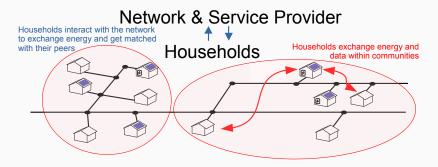
Efficient and Scalable Geographical Peer Matching for P2P Energy Sharing Communities

Romaric Duvignau (duvignau@chalmers.se) ¹ Vincenzo Gulisano ¹ Marina Papatriantafilou ¹ SAC '22, April 25–29, 2022, Virtual Event.


 1 Chalmers, Computer Science and Engineering, Computer and Network Systems.

Introduction 1/2: Context & Motivation

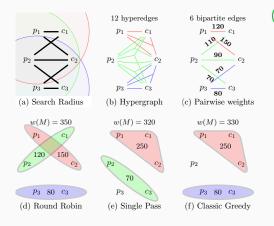
Peer-To-Peer Energy Sharing

Motivations

- Current state-of-the-art: small datasets and groups of 2-3.
- Can we scale up and use larger groups? Yes!

Introduction 2/2: Challenges & Contributions

Challenges for Peer Matching


- 1. peers have a limited knowledge of the future;
- 2. computing peer's preferences requires **communication** + **computation**;
- 3. geographically closer is better;
- 4. **NP-hard** problem for groups of size 3+.

Contributions

- mathematical modelling of the *Geographical Peer Matching* (GPM) problem;
- 2. introduce (different variants of) 3 matching algorithms;
- study trade-off cost-efficiency vs. computational-overhead using real data;
- 4. both efficient and scalable is possible!

Geographical Peer Matching (GPM)

Goal: match a set of prosumers P with a set of consumers C.

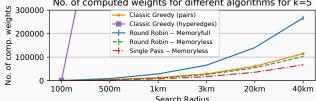
 (k, △)-GPM Problem
Bipartite hypergraph matching M with

maximum weight such that:

- k-bounded
- max diameter $\leq \Delta$
- weights are dynamically computed
- NP-hard!

3 matching algorithms computing $O(kn^2)$ weights instead of $O(n^k)$. But how cost-efficient are they?

Comparison of Peer Matching Algorithms


Evaluation using real energy consumption from 2221 households.

Algo.	Order	WF	100m	500m	1km	3km	$20 \mathrm{km}$	$40 \mathrm{km}$
Round Robin	Incr.	WA	9.5%	60.9%	74.2%	78.8%	81.6%	83.8%
		WB	9.3%	61.7%	73.7%	78.5%	80.3%	82.4%
		WC	9.5%	60.9%	74.3%	78.9%	81.6%	83.9%
		WD	9.3%	61.7%	74.1%	79.0%	81.0%	83.2%
	Decr.	WA	9.5%	61.7%	74.8%	79.0%	82.2%	85.0%
		WB	9.6%	64.4 %	77.9%	82.9%	85.0%	87.4%
		WC	9.5%	74.7%	61.7%	79.0%	82.1%	84.8%
		WD	9.6%	64.4 %	$\mathbf{78.1\%}$	83.4%	85.6%	88.3%
	Rsc.	WB	9.6 %	58.7%	77.9%	82.8%	84.8%	87.3%
Single Pass		WB	9.5%	61.1%	75.0%	79.7%	83.6%	86.9%
	Decr.	WA	9.5%	58.7%	68.8%	71.1%	74.7%	77.6%
		WB	9.5%	61.1%	73.6%	78.7%	82.5%	86.0%
Classic Greedy		WB	9.6%	64.3%	77.5%	83.2%	86.7%	$\boldsymbol{90.5\%}$

* the percentages are the fraction of the single 2221-households obtained by the matchings; best results for each radius is in **bold** and green background.

13 variants

- 3 matching algorithms
- 4 weight functions:
 - cost-based (A/C) or saving-based (B/D)
 - memoryless (A/B) vs. memoryfull (C/D)
- Increasing / Decreasing / Resource prosumers order

No. of computed weights for different algorithms for k=5

Summary of results

- We introduce the Geographical Peer Matching problem,
- 3 computationally-efficient matching algorithms,
- all are also cost-efficient based on our extensive study:
 - up to 90% of the benefit of an unrealistic unbounded matching,
 - up to 84% with small communities (5) and small diameter (3km).

Future Work

- make the matching procedures more edge-friendly,
- how to update the matching **dynamically**.