

Technical Report No. 2012-01

Department of Computer Science and Engineering

Chalmers University of Technology

Goeteborg University

Goeteborg, Sweden, 2012

Self-Stabilizing Byzantine Resilient
Topology Discovery and Message Delivery

(Technical Report)

Shlomi Dolev ∗ Omri Liba ∗ Elad M. Schiller †

Abstract

Traditional Byzantine resilient algorithms use 2f+1 vertex disjoint paths to ensure message delivery
in the presence of up to f Byzantine nodes. The question of how these paths are identified is related to
the fundamental problem of topology discovery.

Distributed algorithms for topology discovery cope with a never ending task, dealing with frequent
changes in the network topology and unpredictable transient faults. Therefore, algorithms for topology
discovery should be self-stabilizing to ensure convergence of the topology information following any
such unpredictable sequence of events. We present the first such algorithm that can cope with Byzantine
nodes. Starting in an arbitrary global state, and in the presence of f Byzantine nodes, each node is
eventually aware of all the other non-Byzantine nodes and their connecting communication links.

Using the topology information, nodes can, for example, route messages across the network and
deliver messages from one end user to another. We present the first deterministic, cryptographic-
assumptions-free, self-stabilizing, Byzantine-resilient algorithms for network topology discovery and
end-to-end message delivery. We also consider the task of r-neighborhood discovery for the case in
which r and the degree of nodes are bounded by constants. The use of r-neighborhood discovery facili-
tates polynomial time, communication and space solutions for the above tasks.

The obtained algorithms can be used to authenticate parties, in particular during the establishment
of private secrets, thus forming public key schemes that are resistant to man-in-the-middle attacks of the
compromised Byzantine nodes. A polynomial and efficient end-to-end algorithm that is based on the
established private secrets can be employed in between periodical re-establishments of the secrets.

1 Introduction

Self-stabilizing Byzantine resilient topology discovery is a fundamental distributed task that enables com-
munication among parties in the network even if some of the components are compromised by an adversary.
Such topology discovery is becoming extremely important nowadays where countries main infrastructures,
such as the electrical smart-grid, water supply networks and intelligent transportation systems are subject
∗Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel. Email: {dolev,

liba}@cs.bgu.ac.il. Partially supported by Deutsche Telekom, Rita Altura Trust Chair in Computer Sciences, Lynne and
William Frankel Center for Computer Sciences, Israel Science Foundation (grant number 428/11) and Cabarnit Cyber Security
MAGNET Consortium.
†Department of Computer Science and Engineering, Chalmers University of Technology, Goeteborg, Sweden. Email:

elad@chalmers.se. Partially supported by the EC, through project FP7-STREP-288195, KARYON (Kernel-based ARchitec-
ture for safetY-critical cONtrol) and the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement
No. 257007.

1

to cyber-attacks. Self-stabilizing Byzantine resilient algorithms naturally cope with mobile attacks [e.g.,
16]. Whenever the set of compromised components is fixed (or dynamic, but small) during a period that
suffice for convergence of the algorithm the system starts demonstrating useful behavior following the con-
vergence. For example, consider the case in which nodes of the smart-grid are constantly compromised by
an adversary while local recovery techniques, such as local node reset and/or refresh, ensure the recovery of
a compromised node after a bounded time. Once the current compromised set does not imply a partition of
the communication graph, the distributed control of the smart grid automatically recovers. Self-stabilizing
Byzantine resilient algorithms for topology discovery and message delivery are important for systems that
have to cope with unanticipated transient violations of the assumptions that the algorithms are based upon,
such as unanticipated violation of the upper number of compromised nodes and unanticipated transmission
interferences that is beyond the error correction code capabilities.

The dynamic and difficult-to-predict nature of electrical smart-grid and intelligent transportation systems
give rise to many fault-tolerance issues and require efficient solutions. Such networks are subject to transient
faults due to hardware/software temporal malfunctions or short-lived violations of the assumed settings for
the location and state of their nodes. Fault-tolerant systems that are self-stabilizing [5] can recover after
the occurrence of transient faults, which can drive the system to an arbitrary system state. The system
designers consider all configurations as possible configurations from which the system is started. The self-
stabilization design criteria liberate the system designer from dealing with specific fault scenarios, risking
neglecting some scenarios, and having to address each fault scenario separately.

We also consider Byzantine faults that address the possibility of a node to be compromised by an adver-
sary and/or to run a corrupted program, rather than merely assuming that they start in an arbitrary local state.
Byzantine components may behave arbitrarily (selfishly, or even maliciously) as message senders and/or as
relaying nodes. For example, Byzantine nodes may block messages, selective omit messages, redirect the
route of messages, playback messages, or modify messages. Any system behavior is possible, when all (or
one third or more of) the nodes are Byzantine nodes. Thus, the number of Byzantine nodes, f , is usually
restricted to be less than one third of the nodes [5, 13].

The task of r-neighborhood network discovery allows each node to know the set of nodes that are at
most r hops away from it in the communication network. Moreover, the task provides information about the
communication links attached to these nodes. The task topology discovery considers knowledge regarding
the node’s entire connected component. The r-neighborhood network discovery and network topology
discovery tasks are identical when r is the diameter of the communication graph.

This work presents the first deterministic self-stabilizing algorithms for r-neighborhood discovery in the
presence of Byzantine nodes. We assume that every r-neighborhood cannot be partitioned by the Byzantine
nodes. In particular, we assume the existence of at least 2f + 1 vertex disjoint paths in the r-neighborhood,
between any two non-Byzantine nodes, where at most f Byzantine nodes are present in the r-neighborhood,
rather than in the entire network. 1 Note that by the self-stabilizing nature of our algorithms, recovery is
guaranteed after a temporal violation of the above assumption. When r is defined to be the diameter of the
communication graph, our assumptions are equivalent to the standard assumption for Byzantine agreement
in general (rather than only complete) communication graphs. In particular the standard assumption is that
2f + 1 vertex disjoint paths exist and are known (see e.g., [13]) while we present distributed algorithms to
find these paths starting in an arbitrary state.
Related work. Self-stabilizing algorithms for finding vertex disjoint paths for at most two paths between

1Section 4 considers cases in which r and the node degree, ∆, are constants. For these case, we have O(n) disjoint r-
neighborhoods. Each of these (disjoint) r-neighborhoods may have up to f Byzantine nodes, and yet the above assumptions,
about at least 2f + 1 vertex disjoint paths in the r-neighborhood, hold.

2

any pair of nodes, and for all vertex disjoint paths in anonymous mesh networks appear in [1] and in [11],
respectively. We propose self-stabilizing Byzantine resilient procedures for finding f + 1 vertex disjoint
paths in 2f + 1-connected graphs. In [9], the authors study the problem of spanning tree construction in
the presence of Byzantine nodes. Nesterenko and Tixeuil [15] presented a deterministic non-stabilizing
algorithm for topology discovery in the presence of Byzantine nodes. The authors do not consider the
automatic recovery implied by the self-stabilization property. [[Awerbuch and Sipser [3] consider algorithms
that were designed for synchronous static network and give topology update as an example. They show
how to use such algorithms in asynchronous dynamic networks. Unfortunately, their scheme starts from a
consistent state and cannot cope with transient faults or Byzantine.]]

Byzantine gossip [2, 4, 6, 10, 12, 14] and Byzantine Broadcast [8, 17] consider the dissemination of
information in the presence of Byzantine nodes rather than self-stabilizing topology discovery. Non-self-
stabilizing Byzantine resilient gossip in the presence of one selfish node is considered in [2, 12]. In [6], the
authors study oblivious deterministic gossip algorithms for multi-channel radio networks with a malicious
adversary. They assume that the adversary can disrupt one channel per round, preventing communication on
that channel. In [4], the authors consider probabilistic gossip mechanisms for reducing the redundant trans-
missions of flooding algorithms. They present several protocols that exploit local connectivity to adaptively
correct propagation failures and protect against Byzantine attacks. Probabilistic gossip mechanisms in the
context of recommendations and social networks are considered in [10]. In [14] the authors consider rules
for avoiding a combinatorial explosion in (non-self-stabilizing) gossip protocol. Note that deterministic and
self-stabilizing solutions are not presented in [2, 4, 6, 10, 12, 14].

Drabkin et al. [8] consider non-self-stabilizing broadcast protocols that overcome Byzantine failures
by using digital signatures, message signature gossiping, and failure detectors. Our deterministic self-
stabilizing algorithm merely use the topological properties of the communication graph to ensure that mes-
sages dropped or modified by Byzantine nodes will be detected, and retransmitted in a way that guarantees
correct delivery to the application layer. A non-self-stabilizing broadcasting algorithm is considered in [17].
The authors assume the restricted case in which links and nodes of a communication network are subject to
Byzantine failures, and that faults are distributed randomly and independently.
Our contribution. We present two cryptographic-assumptions-free yet secure algorithms that are deter-
ministic, self-stabilizing and Byzantine resilient.

We start by showing the existence of deterministic, self-stabilizing, Byzantine resilient algorithms for
network topology discovery and end-to-end message delivery. [[The algorithms convergence time is in
O(n). They take in to account every possible path and requiring bounded (yet exponential) memory and
bounded (yet exponential) communication costs.]] Therefore, we also consider the task of r-neighborhood
discovery, where r is a constant. We assume that if the r-neighborhood of a node has f Byzantine
nodes, there are 2f + 1 vertex independent paths between the node and any non-Byzantine node in its
r-neighborhood. The obtained r-neighborhood discovery requires polynomial memory and communica-
tion costs and supports deterministic, self-stabilizing, Byzantine resilient algorithm for end-to-end message
delivery across the network. [[Unlike topology update, the proposed end-to-end message delivery algo-
rithm establishes message exchange synchronization between end-users that is based on message reception
acknowledgments.]]
Document structure. Settings and requirements appear in Section 2. The self-stabilizing Byzantine
resilient distributed algorithm for topology discovery is presented in Section 3. The end-to-end communi-
cation algorithm appears in Section 4. Extensions and concluding remarks appear in Section 5. Detailed
proofs appear in the Appendix and in [7].

