
Proceedings of the 2nd Workshop on

Advanced tools, programming languages, and
PLatforms for Implementing and Evaluating

algorithms for Distributed systems
(ApPLIED)

Held in conjunction with DISC 2019

Budapest, Hungary

October 14, 2019

Editors: Yanhong Annie Liu, Miguel Matos

Contents

Foreword 3

Organization 4

Sponsors 5

Program 6

Invited Talk Abstracts and Speaker Bios 7

Invited Speakers . 7

Building and Testing Byzantine Fault Tolerant State Machines

Ethan Buchman, Interchain Foundation, Switzerland 8

Algorand: From Theory to Practice

Jing Chen, Algorand, USA . 25

Transactional Data Structure Libraries

Idit Keidar, Technion, Israel . 26

Weak Models for Distributed Computing

Gadi Taubenfeld, Interdisciplinary Center, Israel 38

Approaches to Data Sharing in Edge FaaS

Zoltán Turányi, Ericsson, Hungary 46

To build, or Not to Build, That Is the Question

Nitin Vaidya, Georgetown University, USA 50

Invited Talk Summaries 61

Algorand: from Theory to Practice

Jing Chen, Algorand Inc., USA . 61

Panel and Discussion Summaries 66

Invited panel: Challenges and Current State 66

Discussion session:

Consensus and Distribute Ledger: Scalability and Assurance 66

Invited panel and open discussion: Summary and Directions 66

Short Papers 67

plcli - a Tool for Running Distributed Applications on PlanetLab

Axel Niklasson, Chalmers University of Technology, Sweden 67

2

Foreword

It is our great pleasure to welcome you to the 2019 Workshop on Advanced tools,

programming languages, and PLatforms for Implementing and Evaluating algo-

rithms for Distributed systems — ApPLIED 2019. The purpose of this workshop

is to bring together designers and practitioners of distributed systems from both

academia and industry to share their point of views and experiences on imple-

menting and evaluating distributed algorithms and systems. This second install-

ment of the workshop was co-located with the 33rd International Symposium on

Distributed Computing (DISC 2019), and took place on October 14th, 2019, in

Budapest, Hungary.

The workshop featured keynote lectures, discussion panels, and presentations

of short research papers.

The program included six keynote lectures by Ethan Buchman (Interchain

Foundation, Switzerland), Jing Chen (Algorand, Inc.), Idit Keidar (Technion, Is-

rael), Gadi Taubenfeld (Interdisciplinary Center, Israel), Zoltán Turányi (Ericsson,

Hungary), Nitin Vaidya (Georgetown University, USA).

There were three panel and discussion sessions by invited panelists, other ex-

perts, and all participants, on (1) Challenges and Current State, (2) Consensus and

Distributed Ledger: Scalability and Assurance, and (3) Summary and Directions.

3

Organization

General Chairs

• Chryssis Georgiou, University of Cyprus, Cyprus

• Elad Michael Schiller, Chalmers University of Technology, Sweden

Program Committee Chairs

• Yanhong Annie Liu, Stony Brook University, USA

• Miguel Matos, INESC-ID & IST, University of Lisboa, Portugal

Technical Program Committee

• Amy Babay, University of Pittsburgh, USA

• Ken Birman, Cornell University, USA

• Ioannis Chatzigiannakis, Sapienza University of Rome, Italy

• John Field, Google, New York City, USA

• Seif Haridi, Royal Inst. of Technology and Swedish Inst. of Computer Sci-
ence, Sweden

• Wolfgang John, Ericsson Research, Sweden

• Marc Shapiro, Sorbonne-Universit-LIP6 and INRIA, France

• Srikumar Venugopal, IBM Research, Ireland

4

Sponsors

• University of Cyprus, Cyprus

• Chalmers University of Technology, Sweden

• Stony Brook University, USA

• Universidade de Lisboa & Angainor project (PTDC/CCI-COM/31456/2017),
Portugal

5

Program

9:00 Opening and introduction: Chryssis Georgiou

Morning Sessions: Chair: Miguel Matos

9:15 Invited talk: Idit Keidar

Transactional Data Structure Libraries

10:00 Coffee break

10:30 Invited talk: Zoltan Turanyi

Approaches to Data Sharing in Edge FaaS

11:15 Invited talk: Nitin Vaidya

To build, or Not to Build, That Is the Question

11:45 Invited panel: Challenges and Current State

Chryssis Georgiou, Zoltán Turányi, and Nitin Vaidya

12:30 Lunch

Afternoon Sessions: Chair: Annie Liu

14:00 Invited talk: Ethan Buchman

Building and Testing Byzantine Fault Tolerant State Machines

14:45 Invited talk: Jing Chen

Algorand: From Theory to Practice

15:25 Discussion session

Consensus and Distributed Ledger: Scalability and Assurance

16:00 Coffee break

16:30 Invited talk: Gadi Taubenfeld

Weak Models for Distributed Computing

17:10 Student experience session: Axel Niklasson

plcli - a Tool for Running Distributed Applications on PlanetLab

17:20 Invited panel and open discussion: Summary and Directions

Ethan Buchman, Jing Chen, and Gadi Taubenfeld

17:50 Closing remarks

6

https://www.cs.ucy.ac.cy/~chryssis/
http://www.gsd.inesc-id.pt/~mm/
http://webee.technion.ac.il/~idish/
https://www.linkedin.com/in/zoltán-turányi-709397/?originalSubdomain=hu
https://disc.georgetown.domains/
http://www.cs.stonybrook.eu/~liu
https://ca.linkedin.com/in/ethan-buchman-10b34944
https://www3.cs.stonybrook.edu/~jingchen/
http://www.faculty.idc.ac.il/gadi/
https://axelniklasson.se/

Invited Talk Abstracts and Speaker Bios

Invited Speakers

• Ethan Buchman, Interchain Foundation, Switzerland

• Jing Chen, Algorand, USA

• Idit Keidar, Technion, Israel

• Gadi Taubenfeld, Interdisciplinary Center, Israel

• Zoltán Turányi, Ericsson, Hungary

• Nitin Vaidya, Georgetown University, USA

7

Building and Testing Byzantine Fault Tolerant State Ma-
chines
Ethan Buchman, Interchain Foundation, Switzerland

Abstract: Building and testing fault
tolerant state machines, let alone
Byzantine Fault Tolerant (BFT) ones,
is notoriously tricky business. The
handful of industrial solutions, like
Apache Zookeeper, CoreOS’s etcd, and
Hashicrop’s Consul, are not BFT, and
their state machines are restricted to
relatively simple service-discovery ori-
ented key-value stores. Blockchain so-
lutions, on the other hand, add a myr-
iad of complex state machines, includ-
ing new virtual machine designs, but
fail to provide adequate performance
and mature development environments.

Here we present Tendermint, a production-grade Byzantine Fault Tolerant
State Machine Replication engine written in Go. Tendermint supports BFT repli-
cation for state machines written in any language by using a socket protocol to
communicate between the state machine and the replication engine, allowing ap-
plications to be built and tested in a developer’s language of choice. Tendermint
is being used on the public Internet today to secure upwards of 1 Billion USD in
value, with deployments supporting hundreds of consensus nodes. Here we provide
an overview of the Tendermint system and how to build Byzantine Fault Tolerant
applications in Go and Javascript.

Biography Ethan is an Internet Biophysicist. He received a B.Sc. in Physical
Science and a M.Sc. in Engineering Systems and Computing, both from the Uni-
versity of Guelph. With background in cell biology, neuroscience, mathematics,
machine learning, and distributed computing, his goal is to build tools that encour-
age humans to self-organize into functional systems, much like molecules managed
to self-organize into Life. Ethan is a co-founder of the Tendermint and Cosmos
projects, and currently serves as Technical Director of the Interchain Foundation,
a non-profit with a mission to research, develop, and promote open, decentral-
ized networks. He is focused primarily on building general purpose technology
to support interoperable replicated state machine on the public Internet, and in
proving their correctness. He also runs CoinCulture CryptoConsulting, which of-
fers in-depth courses on blockchain technology for both non-technical and technical
audiences.

8

Building and Testing
Byzantine Fault Tolerant

State Machines
Ethan Buchman

Interchain Foundation
https://interchain.io/

Informal Systems
https://informal.systems

Budapest, 2019

Acknowledgements
Significant material in this presentation came directly or indirectly from:

Zarko Milosevic
Research Scientist

Interchain Foundation

Sunny Aggarwal
Research Scientist

All in Bits Inc.

Peng Zhong
Chief Design Officer

All in Bits Inc.

Contents

- Blockchain Consensus
- Blockchain Applications
- ABCI
- ABCI Apps in Go: Cosmos SDK
- ABCI Apps in JS: Lotion JS and Agoric
- Governance & Proof of Stake

Blockchain Consensus

Blockchain Consensus

Bitcoin and Ethereum solves (a variant) of BFT consensus problem
in novel network and adversarial setting:

○ High number of nodes (thousands)
○ Wide area network
○ Open, permissionless network, i.e., not a single administration domain
○ Byzantine fault tolerant
○ No direct connectivity between nodes, i.e., nodes communicate over p2p

gossip network

Satoshi’s Invention

● Optimize BFT using hash-linked transaction batches
○ “Blockchain”
○ Batching amortizes the cost of BFT over many transactions
○ Hash links provide cheap integrity checks for clients

● Economic incentives for safety and liveness
○ “Proof-of-Work”
○ Use economics to secure a synchrony assumption and a random lottery to hedge its

failure
○ Byzantine behaviour has high opportunity cost
○ Variable set of anonymous participants

9

Blockchain Consensus Yesterday (PoW)
Pros

● Simple to understand, prove, and implement correctly
● Based on cryptographic puzzle
● Economic security

Cons

● Probabilistic and Eventual Agreement
○ Is a committed transaction really committed?

● Low throughput
● High latency
● Not energy efficient

Blockchain Consensus Today (Tendermint)
Pros

● Adapt classic BFT consensus algorithms for the new system model
● High performance
● Instant finality
● Energy efficient
● Shift economic concerns to state machine layer
● Support state machines written in any language (!)
● Support efficient proofs for clients

Cons

● More complex
● Thresholds for consensus

Tendermint consensus algorithm
● Proceeds in a sequence of rounds

○ Round contains multiple communication steps (similar to PBFT view)

● Every round has a dedicated proposer
○ Proposer defined by a deterministic function
○ Proposer could change every round (similar to Spinning, Veronese et al, 2009)
○ https://github.com/cwgoes/tm-proposer-idris
○ https://github.com/tendermint/tendermint/blob/master/docs/spec/reactors/consensus/proposer-selection.md

● Single execution path
○ There is no separate recovery protocol
○ Similar to normal case of PBFT

● Novel termination mechanism
○ Relies on gossip based communication
○ Message size does not depend on system size
○ Does not require additional information exchange between processes

PBFT

Tendermint

Tendermint/Cosmos History:

● Tendermint: Consensus without mining
○ 2014 - Whitepaper by Jae Kwon

● Tendermint: Byzantine Fault Tolerance in the Age of Blockchains
○ 2016 - MSc Thesis by Ethan Buchman

● Cosmos: A Network of Blockchains
○ 2016 - Whitepaper by Kwon and Buchman

● The Latest Gossip on BFT Consensus
○ 2018 - Technical Report by Buchman, Milosevic, Kwon
○ https://arxiv.org/abs/1807.04938
○ https://github.com/tendermint/spec

10

Tendermint Performance (2016)

https://github.com/tendermint/network_testing (deprecated, sorry)

7 datacenters on 5 continents (AWS - c3.8xlarge)

