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Introduction

Context

Peer-to-Peer Networks (modelled as graphs)

Structure dependent on the update sequence

Potential malicious sequence of updates

Difficulty in designing/analysing update algorithms

Analysis under nicely behaving update schemes

Proposition: distribution-preserving update algorithms

Maintain exactly a probability distribution of random graphs

No probabilistic model for the update sequence
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Distribution preserving algorithms

Definition

For each possible vertex set V , G should follow a given target
distribution µV , which is preserved through updates :

Insertion: If G ∼ µV and u 6∈ V then I(G , u) ∼ µV∪{u}
Deletion: If G ∼ µV and u ∈ V then D(G , u) ∼ µV\{u}

Uniform k-out graphs

Simple digraphs with out-degree k

Uniform distribution:

Each outgoing neighbourhood N+(v) is uniform among the
k-subsets of V − v
The N+(v) are mutually independent
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A local model

Local update model

No global knowledge

Knowledge of the current size

Ability to pick a uniform random vertex RandomVertex()

Ability to examine neighbours of a given node

RandomVertex()

Substitute for “contact a friend node”

Uniformity : strong assumption

Similar external mechanisms in the literature

Very costly

We measure the cost of our algorithms essentially as the expected
number of calls to RandomVertex().
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Our results

Preservation of uniform k-out graphs

Several insertion and deletion algorithms

Our best algorithms:

Deletion: calls o(1) times RandomVertex()

Insertion: calls asymptotically k times RandomVertex()

These asymptotic bounds are optimal.
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Deletion Algorithms

Deletion of vertex 2
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Vertex 2 wants to leave the network.
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Deletion Algorithms

Deletion of vertex 2
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5

Vertex 2 leaves the network, and there are 3 loose edges.
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Deletion Algorithms

Deletion of vertex 2

0

12

34

5

RV

RV

RV

Vertices 0, 4 and 5 replace 2 using RandomVertex().
We need k calls on average.
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Deletion Algorithms

Deletion of vertex 2
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Deletion of vertex u

Simple algorithm needs k calls to RandomVertex()

Better algorithm: re-using u’s successors

o(1)-algorithm: re-using u’s predecessors
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Insertion Algorithms

Insertion of vertex 5
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Vertex 5 wants to join the network.
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Insertion Algorithms

Insertion of vertex 5
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RV

RV

Vertex 5 chooses 2 distinct vertices as successors, using
RandomVertex().
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Insertion Algorithms

Insertion of vertex 5
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Vertex 5 chooses X ∼ Binomial(n, k/n) distinct random vertices as
predecessors, and steals one edge from each of them.

We need k calls in expectation to chose the predecessors.
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Insertion Algorithms

Insertion of vertex 5
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Insertion of vertex u

Simple insertion needs, on average, 2k calls to
RandomVertex()

k-insertion: re-use the deleted edges
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Conclusion

Results

Precise definition of distribution-preserving algorithms

Uniform k-out graphs: asymptotically optimal algorithms

Further research

Uniform undirected k-regular graphs

Distribution depending on the “identities” of the nodes: e.g.
geometric graphs
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Thank you

Thank you for your attention.
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