3

2 Preliminaries

We consider settings of a standard asynchronous system [cf. 5]. The system consists of a set, N = {pi}
of communicating entities, chosen from a set P , which we call nodes. The upper bound on the number of
nodes in the system is n = |P |. Each node has a unique identifier. Sometime we refer to a set, P \ N , of
nonexisting nodes that a false indication on their existence can be recorded in the system. A node pi can
directly communicate with its neighbors, Ni ⊆ N . The system can be represented by a network of directly
communicating nodes, G = (N,E), named the communication graph, where E = {(pi, pj) ∈ N × N :
pj ∈ Ni}. We denote Nk’s set of indices by indices(Nk) = {m : pm ∈ Nk} and Nk’s set of edges by
edges(Nj) = {pj} ×Nj .

The r-neighborhood of a node pi ∈ N is the connected component that includes pi and all nodes that
can be reached from pi by a path of length r or less. The r-neighborhood version of the algorithm for
network topology discovery considers communication graphs in which the number of neighbors of a node
pi is bounded by a constant ∆. Hence, when both the neighborhood radius, r, and the node degree ∆ are
constants the number of nodes in the r-neighborhood is also bounded by a constant, namely by [[O(∆r+1).]]

We model the communication channel, queuei,j , from node pi to node pj ∈ Ni as a FIFO queuing list
of the messages that pi has sent to pj and pj is about to receive. When pi sends message m, the operation
send inserts a copy of m to every queuei,j , such that pj ∈ Ni. We assume that the number of messages in
transit, i.e., stored in queuei,j , is at most capacity. Once m arrives, pj executes receive and m is dequeued.

We assume that pi is completely aware of Ni, as in [15]. In particular, we assume that the identity of
the sending node is known to the receiving one. In the context of the studied problem, we say that node
pi ∈ N is correct if it reports on its genuine neighborhood, Ni. A Byzantine node, pb ∈ N , is a node
that can send arbitrarily corrupted messages. Byzantine nodes can introduce new messages and modify
or omit messages that pass through them. This way they can, e.g., disinform correct nodes about their
neighborhoods, or about the neighborhood of other correct nodes, or the path through which messages
travel, to name a very few specific misleading actions that Byzantine nodes may exhibit. We denote by
C and B the set of correct, and respectively, Byzantine nodes. We assume that |B| = f , the identity of
the nodes in B is unknown to the nodes in C. Nevertheless, B is fixed throughout the considered execution
segment. These execution segments are long enough for convergence and then for obtaining sufficient useful
work. We assume that between any pair of correct nodes there are at least 2f + 1 vertex disjoints paths. We
denote by Gc = (C,E ∩ C × C) the correct graph induced by the set of correct nodes.

Self-stabilizing algorithms never terminate (see [5]). The non-termination property can be easily identi-
fied in the code of a self-stabilizing algorithm: the code is usually a do forever loop that contains commu-
nication operations with the neighbors. An iteration is said to be complete if it starts in the loop’s first line
and ends at the last (regardless of whether it enters branches).

Every node, pi, executes a program that is a sequence of (atomic) steps. For ease of description, we
assume the interleaving model where steps are executed atomically, a single step at any given time. An
input event can either be the receipt of a message or a periodic timer going off triggering pi to send.
Note that the system is totally asynchronous and the (non-fixed) node processing rates are irrelevant to the
correctness proof.

The state si of a node pi consists of the value of all the variables of the node (including the set of all
incoming communication channels, {queuej,i|pj ∈ Ni}). The execution of a step in the algorithm can
change the state of a node. The term (system) configuration is used for a tuple of the form (s1, s2, · · · , sn),
where each si is the state of node pi (including messages in transit for pi). We define an execution E =
c[0], a[0], c[1], a[1], . . . as an alternating sequence of system configurations c[x] and steps a[x], such that each

4

configuration c[x+1] (except the initial configuration c[0]) is obtained from the preceding configuration c[x]
by the execution of the step a[x]. We often associate the notation of a step with its executing node pi using
a subscript, e.g., ai. An execution R (run) is fair if every correct node, pi ∈ C, executes a step infinitely
often in R. Time (e.g. needed for convergence) is measured by the number of asynchronous rounds, where
the first asynchronous round is the minimal prefix of the execution in which every node takes at least one
step. The second asynchronous round is the first asynchronous round in the suffix of the run that follows the
first asynchronous round, and so on. The message complexity (e.g. needed for convergence) is the number
of messages measured in the specific case of synchronous execution.

We define the system’s task by a set of executions called legal executions (LE) in which the task’s
requirements hold. A configuration c is a safe configuration for an algorithm and the task of LE provided
that any execution that starts in c is a legal execution (belongs to LE). An algorithm is self-stabilizing with
relation to the task LE when every infinite execution of the algorithm reaches a safe configuration with
relation to the algorithm and the task.

3 Topology Discovery

The topology discovery is based on accumulating messages from vertex disjoint paths. Each message con-
tains an ordered list of nodes it passed so far, starting in a source node, and a neighborhood, which is the set
of nodes, claimed to be directly connected to the source.

Each node pi periodically sends a message to each neighbor. The message sent contains the local
topology, a source i and an empty path. The arrival of a message m to pi triggers an insert of m to
informedTopologyi and a consistency test of the content of informedTopologyi. The consistency test
results in storing local topologies for which there are enough independent evidence in a result array. The
result array is initialized just prior to the consistency test. The consistency test of pi iterates over each node
pk such that, pk appears in at least one of the messages stored in informedTopologyi. For each such node
pk, node pi checks whether there are at least f + 1 messages from the same source node that have mutually
vertex disjoint paths and report on the same neighborhood. The neighborhood of each such pk, that has at
least f + 1 vertex disjoint paths with identical neighborhood, is accumulated in Result[k]. Moreover, the
total number of paths [[that]] relayed this neighborhood is kept in Count[k].

We note that there may still be nodes pfake ∈ P \(C∪B), for which there is an entry Result[fake]. For
example, informedTopology may contain f messages, all originated from different Byzantine nodes, and
a message m′ that appears in the initial configuration and supports the (false) neighborhood the Byzantine
messages refer to. These f + 1 messages can contain mutually vertex disjoint paths, and thus during the
consistency test, a result will be found for Result[fake]. We show that during the next computations, the
message m′ will be identified and ignored.

The Result set should include two reports for each (undirected) edge; the two nodes that are attached to
the edge, each send a report. Hence, Result includes a set of directed (report) edges. The term contradicting
edge is needed when examining the Result set consistency.

Definition 1 (Contradicting edges) Given two nodes, pi, pj ∈ P , we say that the edge (pi, pj) is contra-
dicting with the set Neighborhoodj ⊆ edges(Nj), if (pi, pj) 6∈ Neighborhoodj .

Following the consistency test, pi examines the Result array for contradictions. Node pi checks the
path of each message m ∈ informedTopologyi with source pr, neighborhood neighborhoodr and Pathr.
If every edge (ps, pj) on the path appears in Result[s] and Result[j], then we move to the next message.
Otherwise, we found a fake supporter, and therefore we reduce Count[r] by one. In case the resulting
Count[r] is smaller than f + 1, we nullify the r’th entry of the Result array. Once all messages were

5

processed, the Result array consisting of the (confirmed) local topologies is the output. At the end pi
forwards the arriving message m to each neighbor that does not appear in the path of m. The message sent
by pi includes the node from which m arrived as part of the path m.

The pseudocode appears in Algorithm 1. In every iteration of the infinite loop, pi starts to compute
its preliminary topology view by calling ComputeResults in line 2. Then, every node pk in the queue
InformedTopology, node pi goes over the messages in the queue from head to bottom. While iterat-
ing the queue, for every message m with source pk, neighborhood Nk and visited path Pathk, pi inserts
Pathk to opinion[Nk], see line 18. After inserting, pi checks if there is a neighborhood Neigk for which
opinion[Neigk] contains at least [[f + 1]] vertex disjoint paths, see line 19. When such a neighborhood
is found, it is stored in the Result array (line 19). In line 20, pi stores the number of vertex disjoint paths
relayed messages that contained the selected neighborhood for pk. After computing an initial view of the
topology, in line 3, pi removes non-existing nodes from the computed topology. For every message m in
InformedTopology, node pi aims at validating its visited path. In line 24, pi checks if there exists a node
pk whose neighborhood contradicts the visited path of m. If such a node exists, pi decreases the associated
entry in the Count array (line 25). This decrease may cause Count[r] to be smaller than f + 1, in this case
pi considers pk to be fake and deletes the local topology of pk from Result[r] (line 26).