Robustness (2017)
https://jepsen.io/analyses/tendermint-0-10-2

Testnets (2018)

https://medium.com/tendermint/2018-year-in-review-the-top-5-most-epic-cosmos-testnets-that-will-restore-your-faith-in-3b060974f9a7

Adversarial Cosmos Testnet (2019)
https://github.com/cosmos/game-of-stakes

https://forum.cosmos.network/
https://riot.im/app/#/room/#gameofstakes:matrix.org

Mainnets (2019)
Over $5B in collective market cap Open Research Challenges

https://interchain.io/careers https://interchain.io/funding/

● Formal verification of Tendermint algorithms and implementation
● Optimal gossip protocol for

○ Transaction broadcasting
○ Votes dissemination and fast round synchronisation

● Optimal algorithm for blockchain and state synchronisation
● Use of advanced cryptography (eg. aggregate signatures) for improving

performance and scalability
● Pipelining blocks and opportunities for concurrent execution
● Interaction between application-level staking logic and Tendermint behaviour
● Light client performance and advanced cross chain communication

11

Blockchain Applications

Somebody Else’s State Machine
Eg. Zookeeper, Bitcoin

Application

Consensus

Networking

Somebody Else’s State Machine
Eg. Ethereum, Aion, Tezos

Application (EVM)

Consensus

Networking

dApp dApp dApp

Your State Machine
Eg. built on Tendermint

Consensus

Networking

Application

ABCI

Application Blockchain Interface (ABCI):
State Machines in any

Programming Language

} Tendermint

Your State Machine
Eg. built with an ABCI Application Framework

Consensus

Networking

ABCI

Cosmos-SDK
Plugin Plugin Plugin

} Tendermint

Full Stack

12

ABCI Ecosystem
https://tendermint.com/ecosystem

VMs & Smart Contract Languages

VM Developer Language

Ethereum VM

Aion VM

Tezos VM

Pact Smart Contract
Language

Why?
- Restricted and “secure” environment for running untrusted code
- Determinism and termination
- Easy interoperability between contracts in the same language / VM

Why not?
- Maturity, ecosystem, tooling, etc.
- Attack surface
- Customization, performance tuning
- Scalability

VMs & Smart Contract Languages ...

Consensus

Networking

ABCI

Application (EVM)

dApp dApp dApp… over ABCI!

} Tendermint

ABCI Virtual Machines
https://tendermint.com/ecosystem

Virtual Machine Project Framework Developer

EVM https://github.com/cosmos/ethermint Cosmos-SDK https://chainsafe.io/

WASM https://github.com/cosmos-gaians Cosmos-SDK https://github.com/cosmos-gaians

Secure
EcmaScript

https://github.com/Agoric/cosmic-swingset Cosmos-SDK +
Agoric SwingSet

https://agoric.com/

Pact (https://github.com/f-o-a-m/hs-abci-server) hs-abci-server https://foam.space/ +
https://kadena.io/

Move https://github.com/open-libra/movemint rust-abci https://www.openlibra.io

Cross Chain Interoperability
Eg. Cosmos Network

Cosmos Hub

Tendermint
Core

Ethermint

Tendermint
CoreIBC

Binance Chain

Tendermint
Core

IBC

Your
Application

Tendermint
Core IBC

IBCCosmWASM

Tendermint
Core

ABCI

13

Application Blockchain Interface (ABCI)

SECURITY & NETWORKING
PLATFORMS

APPLICATION
PLATFORMS

SOCKET PROTOCOLSCGI ABCI

Tendermint

Application Blockchain Interface (ABCI)

Application Blockchain Interface (ABCI)

Cosmos SDK

Cosmos SDK
Ruby on Rails for Blockchains

- Abstract away low-level ABCI concerns

- Golang
- Tiny language, static and interface types, high performance,

compiles everywhere, standardized formatting, built-in
testing, etc.

- Composable modules

- Object-Capability based security - “Principle of Least Authority”

Cosmos SDK
Ruby on Rails for Blockchains - batteries included

14

Txs and Msgs Txs and Msgs

Handlers and AnteHandler Handlers, AnteHandler, Result

Object-Capability Stores Object-Capability Stores

15

Simple Key-Value Store Simple Key-Value Store

Mappers and Keepers Mappers and Keepers

BeginBlock & EndBlock

16

17

18

Application: Regen Network
https://www.regen.network/

Application: TruStory
https://www.trustory.io/

Lotion JS

Lotion JS

https://lotionjs.com

19

Simple Lotion App JS Smart Contracts for Bitcoin!
https://nomic.io/

JS Smart Contracts for Bitcoin!

https://github.com/nomic-io/bitcoin-peg/blob/master/bitcoinPeg.md

But Javascript is Insecure!

But Javascript is Insecure!

https://www.destroyallsoftware.com/talks/wat

20

https://xkcd.com/2044/

Origins of Smart Contracts

Mark S. Miller

Principle of Least Authority

https://agoric.com/event-stream-exploit-was-preventable-pola/

Principle of Least Authority

https://medium.com/agoric/pola-would-have-prevented-the-event-stream-incident-45653ecbda99

Object Capabilities

http://erights.org/elib/capability/overview.html

21

Securing Javascript
https://agoric.com/ Securing Javascript

Agoric Stack
https://agoric.com/

Agoric Stack
https://agoric.com/

Governance & Proof of Stake

22

Conclusion

Key Takeaways (Tendermint)

- Tendermint BFT
- Simple, robust, gossip based

- Tendermint Apps
- State machines in any language via ABCI
- Go, JS, Rust, Python, Haskell, Erlang, etc.
- Many VMs coming

Key Takeaways (Cosmos, Go)

- Cosmos
- “Internet of Blockchains”
- Application Specific Blockchains connected via IBC
- Sovereignty, Diversity, Security, Scalability, Interoperability

- Cosmos-SDK
- “Ruby on Rails” for blockchains
- Modular framework for experimenting with economic systems in Go

- Cosmos Hub
- Largest & Most Advanced Bonded Proof of Stake
- Hub for interoperability between blockchains

Key Takeaways (Javascript)

- LotionJS
- Simple JS framework for building Tendermint blockchains
- Pegs to Bitcoin facilitate Bitcoin smart contracts in JS

- Agoric
- JS can be secure!
- Smart Contracts in JS via Object Capabilities
- Tight integration with Cosmos-SDK and Cosmos ecosystem

Key Takeaways (Organizations)

- Interchain Foundation
- Apply for funding or a job!
- https://interchain.io/careers
- https://interchain.io/funding

- Informal Systems
- R&D spin out from the Interchain Foundation
- Coming soon!
- https://informal.systems

If you like the sound of my voice ...

Software Engineering Daily
“Consensus Systems with Ethan

Buchman”

Epicenter Podcast
“Launching the Internet of

Blockchains”

Rebuild Conference
“Stakeholders &
State Machines”

23

Thank You!

https://interchain.io
https://interchain.io/careers
https://interchain.io/funding

https://informal.systems

https://cosmos.network

https://tendermint.com

24

Algorand: From Theory to Practice
Jing Chen, Algorand, USA

Abstract: Blockchains stand to rev-
olutionize the way a modern society op-
erates. They can secure all kinds of
traditional transactions, such as pay-
ments, in the exact order in which the
transactions occur; and enable totally
new transactions, such as cryptocurren-
cies and smart contracts. They can re-
move intermediaries and usher in a new
paradigm for trust. As currently im-
plemented, however, blockchains scale
poorly and cannot achieve their enor-
mous potential. Algorand is the first
blockchain that is truly secure, scalable
and decentralized. It is permissionless
and works in a highly asynchronous
environment. It dispenses with proof
of work and miners and requires only
a negligible amount of computation.
Moreover, its transaction history does
not fork, guaranteeing immediate finality of a transaction the moment the transac-
tion enters the blockchain. In this talk, I will introduce Algorands core technology,
recent development and roadmap.

Biography: Jing Chen is Chief Scientist and Head of Theory Research at Al-
gorand, and Assistant Professor in the Computer Science Department at Stony
Brook University. Her main research interests are distributed ledgers, game the-
ory, and algorithms. Jing received her bachelor and masters degrees in computer
science from Tsinghua University, and her PhD in computer science from MIT.
She did a one-year postdoc at the Institute for Advanced Study, Princeton. Jing
received the NSF CAREER Award in 2016.

25

Transactional Data Structure Libraries
Idit Keidar, Technion, Israel

Abstract: We introduce transactions
into libraries of concurrent data struc-
tures; such transactions can be used to
ensure atomicity of sequences of data
structure operations. By focusing on
transactional access to a well-defined
set of data structure operations, we
strike a balance between the ease-of-
programming of transactions and the
efficiency of custom-tailored data struc-
tures. We exemplify this concept
by designing and implementing a li-
brary supporting transactions on any
number of maps, sets (implemented
as skiplists), queues, stacks, producer-
consumer pools, and logs. Our library
offers efficient and scalable transactions, which are an order of magnitude faster
than state-of-the-art transactional memory toolkits.

We further introduce nesting into our transactional data structure library.
Nested transactions create checkpoints within a longer transaction, so as to limit
the scope of abort. We then conduct a case study of pipelined network intrusion
detection. In this benchmark, nesting improves throughput by up to 15x. Finally,
we discuss cross-library nesting, namely dynamic composition of transactional data
structure libraries.

(Based on joint works with Alexander Spiegelman, Gal Assa, Guy Golan-Gueta,
and Hagar Meir.)

Biography: Idit Keidar received her B.Sc. (summa cum laude), M.Sc. (summa
cum laude), and Ph.D. from the Hebrew University of Jerusalem in 1992, 1994,
and 1998, respectively. She was a Postdoctoral Fellow at MITs Laboratory for
Computer Science. She is currently a Professor at the Technions Viterbi Faculty of
Electrical Engineering, where she holds the Lord Leonard Wolfson Academic Chair.
She serves as the Head of the Technion Rothschild Scholars Program for Excellence,
and also heads the EE Facultys EMET Excellence Program. Her research interests
are in fault-tolerant distributed and concurrent algorithms and systems, theory and
practice. Recently, shes mostly interested in distributed storage and concurrent
data structures and transactions.

26

Transactional	Libraries
Idit	Keidar,	Technion

with	

Alexander	Spiegelman,	Guy	Golan-Gueta,	Gal	Assa,	and	Hagar	Meir

1

Agenda

•Motivation
• Concurrent	Data	Structure	Libraries	(CDSLs)	vs	Transactional	Memory

• Introducing:	Transactional	Data	Structure	Libraries	(TDSL)
• Example	TDSL	algorithm
• Skiplist
• Additional	objects
• Fast	abort-free	singletons

• Library	composition	&	nesting
• Evaluation

2

3

Multi-Threading	is	Everywhere Data	Structures	(DS)

• Essential	building	blocks	in	modern	SW
• Map,	skiplist,	queue,	etc.

4

But	Are	They	“Thread	Safe”?

Correct	under	concurrency?

OR

5

?

