
Ericsson Internal | 2018-02-21

Approaches to Data
Sharing in Edge FaaS

Zoltán Richárd Turányi
Expert, Ericsson Research
Hungary

Ericsson Internal | 2018-02-21

— Cellular networks are hierarchical

— Centralized componets are cheap to build
and maintain

— But for radio reasons nodes must be
distributed

— Other reasons to deploy application
components distributed

— Low latency towards end-user

— Local processing to save bandwidth

— Fate sharing with user

— 5G introduces new, low-latency modes

— Ultra Reliability Low Latency
Communication (URLLC)

Problem Statement: Mobile Cloud Apps

Antenna
site

Aggregation
site

Regional
Site

National
Site

Devices

100K 1000s 100s a few

Ericsson Internal | 2018-02-21

Low latency use cases

1. Cloud Virtual & Augmented Reality – Real-time Computer Rendering Gaming/Modeling

2. Connected Automotive – ToD, Platooning, Autonomous Driving

3. Smart Manufacturing – Cloud Based Wireless Robot Control

4. Connected Energy – Feeder Automation

5. Wireless eHealth – Remote Diagnosis With Force-Feedback

6. Wireless Home Entertainment – UHD 8K Video & Cloud Gaming

7. Connected Drones – Professional Inspection & Security

Ericsson Internal | 2018-02-21

Mobility

— Users move

— Physical mobility

— Change in radio conditions

— Node and link failures

— States related to users need to be

— moved

— replicated

— Replicaton can be

— To neighbouring edge sites (handy at mobility)

— To central site

x

x

Antenna site Aggregation site

Ericsson Internal | 2018-02-21

Problem Statement:
Function-as-a-Service

Monolithic apps MicroServices

Ericsson Internal | 2018-02-21

Problem Statement:
Function-as-a-Service

Monolithic apps MicroServices

External
in-memory DB

Input #1
Input #1

Worker #X

Worker #1

Input event

Input call

Input message

Web
server

Pick one
event

event queue

Internal
Context

Process
event

done

DAL key
DAL key
Other APIs

Externalized
ContextPlus management code for

• Scaling
• Failover
• Networking

Anatomy of a μService – A server

event queue

This is the
relevant
part

F

Ericsson Internal | 2018-02-21

Problem Statement:
Function-as-a-Service

Monolithic apps MicroServices Functions

— All-in-one
— Scales in big blocks
— Upgrades monolithically

— Loosely coupled (hard)
— Data enclosed
— Overhead: Web servers, HTTP, sidecars
— Individual scaling, failover
— Developers do a lot besides business logic

— Externalized state
— Developer focus
— Platform does scaling, failover
— Very fluid
— Full interworking with uServices

Ericsson Internal | 2018-02-21

Compilation
Service

Runtime
Instance

Runtime
Instance

Runtime
Instance

Runtime
Instance

Runtime
Instance

Runtime
Instance Runtime

Instance
Runtime
Instance

Load
manager

Externalized state

Binary

Problem Statement:
Function-as-a-Service Triggers

Binary

Distributed Execution Environment

Ericsson Internal | 2018-02-21

Problem Statement: Mobile FaaS Apps

Antenna
site

Aggregation
site

Regional
Site

National
SiteDevices

Distributed Execution Environment

3. Local Survivability

X 4. Recover from Edge
site crash

5. Spillover

1. Location control

2. State mobility

0. Co-locate data & execution

Ericsson Internal | 2018-02-21

CloudPath

— Hierarchical execution model: nodes may have children and parents

— Children are usually less capable than parents

— Developers may mark functions to execute at specific hierarchy levels

— PathStore

— Children cache a part of the parent’s database locally

— The root has everything

— Reads fetch the relevant part (and subscribe updates)

