as contained in the
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briefcase), that can be read or modified by the processors. Code and briefcase
are specific to the application controlled by the agent.

The outside can create a single agent and install it on an arbitrary node (the
initiator). As long as the agent has not been destroyed, no other agent can be
created. An agent has a finite lifetime. It can be destroyed either by its initiator,
or by any site if it is supposed to have traveled too long. After an agent has been
destroyed, the outside will eventually create a new one (with possibly another
initiator). Once created, an agent moves from a processor to a neighbor of this
processor, following a non-corruptible rule. More precisely, each node has per-
manently in its ROM some code, which is the only non-corruptible information
and does not depend on any particular application. Moreover, it is simple and
compact.

When an agent reaches a node (by creation or by transmission), the code
carried by the agent is installed. The code is in two parts, agent rules and ap-
plication (or algorithm) rules. Agent rules are the only applicable rules when an
agent is present, and, on the contrary, application rules are the only applicable
rule when it is not. Agent code execution is always finite and ends by a call to
the agent circulation code, responsible for transmitting the agent to another site.
The ability of the agent to overwrite a corrupted application code (or simply to
patch the code in a less severe fault model), motivates the inclusion of code in
the agent. Because it is supposed to travel, an agent (code and briefcase) can be
corrupted.

In our agent model, there are two crucial properties, non-interference and
stabilization. The non-interference property expresses that if no failure (corrup-
tion) occurred after the creation of the previous agent, after the destruction of
this agent, the controlled application must not behave differently whether or not
a new agent is present in the network. The property involves that the application
cannot use the agents for solving its problem and that the agents cannot perform
resets in a predetermined global configuration. The stabilization property states
that if a failure occurred, after a finite number of agent creations, the application
behaves accordingly to its specification.

Agent-stabilization has some advantages over classic self-stabilization. With
self-stabilization, even if the stabilization time can be computed, it says nothing
about the effective time needed for stabilization, which strongly depends on the
communication delays and, consequently on the global traffic in the network. At
the contrary, if agents are implemented in a way that guarantees small commu-
nication delays (as high priority messages for instance), an efficient bound on
agent-stabilization time can be given, because such a bound depends only on
the time of the network traversal by the fast agent, plus the time between two
successive agent creations, that can be tailored to the actual need. A second ad-
vantage is that agent-stabilization is more powerful than self-stabilization. Any
self-stabilizing solution is agent-stabilizing, with agents doing nothing, but some
impossibility results from self-stabilization theory can be bypassed with agents,
as we will show in the sequel.
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2 The Specification

The system is a set P of n communicating entities that we call processors, and
a relation neighbors ⊂ P × P . To each processor p in P is associated some in-
ternal variables, an algorithm and a communication register rp (rp can have a
composite type). Each processor p ∈ P has a read and write access to its register
rp and a read access to its neighbor’s communication registers. The local state
of a processor is the set of the values of the internal variables and of its register.
A vector whose components are the local states of every processor of the system
is the configuration of the system.

The algorithm is defined as a set of guarded rules, of the form Guardi −→
Actioni where Guardi is a predicate on the local variables, the communica-
tion register and the communication registers of the processor’s neighbors, and
Actioni is a list of instructions which could modify the communication register
and/or the local variables of the processor. A rule is said to be enabled if its
guard is true and disabled if its guard is false.

The system can evolve from a configuration to another by applying at some
processor p an atomic step. For defining the computation rules of a processor, we
need now to look more precisely at what is held in the communication register.
It holds two parts : an algorithm-specific part including all information that the
processor has to communicate to its neighbors and an agent-specific part. The
agent-specific part of the communication register is composed of 6 fields : Agent
Code, Algorithm Code, Briefcase, Next, Prev and Present.

The fields Agent Code and Algorithm Code hold two finite sets of guarded
rules, depending on the algorithm ; the Briefcase is a field of constant size de-
pending on the algorithm ; the fields Next and Prev are either ⊥ or pointers to
the neighbors of the processor (they point respectively to the previous processor
which had the agent and to the next which will have it), the field Present is a
boolean and indicates whether or not the agent is present at the processor.