“Thread-Safe”	Concurrent	DS	Libraries

•Widely	used	in	real	life	software
• Numerous	research	papers
• Concurrent	Skipklist
[Herlihy,	Lev,	Luchangco,	Shavit:	A	simple	optimistic	skiplist algorithm]	
[Fraser:	Practical	lock	freedom]	…	
• Concurrent	queue	
[Michael,	Scott:	Simple,	fast,	and	practical	nonblocking and	blocking	
concurrent	queue	algorithms]	[Gramoli,	Guerraoui:	Reusable	
concurrent	data	types]
• Concurrent	binary	tree
[Bronson,	Casper,	Chafi,	Olukotun:	A	practical	concurrent	binary	search	
tree]	[Drachsler,	Vechev,	Yahav:	Practical	concurrent	binary	search	trees	
via	logical	ordering]

6

27

Concurrent	Data	Structure	Libraries	(CDSLs)

• Each	operation	executes	atomically	
• Custom-tailored	implementation	preserves	semantics

7

balanceßmap.get (key=Yoni)

newBalanceß balance	+	deposit

map.set(key=Yoni, newBalance)

repQ.enq(“Yoni’s	balance=new”)
queuemap

App App App

Are	They	Really	Thread	Safe??

• Oops!	Atomic	operations	are	not	enough

8

balance	ßmap.get (key=Yoni)
balance	ßmap.get(key=Yoni)

newBalanceß balance	+	deposit
newBalanceß balance	+	deposit

map.set(key=Yoni, newBalance)
map.set(key=Yoni, newBalance)

repQ.enq(“Yoni’s	balance=new”)
repQ.enq(“Yoni’s balance=new”)

Software	Transactional	Memory	(STM)

• TL2,	TinySTM,	SwissTM,…	
• Transactions	(TXs)	=	atomic	sections	including	multiple	DS	
operations

9

STM

map queue

App
begin
end
abort

Begin_TX
balanceßmap.get(key=Yoni)
newBalanceß balance	+	deposit
map.set(key=Yoni, newBalance)
repQ.enq(“Yoni’s	balance=new”)

End_TX

CDSL	vs	STM

10

CDSL STM
Performance ü û

Exploit	DS	semantics ü û

Used	in practice ü û

Generality û ü

Composability û ü

Why?

STM	Overhead	Explained

• Common	STM	solution:	
• Each	object	has	a	version
• TX	reads	a	“consistent	snapshot”
• Validates	versions	have	not	changed	by	commit	time
• Otherwise	aborts

• TX	updates	occur	during	commit
• Sources	of	overhead:
• Global	version	clock	(GVC)	Þ contention
• Read- and	write-sets	Þ tracking	and	validation	overhead
• Conflicts	Þ aborts

11

Agenda

•Motivation
• Concurrent	Data	Structure	Libraries	(CDSLs)	vs	Transactional	Memory

• Introducing:	Transactional	Data	Structure	Libraries	(TDSL)
• Example	TDSL	algorithm
• Skiplist
• Additional	objects
• Fast	abort-free	singletons

• Library	composition	&	nesting
• Evaluation

12

28

TDSL:	Bringing	Transactions	into	CDSL

13

Transactional	Library

queuemap

App App App

begin
end
abort

STM	programmability:	
TXs	span	any	number	

of	operations	

Custom-tailored,		
performance	of	CDSL

Legacy	“singleton”	
operations:	

fast,	abort-free

Missing:	
Generality	of	STM

Why	TDSL?

• Power	of	transactions
• Optimizations	using	DS	semantics	and	structure
• Use	semantics	to	reduce	overhead	aborts
• E.g.,	read-set	reduction,	non-transactional	index

• Different	CC	mechanisms	for	different	DSs
• Optimistic	maps,	sets
• Pessimistic	queues

• Fast	abort-free	singletons
• As	fast	as	in	CDSL
• No	contention	on	global	version	clock
• Support	legacy	code

14

Transactional	Library

TDSL	Benefit	1:	Programmability

• Support	for	legacy	code
• Fast,	abort-free	singletons

• Power	of	transactions

15

queuemap

App App AppBegin_TX
valßmap.get(key=Yoni)
newß val+deposit
map.set(key=Yoni,new)
repQ.enq(“Yoni’s	balance=new”)

End_TX

TDSL	Benefit	2:	Semantic	Optimization

• Use	known	transactional	solutions
• But,	take	advantage	of	semantics	&	structure	of	each	DS	to	
reduce	aborts	&	overhead	
• Reduce	read-set
• Do	some	of	the	work	non-transactionally

16

Example	of	Abort	Reduction

17

2 5 9 17 34

4 23

• Two	concurrent	put	operations
• Put(23)	traverses	the	list,	reads	nodes	that	put(4)	updates
• Conflict,	STM	would	abort	at	least	one
• But	no	semantic	conflict	

Example	of	Abort	Reduction

18

2 5 9 17 34

4 23

• Two	concurrent	put	operations
• Put(23)	traverses	the	list,	reading	nodes	put(4)	updates
• Conflict,	STM	would	abort	at	least	one
• But	no	semantic	conflict	

29

TDSL	Benefit	3:	Mix	&	Match

•Maps	allow	lots	of	concurrency
• Amenable	to	optimistic,	fine-grain synchronization

• Queues	do	not
• Pessimistic	synchronization	better
• Coarse-grain

• STM	picks	one
• Our	TDSL	can	mix	&	match

19

Transactional	Library

pessimistic	
queue

optimistic	
map

App App App

Agenda

•Motivation
• Concurrent	Data	Structure	Libraries	(CDSLs)	vs	Transactional	Memory

• Introducing:	Transactional	Data	Structure	Libraries	(TDSL)
• Example	TDSL	algorithm
• Skiplist
• Additional	objects
• Fast	abort-free	singletons

• Library	composition	&	nesting
• Evaluation

20

Skiplist Roadmap

1. Add	STM-like	transaction	support	to	simple	linked	list
• Based	on	TL2	STM	algorithm

2. Optimization:	remove	redundant	validation	and	tracking
• Use	semantics	and	structure		

3. Optimization:	shorten	transactions
• Non-transactional	index
• Lazy GC

21

Step	1:	Standard	STM

• Take	a	simple	linked	list

• Add	TL2	mechanism	to	support	TXs:
• Add	a	version	to	each	node
• Get	versions	from	global	version	clock	(GVC)
• Maintain	read-set	with	read	versions
• Defer	updates,	track	in	write-set
• To	commit:	lock	write-set,	validate	read-set,	increment	GCV,	update,	
release	locks

22

2 5 9 17 34

Step	1:	Standard	STM

23

insert(10):

2 5 9 17 34

read-set write-set

GVC

10

Local	memory
Shared	memory

9 9 102 5

17Read

Validate

Step	2:	Reduce	Read-Set

• Exploit	structure	and	semantics

24

insert(10):

2 5 9 17 34

write-set

GVC

10

Local	memory
Shared	memory

9 10

read-set
9

Read

Validate

30

Step	3:	Non-Transactional	Index	

• Imagine	we	could	guess	the	right	node

• So,	we	could	be	faster	and	save	aborts	during	the	traversal

25

GVC 342 5 9 17

Step	3:	Non-Transactional	Index	

• getSmaller
• Returns	some	node	with	a	
smaller	key
• For	performance,	not	much	
smaller

• Implemented	as	(concurrent)	
skiplist
• For	example

26

App

Index

27

2 5 9 17 34GVC

Step	3:	Non-Transactional	Index	

App

Index

insert(10):

10

Start	traverse	from	5

Step	3:	Non-Transactional	Index	

• Updated	outside	the	TX	(if	completes	successfully)
• Reduces	aborts,	overhead

• But:	
• May	return	nodes	with	smaller	keys	than	predecessor	

Þ longer	traversals
• May	return	removed	nodes	

28

Handling	Removed	Nodes

• Add	deleted	bit	per	node
• Commit	sets	this	bit	instead	of	removing	the	node
• Use	epoch-based	memory	reclamation

• Check	deleted	bit	of	node	returned	from	index
• If	true,	call	getSmaller with	returned	node’s	key
• Eventually	converges

• After	adding	a	node	to	the	index,	check	if	it	is	deleted,	and	if	
yes,	remove	it

29

Agenda

•Motivation
• Concurrent	Data	Structure	Libraries	(CDSLs)	vs	Transactional	Memory

• Introducing:	Transactional	Data	Structure	Libraries	(TDSL)
• Example	TDSL	algorithm
• Skiplist
• Additional	objects
• Fast	abort-free	singletons

• Library	composition	&	nesting
• Evaluation

30

31

Queues

• Optimistic	dequeue	likely	to	lead	to	aborts
• Instead,	use	single	lock	and	version	per	queue

• Pessimistic	coarse-grain	dequeue	
• Lock	queue	on	first	dequeue,	release	at	commit	time	
• Read	from	shared	queue,	track	locally	(write-set)

• Optimistic	enqueue
• Enqueue	locally	(in	write-set)

• Commit
• Lock	queue	(if	needed)	and	update	based	on	write-set

31

Stacks

• Optimistic	while	tx has	pushed	more	than	it	popped
• Push	to	write-set
• Pop	from	write-set

• Pessimistic	if	at	any	time	tx has	popped	more	than	it	pushed
• Lock	stack
• Push	to	write-set
• Pop	– read	from	shared	stack,	track	locally

• Coarse-grain	

32

Logs

• Optimistic	read(pos),	hasNext(pos)
• If	hasNext(pos)	returns	false	- track	in	read-set	“last	=	pos”
• No	other	tracking	

• Pessimistic	append(val)
• Lock	the	entire	log
• Track	appends	in	write-set	until	commit	time

33

Producer-Consumer	Pools

• Fine-grain:	multiple	slots
• Each	with	its	own	lock
• Pessimistic	produce/consume	
• Lock	only	the	affected	slot
• Track	locally	until	commit

• Optimistic	consume	from	earlier	produce
• Produce	and	consume	cancel	each	other	out

34

Composition

• One	GVC	shared	among	all	objects
• Any	number	of	skiplists,	queues,	stacks,	logs,	pools

• Commit:
• Lock	all	write	sets	or	respective	objects	
• Validate	all	read	sets	
• Increase	GVC
• Update	objects	and	release	locks

35

Agenda

•Motivation
• Concurrent	Data	Structure	Libraries	(CDSLs)	vs	Transactional	Memory

• Introducing:	Transactional	Data	Structure	Libraries	(TDSL)
• Example	TDSL	algorithm
• Skiplist
• Additional	objects
• Fast	abort-free	singletons

• Library	composition	&	nesting
• Evaluation

36

32

Fast	Singletons

• Challenges:
• TDSL	transactions	are	faster	than	general	transactions
but	slower	than	custom-tailored	CDSLs
• GVC	a	contention	point
• Legacy	code	might	not	be	compatible	with	aborts

• Goal:	make	TDSL	singletons	just	like	CDSL	operations
• Fast,	abort-free,	avoid	global	contention	point
• Yet	preserve	transaction	semantics	– linearizability,	opacity	

37

Singletons:	Avoiding	GVC	Contention

• GVC	is	needed	for	opacity	–
• All	of	a	transaction’s	writes	have	the	same	version
• All	reads	see	a	consistent	snapshot	as	of	some	version

• Singletons	read/write	at	a	unique	point	in	time
• GVC	gratuitous
• But	must	make	concurrent	transactions	aware	of	singleton	
updates	

38

Singleton	Updates

• Add	singleton	bit	per	node
• Last	update	by	singleton?

