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Abstract

Visibly Pushdown Automata (Vpa) are a recent model of machines introduced
by Alur and Madsuhudan in 2004 that has risen plenty of research interest in the
last couple of years. Vpa are pushdown automata working on a visibly push-
down alphabet, i.e. each input symbol of the automaton determine uniquely
the stack operation (push, pop, or no operation on the stack) to perform. They
model the behaviours of several kinds of recursive programs and the increasing
amount of research around them testifies of how wide their range of applica-
tions in software verification is. Yet some questions remain open, e.g. whether
Vpa are minimizable within polynomial time. In this master’s thesis, we shall
argument why minimization of Vpa is hard and which alternatives do exist in
order to minimize them. Several variants and submodels of Vpa are eventually
considered in order to accomplish an efficient minimization.

Key-words : visibly pushdown automata, state minimization, congruences,
complexity.
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1 Introduction

The development of programs for high-risk technologies, e.g. life-critical sys-
tems and avionics technologies, has consistently grown over the last decades.
Softwares for such critical environments should be completely error-free as lives
are at stake. Formal Methods have been proved to be an excellent mean to
ensure the correctness for systems where safety is of utmost importance.

Among the techniques used to check correctness of programs, abstraction by
an automaton model is one of the most used. The model of Visibly Pushdown
Automata has lead to a considerable amount of research work1 since their recent
introduction by Alur and Madhusudan [2]. They provide a particularly useful
tool for model checking and software verification, especially boolean programs [3]
and stream applications [4, 5].

Vpa is a model of stack automata where the input alphabet is partitioned
into call, return and local symbols and each set of symbols is associated to a
particular action to perform on the stack (push, pop or nothing). The class of
languages recognized by Vpa, called Vpl, lies strictly between the set of regular
languages and the deterministic context-free languages. They represent a very
robust model of automata (comparable to Finite State Automata) and provide
in the same time enough expressiveness to model interesting program analysis
questions.

We shall study in this master’s thesis the open problem of minimization of
Vpa. In fact, no polynomial time algorithm is yet known in order to minimize
the Vpa, but such an algorithm will provide directly concrete improvements for
several applications of the domain. In our study, we show hardness results on
several kinds of minimization problems related to Vpa and their variants2 and
propose polynomial time minimization algorithms on submodels3. The difficulty
of the general minimization problem for Vpa remains unknown, but we give a
couple of interesting arguments in favor of a computational hardness result.

In Section 2, we will formally describe the model of Vpa and present a few
essential theorems and results. In Section 3, we shall focus on the minimization
problem and demonstrate some hardness results. Section 4 will be dedicated to
a variant of Vpa: Block Visibly Pushdown Automata, that has been considered
as a promising model to accomplish efficient minimization. In Section 5, we
shall eventually investigate some minimizable variants and a few minimizable
submodels of Vpa.

1P. Madhusudan lists on his website more than 50 papers related to Visibly Pushdown
Automata since their initial paper from 2004, see [1].

2We mean by variant of Vpa, a family of Vpa that recognizes exactly the Vpl.
3We call a submodel of Vpa, a family of Vpa that recognizes a subclass of the Vpl.
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Preliminaries

Before getting to the heart of the matter, let us introduce some general
definitions and notations in this short section.

One of the most fundamental notion that will be used through this master’s
thesis are formal languages, which are sets of words over finite alphabets. An
alphabet is just a finite set of letters or symbols, actually like any natural
language alphabet e.g. latin or greek alphabets. A word over such an alphabet
is a finite sequence of letters taken from the alphabet. At last a language is just
a set of such words which can be either finite or infinite. We will usually denote
alphabets by capital greek letter (e.g. Σ or Γ); symbols by small latin letters
(e.g. a, b, c, r, l); words by the letter w (or u, v) and languages by the capital
letter L. One special word is ε which is the word that has no letter (i.e. its
length is 0).

A natural operation on words noted . is the concatenation4. For instance
the word w = u.u′ is the word obtained by juxtaposition of u and u′. The set
Σ∗ is the infinite set of words that can be written only with symbols of the
alphabet Σ, which is more formally the free monoid on the set Σ. For every
word w ∈ Σ∗, we will denote pref(w) the set of prefixes of w, i.e. the set of words
v ∈ Σ∗ such that there exists a v′ ∈ Σ∗ and v.v′ = w. In the same fashion, we
note suff(w) the set of suffixes of w, i.e. the set of words v ∈ Σ∗ such that there
exists a v′ ∈ Σ∗ and v′.v = w. These notions are naturally extended to suit
for languages, thus Pref(L) is the union of every pref(w) for every w ∈ L and
Suff(L) is the union of every suff(w).

In order to denote the ith letter of a word w, we will use the notation w[i].
We will also note w[i..j] for the substring of w that starts at position i and ends
in position j (both included5). However, if we write only [i..j], it means the
subset of the natural numbers from i to j (i.e. the set {i, i+ 1, ..., j}).

We will on several occasions mention a simple model of machines called
Deterministic Finite Automata or Dfa. We will use here the most standard
definition of such machine as a 4-tuple (Q, q0, QF , δ) over Σ (the input alphabet
of the automaton). In the definition, Q is a finite set of states, q0 ∈ Q the initial
state, QF ⊆ Q a set of final states and δ : Q × Σ → Q its (partial) transition
function. We guide the reader towards [6] for all basic results about languages
and automata that are not proven here.