An atomic step for a processor p is the execution by p of one of the following
rules :

Agent step: if Presentp is true, select and compute one of the enabled rules
held by the Agent Code part of the register, if Nextp is not ⊥, install the
agent in Nextp from p ; set Presentp to false.

Algorithm step: if Presentp is false, select and compute one of the enabled
rules held by the Algorithm Code part of the register ;

Agent installation: spontaneously install the agent in p from ⊥ ;

Installing an agent in p from q is performing the following algorithm :

1. Set Presentp to true;
2. Set Prevp to q;
3. If q is ⊥, instantiate Algorithm Code with a fresh copy in Agent Code;
4. If q is not ⊥, copy the values of Briefcaseq, AlgorithmCodeq and
AgentCodeq from q to p.
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An execution with initial configuration C is an alternate sequence of con-
figurations and atomic steps, each configuration following an atomic step being
obtained by the computation of the atomic step from the previous configuration,
C being the first configuration of the sequence. We will consider here only fair
executions. A fair execution is an execution such that if a guard of a processor P
is continuously enabled, this processor will eventually perform an atomic step.

System executions satisfy two axioms that we describe here :

Uniqueness of creation. The atomic stepAgent Installation can be performed
only on a configuration where for all processor p, Presentp is false ;

Liveness of creation. In each execution there is infinitely many configurations
in which an agent is present;

For the sake of clarity, we define a special alternate sequence of configura-
tions and atomic steps, which is not an execution with respect to the two axioms,
but that we call an agent-free execution and which is used to define the agent-
stabilizing notion below. An agent-free execution is an alternated sequence of
configurations and atomic steps, such that the initial configuration of the se-
quence satisfies ¬Presentp for all p and only algorithm steps are computed in
this sequence. The set of agent-free executions starting at L (where L is a set of
configurations) is the collection of agent-free executions such that the initial con-
figuration is in L. We define also the agent-free projection of an execution : it is
the alternate sequence of configurations and atomic steps, where the agent-part
of the registers is masked and agent-steps are ignored.

Finally, we define the type of failures that we will consider by defining initial
configurations. There is no constraint on an initial configuration, except the fact
that agent circulation rules must be correct (non corruptible).

Let S be a specification (that is a predicate on executions). A system is
agent-stabilizing for S iff there exists a subset L of the set of configurations
satisfying :

Convergence. For every configuration C, for every execution starting at C,
the system reaches a configuration L in L ;

Correctness. For very configuration L in L, every execution with L as initial
configuration satisfies the specification S ;

Independence. For very configuration L in L, every agent-free execution with
L as initial configuration satisfies the specification S ;

Non-interference. For every configuration L in L, the agent-free projection of
every execution with L as initial configuration satisfies the specification S ;

Finite time to live. Every execution has the property that, after a bounded
number of agent-steps, an agent is always removed from the system.

Convergence and correctness parts of this definition meet the traditional def-
inition of a self-stabilizing algorithm. The independence part ensures that the
algorithm will not rely on the agent to give a service : e.g. an agent-stabilizing
system yielding a token circulation cannot define the token as the agent. Thus, an
agent is indeed a tool to gain convergence, not to ensure correctness. Moreover,
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the non-interference property enforces the independence property by ensuring
that an agent cannot perturb the behavior of a fault-free system. Finally, the
finite time to live property ensures that an agent will not stay in the system
forever and that an agent is a sporadic tool, used only from time to time.

3 General Properties of Agent-Stabilizing Systems

The study of the convergence property of an agent-stabilizing system is as diffi-
cult as the convergence property of a self-stabilizing system, because executions
can start from any initial configuration. Moreover, the traditional fault model
of self-stabilization does not include the corruption of the code. Here, we accept
some code corruption (algorithm code corruption), making the study still harder.

We will prove in this part that without loss of generality, for proving the
convergence property of an agent-stabilizing system, the set of initial configura-
tions can be restricted to those in which code is correct and there is exactly one
agent, just “correctly” installed at some processor p.

Theorem 1. Assume the finite time to live property. Then, for proving conver-
gence of an agent-stabilizing system, it is sufficient to consider as initial config-
urations, those following the installation of a unique agent.