• Read	version	from	GVC	without	incrementing	it	
• Use	index
• Do	not	defer	work	to	“commit	time”
• No	read- and	write- sets
• Lock,	validate	unchanged/unlocked/undeleted,	update,	unlock
• In	case	of	failure,	restart	(do	not	abort)

39

Transaction	Adjustments

• Transactions	validate	that	no	node	in	read-set	has
• a	version	equal	to	the	transaction’s	snapshot	version	&
• a	true	singleton	bit

• If	yes,	abort	and	increment	GVC	before	retrying

40

Fast	Abort-Free	Singletons:	Summary

• Use	the	index
• Do	not	increment	GVC
• No	contention	
• As	fast	as	in	CDSL
• Make	transactions	aware	of	singletons	using	designated	fields

41

Agenda

•Motivation
• Concurrent	Data	Structure	Libraries	(CDSLs)	vs	Transactional	Memory

• Introducing:	Transactional	Data	Structure	Libraries	(TDSL)
• Example	TDSL	algorithm
• Skiplist
• Additional	objects
• Fast	abort-free	singletons

• Library	composition	&	nesting
• Evaluation

42

33

Composing	TDSLs	– Revised	API

• TX-begin
• Divide	TX-commit	into	
• TX-lock	
• TX-verify
• TX-finalize

• TX-abort

43

Static	Composition

L1.BeginTX
L2.BeginTX

Operations	in	L1	and	L2
L1.lock
L2.lock
L1.verify
L2.verify
L1.finalize
L2.finalize

44

Dynamic	Composition	Requires	Validation

L1.BeginTX
Operations	in	L1
L2.BeginTX
L1.verify

Operations	in	L1,	L2
L1.lock
L2.lock
L1.verify
L2.verify
L1.finalize
L2.finalize

45

Nesting	– Limit	Scope	of	Abort

TXbegin()
[Parent	code]	
nTXbegin()

[Child	code]
nTXend()
[Parent	code]

TXend()

46

On	abort –
retry parent
On	abort –
retry parent

On	commit	– apply	changes	to	shared	state

On	abort – retry
child or	parent

On	commit	– migrate	changes	to	parent

Example:	Nested	Queue

47

.	.	.	

shared	queue parent	
queue

child
queue

to	return	
from	deq

head tail

deq()

Example:	Nested	Queue

48

.	.	.	

shared	queue parent	
queue

child
queue

to	return	
from	deq

head tail

deq()

34

Example:	Nested	Queue

49

.	.	.	

shared	queue parent	
queue

child
queue

head tail

deq()

to	return	
from	deq

Example:	Nested	Queue

50

.	.	.	

shared	queue parent	
queue

child
queue

to	return	
from	deq

head tail

deq()

Example:	Nested	Queue

51

.	.	.	

shared	queue parent	
queue

child
queue

to	return	
from	deq

head tail

deq()

Example:	Nested	Queue

52

.	.	.	

shared	queue parent	
queue

child
queue

to	return	
from	deq

head tail

enq()

Example:	Nested	Queue

53

.	.	.	

shared	queue parent	
queue

child
queue

to	return	
from	deq

head tail

enq()

Agenda

•Motivation
• Concurrent	Data	Structure	Libraries	(CDSLs)	vs	Transactional	Memory

• Introducing:	Transactional	Data	Structure	Libraries	(TDSL)
• Example	TDSL	algorithm
• Skiplist
• Composition	of	multiple	objects
• Fast	abort-free	singletons

• Library	composition	&	nesting
• Evaluation

54

35

Singletons

55

0
10
20
30
40
50
60
70
80

0 10 20 30 40M
IL
LI
O
N
S	
O
PS
/S
EC

#	OF	THREADS

READ-ONLY	WORKLOAD

0

5

10

15

20

25

0 5 10 15 20 25 30 35

#	OF	THREADS

UPDATE-ONLY	WORKLOAD

our	skiplist rotating															nohotspot fraser optimistic											baseline

Do	not	support	transactions

As	good	as	baseline
Singletons

56

0

5

10

15

20

25

0 5 10 15 20 25 30 35

M
IL
LI
O
N
S	
O
PS
/S
EC

#	OF	THREADS

UPDATE-ONLY	WORKLOAD

our	skiplist rotaiting nohotspot fraser lock base	line

Transactions

57

0
2
4
6
8
10
12
14
16
18

0 5 10 15 20 25 30 35M
IL
LI
O
N
S	
TX

S/
SE

C

#	OF	THREADS

READ-ONLY WORKLOAD

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35
#	OF	THREADS

UPDATE-ONLY	WORKLOAD

our	skiplist SeqTL2										FriendlyTL2					

We	have	less	
overhead

We	have	less	
aborts

Transactions

58

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35M
IL
LI
O
N
S	
TX

S/
SE

C

#	OF	THREADS

UPDATE-ONLY	WORKLOAD

our	skiplist seq	TL2 friendly	TL2

Transactions	(Aborts)

59

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35

#	OF	THREADS

ZOOMED	IN

0
5
10
15
20
25
30
35
40
45
50

0 5 10 15 20 25 30 35

%
	O
F	
AB

O
RT
S

#	OF	THREADS

UPDATE-ONLY	WORKLOAD

our	skiplist SeqTL2										FriendlyTL2					

Intruder
Testing	multiple	skiplists and	queues	in	a	real	application		

60

4.92

0.28

0

1

2

3

4

5

6

0 2 4 6 8 10

SP
EE
D	
U
P

#	OF		THREADS

0.1

51.5

61.2

0

10

20

30

40

50

60

70

0 2 4 6 8 10

%
	O
F	
AB

O
RT

S

#	OF	THREADS

our	skiplist SeqTL2										FriendlyTL2					
cannot	support	

intruder

36

Nesting	in	NIDS	Benchmark

• Network	Intrusion	Detection	System
• Producers	model	network-interfacing	processes	(stubs)
• Consumers	require	CPU	and	DRAM	resources

61

processed	
fragments	map
processed	

fragments	map

producer	task consumer	task	(atomic)

stateful
IDS

match	
signature

create	
output

output	
log

packet	map
fragment	
pool

put	/	get

processed	
fragments	map

extract	
header

capture	
packet

The	Impact	of	Nesting

62

No	nesting	–
many	aborts

Nesting	logging	
reduces	wasted	work Nesting	packet	

map	insertion	
helps	when	
contended

Nesting	both	
reduces	aborts	
but	induces	
overhead

Conclusion	

•New	concept	for	concurrent	programing
• Composable DSs	supporting	TX	as	well	as	fast	singletons

• Support	for	nesting
•A	prototype	library	with	a	host	of	DSs	
•Map	(based	on	skiplist),	queue,	stack,	log,	pool

•We	hope	that	the	community	will	adopt	this	concept	
• Build	and	use	more	such	libraries

63

37

Weak Models for Distributed Computing
Gadi Taubenfeld, Interdisciplinary Center, Israel

Abstract: The talk has three parts.
In the first part, I will show how
to model the process of genome-wide
epigenetic modifications, which allows
cells to utilize their DNA, as an anony-
mous shared memory system. This is
done by formulating a particular con-
sensus problem and presenting algo-
rithms for solving the problem. In
the second part, I will discuss results
for anonymous shared memory systems
which are composed of shared objects
for which there is no a priori agreement
between the processes on the names of
the objects. In the third part, I will
motivate and explore the new notion of
weak failures, which should be viewed
as fractions of traditional failures.

Biography: Gadi Taubenfeld is a professor and past dean of the School of Com-
puter Science at the Interdisciplinary Center in Herzliya, Israel. He is an estab-
lished authority in the area of concurrent and distributed computing and has pub-
lished widely in leading journals and conferences. He authored the books ”Synchro-
nization Algorithms and Concurrent Programming” and ”Distributed Computing
Pearls”. His primary research interests are in concurrent and distributed comput-
ing. Gadi was the head of the computer science division at Israel’s Open University;
member of technical staff at AT&T Bell Laboratories; consultant to AT&T Labs -
Research; and a research scientist and lecturer at Yale University. Gadi served as
the program committee chair of PODC 2013 and DISC 2008 and holds a Ph.D. in
Computer Science from the Technion - Israel Institute of Technology.

38

1Gadi Taubenfeld

Weak Models For Distributed Computing

Gadi Taubenfeld

ApPLIED 2019

IDC, Israel

2Gadi Taubenfeld

Weak Models For Distributed Computing

Gadi Taubenfeld

ApPLIED 2019

IDC, Israel

Gadi: I am not an implementor of tools, programming languages,
or platforms!

Annie: … pls mention where computers can help you except from
text editor and a slides editor …

3Gadi Taubenfeld

Part I
Genome-Wide Epigenetic Modifications as a

Shared Memory Consensus Problem

ApPLIED 2019

Ziv Bar-Joseph
CMU

Sabrina Rashid
CMU

Gadi Taubenfeld
IDC

4Gadi Taubenfeld

The human genome
The entire DNA of a single human cell

 Two meters long

 3 billion base pairs

 About 25,000 genes

(Only about 1 percent of DNA is made up of protein-coding genes)

ApPLIED 2019

5Gadi Taubenfeld

Chromatin
Package DNA into a small volume to fit into the nucleus of a cell

ApPLIED 2019 6Gadi Taubenfeld

Q: How can an organism have different cell types yet one genome?

A: Each cell expresses, or turns on, only a fraction of its genes.
The rest of the genes are repressed, or turned off.

Cells types & DNA

ApPLIED 2019

Neuron skin cells

39

7Gadi Taubenfeld

Condensed chromatin Open chromatin

Off On

Activate

Deactivate

Regulation of gene expression
Turning genes on and off

ApPLIED 2019 8Gadi Taubenfeld

Environmental influences, such as a
person’s diet, stress and exposure to
pollutants, impact gene expression.

ApPLIED 2019

9Gadi Taubenfeld

Nucleosome

Epigenetics
Modifications that do not change the DNA and affect gene activity

ApPLIED 2019 10Gadi Taubenfeld ApPLIED 2019

Nucleosome

11Gadi Taubenfeld

Nucleosome

ApPLIED 2019

1-writer

0-eraser

0-writer

1-eraser

0 1
1-writer0-eraser

12Gadi Taubenfeld

Nucleosome

ApPLIED 2019

1-writer

0-eraser

0-writer

1-eraser

40

13Gadi Taubenfeld ApPLIED 2019

1-writer

0-eraser

0-writer

1-eraser

{empty, 0, 1}

The epigenetic consensus problem

14Gadi Taubenfeld ApPLIED 2019

1-writer

0-eraser

0-writer

1-eraser

{empty, 0, 1}

The epigenetic consensus problem

1 1

15Gadi Taubenfeld

Very weak model

ApPLIED 2019

 Randomization

 Anonymous processes (no identifiers)

 Anonymous shared memory

 Memory-less processes (well may 1-2 bits)

 A transition from 0 to 1 cannot occur directly

 No sense of direction

 Self-stabilization

We present an algorithm that matches the biological assumptions,

prove it correctness and derive bounds on its expected run time both

theoretically and in simulations.

16Gadi Taubenfeld ApPLIED 2019

1-writer

0-eraser

0-writer

1-eraser

{empty, 0, 1}

The epigenetic consensus problem

1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

17Gadi Taubenfeld ApPLIED 2019

{empty, 0, 1}

The epigenetic consensus problem

1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

18Gadi Taubenfeld ApPLIED 2019

Annie’s question: Where computers can help you except from
text editor and a slides editor ?

41

19Gadi Taubenfeld ApPLIED 2019

Simulations

20Gadi Taubenfeld ApPLIED 2019

Simulations

21

Conclusion #1

Weak models are interesting!

Gadi Taubenfeld ApPLIED 2019 22Gadi Taubenfeld

Part II

Anonymous Shared Memory

ApPLIED 2019

23Gadi Taubenfeld

Classical view of SM

x y z

u w

v

shared memory

Objects have names

ApPLIED 2019 24Gadi Taubenfeld

x y z

u w

v

anonymous shared memory

NO prior agreement on the names of the objects!