Upon receiving a message m, node pi inserts the message to the queue, in case it does not already exist,
and just moves it to the top of the queue in case it does. The node pi now needs to relay the message pi
got to all neighbors that are not on the message visited path (line 9). When sending, pi also attaches the
identifier of the node, from which the message was received, to the visited path of the message.
Algorithm’s correctness proof. We now prove that within a linear amount of asynchronous rounds,
the system stabilizes and every output is legal. The proof considers an arbitrary starting configuration with
arbitrary messages in transit that could be actually in the communication channel or already stored in pj’s
message queue and will be forwarded in the next steps of pj . Each message in transit that traverse correct
nodes can be forwarded within less than O(|C|) asynchronous rounds. Note that any message that traverses
Byzantine nodes and arrives to a correct node that has at least one Byzantine node in its paths. The reason
is that the correct neighbor to the last Byzantine in the path lists the Byzantine node when forwarding the
message. Thus, f is at most the number of messages that encode vertex disjoint paths from a certain source
that are initiated or corrupted by a Byzantine node. Since there are at least f + 1 vertex disjoint paths with
no Byzantine nodes from any source pk to any node pi and since pk repeatedly sends messages to all nodes
on all possible paths, pi receives at least f + 1 messages from pk with vertex disjoint paths.

The usage of the FIFO queue and the repeated send operations of pk ensure that the most recent f + 1
messages with vertex disjoint paths in InformedTopology queue are uncorrupted messages. Namely,
misleading messages that were present in the initial configuration will be pushed to appear below the new
f + 1 uncorrupted messages. Thus, each node pi eventually has the local topology of each correct node
(stored in the Resulti array). The opposite is however not correct as local topologies of non-existing nodes
may still appear in the result array. For example, InformedTopologyi may include in the first configuration
f + 1 messages with vertex disjoint paths for a non-existing node.

Since after ComputeResults we know the correct neighborhood of each correct node pk, we may try to
ensure the validity of all messages. For every message that encodes a non-existing source node, there must
be a node p` on the message path, such that p` is correct and p`’s neighbor is non-existing, this is true since
pi itself is correct. Thus, we may identify these messages and ignore them. Furthermore, no valid messages
are ignored because of this validity check.

We also note that, since we assume that the nodes of the system are a subset of P . The size of the queue
InformedTopology is bounded. Next, we bound the amount of memory of a node. The details of the
correctness and convergence proofs appear in the Appendix and in [7].

6

Algorithm 1: Topology discovery, code for node pi
Input: Neighborhoodi: The ids of the nodes with which node pi can communicate directly;
Output: ConfirmedTopology ⊂ P × P : Discovered topology, which is represent by a directed edge set;
Variable InformedTopology : Queue, see Figure 1: topological messages, 〈node, neighborhood, path〉;
Function: NodeDisjointPaths(S): Test S = {〈node, neighborhood, path〉} to encode at least f + 1 vertex disjoint paths;
Function: PathContradictsNeighborhood(k,Neighborhoodk, path): Test that there is no node pj ∈ N for which there is an edge

(pk, pj) in the message’s visited path, path ⊆ P ×N , such that (pk, pj) is contradicting with Neighborhoodk;
1 while true do
2 Result← ComputeResults()
3 let Result← RemoveContradictions(Result)
4 RemoveGarbage(Result)
5 ConfirmedTopology ← ConfirmedTopology ∪ (

⋃
pk∈P Result[k])

6 foreach pk ∈ Ni do send(i, Neighborhoodi, ∅) to pk

7 Upon Receive (〈`,Neighborhood`, V isitedPath`〉) from pj ;
begin

8 Insert(p`, Neighborhood`, V isitedPath` ∪ {j})
9 foreach pk ∈ Ni do if k 6∈ V isitedPath` then send(p`, Neighborhood`, V isitedPath` ∪ {j}) to pk

10 Procedure: Insert(k,Neighborhoodk, V isitedPathk);
begin

11 if ∃m = 〈`,Neighborhood`, V isitedPath`〉 ∈ InformedTopology : (`,Neighborhood`, V isitedPath`) =
(k,Neighborhoodk, V isitedPathk) then InformedTopology.MoveToHead(m)

12 else if pk ∈ N ∧Neighborhoodk ⊆ indices(N) ∧ V isitedPathk ⊆ indices(N) then
InformedTopology.Insert(〈k,Neighborhoodk, V isitedPathk〉)

13 Function: ComputeResults();
begin

14 foreach pk ∈ P : 〈k,Neighborhoodk, V isitedPathk〉 ∈ InformedTopology do
15 let (FirstDisjointPathsFound,Message, opinion[])← (false, InformedTopology.Iterator(), [∅])
16 while Message.hasNext() do
17 〈`,Neighborhood`, V isitedPath`〉 ←Message.Next()
18 if ` = k then opinion[Neighborhood`].Insert(〈`,Neighborhood`, V isitedPath`〉)
19 if FirstDisjointPathsFound = false ∧NodeDisjointPaths(opinion[Neighborhood`]) then

(Result[k], F irstDisjointPathsFound)← (Neighborhood`, true)

20 Count[k]← opinion[Result[k.SizeOf()]]

21 return Result

22 Function: RemoveContradictions(Result);
begin

23 foreach 〈r,Neighborhoodr, V isitedPathr〉 ∈ InformedTopology do
24 if ∃pk ∈ P : PathContradictsNeighborhood(pk, Result[k], V isitedPathr) = true then
25 if Neighborhoodr = Result[r] then Count[r]← Count[r]− 1
26 if Count[r] ≤ f then Result[r]← ∅

27 return Result

28 Procedure: RemoveGarbage(Result);
begin

29 foreach pk ∈ N do
30 foreach m = 〈k,Neighborhoodk, V isitedPathk〉 ∈ InformedTopology :

{k} ∪Neighborhoodk ∪ V isitedPathk 6⊆ P ∨ InformedTopology.IsAfter(m, opinion[k][Result[k]]) do
InformedTopology.Remove(m)

Lemma 1 (Bounded memory) Let pi ∈ C be a correct node. At any time, there are at most n·22n messages
in InformedTopologyanyi, where n = |P | and O(|P | log(|P |)) is the message size.

r-neighborhood discovery. Algorithm 1 demonstrates the existence of a deterministic self-stabilizing
Byzantine resilient algorithm for topology discovery. Lemma 1 shows that the memory costs are high when
the entire system topology is to be discovered. We note that one may consider the task of r-neighborhood

7

• Insert(m): Insert item m to the head of the queue.
• Remove(Messagem): Remove item m from the queue.
• Iterator(): Returns an pointer for iterating over the queue’s elements by the order in which they reside in the queue.
•HasNext(): Tests whether the Iterator is at the end of the queue.
•Next() Returns the next element to iterate over.
• SizeOf() Returns the number of elements in the calling set.
•MoveToHead(m): Move item m to the head of the queue.
• IsAfter(m,S): Test that item m is after the items m′ ∈ S, where S is a set of items in the queue.

Figure 1: Queue: general purpose data structure for queuing items, and its operation list.

discovery. Recall that in the r-neighborhood discovery task, it is assumed that every r-neighborhood cannot
be partitioned by Byzantine nodes. Therefore, it is sufficient to constrain the maximal path length in line 9.
The correctness proof of the algorithm for the r-neighborhood discovery follows similar arguments to the
correctness proof of Algorithm 1.

4 End-to-End Delivery

We use the discovered network topology to design a self-stabilizing Byzantine resilient algorithm for the
transport layer protocol. Namely, using the repeatedly collected topology information for implementing end-
to-end communication between (not necessarily neighboring) nodes. In this context, we face the challenge
of finding f + 1 correct vertex disjoint paths and the need to propose efficient solutions for different system
settings.

The value of ConfirmedTopology is a set of directed edges (pi, pj). An undirected edge is approved
if both (pi, pj) and (pj , pi) appear in ConfirmedTopology. An edge is said to be suspected, whenever
only one edge (in one direction) appears in ConfirmedTopology. The sender has to choose 2f + 1 vertex
independent paths to the receiver. If there exists at least one such set of paths then the sender can safely use
them to communicate with the receiver (similar to Algorithm 1). However, the collected topology may not
include even one such set of 2f + 1 vertex independent paths. The reason is that f of the paths that should
appear in the collected topology may be controlled by Byzantine nodes. Namely, the information about at
least one edge in each such path may not arrive to the sender.

We propose three procedures for overcoming this difficulty in different system setting. The first proce-
dure assumes f is a constant. Thus, the sender may apply the following procedure for selecting a set of vertex
disjoint paths Paths, that contains f + 1 correct paths. For each possible choice of f nodes p1, p2, . . . pf in
the system, the sender computes a new graph G′ which is the result of removing p1, p2, . . . pf , from Gout,
the graph defined by the collected topology. The sender now computes a set P of vertex disjoint paths,
where |P| = f + 1, if such a set exists. For each such set P , the sender relays the current message on all
paths in P . First we show that this procedure only sends message through a polynomial number of paths.
There are O(nf) possibilities for choosing f nodes from the system. Thus, O(nf) sets of paths are com-
puted, and since f is a constant, this number is polynomial. Moreover, each such set contains at most f + 1
paths, because pi only computes a set P of size f + 1. Thus, in total, the sender sends the message on at
most a polynomial number of paths. We now show that this procedure ensures that the message is sent on a
sufficient amount of correct paths i.e., f + 1. Consider the permutation in which the set of f chosen nodes
actually contains the set of Byzantine nodes in the system. Thus G′ contains only correct nodes. Further-
more, at least f +1 paths that were present in Gout are still present in G′, since we removed f nodes. Hence,
in G′, there are at least f +1 correct vertex disjoint paths. As stated, the sender chooses a set of paths of size
f + 1. Each of these paths is correct, and therefore the sender sends the message on at least f + 1 correct

8

vertex disjoint paths as needed.
The second procedure assumes that r and ∆ are both constants. The sender sends the message over all

possible paths to the receiver. This is feasible only when considering r-neighborhoods, rather than the entire
connected component, where the neighborhood radius, r, and the node degree ∆ are constants. Next, we
present a polynomial solution for the case in which f , r and ∆ are not constants, assuming that Byzantine
nodes are not directly connected.