At last, definitions about complexity classes P (or Ptime for Polynomial
Time), Np (Non-deterministic Polynomial Time), Pspace (Polynomial Space)
etc are the standard ones, see e.g. [7] for details.

4The concatenation can be omitted when it burdens the notation.
5By convention the first position of a word is 1, hence w[0] denotes ε.
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2 Visibly Pushdown Automata

Visibly Pushdown Automata (Vpa) were introduced by [2] as a robust and
tractable framework in order to model interesting program analysis questions.
Vpa are stack automata working on a partitioned alphabet, where the input let-
ter determines uniquely how the stack will evolve (i.e. whether the automaton
shall push or pop the stack).

Languages accepted by such automata are called Visibly Pushdown Lan-
guages (Vpl). The class of such languages forms a strict subclass of determin-
istic context-free languages (Vpa are determinizable) and a strict superclass of
regular languages. An instance of a Vpl can be the language L = {anbn | n ∈ N}
with a being a call symbol and b a return symbol, and as one can notice there
are no Dfa that recognize it (i.e. L is not regular). However, the context-
free language L′ = {(anbn + bnan) | n ∈ N} cannot be recognize by any Vpa
whatever the partition of the input alphabet. Also, the class of Vpl turns out
to be closed under all boolean set operations, as well as renaming, concatena-
tion and Kleene-∗. Moreover, several fundamental decision problems such as
inclusion that are undecidable for traditional pushdown automata, become only
Exptime-complete for Vpa.

Despite this robustness and tractability, Vpa are powerful enough to model
many program analysis questions, such as algorithmic verification of recursive
programs (see e.g. [2, 8]) and model-checking of software programs that can be
formalized as pushdown models [9]. Besides, Vpa have been extensively studied
in the last few years (as this website [1] can testify), and applications in different
contexts have appeared: for instance the processing of Xml streams [4, 5], de-
cidability results on infinite games [10] and semantic of program languages [11].

There exists an alternative formulation of visibly pushdown automata as
nested word automata [12]. This other approach describes a model of finite
automata (i.e. without a stack) over a visibly pushdown alphabet where the
input of the model are nested words. Such words are just string augmented by
a matching relation between symbols defined by the pushdown alphabet. This
model of automaton shares many aspects with Vpa and will not be considered
here.

This section is intended to introduce the automaton model of Vpa and to
give the reader all the definitions needed to follow the rest of the thesis. Thus
we shall introduce in Section 2.1 some formal definitions and propositions, then
in Section 2.2 we will give the closure properties of the class of Vpl. We
will summarize in Section 2.3 all known results for basic operations on Vpa in
addition of some comparisons with other automaton models. Finally, we will
conclude by giving some applications of Vpa in Section 2.4.
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2.1 Definitions

2.1.1 Formal Definitions

A visibly pushdown alphabet Σ̂ is a set of input symbols partitioned into three
distinct sets Σ̂ = (Σcall,Σret,Σloc) such that Σcall is a finite set of calls, Σret
is a finite set of returns, and Σloc is a finite set of local actions1. For any
pushdown alphabet Σ̂, we note Σ for the union of the three sets, i.e. Σ =
Σcall ∪ Σret ∪ Σloc.

Definition Let Σ̂ = (Σcall,Σret,Σloc) be a visibly pushdown alphabet and u
a word of Σ∗. We denote |u|c the number of calls in u and |u|r the number of
returns. We define the set of matched call words as

MC(Σ̂) = {u ∈ Σ∗ | ∀u′ ∈ suff(u), |u′|c ≤ |u′|r}

Similarly, the set of matched return words is defined as

MR(Σ̂) = {u ∈ Σ∗ | ∀u′ ∈ pref(u), |u′|r ≤ |u′|c}

At last, the set of well-matched words is WM(Σ̂) = MC(Σ̂) ∩MR(Σ̂).

Remark For every word w ∈ Σ∗ over a visibly pushdown alphabet Σ̂ =
(Σcall,Σret,Σloc), there exist w1 and w2 in Σ∗ such that w = w1.w2, w1 ∈
MC(Σ̂) and w2 ∈MR(Σ̂).

A Vpa is a pushdown automaton working on such partitioned alphabet.
Intuitively, when the automaton is reading a call symbol it will push a symbol
on the stack and change its internal state, on reading a return symbol it will
pop the stack and update its state depending of what was on the stack, and if
the input symbol is a local action the automaton will ignore the stack and only
change its current state. Hence, after reading some word w ∈ Σ∗, one can know
the depth of the stack of any Vpa by just looking at the pushdown alphabet
and not at the transitions of a particular automaton. The formal definition is
as follows:

Definition A Visibly Pushdown Automaton is a 5-tuple A = (Q,QI , QF ,Γ,∆)
over a visibly pushdown alphabet Σ̂ = (Σcall,Σret,Σloc). The finite set Q is
defined as the set of states of A, QI ⊆ Q is the set of input states and QF ⊆ Q
of final states. The finite set Γ is the stack alphabet of A and must not contain
the special symbol ⊥. ∆ is the set of its transitions and is further divided into
three distinct sets ∆call, ∆ret, ∆loc such as ∆call ⊆ (Q × Σcall ×Q × Γ) is the
set of call transitions, ∆ret ⊆ (Q × Σret × Γ ∪ {⊥} × Q) is the set of return
transitions, and ∆loc ⊆ (Q× Σloc ×Q) is the set of local actions.