ApPLIED 2019

Anonymous shared memory

42

25

1 6 4

8 9

2

anonymous shared memory

a e g

h w

b

9 7 3

6 5

1

y f w

h v

x

u 7 1

4 g

4

Gadi Taubenfeld ApPLIED 2019

Anonymous shared memory

26

Coordination without prior agreement
by Gadi Taubenfeld

1 6 4

8 9

2

anonymous shared memory

a e g

h w

b

9 7 3

6 5

1

y f w

h v

x

u 7 1

4 g

4

Gadi Taubenfeld ApPLIED 2019

Anonymous shared memory

27

Algorithms Can do Cannot do

Deadlock-free symmetric
mutual exclusion for two processes

Obstruction-free consensus
for n ≥ 2 processes

Obstruction-free adaptive
perfect renaming
for n ≥ 2 processes

Gadi Taubenfeld

Algorithms & space bounds

odd # of
registers

2n-1
or more

2n-1
or more

even # of
registers

n
or less

n
or less

ApPLIED 2019

(The # of registers is not 1)

 X

28Gadi Taubenfeld

Optimal Memory-Anonymous
Symmetric Deadlock-Free Mutual Exclusion

 Theorem. For every n ≥ 1, there is a symmetric deadlock-
free mutual exclusion algorithm for n processes using m ≥ 1
anonymous R/W registers if and only if for every positive
integer 1< k ≤n, m and k are relatively prime.

ApPLIED 2019

 The same result holds also for RMW registers ! *

Zahra
Aghazadeh

Damien
Imbs

Michel
Raynal

Gadi
Taubenfeld

Philipp
Woelfel

* It is trivial to do also with one RMW register.

29Gadi Taubenfeld

Resolving two open problems

 Are atomic read/write registers the weakest objects ?

 Are deterministic (oblivious) objects with the same set-
consensus number have the same computational power ?

For a universe which includes (also) anonymous objects,

ApPLIED 2019 30

Conclusion #2

Weak models are interesting!

Gadi Taubenfeld ApPLIED 2019

43

31Gadi Taubenfeld

Part III
Fractions in Distributed Computing

ApPLIED 2019

Egypt
1600 B.C.

Europe
17th century

Fractions were studied by
Egyptians mathematicians
around 1600 B.C.
However, fractions, as we
use them today, didn’t
exist in Europe until the
17th century.

Dist. Comp.
???

32Gadi Taubenfeld

Part III
Fractions in Distributed Computing

ApPLIED 2019

 But what does it mean to tolerate 0.8 process failure ?

 We understand what it means to tolerate one process failure.

processes
synchronization

failures

consensus

linearizability

registers

threads fault-tolerance
nodes

writers
semaphore

transactions

33

Motivation
Something is better than nothing

ApPLIED 2019

 FLP: Impossibility of consensus in the presence of a single failure.

 Is consensus possible in the presence of a single
weak failure?

Gadi Taubenfeld 34ApPLIED 2019

 Is consensus possible in the presence of a single
weak failure?

YES !!!

Gadi Taubenfeld

Weak Failures:
Definitions, Algorithms and Impossibility Results
by Gadi Taubenfeld

35

Motivation
Generalizing from the previous example

ApPLIED 2019

 Suppose you can solve a problem in the presence of f traditional
failures, but not in the presence of f+1 such failures.

Maybe it is possible to solve the problem in the presence of f
traditional failures plus several weak failures.

(f=2)

Gadi Taubenfeld 36ApPLIED 2019Gadi Taubenfeld

Set agreement and renaming in the presence
of contention-related crash failures

Michel
Raynal

Gadi
Taubenfeld

Anaïs
Durand

=

44

37

Conclusion #3

Weak models are interesting!

Gadi Taubenfeld ApPLIED 2019 38Gadi Taubenfeld ApPLIED 2019

45

Approaches to Data Sharing in Edge FaaS
Zoltán Turányi, Ericsson, Hungary

Abstract: Function-as-a-service sys-
tems are stateless by nature - every
function starts with no memory of what
happened before. Such context is typ-
ically placed in an external database,
where functions can read and update
as side effect. The time to execute
functions significantly depends on ac-
cess time to this database - accessing
data in a different location is much
slower than locally. It is thus beneficial
to co-locate data and execution. This
is especially relevant for the Edge sce-
nario, where remote means geographi-
cally remote. In this talk we overview
some approaches, how such placement
can be combined with methods to en-
sure data consistency among various lo-
cations. Our key goals are high perfor-
mance and ease of use.

Biography: Zoltn Richard Turnyi is currently an expert of 5G Network Archi-
tectures within Ericsson Research. He currently works on a Function-as-a-Service
concept built on a fast, distributed, in-memory key-value store. His background
is in IP networking and mobile core with recent addition of Software Defined Net-
working and Network Function Virtualization. He is the author of more than 50
patent applications and works with Ericsson Research for more than 20 years. He
holds an M.Sc. in Computer Science from the Technical University of Budapest.
He is a scout master for 25 years.

46

Ericsson Internal | 2018-02-21

Approaches to Data
Sharing in Edge FaaS

Zoltán Richárd Turányi
Expert, Ericsson Research
Hungary

Ericsson Internal | 2018-02-21

— Cellular networks are hierarchical

— Centralized componets are cheap to build
and maintain

— But for radio reasons nodes must be
distributed

— Other reasons to deploy application
components distributed

— Low latency towards end-user

— Local processing to save bandwidth

— Fate sharing with user

— 5G introduces new, low-latency modes

— Ultra Reliability Low Latency
Communication (URLLC)

Problem Statement: Mobile Cloud Apps

Antenna
site

Aggregation
site

Regional
Site

National
Site

Devices

100K 1000s 100s a few

Ericsson Internal | 2018-02-21

Low latency use cases

1. Cloud Virtual & Augmented Reality – Real-time Computer Rendering Gaming/Modeling

2. Connected Automotive – ToD, Platooning, Autonomous Driving

3. Smart Manufacturing – Cloud Based Wireless Robot Control

4. Connected Energy – Feeder Automation

5. Wireless eHealth – Remote Diagnosis With Force-Feedback

6. Wireless Home Entertainment – UHD 8K Video & Cloud Gaming

7. Connected Drones – Professional Inspection & Security

Ericsson Internal | 2018-02-21

Mobility

— Users move

— Physical mobility

— Change in radio conditions

— Node and link failures

— States related to users need to be

— moved

— replicated

— Replicaton can be

— To neighbouring edge sites (handy at mobility)

— To central site

x

x

Antenna site Aggregation site

Ericsson Internal | 2018-02-21

Problem Statement:
Function-as-a-Service

Monolithic apps MicroServices

Ericsson Internal | 2018-02-21

Problem Statement:
Function-as-a-Service

Monolithic apps MicroServices

External
in-memory DB

Input #1
Input #1

Worker #X

Worker #1

Input event

Input call

Input message

Web
server

Pick one
event

event queue

Internal
Context

Process
event

done

DAL key
DAL key
Other APIs

Externalized
ContextPlus management code for

• Scaling
• Failover
• Networking

Anatomy of a μService – A server

event queue

This is the
relevant
part

F

47

Ericsson Internal | 2018-02-21

Problem Statement:
Function-as-a-Service

Monolithic apps MicroServices Functions

— All-in-one
— Scales in big blocks
— Upgrades monolithically

— Loosely coupled (hard)
— Data enclosed
— Overhead: Web servers, HTTP, sidecars
— Individual scaling, failover
— Developers do a lot besides business logic

— Externalized state
— Developer focus
— Platform does scaling, failover
— Very fluid
— Full interworking with uServices

Ericsson Internal | 2018-02-21

Compilation
Service

Runtime
Instance

Runtime
Instance

Runtime
Instance

Runtime
Instance

Runtime
Instance

Runtime
Instance Runtime

Instance
Runtime
Instance

Load
manager

Externalized state

Binary

Problem Statement:
Function-as-a-Service Triggers

Binary

Distributed Execution Environment

Ericsson Internal | 2018-02-21

Problem Statement: Mobile FaaS Apps

Antenna
site

Aggregation
site

Regional
Site

National
SiteDevices

Distributed Execution Environment

3. Local Survivability

X 4. Recover from Edge
site crash

5. Spillover

1. Location control

2. State mobility

0. Co-locate data & execution

Ericsson Internal | 2018-02-21

CloudPath

— Hierarchical execution model: nodes may have children and parents

— Children are usually less capable than parents

— Developers may mark functions to execute at specific hierarchy levels

— PathStore

— Children cache a part of the parent’s database locally

— The root has everything

— Reads fetch the relevant part (and subscribe updates)

— Cold entries are automatically removed

— Writes take effect locally then propagate upwards

— Tightly synchronized GPS clocks are used to timestamp writes

— Write conflicts are resolved using the timestamps

— Eventually consistent

CloudPath: A Multi-Tier Cloud Computing Framework
Seyed Hossein Mortazavi, Mohammad Salehe, Carolina Simoes Gomes, Caleb Phillips, Eyal de Lara
2nd ACM/IEEE Symposium on Edge Computing (SEC), San Jose, CA, October 2017

?

Ericsson Internal | 2018-02-21

CloudPath

— Good reliability

— Data is stored at multiple levels

— Fast reads after caching

— Fast local writes

— Possible to add mobility

— May handle local survivability

— If all needed data is locally cached

— Does not handle simultaneous writes very well

— No atomic updates possible (like a counter)

CloudPath: A Multi-Tier Cloud Computing Framework
Seyed Hossein Mortazavi, Mohammad Salehe, Carolina Simoes Gomes, Caleb Phillips, Eyal de Lara
2nd ACM/IEEE Symposium on Edge Computing (SEC), San Jose, CA, October 2017

?

Ericsson Internal | 2018-02-21

What should the ideal
database be like?

Note: possible to have more than one in an app.

48

Ericsson Internal | 2018-02-21

Assumptions

— Most requests come from the edge

— Goal is to serve these fast

— Execution

— Functions are short lived and partake serving one request

— Function Execution is possible everywhere

— Already running functions do not move

— Database has the ability to move data around

— Result in two phase lookups

— Distributed hash tables are out

— Caching of locations and subscribing to location updates help

Ericsson Internal | 2018-02-21

Merging or serializing database

— Merging

— Let local writes diverge the history

— Merge changes in a distributed fashion

— Serializing

— Maintain a logical order of updates same
everywhere

— Results in a single location handling all
updates for the same data

Super fast locally

Good merging strategy is needed.

Application dependent, custom
merging logic.

Super fast locally at master site.

Slow remotely.

Good with dominant accessor.

Versioning enables atomic read-
update-write operations.

Ericsson Internal | 2018-02-21

Replication

— Inter-site and intra site

— Robustness

— Wait for replication to complete; or

— Proceed logic in the meantime

— Location

— From Edge to Central

— Edge to Edge

— Predict mobility or not

— Controlled handover process

— Conflicting requirements

— Handle Edge site failure

— Provide Local Survivability

Fine control is needed by the programmer.