The third procedure assumes that Byzantine nodes cannot be immediate neighbors and that all neighbors
of a given Byzantine node refer to the Byzantine with the same identifier. Our polynomial cost solution
considers the (extended) graph, Gext, that includes all the edges in confirmedTopology and suspicious
edges, see Definition 2.

Definition 2 (Suspicious edges) Given three nodes, pi, pj , pk ∈ P , we say that node pi considers the undi-
rected edge (pk, pj) suspicious, if the edge appears as a directed edge in ConfirmedTopologyi for only
one direction, e.g., (pj , pk).
The extended graph, Gext, may contain fake edges that Byzantine nodes reports on their existence. Never-
theless, Gext includes all the correct paths of the communication graph, G. Therefore, the 2f + 1 vertex
disjoint paths that exists in G also exists in Gext. These 2f + 1 paths facilitate our polynomial cost solution.

The sender uses the chosen paths to repeatedly forward the message m that should arrive to the receiver.
The sender uses a label to identify the messages. Roughly speaking, the receiver deliver a message received
at least c ·n+ 1 consecutive times from f + 1 vertex independent paths (according to the path carried in the
message). Once the receiver delivers a message to the network layer, the receiver starts to repeatedly send
acknowledgments with the label of the delivered message over 2f + 1 vertex disjoint paths. In addition, the
receiver also restarts its counters and the log of received messages upon a message delivery to the network
layer. Similarly the sender count acknowledgments to the current label used, when the sender receives at
least c · n + 1 acknowledgments on a set of f + 1 vertex disjoint paths, the sender fetches the next message
from the network layer, changes the label and starts to send the new message. We note that starting from
an arbitrary configuration, the sender eventually fetches a message from the network layer. This is obvious
since if the sender is sending the same message forever, then the receiver counters on f + 1 paths must
exceed c ·n+1. From this point the receiver sends acknowledgments with the correct label forever ensuring
that the sender fetches the next message.

The pseudocode of the algorithm appears in Algorithm 2. In every iteration of the infinite loop, pi
fetches a message (line 3). Following the fetch, pi prepares the label for the next message (line 4). Once
the label is ready, pi starts sending the message over 2f + 1 vertex disjoint messages which pi calculates
in the procedure ByzantineFaultToleranceSend(Message). When pi gets enough acknowledgments
regarding the current message (see line 5), pi stops sending the current message and fetches another message.

Upon receiving a message m, node pi checks in line 7 whether pi is the destination of the message. If
not, pi forwards the message to the next node on the intended path of the message, not forgetting to update
the visited path. If however pi is the destination of the message, pi checks the type of the message in
line 10. If the type of the message is Data then (in line 11) pi inserts the message payload and label to the
part of the data structure associated with the message source, i.e., the sender, and the message visited path.
In line 27, node pi checks whether 2f + 1 vertex disjoint paths relayed the message at least capacity ·n+ 1
times, where capacity is an upper bound on the number of messages in transit over a communication link.
If so, pi delivers the message to the above layer (line 20), clears the entire data structure and finally sends
acknowledgments on 2f + 1 vertex disjoint paths until a new message is confirmed. Moreover, in line 21
we signal that we are ready to receive a new message. If the type of the message is ACK, we act almost as
when the message is of type Data. When the condition in line 18 holds, we signal that the message was

9

confirmed at the receiver by setting Approved to be true, in line 18.

Correctness proof. Let us consider three labels, 0, 1, and 2 that are used by the sender in a round robin
fashion. Whenever at least c · n + 1 identical messages arrive at the receiver with the same label on each
of f + 1 vertex independent paths, the receiver delivers them, nullify the counters, empty queues and send
acknowledges with the label of the delivered message over 2f + 1 vertex-disjoint paths (cf. line 13). The
sender clears counters and queues whenever the sender changes label.

First we prove that the sender fetches infinitely often, by assuming it is not and proving that eventually
the receiver sends acknowledgments with the label used by the sender. Hence, the sender must fetch (see
Lemma 13). Then in between the second and the fourth fetch of any four successive fetches, where without
the loss of generality, the first fetch is with label 0, the second with 1, the third with label 2 and the fourth
with 0 the receiver clears its counter and the last fetched message in this sequence that is with label 0 is later
delivered.

Following the fetch of each of the first three messages and before the next one, the sender must count
c · n + 1 acknowledgments with the current label that the sender uses to send, namely with 0, 1 and 2.
Since the sender reset the counters when changing the sending label to 1, the receiver must send at least
one acknowledgment with label 1 and then with label 2, following the corresponding fetches. Thus, the
receiver must clear its counters at least once following the second fetch and before the fourth fetch and then
start sending acknowledgments with label 2. After clearing the counters by the receiver and starting sending
acknowledgments with label 2 a message with label 0 that is next to be sent, must be delivered and no other
message can be counted as arriving at least c · n + 1 times through f + 1 vertex-disjoint paths. Detailed
proof appears in the Appendix and in [7].

Note that the code of Algorithm 2 considers only one possible pair of source and destination. A many-
source to many-destination version of this algorithm can simply use a separate instantiation of this algorithm
for each pair of source and destination.

5 Extensions and Conclusions

As extension, we suggest to combine the algorithms for r-neighborhood network discovery and the end-to-
end capabilities in order to allow the use of end-to-end message delivery within the r-neighborhoods. These
two algorithms can be used by the nodes, under reasonable node density assumptions, for discovering their
r-neighborhoods and then extending the scope of their end-to-end capabilities beyond their r-neighborhood,
as we sketch next. We instruct further remote nodes to relay topology information, and in this way collect
information on remote neighborhoods. One can consider an algorithm for studying specific remote neigh-
borhood that are defined, for example, by their geographic region, assuming the usage of GPS inputs; a
specific direction and distance from the topology exploring node defines the exploration goal. The algo-
rithm nominates 2f + 1 nodes in the specific direction to return further information towards the desired
direction. The sender uses end-to-end communication to the current 2f + 1 nodes in the front of the current
exploration, asking them for their r-neighborhood, chooses a new set of 2f + 1 nodes for forming a new
front. It then instructs each of the current nodes in the current front to communicate with each node in the
chosen new front, to nominate the new front nodes to form the exploration front.

To ensure stabilization, this interactive process of remote information collection should never stop.
Whenever the current collection process investigates beyond the closest r-neighborhood, we concurrently
start a new collection process in a pipeline fashion. The output is the result of the last finalized collection
process. Thus, having a correct output after the first time a complete topology investigation is finalized.

10

In this work we presented two deterministic, self-stabilizing Byzantine-resilience algorithms for topol-
ogy discovery and end-to-end message delivery. We have also considered an algorithm for discovering
r-neighborhood in polynomial time, communication and space. Lastly, we mentioned a possible extension
for exploring and communicating with remote r-neighborhoods using polynomial resources as well.

The obtained end-to-end capabilities can be used for communicating the public keys of parties and
establish private keys, in spite of f corrupted nodes that may try to conduct man-in-the-middle attacks, an
attack that the classical Public key infrastructure (PKI) does not cope with. Once private keys are established
encrypted messages can be forwarded over any specific f + 1 node independent paths, one of which must
be Byzantine free. The Byzantine free path will forward the encrypted message to the receiver while all
corrupted messages will be discarded. Since our system should be self-stabilizing, the common private
secret should be re-established periodically.

References

[1] F. M. Al-Azemi and M. H. Karaata. Brief announcement: A stabilizing algorithm for finding two
edge-disjoint paths in arbitrary graphs. In X. Défago, F. Petit, and V. Villain, editors, SSS, volume
6976 of Lecture Notes in Computer Science, pages 433–434. Springer, 2011.

[2] L. Alvisi, J. Doumen, R. Guerraoui, B. Koldehofe, H. C. Li, R. van Renesse, and G. Trédan. How
robust are gossip-based communication protocols? Operating Systems Review, 41(5):14–18, 2007.

[3] B. Awerbuch and M. Sipser. Dynamic networks are as fast as static networks (preliminary version). In
FOCS, pages 206–220. IEEE Computer Society, 1988.

[4] M. Burmester, T. V. Le, and A. Yasinsac. Adaptive gossip protocols: Managing security and redun-
dancy in dense ad hoc networks. Ad Hoc Networks, 5(3):313–323, 2007.

[5] S. Dolev. Self-Stabilization. MIT Press, 2000.

[6] S. Dolev, S. Gilbert, R. Guerraoui, and C. C. Newport. Gossiping in a multi-channel radio network. In
A. Pelc, editor, DISC, volume 4731 of Lecture Notes in Computer Science, pages 208–222. Springer,
2007.

[7] S. Dolev, O. Liba, and E. M. Schiller. Self-stabilizing byzantine resilient topology discovery and
message delivery. Technical Report 2012:01, Chalmers University of Technology, 2012. ISSN 1652-
926X.

[8] V. Drabkin, R. Friedman, and M. Segal. Efficient byzantine broadcast in wireless ad-hoc networks. In
DSN, pages 160–169. IEEE Computer Society, 2005.

[9] S. Dubois, T. Masuzawa, and S. Tixeuil. Maximum metric spanning tree made byzantine tolerant. In
D. Peleg, editor, DISC, volume 6950 of Lecture Notes in Computer Science, pages 150–164. Springer,
2011.