1We will indifferently name the element of Σcall call or push symbols, as well as return or
pop symbols for element of Σret, and local actions or internal symbols for element of the set
Σloc.
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As one can notice, the stack alphabet cannot contain the special symbol ⊥,
as this symbol will be used to identify the empty stack. Transitions of a Vpa
have a different signification depending whether they are call, return or local
transitions. A call transition (q, c, q′, γ) ∈ (Q×Σcall ×Q× Γ), will push γ 6= ⊥
on reading the letter c when the automaton is in state q, i.e. the new top of the
stack is γ (whatever was the content of the stack before) and the updated control
state is q′. Similarly, a return transition (q, r, γ, q′) ∈ (Q×Σret × Γ∪ {⊥}×Q)
on reading r in state q, will check if the top of stack is γ, pop the symbol (except
in the case γ = ⊥ where nothing is popped) and finally change the control state
to q′. A local transition (q, l, q′) ∈ (Q × Σloc × Q) will just change the control
state from q to q′ on reading l, and the stack remains unchanged. Note that if
a Vpa contains only local transitions, then it is a Dfa working over Σloc.

Remark It is worth noting it is indeed the alphabet that is visible, and espe-
cially not the stack as a Vpa can only look at the content of the stack on return
symbols.

A configuration of a Vpa A is a tuple (q, σ) where q ∈ Q and σ ∈ ⊥Γ∗.

We note (q, σ)
a→A (q′, σ′) if one of the following conditions holds:

[Push] a ∈ Σcall and ∃(q, a, q′, γ) ∈ ∆call such that σ′ = σγ

[Pop] a ∈ Σret, γ 6= ⊥ and ∃(q, a, γ, q′) ∈ ∆ret such that σ = σ′γ
a ∈ Σret, γ = ⊥ and ∃(q, a, γ, q′) ∈ ∆ret such that σ = σ′ = ⊥

[Local] a ∈ Σloc and ∃(q, a, q′) ∈ ∆loc and σ = σ′

We define −→A as the reflexive and transitive closure of→A. For every word
w ∈ Σ∗, a run ρ of A on w is a finite sequence (q1, σ1), (q2, σ2), ..., (q|w|, σ|w|)
with (q1, σ1) ∈ QI × {⊥}, which satisfies

∀1 ≤ i < |w|, (qi, σi)
w[i]→A (qi+1, σi+1)

A run ρ is accepting if q|ρ| ∈ QF . A word w ∈ Σ∗ is accepted by A if there
exists an accepting run on w, i.e. there exist q0 ∈ QI , qf ∈ QF and σ ∈ ⊥Γ∗

such that (q0,⊥)
w−→A (qf , σ). Remark that there is absolutely no conditions

on the final stack content for a word to be accepted.

Remark When a well-matched word is accepted by a Vpa A, the automaton
always finishes with an empty stack and it has not used any transitions of the
form (q, r,⊥, q′) during its execution.

In the following chapters, we will write |A| for the number of states of A
(i.e. |Q|), and ||A|| for the global size of A (i.e. |Q| + |∆|) (we shall see in
Section 3.1, page 17, why the stack alphabet size is not a relevant parameter of
the automaton).

Finally, we note L(A) for the language accepted by A, i.e. the set of words
w ∈ Σ∗ such that w is accepted by A. Two Vpa are said to be equivalent if
they recognize the same language. We are now ready to define the class of Vpl:
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q0 q1 q2 qf

a/1

a/1 b\⊥

b\1

c

Figure 2.1: Illustration of a Vpa recognizing L = {an.bn+1.c | n ∈ N+} over
Σ̂ = ({a}, {b}, {c}). The states are depicted as circles and labelled with their
respective name. Call transitions are labelled with c/γ where c is a call symbol
and γ the stack symbol pushed on top of the stack. Similarly, return transitions
are labelled r\γ where r is a return symbol and γ the stack symbol that should be
popped. Finally, local transitions are just labelled with the input letter. Initial
states have leading arrows, and final states are double circled. All transitions
not drawn are assumed to lead to a sink state (also not drawn).

Definition A language L ⊆ Σ∗ is a visibly pushdown language over Σ̂ if there
exists a Vpa A over Σ̂ such that L = L(A).

2.1.2 Example

Now that all preliminary definitions are set, we can give a rather simple exam-
ple of such automaton. This example will serve also to introduce our draw-
ing conventions that will be used through the following chapters, since the
specificity of Vpa permits to make meaningful illustrations. Consider the fol-
lowing Vpl L = {an.bn+1.c | n ∈ N+} over the visibly pushdown alphabet
Σ̂ = ({a}, {b}, {c}).

We can define A = ({q0, q1, q2, qf}, {q0}, {qf}, {1},∆ = ∆call ∪∆ret ∪∆loc)
such that ∆call = {(q0, a, q0, 1), (q0, a, q1, 1)}, ∆ret = {(q1, b, 1, q1), (q1, b,⊥, q2)}
and ∆loc = {(q2, c, qf )}. A is depicted in Figure 2.1 and one can notice it is
indeed a Vpa by using the definition. One can also check without much effort
that A recognizes exactly L.