— Future-like mechanisms to have writes in
parallel

— API to control replica locations & master
mobility

Ericsson Internal | 2018-02-21

Function Execution Location

— Programmer may designate both data and execution in the system by hand

— Does not support e.g., spillover or edge site failure

— Two kind of automatic strategies

— Function mobility

— Move the function’s execution where its data is

— Need to know what kind of data the function accesses

— Provided by developer, Statically analysed, Measured

— Data mobility

— Move the data to where functions execute

— Best if there is some consistent execution of functions
(including sharding)

— Data may migrate to servers not functions

As simple as falling back to
centralized execution if data

not available locally

Optimization:
Co-locate functions working

on same data

Ericsson Internal | 2018-02-21

Multi-key or single-key transactions

— Single-key transactions

— Each transaction affects only one addressable data
element

— E.g., plain Key-Value stores

— Multi-key transactions

— Easy to program

— Difficult and complex to implement

— Very slow for data scattered all around

Workarounds

— Large, composite values

— Multi-step updates via ‘lock’ keys

1. Write into a key to take a lock

2. Update several keys

3. Release the lock

We can send code around

— Decompose transaction code

— Execute close to data in parallel

— Have the ability to roll back if needed

Ericsson Internal | 2018-02-21

Summary

— 5G and Edge computing will enable many exciting low-latency use cases

— FaaS is emergent programming paradigm for the Cloud

— Selecting the right external database for Edge FaaS is a challenge

49

To build, or Not to Build, That Is the Question
Nitin Vaidya, Georgetown University, USA

Abstract: The talk will explore ne-
cessity and sufficiency of experimen-
tal evaluations, using examples of past
projects, and make suggestions for fu-
ture directions in experimental research
in distributed computing.

Biography: Nitin Vaidya is the Robert
L. McDevitt, K.S.G., K.C.H.S. and
Catherine H. McDevitt L.C.H.S. Chair
of Computer Science at Georgetown
University. He received Ph.D. from
the University of Massachusetts at
Amherst. He previously served as a
Professor and Associate Head in Elec-
trical and Computer Engineering at
the University of Illinois at Urbana-
Champaign. He has co-authored papers that received awards at several confer-
ences, including 2015 SSS, 2007 ACM MobiHoc and 1998 ACM MobiCom. He is
a fellow of the IEEE. He has served as the Chair of the Steering Committee for
the ACM PODC conference, as the Editor-in-Chief for the IEEE Transactions on
Mobile Computing, and as the Editor-in-Chief for ACM SIGMOBILE publication
MC2R.

50

Invited Talk, ApPLIED Workshop @ DISC 2019, Budapest

To Build, Or Not To Build,
That Is The Question …

Nitin Vaidya
Georgetown University

Outline

g Brief overview of past work

g Some thoughts on building testbeds

g PG-13

Caveat

g I don’t always follow my own advice

4

Brief History of Time

ECE @ UMass Ph.D

è CS @ Texas A&M

è ECE @ UIUC

è CS @ Georgetown

Fault-tolerant
computing

è Wireless
networks … systems

è Distributed
algorithms … theory

Fault-Tolerance

51

Checkpointing & Rollback Recovery Coordinated Checkpoints

Application messages
Control messages

Coordinated Checkpoints

Based on
Chandy-Lamport Snapshot

Coordinated Checkpoints

Consistent Logical Checkpoints
Staggered Checkpointing

12

Theirs

Ours

52

Multi-Level Checkpointing

g Different (cost) checkpoints for different faults

13

Mesh Networks

15

Multi-Channel Systems

Available spectrum

2 3 4 … c

Spectrum divided into channels

1

Practical Scenario

1

c

1

m m

m+1

c–m unused channels
at each node

Practical Scenario

1

c

1

m m

m+1

c–m unused channels
at each node

How does mesh
performance scale with
c and m ?

53

Net-X:
Multi-

Channel
Mesh

Theory to
Practice

Capacity

bounds

channels

ca
pa

ci
ty

Net-X:
Multi-

Channel
Mesh

Theory to
Practice

Capacity

bounds

channels

ca
pa

ci
ty

A

B

C

D

E F

Fixed

Switchable

Insights on

protocol design

21

Net-X:
Multi-

Channel
Mesh

Theory to
Practice

Multi-channel
protocol

Channel Abstraction Module

IP Stack

Interface
Device Driver

User
Applications

ARP

Interface
Device Driver

OS improvements

Software architecture

Capacity

bounds

channels

ca
pa

ci
ty

A

B

C

D

E F

Fixed

Switchable

Insights on

protocol design

22

Net-X:
Multi-

Channel
Mesh

Theory to
Practice

Multi-channel
protocol

Channel Abstraction Module

IP Stack

Interface
Device Driver

User
Applications

ARP

Interface
Device Driver

OS improvements

Software architecture

Capacity

bounds

channels

ca
pa

ci
ty

Net-X

testbed

A

B

C

D

E F

Fixed

Switchable

Insights on

protocol design

Linux box

Distributed Algorithms

“Local Computations”

Average Consensus

54

Average Consensus

25

c

b

a
a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2

Initially, state = input

a = (18/4+1/4) = 19/4

b = (6/4+1/4)=7/4

c = (2/4+6/4+1/2) = 10/4

1

2

6

Average Consensus

a = (18/4+1/4) = 19/4

b = (6/4+1/4)=7/4

c = (2/4+6/4+1/2) = 10/4

1

2

6

Average Consensus

Values converge to average of inputs

Implementing Local Algorithms

g Too much work to implement (in wireless networks)

g Software environment to make life easier

g Programmer provides pseudo-code

g Rest automated

28

To Build, Or Not To Build,
That Is The Question …

30

Theirs

Ours

Staggered Checkpointing

55

31

Theirs

Ours

Waste of time

Staggered Checkpointing

a = (18/4+1/4) = 19/4

b = (6/4+1/4)=7/4

c = (2/4+6/4+1/2) = 10/4

1

2

6

Average Consensus
Software Toolkit for Local Computations

a = (18/4+1/4) = 19/4

b = (6/4+1/4)=7/4

c = (2/4+6/4+1/2) = 10/4

1

2

6

Average Consensus
Software Toolkit for Local Computations

Utilitarian, but research value limited

34

Net-X:
Multi-

Channel
Mesh

Theory to
Practice

Multi-channel
protocol

Channel Abstraction Module

IP Stack

Interface
Device Driver

User
Applications

ARP

Interface
Device Driver

OS improvements

Software architecture

Capacity

bounds

channels

ca
pa

ci
ty

Net-X

testbed

A

B

C

D

E F

Fixed

Switchable

Insights on

protocol design

Linux box

35

Net-X:
Multi-

Channel
Mesh

Theory to
Practice

Multi-channel
protocol

Channel Abstraction Module

IP Stack

Interface
Device Driver

User
Applications

ARP

Interface
Device Driver

OS improvements

Software architecture

Capacity

bounds

channels

ca
pa

ci
ty

Net-X

testbed

A

B

C

D

E F

Fixed

Switchable

Insights on

protocol design

Linux box

Best Case Scenario

Multi-Channel Systems

Available spectrum

2 3 4 … c

Spectrum divided into channels

1

56

Multi-Channel Systems

Available spectrum

2 3 4 … c

Spectrum divided into channels

1

1

c

1

m m

m+1

Adjacent
Channel

Interference

39

Multi-channel
protocol

Channel Abstraction Module

IP Stack

Interface
Device Driver

User
Applications

ARP

Interface
Device Driver

OS improvements

Software architecture

Capacity

bounds

channels

ca
pa

ci
ty

Net-X

testbed

A

B

C

D

E F

Fixed

Switchable

Insights on

protocol design

Linux box
40

Multi-channel
protocol

Channel Abstraction Module

IP Stack

Interface
Device Driver

User
Applications

ARP

Interface
Device Driver

OS improvements

Software architecture

Capacity

bounds

channels

ca
pa

ci
ty

Net-X

testbed

A

B

C

D

E F

Fixed

Switchable

Insights on

protocol design

Linux box

When To Build

42
Picture from Wikipedia

Theory Systems

When To Build

57

When To Build

g When results are not predictable from theory

g For theory & simulations to suffice,
need accurate system & workload models

When To Build

g When results are not predictable from theory

g For theory & simulations to suffice,
need accurate system & workload models

è Academic architects rarely build physical systems
anymore

Bad Reasons To Build

45

Bad Reasons To Build

g So we can publish the paper

46

Bad Reasons To Build

g So we can publish the paper
Much of the
“systems”
literature

Bad Reasons To Build

g So we can publish the paper

g Make simple ideas appear “substantive”

Much of the
“systems”
literature

58

Bad Reasons To Build

g So we can publish the paper

g Make simple ideas appear “substantive”

g Everybody is doing it
… so what’s wrong with you?

Much of the
“systems”
literature

Bad Reasons To Build

g So we can publish the paper

g Make simple ideas appear “substantive”

g Everybody is doing it
… so what’s wrong with you?

Much of the
“systems”
literature

Funding
agencies

prone to this

“The MSR Effect” * “The MSR Effect” *

* Disclaimers:
Replace your favorite lab here

Some of my best friends are at MSR

“The MSR Effect”

g In the good old days, industry research labs aspired
to do relevant but academic quality research

• Fundamental research

• Long timescales
• “Independence” from products

“The MSR Effect”

g In the good old days, industry research labs aspired
to do relevant but academic quality research

• Fundamental research

• Long timescales
• “Independence” from products

Today …

g Research labs dominate many conferences

g Academics aspire to emulate industry labs
è “Systems” communities have succumbed to this

59

How to unwind this clock?

56

Theory Systems

Break Artificial Boundaries

Minimalism

g Often less is more

g Don’t build just because you can

g There may be better things to do with your time
and resources

57

Litmus Test

g Would you be willing to publicly post
the exact problem statement ?

… before developing the solution

g If not, find something better to do

Thanks!

disc.georgetown.domains

60

Invited Talk Summaries

Algorand: from Theory to Practice
Jing Chen, Algorand Inc., USA

61

Algorand: from Theory to Practice

Jing Chen
Algorand Inc., Boston, MA 02116

jing@algorand.com

Abstract

A summary of my talk at the ApPLIED Workshop at DISC 2019.

Introduction

Blockchains stand to revolutionize the way a modern society operates. They
can secure all kinds of traditional transactions, such as payments, in the exact
order in which the transactions occur; and enable totally new transactions,
such as cryptocurrencies and smart contracts. They can remove interme-
diaries and usher in a new paradigm for trust. As currently implemented,
however, blockchains scale poorly and cannot achieve their enormous po-
tential. Algorand is the first blockchain that is truly secure, scalable and
decentralized. It is permissionless and works in a highly asynchronous envi-
ronment. It dispenses with “proof of work” and “miners” and requires only
a negligible amount of computation. Moreover, its transaction history does
not “fork”, guaranteeing immediate finality of a transaction the moment the
transaction enters the blockchain. In this talk, I will briefly introduce Algo-
rand’s core technology, recent development and roadmap. The readers may
refer to [7, 8, 4, 6] for more details.

Underlying the Algorand blockchain is a new Byzantine Agreement pro-
tocol that is highly efficient. It works under an adversarial model where the
adversary can dynamically corrupt any user at any time, control the actions of
a corrupted user, and perfectly coordinate the actions of all corrupted users.
Even with such a strong adversary, the protocol achieves asynchronous safety
and guarantees that the Algorand blockchain doesn’t fork even when the un-
derlying propagation network is partitioned. Accordingly, any transaction

62

that appears on the blockchain is immediately final and can be relied upon,
without the need of waiting for more blocks being added after it. On the
other hand, the protocol achieves liveness as long as messages propagated by
honest users are received by other honest users within a known time bound.