[10] Y. Fernandess and D. Malkhi. On spreading recommendations via social gossip. In F. Meyer auf der
Heide and N. Shavit, editors, SPAA, pages 91–97. ACM, 2008.

[11] R. Hadid and M. H. Karaata. An adaptive stabilizing algorithm for finding all disjoint paths in anony-
mous mesh networks. Computer Communications, 32(5):858–866, 2009.

11

[12] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin. Bar gossip. In OSDI,
pages 191–204. USENIX Association, 2006.

[13] N. Lynch. Distributed Computing. Morgan Kaufmann Publishers, 1996.

[14] Y. Minsky and F. B. Schneider. Tolerating malicious gossip. Distributed Computing, 16(1):49–68,
2003.

[15] M. Nesterenko and S. Tixeuil. Discovering network topology in the presence of byzantine faults. IEEE
Trans. Parallel Distrib. Syst., 20(12):1777–1789, 2009.

[16] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract). In L. Logrippo,
editor, PODC, pages 51–59. ACM, 1991.

[17] M. Paquette and A. Pelc. Fast broadcasting with byzantine faults. Int. J. Found. Comput. Sci.,
17(6):1423–1440, 2006.

12

Algorithm 2: Self-stabilizing Byzantine resilient end-to-end delivery, code for node pi.
Interface: FetchMessage(): Get a new message from the upper layer. We denote by InputMessageQueue the unbounded queue of

all messages that are to be delivered to the destination;
Interface: DeliverMessage(Source,Message): Deliver an arriving message to the higher layer. We denote by

OutputMessageQueue the unbounded queue of all messages that are to be delivered to the higher layer. We assume that it
always contains at least the last message inserted to it;

Input: ConfirmedTopology: The discovered topology, which is represent by a set of directed edges included in P × P , see
Algorithm 1;

Data Structure: Transport layer messages: 〈Source,Destination, V isitedPath, IntentedPath,ARQLabel, Type, Payload〉,
where Source is the sending node, Destination is the target node, V isitedPath is the actual relay path,
IntentedPath is the planned relay path, ARQLabel is the sequence number of the stop-and-wait ARQ protocol, and
Type ∈ {Data,ACK} message type, where DATA and ACK are constant;

Field: Payload: the message data;
Variable Message: the current message being sent;
Variable ReceivedMessages[j][Path] : queue of pj ’s messages that were relayed over path Path (see Figure 1);
Variable Confirmations[j][Path] : queue of pj ’s message acknowledgments that were relayed over path Path (see Figure 1);
Variable label: the current sequence number of the stop-and-wait ARQ protocol;
Variable Approved: A Boolean variable indicating whether Message was accepted at the destination;
Function: NodeDisjointPaths(S): Test S, a set of paths, to encode at least f + 1 vertex disjoint paths;
Function: FloodedPath(MessageQueue,m) : Test whether m is encoded by the first capacity · n+ 1 messages in

MessageQueue, where capacity is an upper bound on the number of messages in transit over a communication link.;
Function: SuspiciousEdges() : Get the set of suspicious edges;
Function: getDisjointPaths(Topology, Source,Destination) : Get a set of f + 1 vertex disjoint paths between source and

destination in the graph induced by Topology.;
Function: ClearQueue(Source) : Delete all data in ReceivedMessages[Source][∗];
Function: ClearAckQueue(Destination) : Delete all data in Confirmations[Destination][∗];

1 while true do
2 ClearAckQueue(Message.Destination)
3 Message← FetchMessage()
4 label← label+ 1 modulo 3
5 while Approved = false do ByzantineFaultToleranceSend(Message)

6 Upon Receive (msg) From pj ;
begin

7 if msg.Destination 6= i then
8 msg.V isitedPath← msg.V isitedPath ∪ {j}
9 send(msg)

10 else if msg.Type = Data then
11 ReceivedMessages[msg.Source][msg.V isitedPath].insert(〈msg.Payload,msg.ARQLabel〉)
12 if ∃m ∈ ReceivedMessages[msg.Source][∗] : Paths = {Path :

FloodedPath(ReceivedMessages[msg.Source][Path],m)} ∧NodeDisjointPaths(Paths) ∧
msg.source = m.source then

13 Confirm(msg.Source,m.ARQLabel,m.Payload)
14 NewMesssage = true

15 else if msg.Type = ACK then
16 if label = msg.ARQLabel then

Confirmations[msg.Source][msg.V isitedPath].insert(〈msg.Payload,msg.ARQLabel〉)
17 let Paths← {Path : FloodedPath(Confirmations[msg.Source][Path], 〈msg.Payload,msg.ARQLabel〉)}
18 if NodeDisjointPaths(Paths) then Approved = true

19 Function: Confirm(Source,ARQLabel, Payload);
begin

20 if CurrentLabel 6= ARQLabel then DeliverMessage(Source, Payload)
21 (CurrLbl,NewMessage)← (ARQLbl, false)
22 ClearQueue(Source)
23 while NewMessage = false do ByzantineFaultToleranceSend(〈Source,ARQLabel, ACK,Payload〉)

24 Function: ByzantineFaultToleranceSend(Destination,ARQLabel, Type, Payload);
begin

25 let Paths← getDisjointPaths(ConfirmedTopology ∪ SuspiciousEdges(), i,Destination)
26 foreach Path ∈ Paths do27 send(〈i,Destination, ∅, Path,ARQLabel, Type,28 Payload〉) to first(Path)

13

A Correctness of Algorithm 1

Lemma 1 (Bounded memory) Let pi ∈ C be a correct node. At any time, there are at most n ·22n messages
in InformedTopologyanyi, where n = |P | and O(|P | log(|P |)) is the message size.
Proof. The queue InformedTopologyanyi, is made up of messages in the form
〈node, neighborhood, visitedpath〉. All nodes that appear in the message, i.e., in the first, second
or third entry of the tuple are in N . The first entry, i.e. the node name is one of n possibilities. The second
and third entries are subsets of N . Thus each of them has 2n possibilities. In total there can be at most
2n · 2n · n messages in every InformedTopologyanyi. �

Definition 3 specifies the requirements of the network topology discovery task. Definition 4 considers
correct paths and Definition 5 considers uncorrupted graph topology messages.

Definition 3 (Legal output) Given correct node pi ∈ C, we say that pi’s output is legal, if it encodes
graph Goutput = (Vout, Eout): (1) C ⊆ Vout ⊆ C ∪ B ⊆ N , and (2) (E ∩ (C × C)) ⊆ Eout ⊆
(E ∩ (C × C)) ∪ (B × (C ∪B)) ⊆ N ×N .
Definition 4 (Correct path) We say path ⊆ N is a correct one if all its nodes are correct, i.e., path ⊆ C.
Definition 5 (Valid message) In Algorithm 1, we refer to a message m =
〈k,Neighborhoodk, V isitedPathk〉 as a valid message when: (1) pk ∈ C and V isitedPathk encodes a
correct path in the communication graph, G, that starts in pk, and (2) Neighborhoodk = indices(Nk).

Lemma 2 shows that eventually correct paths do not relay non valid messages. Namely, invalid messages
can only exist as the result of: (1) Byzantine interventions that corrupt messages, or (2) transient faults,
which occur only prior to the arbitrary starting configuration considered. 2

Lemma 2 (Eventually valid messages) Let R be a fair execution of Algorithm 1 that starts in an arbitrary
configuration. WithinO(|C∪B|) asynchronous rounds, the system reaches a configuration after which only
valid messages are relayed on correct paths.
Proof. Let c ∈ R be the starting configuration. Suppose that c includes an invalid message, m =
〈`,Neighborhood`, V isitedPath`〉, in transit between correct nodes. The lemma is obviously correct
for the case that m is relayed by Byzantine nodes during the first O(|C ∪ B|) asynchronous rounds of R.
Therefore, we consider only the correct paths, path, over which m is relayed during the first O(|C ∪ B|)
asynchronous rounds of R. We show that, withinO(|C ∪B|) asynchronous rounds, no correct node in path
relays m.

Let pj , pi ∈ path be correct neighbors on the correct path. Suppose that in c, message m
is in transit from pj to pi. Upon the arrival of message m to pi (line 7), pi sends mi =
〈`,Neighborhood`, V isitedPath` ∪ {j}〉 to any neighbor pk ∈ path on the path for which pk ∈ Ni ∧ k 6∈
V isitedPath`, see line 9.

Node pi adds pj’s identifier to m’s visited path V isitedPath`, see line 9. The same argument holds
for any correct neighbors, p′j , p

′
j ∈ path when pj sends message m′j to the next node in path, node p′i.

2This is a common way to argue about self-stabilization, we consider executions that start in an arbitrary configuration that
follows the last transient fault, recalling that if additional transient faults occur a new arbitrary configuration is reached from which
automatic convergence starts.

14

Therefore, within |path\V isitedPath`| asynchronous rounds, it holds that N ′i ∩(path\V isitedPath`) =
{p′j , p′i}.

Note that p′i makes sure that V isitedPath′` does not encode loops, i.e., pk 6∈ V isitedPath′`, see line 9.
Therefore, node p′i does not relay message m′ to pk. �

Definition 6 considers queues that their recent valid messages encode at least f +1 vertex disjoint paths.
Moreover, the invalid ones encode at most f such paths.