Sketch of Proof. Let C be an arbitrary configuration with n processors and p
agents at processors P1, . . . , Pp (thus, Presenti is true for i ∈ {Pj , 1 ≤ j ≤ p).
Let E = C s1 C1 . . . be an arbitrary execution with initial configuration C. E is
fair, thus there are infinitely many agent steps in the execution E . The property
“finite time to live” is assumed, thus the execution reaches necessarily a configu-
ration in which an agent is removed from the system, leading to a configuration
C′, with one agent less than in C.

The axiom “uniqueness of creation” involve that while there is at least one
agent in the system (thus one processor verifying “Presentp is true”), the agent
installation step cannot be performed on any other processor in the system. By
recursion on the number of agents in the system, the system reaches a configu-
ration Cp where there is no agents in the system (potentially, Cp = C if there
was no agent in the initial configuration).

The execution E also satisfies the axiom “liveness of creation” ; there is a
finite number of configurations between C and Cp, thus at least one agent will be
present in a configuration A after Cp. The only atomic step which could install
an agent is the “Agent installation” step, thus there is always a configuration A
reachable from C where a single agent is just installed in the system. �

4 Agent Circulation Rules

One of the main goals of the agent is to traverse the network. We will present
here three algorithms for achieving a complete graph traversal. Two of them
(depth first circulation and switch algorithm) hold for arbitrary graphs, whereas
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the third is an anonymous ring traversal. We will also show that, in any agent-
system using one of these algorithms as agent circulation rules, it is easy to
implement the finite time to live property.

Depth First Circulation.
The algorithm assumes that every processor of the system is tagged with a color
black or white. Assume that agent has just been created. The briefcase carries
the direction of the traversal (Up or Down). The processor visited by the agent
for the first time (with a Down Briefcase) flips its color, chooses as a parent
the previous processor, chooses a neighbor tagged with a color different from its
new color and sends the agent to this neighbor, with the briefcase Down. When
the agent reaches a dead end (i.e. is sent down to a processor with no neighbors
with the right color), it is sent back by this processor with Up in the Briefcase.
When a processor receives an agent with Up in the Briefcase, if it is a dead end,
it sends the agent Up, if not, it selects a new neighbor to color and sends the
agent down.

Moreover, the briefcase holds a hop counter, namely the number of steps since
the installation. This counter is incremented each time the agent moves. If the
agent makes more than 4|E| steps (a bound greater than 2 times the number of
edges of the depth first spanning tree), the agent is destroyed (next processor is
⊥). More formally, in figure 1 the description of the traversal algorithm is given.
For this, we define :

θ(Γi, c) =
{⊥ if ∀p ∈ Γi, colorp �= c
p s.t. colorp = c and p ∈ Γi else and also black = white

white = black

We claim that this algorithm produces a complete traversal of the system
even in the case of transient failures because, as we will show in theorem 3, at
each execution of rule 1, the number of processors of the same color strictly
increases, until reaching the total number of processors in the system.

Theorem 2. Every fair agent-system using the depth first circulation algorithm
of figure 1 as agent circulation algorithm satisfies the finite time to live property.

The proof is straightforward and uses the fairness of the system for showing
that every agent increments its hop counter until the bound is reached.

Remark that the bound is large enough to allow a complete depth first traver-
sal of the system : it is 2 times the number of edges, and in a depth first traversal,
each edge of the spanning tree is used 2 times (one time for going down to the
leaves, one time for going up to the root). We will now prove that this algorithm
produces a complete graph traversal when there is a single agent in the system.

Let p, q ∈ P . We say that p ∼ q iff colorp = colorq and (p, q) ∈ neighbours.
In the sequel, the term “connected components” refers to the connected compo-
nents of the graph of the relation ∼.

Lemma 1. Let C be a configuration with m connected components (M1, . . .Mm)
and let p be a processor with an agent just correctly installed. Let Mj be the con-
nected component of p.
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Local: 〈parenti ∈ Γi

⋃{⊥} — colori ∈ {black, white}〉
Briefcase: 〈Briefcasei ∈ ({down, up}, hop), 1 ≤ hop ≤ 2.|E|〉
Constant rule: At each rule, we add the following statement:

if hop > 2|E| then Nexti ←⊥.

