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Introduction 1/2: Context & Motivation

Peer-To-Peer Energy Sharing

Network & Service Provider

Households

Households interact with the network 
to exchange energy and get matched 
with their peers Households exchange energy and 

data within communities 

Motivations
• Current state-of-the-art: small datasets and groups of 2-3.
• Can we scale up and use larger groups? Yes!

1



Introduction 2/2: Challenges & Contributions

Challenges for Peer Matching
1. peers have a limited knowledge of the future;
2. computing peer’s preferences requires communication +

computation;
3. geographically closer is better;
4. NP-hard problem for groups of size 3+.

Contributions
1. mathematical modelling of the Geographical Peer Matching

(GPM) problem;
2. introduce (different variants of) 3 matching algorithms;
3. study trade-off cost-efficiency vs. computational-overhead

using real data;
4. both efficient and scalable is possible! 2



Geographical Peer Matching (GPM)

Goal: match a set of prosumers P with a set of consumers C .
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(c) Pairwise weights
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(f) Classic Greedy

(k, ∆)−GPM Problem
• Bipartite hypergraph

matching M with
maximum weight such
that:

• k-bounded
• max diameter

≤ ∆
• weights are

dynamically
computed

• NP-hard!

3 matching algorithms computing O(kn2) weights instead of O(nk).

But how cost-efficient are they? 3



Comparison of Peer Matching Algorithms

Evaluation using real energy consumption from 2221 households.
Algo. Order WF 100m 500m 1km 3km 20km 40km

WA 9.5% 60.9% 74.2% 78.8% 81.6% 83.8%

WB 9.3% 61.7% 73.7% 78.5% 80.3% 82.4%

WC 9.5% 60.9% 74.3% 78.9% 81.6% 83.9%

WD 9.3% 61.7% 74.1% 79.0% 81.0% 83.2%

WA 9.5% 61.7% 74.8% 79.0% 82.2% 85.0%

WB 9.6% 64.4% 77.9% 82.9% 85.0% 87.4%

WC 9.5% 74.7% 61.7% 79.0% 82.1% 84.8%

WD 9.6% 64.4% 78.1% 83.4% 85.6% 88.3%

WB 9.6% 58.7% 77.9% 82.8% 84.8% 87.3%

WB 9.5% 61.1% 75.0% 79.7% 83.6% 86.9%

WA 9.5% 58.7% 68.8% 71.1% 74.7% 77.6%

WB 9.5% 61.1% 73.6% 78.7% 82.5% 86.0%

WB 9.6% 64.3% 77.5% 83.2% 86.7% 90.5%
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? the percentages are the fraction of the single 2221-households obtained by the
matchings; best results for each radius is in bold and green background.

13 variants
• 3 matching algorithms

• 4 weight functions:

• cost-based (A/C) or
saving-based (B/D)

• memoryless (A/B) vs.
memoryfull (C/D)

• Increasing / Decreasing /
Resource prosumers order

100m 500m 1km 3km 20km 40km
Search Radius

0

100000

200000

300000

No
. o

f c
om

p.
 w

ei
gh

ts

No. of computed weights for different algorithms for k=5
Classic Greedy (pairs)
Classic Greedy (hyperedges)
Round Robin -- Memoryfull
Round Robin -- Memoryless
Single Pass -- Memoryless

4



Conclusion

Summary of results
• We introduce the Geographical Peer Matching problem,
• 3 computationally-efficient matching algorithms,
• all are also cost-efficient based on our extensive study:

• up to 90% of the benefit of an unrealistic unbounded matching,
• up to 84% with small communities (5) and small diameter (3km).

Future Work
• make the matching procedures more edge-friendly,
• how to update the matching dynamically.
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