2.1.3 Determinism

Like finite automata, a Vpa can either be deterministic or non-deterministic
depending on its transition set. A Vpa is said to be deterministic2 when there
is no ambiguity to chose the next state given a particular configuration and an
input letter. Formally, a Vpa A = (Q,QI , QF ,Γ,∆) is deterministic if |QI | = 1
and ∀q ∈ Q:

• ∀c ∈ Σcall, there is at most one q′ ∈ Q and one γ ∈ Γ s.t. (q, c, q′, γ) ∈
∆call

2Since we will mostly use deterministic automata, if no information is given a Vpa is
assumed to be deterministic (sometimes explicitly noted Dvpa). Otherwise, we will write
Nvpa to refer to non-deterministic Vpa.
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q0 q1 q2 qf

a/1

b\1 b\⊥

b\1

c

Figure 2.2: A deterministic Vpa recognizing L = {an.bn+1.c | n ∈ N+} over
Σ̂ = ({a}, {b}, {c}), the same language used in Figure 2.1.

• ∀r ∈ Σret,∀γ ∈ Γ ∪ {⊥}, there is at most one q′ s.t. (q, r, γ, q′) ∈ ∆ret

• ∀l ∈ Σloc, there is at most one q′ s.t. (q, l, q′) ∈ ∆loc

Note that the automaton of Figure 2.1 was non-deterministic (Nvpa), since
two transitions labelled a were outgoing from the state q0. A deterministic
automaton for this language can easily be built by changing the transition
(q0, a, q1, 1) to (q0, b, 1, q1) (this deterministic automaton is illustrated in Fig-
ure 2.2). A typical question about automaton models is whether there exists an
algorithmic way to determinize an automaton, i.e. can we build a deterministic
automaton from any non-deterministic ones. For instance such an algorithm
does not exist for traditional pushdown automata since deterministic ones are
strictly less expressive than non-deterministic ones. The determinization of Vpa
appears to be computable (so both Dvpa and Nvpa recognize the same class of

languages) and a deterministic automaton with 2n
2

states and a stack alphabet

of size 2n
2 · |Σcall| can be computed from any Nvpa of size n.

Theorem 2.1.1 For every Nvpa A, there exists an equivalent deterministic
Vpa D. Moreover, we can build D such that |D| ≤ 2|A|

2

.

Proof Let A = (Q,QI , QF ,Γ,∆) be a non-deterministic Vpa over some visibly
pushdown alphabet Σ̂ = (Σcall,Σret,Σloc). We will build a deterministic Vpa
D which uses states from the set 2Q×Q. The idea is to do some kind of powerset
construction from the original automaton A and postpone push-transitions until
a corresponding pop-transition is done.

For instance, a state S of D is a set of pairs of states from A. After reading a
word w = w1.c.w2, with w,w1 ∈ Σ∗, c ∈ Σcall and w2 ∈WM(Σ̂), for each pair3

(q, q′) ∈ S, q is a state reachable after reading the last unmatched call symbol c
(note when reading c, we did not know which stack symbol to put on the stack)
and q′ is a state reachable from q after reading w2. Whenever a return symbol
r is read, let us say just after reading w2, we will unstack the last call symbol
c and S′, the state reached by D before reading c. Now we can compute the
new state S′′ of D after reading w = w1.c.w2.r, as we can compute what call

3Such a pair is usually named a summary edge of the automaton as it indicates a
summary of possible sequences of transitions in the original automaton.
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symbols could have been pushed when reading c (using r) and what transitions
could have been used until reading r.

In order to define formally D, we define the identity set IdQ for some set Q
as IdQ = {(q, q) | q ∈ Q} (remark IdQ ∈ 2Q×Q) and the projection function
Π2 : 2Q×Q → 2Q for some set Q as Π2(S) = {q′ ∈ Q | ∃q ∈ Q, (q, q′) ∈ S}.
Similarly Π1 is defined to return the set of first arguments of some set S.

We construct now the following deterministic Vpa D = (Q′, q′i, Q
′
F ,Γ

′,∆′)
such that Q′ = 2Q×Q, q′i = IdQI

, Q′F = {S ∈ Q′ | Π2(S) ∩ QF 6= ∅}, Γ′ =
Q′ × Σcall, and the transition set is as follows:

[Push] For every c ∈ Σcall, (S, c, IdS′ , (S, c)) ∈ ∆′call
⇔ S′ = {q′ ∈ Q | ∃q ∈ Q, γ ∈ Γ, q ∈ Π2(S) ∧ (q, c, q′, γ) ∈ ∆call}

[Pop] For every r ∈ Σret,

– (S, r,⊥, S′) ∈ ∆′ret
⇔ S′ = {(q, q′′) ∈ Q2 | ∃q′ ∈ Q, (q, q′) ∈ S ∧ (q′, r,⊥, q′′) ∈ ∆loc}

– (S, r, (S′′, c), S′) ∈ ∆′ret
⇔ S′ = {(q, q′) ∈ Q2 | ∃q1, q2, q3 ∈ Q, γ ∈ Γ, (q, q1) ∈ S′′ ∧
(q1, c, q2, γ) ∈ ∆call ∧ (q2, q3) ∈ S ∧ (q3, r, γ, q

′) ∈ ∆ret}

[Local] For every l ∈ Σloc, (S, l, S′) ∈ ∆′loc
⇔ S′ = {(q, q′′) ∈ Q2 | ∃q′ ∈ Q, (q, q′) ∈ S ∧ (q′, l, q′′) ∈ ∆loc}

Let w = w0.c1.w1.c2.w2...cn.wn a word4 of Σ∗ such that w0 ∈ MC(Σ̂),
c1, c2, ..., cn ∈ Σcall, and w1, w2, ..., wn−1, wn ∈ WM(Σ̂). After reading such a
word w, we maintain as an invariant that the configuration of D is (S, σ) s.t.:

• Π2(S) is the set of reachable states in A after reading w and Π1(S) is the
set of reachable states in A after reading w′, where w = w′wn.