– Agent rules :
1. Previ =⊥ ∨

(
(Briefcasei = (down, hop)) ∧ (θ(Γi, colorPrevi) �=⊥)

) −→


parenti ← Previ

Nexti ← θ(Γi, colori)

colori ← colori
if Previ =⊥, hop = 0
Briefcasei ← (down, hop+ 1)

(* going down *)
2. (Previ �=⊥) ∧ (Briefcasei = (down, hop)) ∧ (θ(Γi, colorPrevi) =⊥) −→



parenti ← Previ

Nexti ← Previ

Briefcasei ← (up, hop+ 1)

colori ← colori
(* reaching a dead-end *)

3. (Previ �=⊥) ∧ (Briefcasei = (up, hop)) ∧ (θ(Γi, colori) �=⊥) −→{
Nexti ← θ(Γi, colori)
Briefcasei ← (down, hop+ 1)

(* done one branch, go down for others *)
4. (Previ �=⊥) ∧ (Briefcasei = (up, hop)) ∧ (θ(Γi, colori) =⊥) −→{

Nexti ← parenti
Briefcasei ← (up, hop+ 1)

(* completely done one node, going up*)

Fig. 1. Depth first agent traversal algorithm for anonymous networks.

In every execution E = C s1 . . . C
′ . . . there is a configuration such that the

agent is in p, has visited all processors in Mj and every processor in Mj has
flipped its color.

Theorem 3. Consider the same configuration C, as in lemma 1.
In every execution E = C s1 . . . C

′ . . . there is a configuration such that there
is no agent, one agent has visited all processors of the system and all processors
in C′ have the same color.

Sketch of Proof. Lemma 1 states that from an initial configurationC, the system
reaches a configuration C1, with all processors of Mj (the connected component
of p) visited and having flipped their color. If there is only one connected com-
ponent in C, then the theorem is true (rule 4 set Next to ⊥ in p and when p
makes an atomic step, it removes the agent). If there are m > 1 connected com-
ponents in C, then there are 1 ≤ n < m connected components in C1 (because
all processors ofMj flipped their color, thus merged with the neighbor connected
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component). Thus, lemma 1 applies again in a configuration C′
1 with the agent

removed from p (rule 4) and installed in a processor p′ (liveness of the agent).
Recursion on the number of connected components in C, proves the theo-

rem. �

The Switch Algorithm. The switch algorithm is another anonymous graph
traversal algorithm. The algorithm presented in [12] is defined for semi-uniform
Eulerian networks, but as we will show now, it works for uniform Eulerian net-
works with the agent-stabilizing system assumptions. This algorithm is an im-
provement of the depth first circulation because here circulation is decided purely
locally, without communicating with the neighbors of the processor which holds
the agent. Moreover, in the depth first token circulation, the agent performs a
complete graph traversal only after all connected components merged into one.
Here, the algorithm converges with only one agent installation. This has a price :
an agent circulation round takes 2× n · |E| agent steps, even after stabilization,
while an agent circulation round with the depth first circulation takes only 2|E′|
agent steps (E′ being the set of covering edges of the depth first tree).

The idea of the algorithm is the following. Suppose that each node has ordered
its (outgoing) edges and let PointsTo be a pointer on some of these edges. When
the token is at some node, it is passed to the neighbor pointed by PointsTo,
then PointsTo is set to the next edge in the list (which is managed circularly).

In [12], it is proved that, starting with a unique token, this algorithm even-
tually performs an Eulerian traversal of the network.

We propose here a slight modification of this algorithm so that it performs a
complete traversal of an anonymous Eulerian agent-system. The initiator (with
Prev =⊥) will set the Briefcase to 0 and every time the agent performs an agent
step, Briefcase will be incremented by 1. If a processor holds the agent and if
Briefcase is greater than 2×n · |E| (where E is the set of edges of the system and
n is the number of processors in the system), then this processor sets Next to
⊥, destroying the agent. The agent rules are presented more formally in figure 2.
We will now prove that this circulation algorithm satisfies the finite time to live
property.

Theorem 4. Every fair agent-system using the switch circulation algorithm of
figure 2 as an agent circulation algorithm satisfies the Finite Time to Live prop-
erty.

The proof is straightforward and uses the fairness of the system for showing
that the Briefcase counter is incremented until reaching the bound.

Theorem 5. The switch circulation algorithm is a circulation algorithm, which
performs a complete graph traversal from a configuration in which an agent in-
stallation follows a configuration without agents.

