Local Update Algorithms for Random Graphs

Romaric Duvignau

LATIN 2014

March 27, 2014

Joint Work with Philippe Duchon

Context

- Peer-to-Peer Networks (modelled as graphs)
- Structure **dependent** on the *update* sequence
- Potential malicious sequence of updates
- Difficulty in designing/analysing update algorithms
- Analysis under nicely behaving update schemes

Context

- Peer-to-Peer Networks (modelled as graphs)
- Structure **dependent** on the *update* sequence
- Potential malicious sequence of updates
- Difficulty in designing/analysing update algorithms
- Analysis under nicely behaving update schemes

Proposition: distribution-preserving update algorithms

- Maintain exactly a probability distribution of random graphs
- No probabilistic model for the update sequence

Definition

- For each possible vertex set V, G should follow a given target distribution μ_V , which is *preserved* through updates :
 - Insertion: If $G \sim \mu_V$ and $u \notin V$ then $\mathcal{I}(G, u) \sim \mu_{V \cup \{u\}}$
 - **Deletion**: If $G \sim \mu_V$ and $u \in V$ then $\mathcal{D}(G, u) \sim \mu_{V \setminus \{u\}}$

Definition

- For each possible vertex set V, G should follow a given target distribution μ_V , which is *preserved* through updates :
 - Insertion: If $G \sim \mu_V$ and $u \notin V$ then $\mathcal{I}(G, u) \sim \mu_{V \cup \{u\}}$
 - **Deletion**: If $G \sim \mu_V$ and $u \in V$ then $\mathcal{D}(G, u) \sim \mu_{V \setminus \{u\}}$

Uniform *k*-out graphs

- Simple digraphs with out-degree k
- Uniform distribution:
 - Each outgoing neighbourhood $N^+(v)$ is uniform among the k-subsets of V v
 - The $N^+(v)$ are mutually independent

A local model

Local update model

- No global knowledge
- Knowledge of the current size
- Ability to pick a uniform random vertex RandomVertex()
- Ability to examine neighbours of a given node

A local model

Local update model

- No global knowledge
- Knowledge of the current size
- Ability to pick a uniform random vertex RandomVertex()
- Ability to examine neighbours of a given node

RandomVertex()

- Substitute for "contact a friend node"
- Uniformity : strong assumption
- Similar external mechanisms in the literature
- Very costly

A local model

Local update model

- No global knowledge
- Knowledge of the current size
- Ability to pick a uniform random vertex RandomVertex()
- Ability to examine neighbours of a given node

RandomVertex()

- Substitute for "contact a friend node"
- Uniformity : strong assumption
- Similar external mechanisms in the literature
- Very costly

We measure the cost of our algorithms essentially as the expected number of calls to RandomVertex().

Preservation of uniform k-out graphs

- Several insertion and deletion algorithms
- Our best algorithms:
 - **Deletion**: calls o(1) times RandomVertex()
 - Insertion: calls asymptotically k times RandomVertex()

Preservation of uniform k-out graphs

- Several insertion and deletion algorithms
- Our best algorithms:
 - **Deletion**: calls o(1) times RandomVertex()
 - Insertion: calls asymptotically k times RandomVertex()

These asymptotic bounds are optimal.

Deletion of vertex 2

Vertex 2 wants to leave the network.

Vertex 2 leaves the network, and there are 3 loose edges.

Vertices 0, 4 and 5 replace 2 using RandomVertex(). We need k calls on average.

Deletion of vertex 2

Deletion of vertex u

- Simple algorithm needs k calls to RandomVertex()
- Better algorithm: re-using *u*'s successors
- o(1)-algorithm: re-using *u*'s predecessors

Insertion of vertex 5

Vertex 5 wants to join the network.

Insertion of vertex 5

Vertex 5 chooses 2 distinct vertices as successors, using RandomVertex().

Vertex 5 chooses $X \sim \text{Binomial}(n, k/n)$ distinct random vertices as predecessors, and *steals* one edge from each of them. We need k calls in expectation to chose the predecessors.

Insertion of vertex 5

Insertion of vertex u

- Simple insertion needs, on average, 2k calls to RandomVertex()
- k-insertion: re-use the deleted edges

Results

- Precise definition of distribution-preserving algorithms
- Uniform k-out graphs: asymptotically optimal algorithms

Further research

- Uniform undirected k-regular graphs
- Distribution depending on the "identities" of the nodes: e.g. geometric graphs

Thank you for your attention.