Another important idea that makes the Algorand blockchain scalable is
cryptographic self-selection. Indeed, having millions of users participate in
the Byzantine Agreement in order to select the next block is unrealistic. One
possibility is to publicly select, at random, a subset of users to form a com-
mittee and participate on behalf of everybody. However, once the identities
of the committee members become public, the adversary can corrupt them
so that they behave maliciously. Instead, the Algorand blockchain has each
user self-select herself into a committee. Thanks to cryptographic primitives
such as unique signatures, cryptographic hash functions and verifiable ran-
dom functions, a user can privately generate a unique “lottery ticket”, which
she can use to prove her membership in the committee if she is selected,
but cannot cheat and convince others to accept her proof otherwise. When
participating in the Byzantine agreement, a committee member propagates
her winning ticket together with her proposal or voting message. No other
communication is needed to find out who is selected. In this way, the adver-
sary learns the fact that a particular user is selected only after the user has
sent out her message in the protocol instead of before, and corrupting the
user doesn’t let the adversary control the message being sent out.

One more idea is needed here. If a selected committee participates in mul-
tiple steps of the Byzantine agreement, the adversary can learn the identities
of its members and corrupt all of them after seeing their first messages, so
that they behave maliciously in remaining steps. The Algorand blockchain is
immune to this problem because its Byzantine agreement has an important
property referred to as user replaceability: the protocol doesn’t rely on users
keeping private states, and the message that a user should send in a step
can be determined solely based on messages that have been propagated to
him/her in previous each steps. As such, the protocol has a committee ran-
domly and independently selected for every step. Corrupting the committee
members for a step does not give the adversary more power than random
corruption in terms of controlling committee members for future steps.

In order to deal with Sybil attacks, the selection probability is the same
for every token: that is, in effect, tokens are selected at random, and users
that own the selected tokens participate in the Byzantine agreement. The
users do not need to delegate their right of participation to a small group of

63

super nodes, neither do they need to lock up their tokens for a long time in
order to participate in the consensus protocol. Indeed, the approach here is
a pure form of proof-of-stake.

Many other ideas have been introduced in the Algorand blockchain, but
rather than covering them all today, I’d like to report on some recent de-
velopments on actually implementing the blockchain and putting it to work.
The Algorand MainNet launched in mid-June 2019, and has been running
smoothly since. The TestNet has been running since April, 2019; it runs
the same version of the blockchain as the MainNet, so that developers can
test their software (such as wallets) before running them on the MainNet.
The code has been audited by third parties, and the entire code repository
is open-sourced and available at [3]. Various tools for developers, such as
SDKs for multiple programming languages and tutorials, can be found at [2].
We continue to enlarge the tool set, and have also launched a bug bounty
program [1]. In addition to a pen-and-paper analysis, with collaborators at
Runtime Verification, we have begun formal verification of the consensus pro-
tocol using the Coq proof assistant. Our model explicitly incorporates timing
issues and adversarial actions, reflecting a more realistic environment that
may be faced by a public blockchain. We have proved asynchronous safety
of the protocol under this model, and a paper reporting on the progress is
available at [5].

Since the MainNet launch, we continue to develop new technology to en-
able important applications on the blockchain. For example, in forthcoming
versions, users will be able to issue their own fungible tokens directly in layer-
1 of the blockchain. Moreover, users will be able to clear multiple transfers,
among arbitrary sets of users and for arbitrary sets of layer-1 currencies, in a
single transaction: that is, in a truly atomic way without relying on devices
such as hashed time-locks. And there is still more to come. Interested readers
can find the most up-to-date information at https://www.algorand.com/.
Stay tuned!

References

[1] https://bugcrowd.com/algorand.

[2] https://developer.algorand.org/.

[3] https://github.com/algorand/go-algorand.

64

[4] Algorand blockchain features. https://github.com/

algorandfoundation/specs/blob/master/overview/Algorand_

v1_spec-2.pdf, 2019.

[5] M. A. Alturki, J. Chen, V. Luchangco, B. Moore, K. Palmskog, L. Peña,
and G. Roşu. Towards a verified model of the Algorand consensus protocol
in Coq. In FMBC’19: Workshop on Formal Methods for Blockchains, 3rd
Formal Methods World Congress, 2019.

[6] J. Chen, S. Gorbunov, S. Micali, and G. Vlachos. Algorand Agreement:
Super fast and partition resilient Byzantine agreement. Cryptology ePrint
Archive, Report 2018/377, 2018. https://eprint.iacr.org/2018/377.

[7] J. Chen and S. Micali. Algorand: A secure and efficient distributed ledger.
Theoretical Computer Science, 777:155–183, 2019.

[8] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand:
Scaling Byzantine agreements for cryptocurrencies. In SOSP, pages 51–
68, 2017.

65

Panel and Discussion Summaries

These sessions were well attended and had live and involved discussions. During
each session, discussion questions are addressed by each panelist or expert and also
discussed among all participants.

Various aspects of the current state were discussed, from tools for simulation
to work on verification. The conclusion is that, overall, a lot of progress is being
made, but significant future work is needed.

Invited panel: Challenges and Current State

Panelists: Chryssis Georgiou, Zoltán Turányi, and Nitin Vaidya

Chair: Miguel Matos

Discussion questions:

1. On the processes and practices from designing an algorithm to developing
a prototype implementation suitable for running on real systems. What are
the current practices and best current practices?

2. On languages, libraries, platforms, and tools for distributed algorithms and
systems, addressing correctness, performance, ease of use, and result repro-
ducibility. What are the current ones and best current ones?

Discussion session:
Consensus and Distribute Ledger: Scalability and Assurance

Chair: Annie Liu

Discussion questions:

1. What is the current state and problems for scalability?

2. What is the current state and problems for assurance?

Invited panel and open discussion: Summary and Directions

Panelists: Ethan Buchman, Jing Chen, and Gadi Taubenfeld

Chair: Annie Liu

Discussion questions:

1. What are the learned lessons on the design and evaluation of distributed
algorithms and systems? Include both positive and negative lessons.

2. What are future directions? Consider both short term and longer terms.

66

Short Papers

plcli - a Tool for Running Distributed Applications on Plan-
etLab
Axel Niklasson, Chalmers University of Technology, Sweden

67

plcli - a Tool for Running Distributed Applications on
PlanetLab

Axel Niklasson
axelni@student.chalmers.se

Department of Computer Science and Engineering
Chalmers University of Technology, Sweden

Abstract
Implementing and testing distributed applications on platforms with many servers such as
PlanetLab is made easier through the help of tooling. Various solutions exist, but most
tools are either outdated or lack sufficient documentation. In this paper, a tool referred to as
plcli is introduced which, among other things, enables engineers working with PlanetLab
to deploy and run distributed applications on PlanetLab servers. The intended function-
ality of plcli has been summarised in three use cases; running distributed experiments,
distributed debugging and node health monitoring. Furthermore, a pilot implementation
written in the programming language Go is offered with this paper that implements support
for experiment deployment. To see how plcli performs, an evaluation has been carried out
that has shown that the deployment time is nearly kept constant as the number of appli-
cation instances and servers are scaled up to as much as 120 instances on fifteen servers.
For example, a 400% increase in the number of servers only resulted in a 7% increase in
deployment time.

1 Introduction
When implementing and testing applications that are meant to run as distributed systems,
the need for tooling to deploy these applications arise. In order to understand how the
application in question performs as a real system, it must be deployed as such; while simu-
lating a physically distributed system using tools such as NS-3 [1] [2] is a great alternative
during the development phase, testing must be performed in a real-world environment as
well. Testing applications for production usage often requires ten or more servers to be
part of the deployments, which emphasises the importance of automating the process of
deployment. Manually connecting to servers or residing to ad-hoc implemented scripts is
not a scalable solution, which is what this kind of tooling aims to provide.

This paper focuses on applications and experiments run on the PlanetLab EU plat-
form [3]. PlanetLab is a platform used for deploying, running and accessing distributed
applications in a planetary-scale system [4] [5] [6]. More than 300 universities and re-
search institutes, referred to as sites, are providing servers to the network. These servers
are called nodes and are what makes out the computing capacity of the enormous cluster
that is PlanetLab. Users are assigned a slice, which essentially is a distributed virtualised
virtual machine, that they can use to deploy services to. Since nodes are provided by the

68

different sites, no guarantees on homogeneity on the machines can be given and downtime
is to be expected. The varying quality of nodes makes PlanetLab a suitable platform for
testing systems in a real-world setting. However, users of this platform need to make sure
that desired nodes are actually functioning as intended, which can at times be tedious work.

1.1 Related work
There are public user tools listed on the PlanetLab website that may be used to decrease
workload and enable easier usage when working with PlanetLab [7]. The listed tools offer
various functionalities such as slice management, package management and others. Most
of the tools (8/12) are not available anymore and the list is gravely outdated, but two tools
that are still accessible and exhibit similar functionality as plcli are PLDeploy and pssh.
PLDeploy functions as a ”utility to deploy, configure and control PlanetLab services” which
is rather similar to Use Case 1, presented in Section 1.2. However, when deploying services
using PLDeploy, it needs to be done in a very special fashion by constructing and attaching
what is called cogs that are used to deploy services and pulling the results back. There is
not much information related to this tool and its documentation has not been updated in
the last decade, making a more in-depth comparison hard to perform. pssh on the other
hand provides a parallel version of OpenSSH and related tools [8] and its main features of
providing parallel execution of commands over ssh is also present in plcli. For example,
when users want to run a command on several nodes, this is done in a concurrent fashion
without the users having to consider it.

1.2 Use Cases
The first use case, Use Case 1, targets support for deploying an application to a given
number of physical PlanetLab nodes, launching a specified amount of instances on each
node and upon termination, gathering of log files. As outlined in Section 2, engineers using
plcli are able to quickly deploy their experiments through adding a configuration file to
their application repository. Use Case 1 is considered the main feature of plcli and is the
only one implemented in the preliminary version of plcli.

Apart from running experiments, being able to carry out distributed debugging is also
an attractive feature and is expressed as Use Case 2. Finding out what is happening in a
distributed system is a very complex task, as clearly outlined by Joyce et al. [9] and support
for distributed debugging could increase engineering productivity a great deal as well as
aiding in finding out why certain problems occur in production systems. For example, an
approach similar to D3S presented by Liu et al. in [10] or the solution based on the MINHA
platform presented by Jorge et al. [11] could be taken to implement support for this use
case.

The duration of experiments might range from a few minutes to hours or even days
and it is important that these experiments are performed on healthy nodes. Features such
as healthy node discovery and automatically fixing some of the more simple problems of
nodes (for example problems that may be resolved through a simple reboot) could be added
to plcli to provide a richer toolset when working with PlanetLab nodes, which is referred
to as Use Case 3. This could be taken even further by considering the PlanetLab platform
as a system in itself and deploy planning agents that make decisions based on repair plans
and carry out node repairs, which is an approach heavily based on the one presented by
Dashofy et al. [12].

69

1.3 Contribution
In this paper a tool for deploying and running distributed applications using the PlanetLab
platform known as plcli has been introduced, along with three main use cases representing
the three main features of the tool. A preliminary implementation of plcli is bundled with
this paper which provides functionality for Use Case 1. An evaluation of the performance
of the tool with respect to Use Case 1 has been carried as well, which is presented and
discussed. An implementation satisfying Use Case 1 is offered alongside this paper [13].

2 System Design
plcli is a command-line interface written in the programming language Go, which is a pro-
gramming language introduced by Google in 2009, designed for fast compilation of source
code and easier programming [14] [15] [16]. The Go programming language provides func-
tionality for implementing efficient applications with scalable concurrency mechanisms
known as goroutines. Goroutines are essentially lightweight threads associated with less
overhead and the Go runtime is very efficient in the handling of these goroutines. As shown
by Togashi et al., Go outperforms for example Java when it comes to concurrency handling
[17]. Mechanisms for efficient concurrency handling are naturally of high interest when
developing a tool such as plcli that must be able to communicate with tens, or even hun-
dreds, of nodes efficiently. These goroutines are further referred to as workers and are used
whenever there are I/O-bound operations that need to be executed concurrently, such as
calling the PlanetLab API or executing commands on nodes over SSH.

plcli is a preliminary implementation of a full-fledged tool intended to provide sup-
port for all three use cases outlined in Section 1.2. Through the implementation of support
for Use Case 1, various features have been added to plcli such as deployment of applica-
tions, file transfer to nodes as well as concurrent command execution. An extensive list
of available commands at the time of writing can be found in the README in the project
repository [13].