We use the convergence property of the switch, proven in [12], and the con-
vergence time, which is n · |E| to state that after n · |E| agent steps, every edge,
thus every node of the system has been visited by the agent.
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Local: 〈PointsToi ∈ Γi

Briefcase: 〈0 ≤ Briefcase ≤ 2× n · |E|+ 1〉
Operator: Inc(PointsToi) increments PointsToi by 1 modulo Degreei.

– Agent rules :

1. Prev =⊥ −→


Inc(PointsToi)
Nexti = PointsToi

Briefcasei = 0
2. (Prev �=⊥) ∧ (Briefcase < 2× n · |E|) −→


Inc(PointsToi)
Nexti = PointsToi

Briefcasei = Briefcasei + 1

3. (Prev �=⊥) ∧ (Briefcase ≥ 2× n · |E|) −→ {
Nexti =⊥

Fig. 2. Switch circulation algorithm

Anonymous Oriented Ring Circulation.
In such a topology circulation is trivial : the agent rule consists of sending the
agent to the successor and counting in the Briefcase the number of processors
already seen. If this number is greater than or equal to the number of processors
in the system, the agent is destroyed. With this algorithm, the finite time to
live property is obvious, as is the correctness property of the agent circulation :
starting from a configuration with only one agent, just installed at some proces-
sor p, this agent visits all the processors in the system. Furthermore, every new
agent is eventually destroyed by its initiator.

5 Examples Illustrating the Power of Agents

We will first present general transformations which, given a self-stabilizing so-
lution for semi-uniform networks or for networks with distinct identifiers, auto-
matically transform them into agent-stabilizing solutions for the same problem,
but for completely anonymous networks (uniform networks). The basic idea is
that a generic agent algorithm, with an empty set of algorithm rules, either dis-
tinguishes a particular processor or gives distinct identifiers in an anonymous
networks. By adding the rules of the self-stabilizing solution as algorithm rules
one gets an agent stabilizing solution for anonymous network.

Let us briefly describe the ideas of the transformation from uniform to semi-
uniform. Note that an algorithm that always declares the processor in which the
agent is created as the leader, does not satisfies the non-interference property.
Thus, the agent must perform a complete traversal (using the circulation rules)
for checking whether or not there is only one distinguished processor. If several
distinguished processors (resulting from a corruption) are found, all but the first
are canceled and if no one is found, the initiator becomes distinguished.
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Note that there is no algorithm rule in this solution, then it can be combined
with any self-stabilizing solution for semi-uniform networks. The main advan-
tage of automatic transformations is that there are automatic. But they very
seldom yield the most efficient solution. In the second part, we will give another
illustration of the power of agents, by giving efficient specific solutions to some
classical problems.

5.1 General Transformers

Leader Election within a Uniform Network. This transformer allows a
self-stabilizing system designed for semi-uniform networks to work for uniform
networks. This is achieved by solving the Leader election problem.

Starting at the initiator, the agent performs a complete graph traversal us-
ing the algorithm in figure 1. We proved that this algorithm eventually performs
a complete graph traversal, and it is obvious that after the first traversal, no
processor has prev|p =⊥ Then we can ensure that there is no processor with
parentp =⊥ after the first agent traversal, by adding parentp = Prev to the
action part of rule 4 (the rule which is used when every neighbor of this node
has been visited).

The algorithm is simple : the agent carries in the briefcase the information
“did I meet a leader yet” (boolean value). If this information is true when the
agent meets a leader, the leader is destroyed, if the agent meets the initiator
(which is the only processor which has parenti =⊥ for every agent installation
after the first complete traversal) and this information is false, this processor
becomes the leader.

Lemma 2. Consider a configuration C of Depth first agent traversal, in which
all processors have the same colori and an agent has just been installed at pro-
cessor p. The agent performs a complete graph traversal and rule 4 is executed
exactly once by each processor before the agent is removed from the system.

Theorem 6. The leader election algorithm is agent-stabilizing.