• σ = ⊥(S1, c1), ..., (Sn, cn) such that ∀1 ≤ i ≤ n, Si is the set of pairs
(q, q′) such that q is reachable in A after reading w′ = w0c1...ci−1 and q′

is reachable in A after reading w′wi−1.

At last, remark the initial state q′i of D satisfies the above property if you set
w = ε, we have Π1(q′i) = Π2(q′i) = QI (i.e. exactly the set of states reachable
after reading ε) and the stack is ⊥. Such an invariant can be easily checked.

�

The above proof is based on the construction introduced in [13], which rep-
resents a slight improvement on the original proof from [2]. Moreover, we know
that a Nvpa can be exponentially smaller than any equivalent Dvpa, since when
we restrict the alphabet to local actions, Vpa are equivalent to Dfa and it is a
well known result that there is an exponential blow-up between Dfa and Nfa
(Non-deterministic Finite Automata). Also we know that 2n

2

is a lower bound
of the minimal deterministic Vpa for some Nvpa of size n, as claimed in [12].

4Note every word of Σ∗ can be decomposed this way.
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S0 S1 S2 S3 S4

a/(S0, a)

a/(S1, a)

b\(S0, a)

b\(S1, a)

b\⊥

b\(S0, a), b\(S1, a)

b\⊥ c

Figure 2.3: A deterministic Vpa built using the proof of Theorem 2.1.1 from
the Nvpa of Figure 2.1 recognizing L = {an.bn+1.c | n ∈ N+}. We have
S0 = {(q0, q0)}, S1 = {(q0, q0), (q1, q1)}, S2 = {(q1, q1)}, S3 = {(q1, q2)}, S4 =
{(q1, qf )}.

To conclude this section let us illustrate the determinization construction by
an example. Let A be the Nvpa depicted in Figure 2.1 recognizing the Vpl
L = {an.bn+1.c | n ∈ N+} over Σ̂ = ({a}, {b}, {c}). The determinization results
into the automaton depicted in Figure 2.3 which has 5 states.

Remark the construction produces some unusable transitions: for instance
(S1, b,⊥, S3) is unnecessary as (S1,⊥) is an unreachable configuration of the
deterministic automaton. Furthermore, the automaton built is also not neces-
sary a minimum-state Vpa since the Dvpa of Figure 2.2 recognizes the same
language and has one state less.

2.2 Closure properties

We have already stated that the class of Vpa is closed under union, intersection,
complementation, renaming, concatenation and Kleene-∗. These good closure
properties make Vpa a robust class comparable to Regular languages (see Ta-
ble 2.1 for details) and much more robust than the class of (Deterministic)
Context-Free Languages (Dcfl and Cfl). We will use explicitly later on the
fact that we can compute efficiently the intersection of two Vpa as well as the
complement of a Dvpa, so we will explain here how this can be done. We guide
the reader toward [2] for details about the closure of the other applications.

Proposition 2.2.1 Let A and B be two Vpa over Σ̂. We can build in quadratic
time the automaton C recognizing the language L(A) ∩ L(B).

Proof Let A = (QA, QAI , Q
A
F ,Γ

A,∆A) and B = (QB, QBI , Q
B
F ,Γ

B,∆B) be two

Vpa over Σ̂ = (Σcall,Σret,Σloc). Let C = (QA ×QB, QAI ×QBI , QAF ×QBF ,ΓA ×
ΓB,∆C) be a Vpa, such that :

-((q1, q2), c, (q′1, q
′
2), (γ1, γ2)) ∈ ∆Cc ⇔ (q1, c, q

′
1, γ1) ∈ ∆Ac ∧(q2, c, q

′
2, γ2) ∈ ∆Bc

-((q1, q2), r, (γ1, γ2), (q′1, q
′
2)) ∈ ∆Cr ⇔ (q1, r, γ1, q

′
1) ∈ ∆Ar ∧(q2, r, γ2, q

′
2) ∈ ∆Br

-((q1, q2), l, (q′1, q
′
2)) ∈ ∆Cl ⇔ (q1, l, q

′
1) ∈ ∆Al ∧ (q2, l, q

′
2) ∈ ∆Bl
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Closure under
∪ ∩ Complement Concatenation Kleene-∗

Regular X X X X X
Vpl X X X X X
Dcfl × × X × ×
Cfl X × × X X

Table 2.1: Closure Properties for Vpl and their surrounding classes in the
Chomsky hierarchy.

One can notice C accepts a word w if and only if both A and B accept w,
and thus C recognizes exactly L(A) ∩ L(B).

Note there is a simple algorithm in order to build C by running through
all transitions of A and B, which one takes O(||A|| · ||B||) time and obviously

||A|| · ||B|| ≤ (||A||+ ||B||)2
. �

Proposition 2.2.2 Let A be a Dvpa over Σ̂. We can build in linear time a
Dvpa B such that L(B) = Σ∗ \ L(A).