Since the main functionality of the current implementation is to deploy code, a more in-
depth explanation of how a deployment is performed is provided. plcli makes use of what is
called a configuration file which is required to be placed in the root of the public repository
of applications that should be deployed using plcli. This file contains information about
environment variables, how the application is prepared for launch and how to launch an
instance. plcli downloads this file from the application repository and performs the needed
steps in order to prepare the PlanetLab nodes for deployment of the given application. The
structure of this file is not finalised at the time of writing and omitted for brevity. However,
an example can be found in the GitHub repository for the demo application [18].

plcli aims to reduce the time and effort needed to deploy and run experiments on Plan-
etLab and consequently, it is highly dependant on the performance of the PlanetLab API.
In order to retrieve information about what nodes are available and decide which nodes to
use in a deployment, the API is queried for up to date information. However, the API is
only used internally by plcli in an effort to enable users and researchers to focus on what
experiments to run rather than how these experiments actually are run.

3 Evaluation Plan
In order to investigate the performance of plcli, the time taken to perform a full deployment
- the deployment time - is evaluated in three different experiments. All three experiments

70

presented below utilise a basic demo application written in Python 3.7, which can be found
on GitHub [18] and were run on a MacBook Pro 15” with a 2,2 GHz Intel Core i7 processor
and 16 GB of RAM.

In the first experiment, one application instance was deployed to a varying amount of
physical nodes with one worker allocated per node. This was done to investigate changes
in deployment time as the deployment grows with respect to the number of nodes. Further-
more, experiments with one instance deployed to a fixed amount of nodes with a varying
amount of workers were also conducted, which aided in investigating the performance gain
of using workers. Lastly, due to severe problems with finding more than fifteen suitable
nodes for the demo application, a varying amount of application instances were launched
on the same set of physical nodes to try and investigate the performance at scale.

4 Evaluation Results
The first experiment measuring the performance of plcli when deploying to an increasing
amount of physical nodes exhibits a nearly constant deployment time, as can be seen in
Figure 1. There is a small increase of the trendline as the number of nodes increase, but it is
very small and indicates that the overhead introduced by adding more nodes than fifteen will
be minimal. For example, the time taken to deploy to three nodes is around fifteen seconds
while deploying to fifteen nodes takes around sixteen seconds; that is a 400% increase in the
number of nodes with merely 7% increase in deployment time which indicates promising
performance when scaling. These results are expected, since one worker is allocated per
instance and consequently a lot of work can be carried out in an efficient fashion.

Figure 1: Deploying one instance to an increasing number of physical nodes with one
worker per instance.

The results from the second experiment, investigating the effect of workers with respect
to the deployment time, can be seen in Figure 2. As can be seen, the deployment time is
nearly cut in half as the number of workers are doubled. The reason for the time being a
bit unevenly reduced as the number of workers are doubled is most likely due to network
latency and other operations that are subject to variation in execution time. The reason for
not deploying using more than twelve workers is that since twelve physical nodes are used,
more than twelve workers would not make any sense since there would not be any work
for the additional workers. These results are expected, since in theory, a 100% increase
in workers should yield a 50% decrease in execution time since there are twice as many

71

workers available to perform the deployments.

Figure 2: Deploying one instance to twelve nodes with an increasing number of workers.

Results from the third experiment, examining the change in deployment time when
increasing the amount of instances on a constant amount of nodes, can be seen in Figure
3. It shows the increase of deployment time as the number of instances is scaled up to as
much as 120 instances launched on fifteen physical nodes. Much similar to Figure 1, the
deployment time is slowly growing but almost kept constant as the number of instances is
multiplied by 8x. Due to one worker being used per instance launch, an almost constant
deployment time is to be expected.

Figure 3: Scaling deployments virtually with one worker per instance to fifteen physical
nodes.

5 Conclusion

A first implementation of plcli supporting Use Case 1 has been implemented and shown to
provide a nearly constant deployment time for up to as much as 120 application instances
on 15 physical nodes on the PlanetLab platform. The approach of using workers has been
shown to be directly linked to the deployment time and shown to be very beneficial when
performing concurrent deployments. Furthermore, plcli is bundled with many useful fea-
tures for engineers using PlanetLab to run applications. When it comes to further work,
plcli would benefit greatly from implementation of Use Case 2 and Use Case 3, as well
as a more rigorous evaluation with respect to scalability (i.e. deploying to more physical
nodes). This preliminary implementation is to be considered as a pilot and a foundation for
continued work.

72

References

[1] ns-3 — a discrete-event network simulator for internet systems. URL:
https://www.nsnam.org/, Accessed: 2019-07-12.

[2] Teerawat Issariyakul and Ekram Hossain. Introduction to Network Simulator 2 (NS2),
pages 1–18. Springer US, Boston, MA, 2009.

[3] Planetlabeurope. URL: https://www.planet-lab.eu/, Accessed: 2019-07-12.

[4] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike
Wawrzoniak, and Mic Bowman. Planetlab: An overlay testbed for broad-coverage
services. SIGCOMM Comput. Commun. Rev., 33(3):3–12, July 2003.

[5] Larry Peterson and Timothy Roscoe. The design principles of planetlab. SIGOPS
Oper. Syst. Rev., 40(1):11–16, January 2006.

[6] Larry Peterson, Andy Bavier, Marc E. Fiuczynski, and Steve Muir. Experiences build-
ing planetlab. In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation, OSDI ’06, pages 351–366, Berkeley, CA, USA, 2006. USENIX As-
sociation.

[7] User tools. URL: https://www.planet-lab.org/tools, Accessed: 2019-09-14.

[8] parallel-ssh. URL: https://code.google.com/archive/p/parallel-ssh/, Accessed: 2019-
07-03.

[9] Jeffrey Joyce, Greg Lomow, Konrad Slind, and Brian Unger. Monitoring distributed
systems. ACM Trans. Comput. Syst., 5(2):121–150, March 1987.

[10] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang, Ming
Wu, M. Kaashoek, and Zheng Zhang. D3s: Debugging deployed distributed systems.
In Proc. NSDI, pages 423–437, 01 2008.

[11] Tiago Jorge, Francisco Maia, Miguel Matos, José Pereira, and Rui Oliveira. Practi-
cal evaluation of large scale applications. In Alysson Bessani and Sara Bouchenak,
editors, Distributed Applications and Interoperable Systems, pages 124–137, Cham,
2015. Springer International Publishing.

[12] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. Towards architecture-
based self-healing systems. In Proceedings of the First Workshop on Self-healing
Systems, WOSS ’02, pages 21–26, New York, NY, USA, 2002. ACM.

[13] plcli github repository. URL: https://github.com/axelniklasson/plcli, Accessed: 2019-
09-14.

[14] The go programming language. URL: https://golang.org/, Accessed: 2019-07-09.

[15] Rob Pike. The go programming language. Talk given at Google’s Tech Talks, 2009.

[16] Alan AA Donovan and Brian W Kernighan. The Go programming language.
Addison-Wesley Professional, 2015.

73

[17] N. Togashi and V. Klyuev. Concurrency in go and java: Performance analysis. In
2014 4th IEEE International Conference on Information Science and Technology,
pages 213–216, April 2014.

[18] plcli demo app github repository. URL: https://github.com/axelniklasson/plcli-demo-
app, Accessed: 2019-09-14.

A Existing PlanetLab tools

Tables 1 and 2 list all the tools listed on the PlanetLab website1 as of July 2, 2019.

Name Brief description State
Plush Users describe experiments or computation in

XML, and Plush uses it to locate, contact,
and prepare resources. It includes a Neb-
ula GUI that allows users to build, visualize
and run their applications without using the
command-line interface.

Can’t access
webpage.

PIMan PlanetLab Experiment Manager is designed
to simplify the deployment, execution and
monitoring of your PlanetLab experiment.
The application presents a simple GUI to per-
form common tasks.

Can access
webpage,
but all links
are broken.

Stork A software installation utility akin to yum
and apt available for both users of PlanetLab
and for home use. It includes a Stock Slice
Manager GUI that simplifies package man-
agement and Stork installation on your Plan-
etLab slices.

Broken link.

pShell A Linux shell like interface providing a few
basic commands to interact with a Planetlab
slice, works as a command center at the local
machine and interact with slice nodes.

Broken link.

AppManager PlanetLab Application Manager is designed
to help deploy, monitor, and run applications
on PlanetLab. The package gives you the abil-
ity to centrally manage, install, upgrade, start,
stop, and monitor of applications on a Planet-
Lab slice.

Broken link.

Table 1: Tools listed on the PlanetLab website and their state as of July 2, 2019 (Table 1/2)

1https://www.planet-lab.org/tools

74

Name Brief description State
Emulab A network testbed, giving researchers a wide

range of environments in which to develop,
debug, and evaluate their systems.

Accessible,
but different
purpose than
plcli.

plDist A tool for parallel distribution of files to Plan-
etlab nodes using BitTorrent or rsync.

Broken link.

Nixes A set of bash scripts to install, maintain, con-
trol and monitor applications on PlanetLab.

Broken link.

PLDeploy PlanetLab Slice Deploy Toolkit is a set of
scripts to help users manage their slices.

Accessible,
comparison
with plcli
can be found
in Section
1.1.

pssh Provides the parallel versions of the openssh
tools. It can be used to control large collec-
tions of nodes in the wide-area network.

Accessible,
comparison
with plcli
can be found
in Section
1.1.

vxargs Inspired by xargs and pssh, it provides the
parallel versions of any arbitrary command,
including ssh, rsync, scp, wget, curl, etc.

Broken link.

PlanetLab
broadband
link emula-
tor

A link emulator for PlanetLab that can be con-
figured with few important measured char-
acteristics of broadband links, such as their
asymmetric link bandwidths and queue sizes.

Accessible,
but different
purpose than
plcli.

Table 2: Tools listed on the PlanetLab website and their state as of July 2, 2019 (Table 2/2)

75

	Foreword
	Organization
	Sponsors
	Program
	Invited Talk Abstracts and Speaker Bios
	Invited Speakers
	Building and Testing Byzantine Fault Tolerant State Machines Ethan Buchman, Interchain Foundation, Switzerland
	Algorand: From Theory to Practice Jing Chen, Algorand, USA
	Transactional Data Structure Libraries Idit Keidar, Technion, Israel
	Weak Models for Distributed Computing Gadi Taubenfeld, Interdisciplinary Center, Israel
	Approaches to Data Sharing in Edge FaaS Zoltán Turányi, Ericsson, Hungary
	To build, or Not to Build, That Is the Question Nitin Vaidya, Georgetown University, USA

	Invited Talk Summaries
	Algorand: from Theory to Practice Jing Chen, Algorand Inc., USA

	Panel and Discussion Summaries
	Invited panel: Challenges and Current State
	Discussion session: Consensus and Distribute Ledger: Scalability and Assurance
	Invited panel and open discussion: Summary and Directions

	Short Papers
	plcli - a Tool for Running Distributed Applications on PlanetLab Axel Niklasson, Chalmers University of Technology, Sweden