Sketch of Proof. The agent has a finite time to live, as it was proven in theorem
2. It is then legitimate to use the result of theorem 1 and to consider for the
convergence property a configuration with one agent in the system. This agent
will eventually traverse every node and come back to the initiator (theorem 3).
According to algorithm rules, there will remain one and only one leader in the
system, thus convergence is verified. Consider a legitimate configuration. The
algorithm rules are empty (thus the agent-system satisfies independence), and
when an agent is installed, it will perform a complete graph traversal, visiting
every node and executing rule 4 at each node exactly once (lemma 2 applies,
the configuration is legitimate, thus every node is of the same color). Thus, it
will visit the leader and note it in the briefcase. Then, the initiator will not be
designated as the leader and the correctness property is satisfied. Moreover, the
leader stays the leader, thus non-interference property is also verified. �



Easy Stabilization with an Agent 45

Network Naming. The naming problem is to assign to each processor of the
network a unique identity. We consider that there is a set of identifiers (at least
as large as the network size), and that identities should be chosen within this
set. The agent carries in the briefcase a boolean tag for each element of this set.
When the agent reaches a processor p, if p uses an identifier already used, its
identifier is set to the first available identifier, and this identifier is tagged in the
briefcase ; if p uses an identifier which is not yet used, this identifier is tagged
in the briefcase. The agent performs a complete graph traversal according to
figure 1 algorithm and actions are executed when the guard of rule 4 is true.

Theorem 7. The network naming algorithm is agent-stabilizing.

Sketch of Proof. As it was said before, the Finite time to live property is inher-
ited from the agent circulation algorithm. Like for leader election, independence
is obvious since the algorithm has no rule. For proving the correctness property,
we have to show that the set of legitimate configurations is closed. Let us define
legitimate configurations as configurations such that ∀p, q ∈ P, tagp �= tagq. In a
token circulation, rule 4 of depth first traversal applies at most once (theorem 2).
Thus, the agent will never meet a processor with a tag equal to an already used
tag. Thus, the rule will never be applied and the configuration will not change
with respect to the tags. Let us consider an arbitrary configuration C′ with an
agent just installed at processor p. If this configuration is not legitimate, then
there exists a processor p and a processor q tagged by the same name. Theorem 3
states that in every execution with initial configuration C′, there is a configura-
tion C′′ reached after the agent visited every node. When this agent has been
installed, Briefcase was set to nil ; it first reached either p or q. If it reached p,
tagp is an element of Briefcase, and when it reaches q, tagq is set to a no yet
used tag. �

5.2 Local Mutual Exclusion within a Uniform Network

With the previous algorithm, we can easily transform every self-stabilizing algo-
rithm designed for networks with identities to an agent-stabilizing solution for
anonymous networks. Note that we assume that the agent can know the different
Ids already seen in the network (briefcase must have n log(n) bits). Obviously, in
specific cases, better solutions can be found. We propose now a solution for solv-
ing Local Mutual Exclusion within a uniform anonymous network. Local Mutual
Exclusion is a generalization of the dining philosophers problem [7], and can be
defined as ”having a notion of privilege on processors, two neighbors cannot be
privileged at the same time”.

The solution is based on the self-stabilizing local mutual exclusion algorithm
proposed in [1]. Every processor has a variable b in range [0; n2 − 1]. Assuming
that neighbors have different b values, then a cyclic comparison modulo n2 of
the b values yields an acyclic orientation of edges (from greater to lesser). If we
consider that every sink (i.e. a node with only ingoing edges) is privileged, then
two neighbors never can be privileged simultaneously. To pass the privilege, b is
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set to the maximum of the neighbors value plus one (modulo n2), and in [1] it is
shown that this rule provides a cyclic selection of every processor in the system.

It is also shown that this solution is based upon the fact that a processor
has a value different from the values of its neighbors, and identifiers are used
to implement that. An agent can be easily used in an anonymous network, for
creating asymmetry between a processor and its neighbors.

� Algorithm rules

1. b < min
[n2]
q∈Γp

(b|q) −→ b← max[n2]
q∈Γp

(b|q + 1)
� Agent rules

1. Every rules of figure 1, composed with

2. ∃q ∈ Γp s.t. b|q = b −→ b← max[n2]
q∈Γp

(b|q + 1)

Fig. 3. Anonymous uniform Local mutual exclusion agent-stabilizing algorithm.

Theorem 8. The local mutual exclusion algorithm of figure 3 is agent-stabilizing.