Proof Given a Dvpa A = (Q, qi, QF ,Γ,∆), one can simply build a Dvpa
B = (Q, qi, Q\QF ,Γ,∆). Obviously, the set of words recognized by B is exactly
the set of words that are rejected by A. �

Please note that the above proposition does not hold for Nvpa, as the ac-
ceptance condition for Nvpa is an existence condition. The complementation of
Nvpa can be computed though by first determinizing them (see Theorem 2.1.1),
before computing their complement.

Theorem 2.2.3 ([2]) The class of Vpl is closed under union, intersection,
complementation, concatenation and Kleene-∗.

2.3 Decision problems

In the previous section, we have seen that the class of Vpl is closed under
all boolean set operations and usual language operations such as concatenation
and Kleene-∗. But the Vpa is also a powerful model when dealing with decision
problems. We know for instance that most decision problems are very easy to
solve for Dfa (Table 2.2 sums up the main decision problems for models of
automata that are related to Vpa). If we add a little non-determinism to Dfa,
then decision problems start to become more difficult (for instance Nfa and
Unambiguous Nfa or Ufa). Even if decision problems for Vpa lie in an upper
complexity class (i.e. Exptime), they stay decidable unlike inclusion for Dpda
and both universality/equivalence and inclusion for Pda. We refer to [2] for
details about the proof of hardness of the different decision problems for Vpa.

However, when we consider only deterministic Vpa, the decision problems
become rather easy to solve as stated by the following theorem:

12



Decision problems
Emptiness Universality and Equivalence Inclusion

Dfa Nlogspace Nlogspace Nlogspace
Ufa Nlogspace Ptime Ptime
Nfa Nlogspace Pspace Pspace
Dvpa Ptime Ptime Ptime
Vpa Ptime Exptime Exptime
Dpda Ptime Decidable Undecidable
Pda Ptime Undecidable Undecidable

Table 2.2: Main decision problems for Vpa and some close automaton models.

Theorem 2.3.1 Let A and B be two Dvpa over Σ̂. We can decide in polyno-
mial time whether L(A) = ∅, L(A) = Σ∗, L(A) ⊆ L(B) and L(A) = L(B).

Proof Let A, B be two Dvpa over Σ̂.
As Vpa are also Pda, we can decide in time O(|A|3) if L(A) = ∅.
We can decide also easily if L(A) = Σ∗, by checking if L(Ac) = ∅, where Ac

is the complement of A (obtained using Proposition 2.2.2).
Moreover, using Propositions 2.2.2 and 2.2.1 we can compute a Vpa C such

that L(C) = L(A) ∩ L(Bc). Since, L(A) ⊆ L(B) ⇔ L(A) ∩ L(Bc) = ∅, we can
also decide in O(|C|3) time (i.e. O(n6), with n = max(||A||, ||B||)) whether the
language of A is included in the language of B or not.

Finally, the equivalence is obtained by testing if L(A) ⊆ L(B) and L(B) ⊆
L(A).

�

Hence, the class of Vpl can be considered tractable when we compare it
to other classes of stack automata. At last Theorem 2.3.1 implies that the de-
terminization problem is also Exptime-hard since equivalence, universality and
inclusion are Ptime on deterministic input but Exptime-complete otherwise.

2.4 Applications

Let us conclude this introductory chapter by giving an idea on how to use the
Vpa model in applications. In the introduction, we cite several domains where
Vpa appeared and present an algorithmic solution to various program analysis
questions. We will describe in further details here two of their applications, on
boolean programs and on semantics of programming languages.

Boolean Programs

One of the diverse applications of Vpa is checking properties on boolean pro-
grams (that is programs where all variables have finite types)5.

5This application is initially described in [2].
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Boolean programs can be obtained by using predicate abstraction on general
software. They are usually constructed by over-approximating the behaviour of
a program and several tools already exist to translate general code into boolean
programs (e.g. Slam and SatAbs).

Let P denote a boolean program with procedures that can call each other.
We can easily find a pushdown alphabet (Σcall,Σret,Σloc) that maps every call
of P to symbols of Σcall, returns to Σret and other statements to Σloc. Then a
generator for a visibly pushdown language L(P ) can be built by constructing a
Vpa that acts as P does. We can check that P satisfies some specification by
checking L(P ) ⊆ S, where S is a specification given as a Vpl (recall inclusion
is decidable in polynomial time for deterministic Vpa and exponential time for
non-deterministic ones, cf Table 2.2).

In this manner, we can naturally verify all regular properties but also non-
regular ones like:

Partial correctness: If some property p holds when a procedure P is
invoked, then if P returns, some property q must hold thereafter.

Total correctness: Same as partial correctness but P is also required to
always return.

Local properties: In a procedure P , if we skip all sub-computations due
to methods invocation, then some regular property q must hold.

Access control: We can invoke a procedure P only from a procedure Q.

Interrupt stack limits: A property p must hold whenever the number
of interrupts in the stack is under a given constant.

Note that these requirements can generally be verified faster when we have
a minimal automaton that accepts the Vpl S given by the specification. This
is an important motivation to investigate the problem of minimization, treated
in the next chapter.

2.4.1 Semantics of programs

In [11], the authors construct Vpa that describe the semantics of a program
expression given in Idealized Algol, a language introduced by Reynolds in order
to synthesize functional and imperative languages.

Then, the Vpa are used to check program expression equivalence (remark
testing equivalence of Vpa is as hard as inclusion, see Table 2.2). Their con-
struction is based on building intermediate automata in order to translate a
program expression. If we can achieve efficiently the minimization of Vpa, the
feasibility of their construction will be greatly improved.