Definition 6 (Valid queue) Let pi, pk ∈ C be two correct nodes. We say that pi’s queue,
InformedTopologyi, is valid (with respect to pk) whenever there is a prefix, V alidInformationi,k,
of messages mk in the queue InformedTopologyi, such that: (1) there is a subset, V alid =
{m` = 〈k,Neighborhoodk, V isitedPath`〉 : m` is valid} ⊆ V alidInformationi,k, for which the
set {V isitedPath`} encodes at least f + 1 vertex disjoint paths, and (2) the set, Invalid = {m` =
〈k,Neighborhoodk, V isitedPath`〉 : m` is invalid} ⊆ V alidInformationi,k, for which the set
{V isitedPath`} encodes at most f vertex disjoint paths.

Claim 3 shows that, within O(|C|) asynchronous rounds, correct paths propagate valid messages.

Claim 3 Let path ⊆ C be a correct path from pi to pk. Suppose that mi = 〈i,Ni, ∅〉 is a (valid) message
that pi sends, see line 6. WithinO(|path|) asynchronous rounds, message mi is relayed on path, and arrives
at pk as m′i = 〈i,Ni, path〉. Namely, path is m′i’s visited path.

Proof. Let c ∈ R be the first configuration that follows the start of mi’s propagation in path. I.e., c is
the configuration that immediately follows the step in which node pi sends mi by executing line 6. Let
pr, pj ∈ path be two correct neighbors on the path. Without the loss of generality, suppose that node pi
sends message mi directly to node pr, i.e., in c, node pr is just about to receive mi. The proof arguments
hold also when assuming that pj sends message mj = 〈i,Ni, {r}〉 to the next node in path. Thus, generality
is not lost.

We show that, within one asynchronous round, pr sends mr to pj . Upon the arrival of message mi

to pr (line 7), node pr sends the message mr to any neighbor, such as pj , for which pj ∈ Nr ∧ r 6∈
V isitedPathi = ∅, see line 9. Since the same argument holds when pj sends mj to the next node in path,
we have that within |path| asynchronous rounds, m′i is delivered to node pk.

�

Lemma 4 shows that queues get to become valid.

Lemma 4 (Eventually valid queues) Let R be a fair execution of Algorithm 1 that starts in an arbitrary
configuration and pi, pk ∈ C be any pair of correct nodes. The system reaches a configuration in which the
queue, InformedTopologyi, is valid (with respect to pk), within O(|C ∪B|) asynchronous rounds.
Proof. Let c ∈ R be a configuration achieved in Lemma 2 within O(|C ∪ B|) asynchronous rounds. We
show that within O(|C ∪ B|) asynchronous rounds after c, the system reaches a configuration in which
InformedTopologyi, is valid (with respect to pk), see Definition 6.

In configuration c, all messages in transit on correct paths are valid, see Lemma 2. Thus, the only
messages entering InformedTopologyi are either valid or have passed through Byzantine nodes. Denote
mbarrier to be the top message the queue InformedTopologyi. Moreover, V alidInformationi,k includes
all the messages in InformedTopologyi, that are between the queue’s head and mbarrier.

We show that condition (1) of Definition 6 holds. There are 2f + 1 vertex disjoint paths between pi and
pk. At most f nodes are Byzantine and thus, there are at least f + 1 vertex disjoint paths between pi and
pk that are correct. By Claim 3 within O(|C|) asynchronous rounds, a valid message, mk, is received on all

15

f + 1 (correct) vertex disjoint paths. Message mk is inserted to InformedTopologyi after configuration c.
Therefore, mk is in front of mbarrier. Hence, the set V alid = {m` = 〈`,Neighborhood`, V isitedPath`〉 :
m` is valid} ⊆ V alidInformationi,k contains at least f+1 valid messages whose respective visited paths,
V isitedPath`, are vertex disjoint.

We show that condition (2) of Definition 6 holds. Any invalid messages, mk, that is sent after configu-
ration c, must go through a Byzantine node, see Lemma 2.

Claim 5 Suppose that message m is relayed through a Byzantine node after configuration c, then in any
following configuration, while m is still in transit, there is a Byzantine node in the visited path.

Proof. Observe the first correct node pk after the last Byzantine node b on m’s path. pk is correct, thus it
inserts b to the visited path. b is the last on the path and so the visited path must contain it until end of transit
or passing through a different Byzantine. �

Each such Byzantine node is recorded in the message path, see Claim 5. Since there are at most f
Byzantine nodes, there could be at most f such messages with vertex disjoint paths. This completes the
proof condition (2) and the lemma. �

Lemma 7 shows that correct information gets confirmed, and requires Definition 7.

Definition 7 (Message confirmation) We say that message mi = 〈k,Neighborhoodk, V isitedPathki〉 is
confirmed (by node pi) when Neighborhoodk ⊆ ConfirmedTopologyi.
Lemma 6 (Eventually confirmed messages) Let R be a fair execution of Algorithm 1 that starts in
an arbitrary configuration and pi, pk ∈ C be any pair of correct nodes. Within O(|C ∪ B|)
asynchronous rounds, the system reaches a configuration after which the fact that message mi =
〈k,Neighborhoodk, V isitedPathki〉 is confirmed, implies that Neighborhoodk = indices(N`).
Proof. Let c ∈ R be the first configuration in which InformedTopologyi is a valid queue and node pi
completes a full iteration of the do forever loop that starts in line 1. By Lemma 4, the system reaches c
within O(|C ∪B|) asynchronous rounds.

We how that in configuration c, the array Resulti satisfies that Resulti[k] = indices(N`). We go
through the computation of Result in lines 2 to 4.
• ComputeResults(), line 2. Let Resi[k] = indices(N ′`) be ComputeResults()’s re-

turn value with respect to node pk. We show that Resi[k] = indices(N`). Moreover, we show
that the neighborhood that will be found will be that which is represented in V alid = {m` =
〈k,Neighborhoodk, V isitedPath`〉 : m` is valid} ⊆ V alidInformationi,k.

We recall that the set {V isitedPath`} encodes at least f + 1 disjoint paths. Also in the prefix
V alidInformationi,k one can not find f + 1 invalid messages with vertex disjoint messages; See Def-
inition 6.

The function must choose the message containing the neighborhood Neighborhoodk. Otherwise, we
have chosen a different neighborhood for k, say Neighborhood′k 6= Neighborhoodk = indices(Nk). That
is, at the time of checking line 19 with neighborhood Neighborhood` = Neighborhood′k, there were at
least f + 1 vertex disjoint paths in opinion[Neighborhood`]. This is in contradiction to condition (2) of
Definition 6. Moreover in line 20, it holds Count[k] > f + 1, since at least all the correct paths were
counted.
• RemoveContradictions(), line 3. Let Resi = ComputeResults() and

ResRemoveContradictionsi = RemoveContradictions(Resi) (line 3). We show that
ResRemoveContradictionsi[r] = indices(Nr). The function RemoveContradictions() modifies

16

Resi[r] only in line 26 by nullifying it whenever Count[r] ≤ f . We demonstrate that, for any correct path
V isitedPathk, there exists no p` for which PathContradictsNeighborhood(p`, Resi[`], V isitedPathk)
= true, which is the condition in line 24.

We explain that there is no node p` and a contradicting edge (pj , p`) with the set Resi[`]. By the
assumption that V isitedPathk is correct and that node p` ∈ V isitedPathk, we have that p` ∈ C is correct.
Thus Resi[`] = indices(N`), see previous item of this claim on ComputeResults(). V isitedPathk is
correct, and therefore (pj , p`) must be in V isitedPathk.
• RemoveGarbage(), line 4. This procedure does not modify Resi =

RemoveContradictions(ComputeResults()). We have shown that Resulti[k] = indices(Nk). Thus,
only the correct neighborhood is confirmed for every correct node pk. �

Lemma 7 shows that eventually there are no fake nodes.

Lemma 7 (Eventually no fake nodes) Let R be a fair execution of Algorithm 1 that starts in an arbitrary
configuration, pj ∈ N be any node, and p` ∈ P \(C∪B) be a node that is not included in the communication
graph, G. WithinO(|C∪B|) asynchronous rounds, the system reaches a configuration after which (pj , p`) 6∈
ConfirmedTopologyi
Proof. Let c ∈ R be the configuration reached within O(|C ∪ B|) asynchronous rounds according to
Lemma 6. For any correct node, pi ∈ C, we show that in c, the execution of RemoveContradictions()
results in Counti[`] ≤ f and nullifies Resulti[`].

We start by showing that for every path p that relays a message which encodes the set Resulti[`], and
does not contain Byzantine nodes, a contradiction is found in RemoveContradictions(). Namely, the if
conditions of line 24 holds.

Note that, p may not be a correct path even though it contains no Byzantine nodes. For example p may
contain nodes pz that are not even in the communication graph, i.e., pz ∈ P \ (C ∪B).

Let pr ∈ C ∪ B be the first correct node on path p. Such a node exists, because pi is correct and on the
path p. Since pr is correct, after the execution of ComputeResults(), we have that pr’s neighborhood, Nr,
is encoded in Resulti[r], see Lemma 6.

Denote the last edge in the path (pr, ps), where ps ∈ P \ (C ∪ B). Note that node ps is not a node in
the system and since Resulti[r] encodes Nr’s neighborhood, we have that ps 6∈ Resulti[r]. Thus, the edge
(pr, ps) is contradicting with the set Resulti[r]. Namely, by the condition in line 24, we have that line 25
must decrease Count[`].

We note that immediately before the function RemoveContradictions() returns, the integer Count[`]
may count only incorrect paths, which contain at least one Byzantine node. Since there are at most f
Byzantine nodes, Count[`] ≤ f as needed. �

Theorem 8 demonstrates the self-stabilization properties.