Sketch of Proof. This algorithm uses the depth first circulation algorithm, thus
the Finite Time to live property is satisfied. Then, according to theorem 1, we can
consider for proving convergence a configuration with a single agent just installed
at some node. Let C be such a configuration. Either, ∀p ∈ P, ∀q ∈ Γp, b|p �= b|q
and it was proven in [1] that the algorithm converges or ∃p ∈ P, q ∈ Γp, b|p = b|q.
In this case, the agent will eventually visit p and q (theorem 3), either p first or
q first. If the first visited processor is p (resp. q), agent rule 2 will be enabled,
thus the system will reach a configuration in which ∃p ∈ P, q ∈ Γp, b|p = b|q is
false. That will remain false in the sequel of the execution. Then convergence is
proven.

Starting from a legitimate configuration, the agent does not modify the b bit
of any processor (a legitimate configuration satisfies ∀p ∈ P, ∀q ∈ Γp, b|p �= b|q).
Correctness of the algorithm has been proven in [1]. Thus every execution from
a legitimate initial configuration is correct. In such an execution, the agent does
not modify the behavior of the algorithm, then non interference is satisfied. Fi-
nally, the independence property is also satisfied since every agent-free execution
with a legitimate initial configuration is correct. �

5.3 Token Circulation on a Bidirectional Uniform Oriented Ring

As it was shown in [5] a simple non self-stabilizing algorithm for achieving token
circulation on a ring with a leader can be made easily agent-stabilizing, assuming
that the agent is always installed at the leader. We will prove that this assump-
tion can be removed. Furthermore, we propose a token circulation algorithm on
a bidirectional uniform oriented ring which is agent-stabilizing.
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Predicates:
sensitive(p) ≡ b|p+1 = b|p �= b|p−1

HasToken(p) ≡ b|p−1 = 1 ∧ b|p = 0,
Context(p) = Tokens if HasToken(p), NoTokens else.

� Algorithm rules
(a) sensitive(p) ∧ b|p = 1 −→ b|p = 0
(b) sensitive(p) ∧ b|p = 0 −→ b|p = 1

� Patch 1 Rules
color|p �= Seen ∧ sensitive(p) ∧ b|p = 1 −→ b|p = 0
color|p �= Seen ∧ sensitive(p) ∧ b|p = 0 −→ b|p = 1, color|p = Seen

� Patch 2 Rules ∅
� Agent rules (Rules of ring circulation, in conjunction with) :

1. Prev =⊥ −→
color|p = NotSeen, Briefcase.context = Context(p), install Patch 1.

2. Prev �=⊥ ∧Briefcase.hop = n −→
if Briefcase.context = NoTokens and color|p = NotSeen,

create a new token
elsif Briefcase.context = Tokens and color|p = Seen,

install Patch 2, Briefcase.hop = 0
else install Algorithm.

3. Prev �=⊥ ∧Briefcase.context = Tokens −→
if HasToken(p) destroy the token

4. Prev �=⊥ ∧Briefcase.context = NoTokens −→
Briefcase.context = Context(p)

Fig. 4. Anonymous uniform token circulation agent-stabilizing algorithm

The idea is the following : Let b be a boolean variable stored at each node.
Let us say that processor p has the token in configuration C if in C, b|p = 0
and b|p−1 = 1 (the ring is oriented). Let us say that a processor is sensitive if it
has the same b value as its successor and a b value different from its predecessor
(then we allow the token to be or not to be sensitive). The algorithm performs
the following rules : If a processor p is sensitive, it is allowed to flip its bit. Let us
denote a configuration by a word, like 01...10, where a digit represents the value
of the b bit of a processor. A legitimate configuration is of the form 1p0n−p.

This algorithm is not self-stabilizing. The solution that we propose here to
stabilize uses agents. The first idea is simple : an agent traverses the ring in the
same direction as the tokens, carrying in the briefcase the information “did I see
a token until now”. If so, every other token can be destroyed by setting the b bit
to 1. When the agent comes back to the Initiator, if there is at least one token
in the system (Briefcase = Tokens), then the agent simply disappears, if not a
token is created at the Initiator (flipping the bit) and then the agent disappears.