— Cold entries are automatically removed

— Writes take effect locally then propagate upwards

— Tightly synchronized GPS clocks are used to timestamp writes

— Write conflicts are resolved using the timestamps

— Eventually consistent

CloudPath: A Multi-Tier Cloud Computing Framework
Seyed Hossein Mortazavi, Mohammad Salehe, Carolina Simoes Gomes, Caleb Phillips, Eyal de Lara

2nd ACM/IEEE Symposium on Edge Computing (SEC), San Jose, CA, October 2017

?

http://sysweb.cs.toronto.edu/publications/327

Ericsson Internal | 2018-02-21

CloudPath

— Good reliability

— Data is stored at multiple levels

— Fast reads after caching

— Fast local writes

— Possible to add mobility

— May handle local survivability

— If all needed data is locally cached

— Does not handle simultaneous writes very well

— No atomic updates possible (like a counter)

CloudPath: A Multi-Tier Cloud Computing Framework
Seyed Hossein Mortazavi, Mohammad Salehe, Carolina Simoes Gomes, Caleb Phillips, Eyal de Lara

2nd ACM/IEEE Symposium on Edge Computing (SEC), San Jose, CA, October 2017

?

http://sysweb.cs.toronto.edu/publications/327

Ericsson Internal | 2018-02-21

What should the ideal
database be like?

Note: possible to have more than one in an app.

Ericsson Internal | 2018-02-21

Assumptions

— Most requests come from the edge

— Goal is to serve these fast

— Execution

— Functions are short lived and partake serving one request

— Function Execution is possible everywhere

— Already running functions do not move

— Database has the ability to move data around

— Result in two phase lookups

— Distributed hash tables are out

— Caching of locations and subscribing to location updates help

Ericsson Internal | 2018-02-21

Merging or serializing database

— Merging

— Let local writes diverge the history

— Merge changes in a distributed fashion

— Serializing

— Maintain a logical order of updates same
everywhere

— Results in a single location handling all
updates for the same data

Super fast locally

Good merging strategy is needed.

Application dependent, custom
merging logic.

Super fast locally at master site.

Slow remotely.

Good with dominant accessor.

Versioning enables atomic read-
update-write operations.

Ericsson Internal | 2018-02-21

Replication

— Inter-site and intra site

— Robustness

— Wait for replication to complete; or

— Proceed logic in the meantime

— Location

— From Edge to Central

— Edge to Edge

— Predict mobility or not

— Controlled handover process

— Conflicting requirements

— Handle Edge site failure

— Provide Local Survivability

Fine control is needed by the programmer.

— Future-like mechanisms to have writes in
parallel

— API to control replica locations & master
mobility

Ericsson Internal | 2018-02-21

Function Execution Location

— Programmer may designate both data and execution in the system by hand

— Does not support e.g., spillover or edge site failure

— Two kind of automatic strategies

— Function mobility

— Move the function’s execution where its data is

— Need to know what kind of data the function accesses

— Provided by developer, Statically analysed, Measured

— Data mobility

— Move the data to where functions execute

— Best if there is some consistent execution of functions
(including sharding)

— Data may migrate to servers not functions

As simple as falling back to
centralized execution if data

not available locally

Optimization:
Co-locate functions working

on same data

Ericsson Internal | 2018-02-21

Multi-key or single-key transactions

— Single-key transactions

— Each transaction affects only one addressable data
element

— E.g., plain Key-Value stores

— Multi-key transactions

— Easy to program

— Difficult and complex to implement

— Very slow for data scattered all around

Workarounds

— Large, composite values

— Multi-step updates via ‘lock’ keys

1. Write into a key to take a lock

2. Update several keys

3. Release the lock

We can send code around

— Decompose transaction code

— Execute close to data in parallel

— Have the ability to roll back if needed

Ericsson Internal | 2018-02-21

Summary

— 5G and Edge computing will enable many exciting low-latency use cases

— FaaS is emergent programming paradigm for the Cloud

— Selecting the right external database for Edge FaaS is a challenge