Theorem 8 (Self-stabilization) Let R be a fair execution of Algorithm 1 that starts in an arbitrary config-
uration and pi ∈ C be a correct node. Within O(|C ∪ B|) asynchronous rounds, the system reaches a safe
configuration after which pi’s output is always legal, see Definition 3.
Proof. The systems reaches configuration c ∈ R of Lemma 6 within O(|C ∪ B|) asynchronous
rounds. We show that c is a safe configuration by showing that the output is legal, we must show
that ConfirmedTopologyi encodes a graph Goutput = (Vout, Eout), such that: (1) C ⊆ Vout, (2)
(E∩ (C×C)) ⊆ Eout, (3) Vout ⊆ C ∪B ⊆ N , and (4) Eout ⊆ (E∩ (C×C))∪ (B× (C ∪B)) ⊆ P ×N .

For every correct node pk ∈ C, we have that Nk is confirmed in c, see Lemma 6. Thus, pk ∈ Vout and
condition (1) holds.

17

Let (pj , pk) be an edge in the communication graph between two correct nodes, we show (pj , pk) ∈
Eout. Since pj is correct, it is inserted to ConfirmedTopologyi, see Lemma 6. Thus, (pj , pk) ∈
edges(Nj) ∧ edges(Nj) ⊆ ConfirmedTopologyi in c, thus condition (2) holds as well.

There is no p` ∈ P \ (C ∪ B) and node pj ∈ N , such that (p`pj) ∈ ConfirmedTopologyi, see
Lemma 7. Thus, Vout ⊆ C∪B ⊆ N and Eout ⊆ (E∩ (C×C))∪ (B× (C∪B)) ⊆ P ×N . I.e., conditions
(3) and (4) hold in c. �

B Correctness of Algorithm 2

Lemma 9 shows that senders and receivers can eventually find at least 2f + 1 vertex-disjoint paths between
them. Note that at least f + 1 of them are correct.

Lemma 9 Let R be a fair execution of Algorithm 2 that starts in an arbitrary configuration and ps, pr ∈ C
a pair of correct nodes (sender and receiver). Within O(|C ∪ B|) asynchronous rounds the system reaches
a configuration in which the set ConfirmedTopology ∪ SuspiciousEdges encodes a set of 2f + 1 vertex
disjoint paths from ps to pr and at least f + 1 of them are correct.

Proof. Let c be a safe configuration with respect to Algorithm 1. Let Paths =
getDisjointPaths(ConfirmedTopology ∪ SuspiciousEdges(), i,Destination) be a set of disjoint
paths in c, as in line 25, where i ∈ {s, r}. We first show that | Paths |≥ 2f + 1 before showing that
at least f + 1 of them are correct.

We consider the graph G′ = (N,EG′), which is computed from ConfirmedTopology and the suspi-
cious edges in c. We demonstrate that G′ contains the real communication graph, G. Let e = (pj , pk) ∈ EG′ .
When pj and pk are both correct, e ∈ G′ since c is safe. When pj is correct and pk is Byzantine, we must
consider the cases in which pk reports, and does not report, e as part of its local neighborhood. Namely,
either e ∈ ConfirmedTopology, or e ∈ SuspiciousEdges(), because pk does not report about e, but pi
does. Since G ⊆ G′, G′ must contain 2f + 1 vertex disjoint paths between any ps and pr, because G does.
Thus | Paths |≥ 2f + 1.

Moreover, the same arguments implies that there may be at most f incorrect paths, which contain at
least one Byzantine node. Hence, there are at least f + 1 correct nodes in Paths. �

Definitions 8, 9 and 10 are needed for lemmas 11, 12 and 13.

Definition 8 (Confirmation) Given configuration c, we say that message m is confirmed (by the receiver)
when m ∈ OutputMessageQueue.

Definition 9 (Approve) Given fair execution, R, of Algorithm 2, we say that message m = 〈Source,
Destination, V isitedPath, IntentedPath, ARQLabel, DATA, Payload〉 is being approved (by the
sender pSource) during the first atomic step, asender, in which the sender executes line 18, where Source =
sender ARQLabel = msgsender.ARQLabel and Payload = msgsender.Payload, see line 17. Denote
by capproved the configuration that immediately follows asender. Given configuration c that appears after
capproved in R, we say that message m is approved (by the sender) in configuration c.

Definition 10 (Clear-sender-receiver) Given configuration c, we say that the sender is clear (with respect
to the receiver), if the queue Confirmations[receiver] = ∅ in c. Moreover, the receiver is clear (with
respect to the sender) , if the queue ReceivedMessages[sender] = ∅ in c.

18

Claim 10 shows that a message that is relayed on a correct path is received at the destination within
O(|C ∪B|) asynchronous rounds. Moreover, the destination receives the message with correct visiting set.

Claim 10 Let R be a fair execution of Algorithm 2 that starts in a safe configuration, c, with respect to
Algorithm 1. Let psource, pdest ∈ C be pair of correct nodes. Let csend be the configuration immediately
following a step in which psource sends message Msg on a correct path Path = psource, p1, p2, . . . pdest
from source, psource, to destination, pdest. Within O(|C ∪ B|) asynchronous rounds, pdest receives Msg
with a visiting set containing all nodes on Path except pdest.

Proof. Upon the arrival of message m to pk (line 6), node pi asserts that he is not the destination, pdest,
(line 7). Immediately after, pi sends the message m to the next neighbor, pi+1, see line 9. Since the same
argument holds when pj sends m to the next node in path, we have that within |Path| asynchronous rounds,
m is delivered to node pdest. �

Claim 11 says that when the sender repeatedly sends message Msg, for a duration of at leastO(|C∪B|)
asynchronous rounds, the receiver eventually confirms message Msg.

Claim 11 Let R be a fair execution of Algorithm 2 that starts in a safe configuration, c, with respect to
Algorithm 1. Let ps, pr ∈ C be a pair of correct sending and receiving nodes. Suppose that, for a duration
of at least O(capacity · |C ∪ B|) asynchronous rounds, ps’s steps include only the execution of the func-
tion ByzantineFaultToleranceSend(Msg) in the loop of line 5. Within that period, the system reaches
configuration creceive in which pr confirms Msg.

Proof. Denote csend as the configuration immediately following the first step in which ps sends message
Msg in R, see line 27. Within O(capacity · |C ∪ B|) asynchronous rounds, the first frame containing
Msg arrives at pr, see Claim 10. Moreover, after another O(capacity · |C ∪ B|) asynchronous rounds,
every correct path relays message Msg at least O(capacity · |C ∪ B|) times. This is correct since every
asynchronous round, ps sends a new frame containing Msg on each of the 2f + 1 vertex disjoint paths.
Moreover, by Claim 10, the last frame sent on all 2f + 1 paths arrives after another O(capacity · |C ∪B|).

Assume, in the way of proof by contradiction, that Msg is not confirmed by pr. This implies that
the queues, ReceivedMessages[ps][∗], in pr containing messages sent from ps were not cleared at least
since csend, see line 22. Thus, pr contains capacity · n + 1 indications of Msg on f + 1 vertex disjoint
paths. Denote clast as the configuration immediately after the arrival of the (capacity · n + 1)-th frame of
the f + 1’th path to relay capacity · n + 1 frames containing Msg. Immediately after clast, ps must go
through line 12, because the conditions in line 12 hold. Thus, a contradiction and Msg is confirmed within
O(capacity · |C ∪B|) asynchronous rounds. �

Claim 12 says that when the receiver is sending acknowledgments about a message, that message even-
tually becomes approved. We note that Claim 12 considers acknowledgments sent from the receiver to the
sender, rather than messages sent from the sender to the receiver, as in Claim 11.

Claim 12 Let R be a fair execution of Algorithm 2 that starts in a safe configuration, c, with respect to
Algorithm 1. Let ps, pr ∈ C be a pair of correct sending and receiving nodes. Suppose that, for a duration
of at leastO(capacity · |C ∪B|) asynchronous rounds, pr’s steps include only the execution of the function
ByzantineFaultToleranceSend(Ack) in the loop of line 23. That is, pr is sending acknowledgments on
message Msg. Within that period, the system reaches configuration creceive in which ps approves Msg, see
Definition 9.

19

Proof. Denote csend as the configuration immediately following the first step in which pr sends acknowledg-
ment Ack in R, see line 23. Within O(capacity · |C ∪B|) asynchronous rounds, the first frame containing
Ack arrives at ps, see Claim 10. Moreover, after another O(capacity · |C ∪ B|) asynchronous rounds,
every correct path relays message Ack at least O(capacity · |C ∪ B|) times. This is correct since every
asynchronous round, pr sends a new frame containing Ack on each of the 2f + 1 vertex disjoint paths.
Moreover, by Claim 10, the last frame sent on all 2f + 1 paths arrives after another O(capacity · |C ∪B|).

The queues, Confirmations[pr][∗] are cleared only when a message sent to pr is approved, see line 2.
Since, pr is acknowledging the current message, Msg, by sending Ack, the only message that can be ap-
proved is Msg. This is true since each path, Path, may contain at most capacity ·|C∪B| acknowledgments
for other messages in the path queues.

Assume, in the way of proof by contradiction, that Msg is not approved by ps. By the arguments above,
ps’s queues, Confirmationss[pr][∗], which contains pr’s acknowledgments that ps received, were not
cleared at least since csend, see line 2. Thus, ps contains capacity ·n+ 1 indications of Ack on f + 1 vertex
disjoint paths. Denote clast as the configuration immediately after the arrival of the (capacity · n + 1)-th
frame of the f + 1’th path to relay capacity · n + 1 frames containing Ack. Immediately after clast, ps
must go through line 18, because the conditions in line 18 hold. Thus, a contradiction and Msg is approved
within O(capacity · |C ∪B|) asynchronous rounds. �

Lemma 13 shows that the senders repeatedly fetch messages.