The circulation algorithm used here is the oriented anonymous ring circula-
tion. It is detected that the agent has performed a complete traversal by checking
if Briefcase has the value n when the agent is back to the Initiator. This so-
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lution works only if tokens do not move. Then the next problem to solve is to
ensure that the agent will meet the supplementary tokens, if any. For that, the
initiator receives a patch from the agent : instead of letting every token pass
through him while the agent is inside the ring, it allows only one token to pass
and freezes the others.

The last problem is: if the agent saw one or more tokens while another to-
ken passed through the initiator, when the agent will come back to the initiator
there will be two tokens in the system. But this situation can be detected by the
initiator. One solution could be not to let the agent overtake a token, another
not to let a token pass through the initiator. But both would fail with the non-
interference requirement. A solution matching the requirements is to give to the
initiator the responsibility to destroy the supplementary token when it reaches
it. Note that, if a bounded convergence time is mandatory (related to the speed
of the agent), it could be better to let the initiator freeze one token while the
agent performs a second round for deleting the other. The solution is presented
more formally in figure 4.

Theorem 9. The agent-algorithm of figure 4 is agent-stabilizing

Sketch of Proof. Let us first prove the independence property : a legitimate con-
figuration is defined by 1p0n−p. In such a configuration, if p is greater than 1,
the system can choose between algorithm rules a and b and reaches either the
configuration 1p+10n−p−1 (the token moves one step backward) or the configu-
ration 1p−10n−p+1 (the token does not move). If p is 1, then the system is only
allowed to reach the configuration 110n−2 (the token moves backward), and if p
is n− 1 the system is only allowed to reach the configuration 1n−200. In every
reachable configuration the number of tokens is one and every processor of the
system eventually has the token. So, starting from a legitimate configuration if
there are no agent steps, the behavior is correct.

We prove then the non-interference property : if there is exactly one token
in the system, either it will go through p and the agent will never meet this
token, Briefcase.context is NoTokens, but the agent is silently destroyed, or
the agent meets the token, Briefcase.context is Tokens when the agent reaches
back p and the agent is silently destroyed : the configuration remains legitimate.
Then, starting from a legitimate configuration, the agent has no effect on the
behavior of the system (the token is neither moved nor blocked). This proves
also the correctness property of the algorithm.

The finite time to live property is a consequence of the circulation algo-
rithm (an agent performs at most 2 rounds of the ring). For the convergence
property, we consider an initial configuration with one agent installed at pro-
cessor p. If there are no tokens in the system, when the agent reaches back to
p, Briefcase.context is NoTokens, thus rule 3 applies and the following con-
figuration is legitimate ; if there are more than one token in the system, either
the agent meets the supplementary tokens and then they are destroyed, or these
tokens are frozen (they cannot move to the next processor) by the first patched
algorithm rule. At most one token could pass through the Initiator during the
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first round. If the agent has met a token and a token has pass through the ini-
tiator, the agent will make another round, destroying one token and no token
could pass through the initiator within this round. Thus, the agent has to meet
the tokens, and every supplementary token is destroyed. Thus, the configuration
following the configuration after the agent came back to the initiator for the
second time if necessary is legitimate. �

6 Conclusions

In this paper, we have formally defined the notion of agent (in the context of
stabilizing systems), and agent-stabilizing systems. We proposed a set of axioms
for having a powerful tool for dealing with failure tolerance. We illustrated the
use and the power of this tool on two static problems, which provide a general
transformation scheme and two dynamic classical problems.

The agent is a special message that circulates in the system, checks its con-
sistency and mends it if faults are detected. It is created by a lower layer which
was not described here, but whose properties are well defined (uniqueness and
liveness of creation). We also defined a set of constraints (properties), that the
system must satisfy to be considered as agent-stabilizing. In addition to the
classical correctness and convergence properties, we added independence and
non-interference notions. These notions ensure that the system will not rely on
the agent in the (normal) case without failure, and that the presence of the agent
in the normal case is not disturbing the system.

We provided a general transformation for self-stabilizing algorithms designed
for non-anonymous networks into agent-stabilizing algorithms for anonymous
networks. Finally, We have shown that the agent can also be used to transform
non-stabilizing algorithms, like the token circulation on anonymous ring with
two states per processor, into stabilizing ones.
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