In other contexts, such as Xml streaming [4, 5] and model-checking [9],
a minimization algorithm for Vpa would be also highly appreciated. This is
another motivation in order to focus on this particular problem.

14



3 Minimization and
Congruences

In the previous section, we have set the model of Vpa and stated why this model
presents both the advantage of being tractable and robust but still preserve
enough expressiveness to solve interesting verification problems. Nevertheless
there are still some open questions about Vpa that could have great impacts on
potential applications.

In automata theory, a well known question is the minimization problem,
which asks whether a given automaton is the minimal (usually regarding its
number of states) automaton that recognizes a language. The functional variant
of this problem is to find such a minimal automaton, usually given as input an
ordinary automaton that recognizes the desired language.

Two standard questions arise from the minimization problem: first, we can
wonder if a unique model exists for a given language (i.e. a canonical model
for a formal language) which one guarantees an efficient algorithm for checking
equivalence of two automata; second, a minimal automaton model for a given
language can be desired, which offers the best memory consumption for a given
language, as well as providing fewer computation for all operations depending
of the size of an automaton. Regular languages have the good property that for
each language one can find a unique minimal Dfa, that answers simultaneously
both of the two aforementioned questions.

Concerning Vpa, we know that there does not exist a unique minimal model
for a given Vpl [8]. However, several canonical candidates have been introduced
(through regular tree automata [2], congruences [8], or variants of Vpa [14]),
but still all these canonical model have been shown to not be minimal and
furthermore to potentially lead to an exponential blow-up in comparison to the
minimal automaton (see e.g. [14]). Since no polynomial approximation within
polynomial time is known, the problem is assumed to be hard to solve [14].

We will first describe in Section 3.1 the minimization problem and especially
what are the parameters that matter the most in the case of Vpa. We shall
focus in Section 3.2 on the minimization of non-deterministic Vpa. Then in
Section 3.3, we will investigate the minimization problem for Dvpa, show that
the minimal automaton is not canonical and give some arguments for a hardness
result. At last, we will conclude by describing the standard congruences on Vpa
which lead directly to a canonical model for any Vpl in Section 3.4 and show
why these congruences are not well suited for minimization.
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3.1 The minimization problem

The minimization of a Vpa will lead to a minimal model, but still we have first
to decide what should be the input and the output of the problem, i.e. what is
the most useful parameter of a Vpa that should be minimized.

First, we are more inclined to use as input and output only deterministic
Vpa. The reason behind this choice is due to the complexity of non-deterministic
automata. In fact, even for the simplest abstract machine model e.g. finite state
automata, minimization of non-deterministic models is hard. Precisely, when
the minimization of Dfa is seen as a simple problem (i.e. the problem is in
Nlogspace) the minimization of Nfa is undoubtedly a harder problem (i.e.
the problem has been shown to be Pspace-complete, see [15]). Thus even
if non-deterministic automata offer potentially exponentially smaller models,
their minimization is hard enough that it is not practically realizable in many
cases. We show indeed that minimization of non-deterministic Vpa is Exptime-
complete in Section 3.2. When nothing is precised we will assume in the rest of
this chapter that we are only manipulating deterministic automata.

Now we can wonder what parameters have to be minimize, i.e. in a Vpa
A = (Q, qi, QF ,Γ,∆), there are three parameters providing some kind of size:
the number of states |Q|, the size of the stack alphabet |Γ| and the number of
transitions |∆|. Note the alphabet on which A works, has almost no importance
with regards to its size, and thus we will usually consider that the size of the
input alphabet is a constant. This is a safe assumption as anyway the mini-
mal automaton for a given visibly pushdown language has to share the input
alphabet with any other Vpa recognizing the same language. We will show in
this section why |Q| is the most relevant parameter of a Vpa, and therefore it
is indeed very profitable to minimize it.

Traditionally in formal language theory, it is often the number of states of
an automaton model that is intended to be minimize. This is due to several rea-
sons: first the number of transitions is bounded by some function of the number
of states, second the number of states is more often used as a complexity bound
for typical problems on the automaton model, and third minimization of tran-
sitions is a harder problem. In fact, like the minimization of non-deterministic
automata, the minimization of transitions is already a hard problem for Dfa.
Mainly for this reason and since it is bounded by some functions of the number
of states (and both the stack alphabet and the input alphabet for Vpa), we will
not consider here any kind of minimization on the number of transitions.

So, we can still want to minimize the stack alphabet, the number of states
or some wise combinations of both parameters. Investigating which is the most
relevant parameter for measure complexity of deterministic pushdown automata
has already been studied, and recently [16] shows that there does not exist
any combination of the number of states and the size of the alphabet that is
suitable for Dpda. However, Vpa has the particularity that the stack alphabet
is bounded by the number of states times the push alphabet (noticed by [14]),
and thus it is of lesser importance than the state set size. We will show also
that a similar claim can be maid for Nvpa.
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A uniform stack

Let us prove in this section our last claim about the necessity of a stack alphabet.
Afterwards, we will see what are the consequences of such a statement over the
other measurement parameters of minimal Vpa.

Proposition 3.1.1 Let A = (Q, qi, QF ,Γ,∆) be a Vpa over (Σcall,Σret, Σloc).
Then there exists an equivalent Vpa A′ = (Q, qi, QF ,Γ

′,∆′) with ∆′ ⊆ ∆ and
|Γ′| ≤ |Q| · |Σcall|.

