What are we trying to do ?

We describe a new uniform generation tree for permutations with the specific property that, for most permutations, all of their descendants in the generation tree have the same number of fixed points. Our tree is optimal for the number of permutations having this property.
Two probabilistic applications of such a tree are given: uniform derangement generation and Poisson variate generation.

Our Generation Tree - Rules

Our tree is based on a non-standard way to represent a permutation $\sigma \in \mathcal{S}_{n}$ as a pair (S, δ), where S is the set of fixed points of σ and δ is the derangement of the non-fixed points of σ, normalized to fit in $[1 . . n-|S|]$. We note $\pi_{S}(i)$ the normalization of the non-fixed point i and $\gamma(\sigma)$ the greatest non-fixed point of σ (0 if σ is the identity).

If $\sigma=(S, \delta)$ is a permutation of size n with k fixed points, then we construct σ^{\prime}, the i-th child of σ by the following rules:

1. If σ is special and $i=n+1$:
$\sigma^{\prime}=\left(S \cup\{n+1\}, \Delta_{n-k}\right)$
2. If σ is special and $\gamma(\sigma)<i \leq n$:
$\sigma^{\prime}=\left(S \backslash\{i\}, \Delta_{n-k+2}\right)$
3. If $i \in S, \sigma$ is non-special or σ special and $i<\gamma(\sigma)$: $\sigma^{\prime}=\left(S \backslash\{i\} \cup\{n+1\}, \tau_{n+1-k}\left(\delta, \pi_{S \backslash\{i\}}(i)\right)\right)$
4. If $i \notin S, \sigma$ is non-special or σ special and $i \neq n+1$: $\sigma^{\prime}=\left(S, \tau_{n+1-k}\left(\delta, \pi_{S}(i)\right)\right)$

Our Generation Tree - First Levels

Probabilistic Applications

Derangement Generation

1. Perform a random descent in the tree until reaching a non-special permutation σ or level n, whichever comes first.
2. If the reached permutation is a derangement, continue the descent until reaching level n and return the derangement; otherwise, repeat Step 1.
This algorithm uses in expectation $n+O(1)$ calls to Ran$\operatorname{dom}()$ - equivalent to $n \log _{2}(n)+o(n \log (n))$ random bits assuming perfect sampler [1] - which is asymptotically optimal, improving in this regard some recent techniques [2].
```
[1] Donald E Knuth and Andrew C Yao.The complexity of nonuniform random numb
[2] Conrado Martínez, Alois Panholzer, and Helmut Prodinger. Generating random derangements. pages 234-240. SIAM,
2008.
```

[3] Fanja Rakotondra
volume 7,2007 .

Poisson Variate
Sample from the Poisson distribution $p_{k}=$ $e^{-\lambda} \lambda^{k} / k$! with parameter 1, i.e. return $k \geq 0$ with probability $1 /(e k!)$:

- Perform a random descent in the generation tree, until a non-special permutation is reached; output its number of fixed points.

Algorithm Poisson(1)

$i \leftarrow \operatorname{Random}(n+$
if $i=n+1$ then
$k \leftarrow k+1$
else if $i>g$ then else if $i>g$ then
$k \leftarrow k-1, g \leftarrow n+1$ else
return k return
end if end if
$n \leftarrow n+1$ $n \leftarrow n+1$
end loop
end loop