Lemma 13 Let R be a fair execution of Algorithm 2 that starts in a safe configuration, c, with respect to
Algorithm 1. Let ps, pr ∈ C be pair of correct sending and receiving nodes. Moreover, c` is the configuration
that immediately follows the `-th time in R in which ps fetches a message from the input queue. For every `,
the system reaches c` within O(` · |C ∪B|) asynchronous rounds.

Proof. By the code of Algorithm 2, on every iteration of the do forever loop (lines 2 to 5), a message is
fetched in line 3. This do forever loop includes another loop in line 5. We prove the lemma by showing that
the loop of line 5 is completed within O(|C ∪B|) asynchronous rounds.

The proof considers the case in which the sender, ps, does not wait in line 5 for a long time before
considering the case in which ps does wait. We show that for the latter case, the receiver, pr, confirms ps’s
current message. After confirming the message, the receiver, pr, begins sending acknowledgments to the
sender, ps. The proof shows that after the acknowledgments are sent, ps approves the message and fetches
a new one. We show this by considering the case in which pr repeatedly sends acknowledgments for a
sufficient amount of time, and a case in which it does not.

Suppose that ps does not wait in line 5 more than O(capacity · |C ∪ B|) asynchronous rounds. In this
case, ps starts the infinite loop again within O(capacity · |C ∪ B|) asynchronous rounds, and fetch a new
message, see line 3. Thus, for the case in which ps does not wait in line 5 more than O(capacity · |C ∪B|)
asynchronous rounds, the lemma is correct.

Suppose that ps is executing line 5 and waits for acknowledgments on message Msg for more than
O(capacity · |C ∪B|) asynchronous rounds. Thus, ps floods 2f + 1 vertex-disjoint paths with the message
Msg, see Claim 9. Eventually, the receiver, pr, receives message Msg for O(capacity · |C ∪ B|) times
on f + 1 vertex-disjoint paths and confirms Msg, see Claim 11. After confirming it, the receiver sends
acknowledgments on 2f + 1 vertex-disjoint paths until confirming a new message Msgnew. This is true
because the condition in line 23 holds only when a new message is confirmed, see line 14.

Let us consider the case in which, duringO(capacity · |C∪B|) asynchronous rounds, message Msgnew
does not arrive to the receiver. By Claim 12, eventually the sender receives the acknowledgments for

20

capacity · n + 1 times on f + 1 vertex disjoint paths. Claim 12 also says that the sender considers the
message accepted by the receiver. In line 18, the sender assigns Approved = true. Thus, the condition in
line 5 holds and the sender fetches the next message, see line 3. Hence, the system reaches configuration
cfetch that immediately follows a step in which the sender, ps, fetches the next message. Thus, for the case in
which, duringO(capacity · |C∪B|) asynchronous rounds, message Msgnew does not arrive to the receiver,
the lemma is correct.

We continue by considering the case in which, during O(capacity · |C ∪ B|) asynchronous rounds,
message Msgnew does arrive to the receiver. Let cconf be the configuration that immediately follows the
step in which pr confirms Msg. Since the receiver confirms Msg, we have that pr is clear (with respect to
the sender) in configuration cconf , see Definition 10 and line 22.

If Msgnew was sent by the sender, it must have been fetched after c, and cfetch is reached when message
Msgnew is fetched. It may be the case however, that Msgnew was not sent by the sender. Message Msgnew
was confirmed by 2f + 1 vertex disjoint paths. Since there are at most f Byzantines, at least one of these
paths, Path, must be correct. Moreover, in cconf , the receiver is clear, thus the capacity · n + 1 that pr
counts in ReceivedMessages[ps][∗] have all been received after configuration cconf . Note that the sender
sends at least one of these messages, because at most capacity ·n messages could be in the edges of Path at
any given configuration. Thus the sender sends Msgnew, which ps fetches immediately before cfetch. I.e.,
the system reaches cfetch. �

Theorem 8 says that, starting from that fourth (or even the third) message that the sender fetches, the
receiver confirms the sender’s messages. The proof of Theorem 8 is based on Lemma 14, which says that,
in every sequence of four messages that the sender is fetching, the receiver confirms the fourth (or even the
third) message.

Lemma 14 Let R be a fair execution of Algorithm 2 that starts in a safe configuration, cstart, with respect
to Algorithm 1. Let ch be a configuration that immediately follows the h-th step in which the sender fetches
the h-th input queue message, mh. Within O(|C ∪B|) asynchronous rounds, the receiver confirms message
m4.

Proof.

Claim 15 In c2, the sender is clear (with respect to the receiver), see Definition 10.

Proof. By definition, c2 immediately follows atomic step a2, in which, after clearing the confirmation queue
in line 2, the sender fetches message m2 and sends it. �

Claim 16 Between the configurations c3 and c4, there is a configuration creceiver−clear in which the receiver
is clear (with respect to the sender).

Proof. Suppose, without the loss of generality, that immediately after csender−clear, the sender is waiting
for a message with label 1. By lemma 13, the sender eventually fetches the next message. The sender
can only fetch a new message once Approved is true, see line 5. Moreover, Approved is only set to true
once the queue Confirmations[receiver][∗] contains 2f + 1 flooded paths, see line 18. Thus, the sender
counts 2f +1 vertex disjoint paths that relayed acknowledgments with label 1. Moreover, the sender is clear
in csender−clear. Hence, configuration csender−clear contains no message in Confirmations[receiver][∗].
Starting from csender−clear, the sender receives capacity ·n+ 1 acknowledgments on 2f + 1 vertex disjoint
paths for the current message with label 1. Note that at least one of these 2f + 1 paths, Path, is correct,

21

because there are f Byzantine. Since |Path| ≤ n and each edge on Path may contain at most capacity
messages, we have that at least one of the acknowledgments that includes Path as its visiting path, is sent
by the receiver between csender−clear and configuration creceiver−send ∈ R. We show that creceiver−send =
creceiver−clear.

This means that after csender−clear, the sender clears the confirmations queue,
Confirmations[receiver][∗], and fetches the next message, assigning it the label 2, see lines 2
through line 5. By similar arguments, we know that the receiver sends at least one acknowledgment with
label 2.

To conclude, there is a configuration c ∈ R in which the receiver is sending acknowledgments with
label 1, and then a configuration c′ in which the receiver sends acknowledgments with label 2. Moreover,
between two consecutive executions of line 23, the receiver has to go through line 22. Thus, the receiver
cleared it’s message queues, Confirmations[sender][∗], immediately before configuration creceiver−clear
and creceiver−send = creceiver−clear. �

Let us consider configuration creceiver−clear from the end of proof of Claim 16.
The next message to be sent after creceiver−clear, is m4, the message fetched in c4, with label 0. Between

creceiver−clear and c4, all messages sent by the sender have the label 2. By arguments stated above, the
message, m, that is the next message to be confirmed after creceiver−clear, must have been sent by the sender
at least once since creceiver−clear. The sender, sends only messages with label 0 and 2. Moreover, the last
message to be confirmed had a label 2. Thus, CurrentLabel = 2, see line 21. Any sent message with
label 2 is not inserted to the confirmations queue, Confirmations[sender][∗] between creceiver−clear and
the configuration that immediately follows the next sender’s fetch, see line 20. Thus, by line 4, the next
message to be confirmed is a message with label 0, which must be m4. �

Theorem 8 (Self-stabilization) Let R be a fair execution of Algorithm 2 that starts in an arbitrary configu-
ration. Within O(|C ∪B|) asynchronous rounds, the system reaches a safe configuration c after which: (1)
the receiver confirms message m in step amr ∈ R, and (2) for every step amr , there is a corresponding step,
ams ∈ R, that occurs before amr and in which the sender sends m.
Proof. Let c be the configuration that Claim 16 denote as c4, which the system reaches within O(|C ∪B|)
asynchronous rounds, see Lemma 13. Let mi be the i-th message fetched.

Suppose that i ≥ 4. Lemma 14 considers the four consecutive messages mi−3, . . .mi and says that the
receiver confirms message mi. Thus, condition (1) holds.

Condition (2) follows from arguments similar to the ones used in the proof of Lemma 11. Namely,
for the case of i ≥ 5, message mi−1 is confirmed, see lemma 14. Immediately after the receiver con-
firms mi−1, it clears the queue ReceivedMessages[sender][∗], see lines 20 to 22. Thus, there exists
a configuration creceiver−clear in which the receiver is clear (with respect to the sender) before ci, see
Definition 10. Moreover, a message is confirmed only if the queue ReceivedMessages[sender][∗] con-
tains 2f + 1 flooded paths, see line 12. These flooded paths implies that in configuration ci, the queue
ReceivedMessages[sender][∗] contains capacity · n + 1 indications of mi on 2f + 1 node disjoint paths.
Thus, mi is confirmed only after a period that follows creceiver−clear and includes its reception at least
capacity · n + 1 times on each of the 2f + 1 vertex disjoint paths.

Recall that we assume that there are at most f Byzantine nodes in the system. At least one path, Path,
of the above 2f + 1 paths is correct. Moreover, |Path| ≤ n and each edge on Path may contain at most
capacity messages. Thus, at least one of the capacity ·n+ 1 message that were relayed on the correct path
Path was sent by the sender. This completes the correctness proof. �

22