Proof Since A is deterministic there are at most |Q| · |Σcall| call transitions
(the control state and the input letter determine directly both the target state
and the stack symbol). In the worst case, each such transition use a different
push symbol, and we can set ∆′ ⊆ ∆ in order to contain only return transitions
that pop one of these symbols, thus we get |Γ′| ≤ |Q| · |Σcall|. �

Proposition 3.1.2 Let A = (Q, qi, QF ,Γ,∆) be a Vpa over (Σcall,Σret,Σloc).
Then we can build in linear time an equivalent Vpa with stack alphabet Q×Σcall.

Proof Let A = (Q, qi, QF ,Γ,∆
A) be a Vpa over Σ̂ = (Σcall,Σret,Σloc). We

construct an equivalent Vpa B = (Q, qi, QF , Q × Σcall,∆
B). Note |A| = |B|.

We first set ∆Bl = ∆Al , then ∆Bc = {(q, c, q′, (q, c))|∃γ ∈ Γ, (q, c, q′, γ) ∈ ∆Ac }.
Now for each γ ∈ Γ let αγ = {(q, c)|∃q′ ∈ Q, (q, c, q′, γ) ∈ ∆Ac }. Then we

can define ∆Br = {(q, r, (q′′, c), q′)|∃γ ∈ Γ, (q′′, c) ∈ αγ ∧ (q, r, γ, q′) ∈ ∆Ar }.
One can notice that since A is deterministic and each αγ is disjoint from the

others, B is also deterministic.
Let us finally check that L(A) = L(B). Consider a run (q1, σ1), ..., (q|w|, σ|w|)

for A on a word w ∈ Σ∗, and similarly another run (q′1, σ
′
1), ..., (q′|w|, σ

′
|w|) for B

on the same word.
By induction let us prove that ∀1 ≤ i ≤ |w|, qi = q′i. Obviously (q1, σ1) =

(q′1, σ
′
1) = (qi,⊥). Assume ∀1 ≤ i < k, qi = q′i and consider the transition used

for w[k].
If w[k] ∈ Σloc, then (qk, w[k], qk+1) ∈ ∆Al and (q′k, w[k], q′k+1) ∈ ∆Bl and as

qk = q′k and ∆Bl = ∆Al , qk+1 = q′k+1.
Similarly, if w[k] ∈ Σcall then qk+1 = q′k+1 as the stack content is also not

examined.
If w[k] ∈ Σret, then let γ denote the top of the stack σk, i.e. σk = σk+1γ

if σk 6= ⊥ or σk = σk+1 = γ = ⊥ otherwise. In the latter case, then trivially
qk+1 = q′k+1 for the same arguments as above. Otherwise, let j be the step

when γ has been pushed. We have (qj , σj)
w[j]→ A (qj+1, σj+1) with σj+1 =

σjγ, and in the same fashion we have (q′j , σ
′
j)

w[j]→ B (q′j+1, σ
′
j+1) with σ′j+1 =

σ′j(q
′
j , w[j]). So we have (q′j , w[j]) ∈ αγ and moreover by definition there exists

(q′k, r, (q
′
j , w[j]), q′k+1) ∈ ∆Br iff (qk, r, γ, qk+1) ∈ ∆Ar with q′k+1 = qk+1.

Eventually every run is leading to the same states, and therefore L(A) =
L(B).

�

17



Assuming the input alphabet is a constant, we can find polynomial approx-
imation of the number of transitions using only the minimum number of states
as the following proposition states:

Proposition 3.1.3 Let L be a Vpl over (Σcall,Σret,Σloc), Amin a minimum-
state Vpa recognizing L and m the minimum number of transitions that a Vpa
needs to recognize L. Then |Amin| ≤ m ≤ O(|Amin|2).

Proof Let Amin = (Q, qi, QF ,Γ,∆) be a minimum-state Vpa that recognizes
L. We can assume Amin to use only stack symbol from Q×Σcall, using Propo-
sition 3.1.2. We have by definition |∆| ≤ |Q| · |Σcall|+ |Q| · |Σret| · (|Σcall| · |Q|)+
|Q| · |Σloc|. Hence |∆| ≤ 2 · |Σ| · |Q|+ |Q|2 and as |Σ| is considered constant, we
get |∆| ≤ O(|Q|2).

Now let A′min = (Q′, q′i, Q
′
F ,Γ

′,∆′) be a minimum-transition Vpa that rec-
ognizes L. We can assume every state is reachable, and therefore there is at
least as much transitions as states in A′min, i.e. |∆′| ≥ |Q′|.

Since Amin is a minimum-state Vpa, we have |Q′| ≥ |Q|, hence |Q| ≤ |Q′| ≤
|∆′| ≤ |∆| ≤ O(|Q|2). Thus at worst |∆′| = |Q|, and the minimum-state
Vpa has only approximately quadratically more transitions than the minimum-
transitions Vpa. �

To conclude, although the number of stack symbols can be inferred from the
size of an automaton and thus a minimum-state Vpa gives a Vpa with relatively
few stack symbols, the opposite is not always true. Indeed, the minimum-stack
symbol Vpa can be much bigger than the minimum-state Vpa:

Proposition 3.1.4 There are some Vpl L where a minimum-stack symbol
Vpa has exponentially more states than the minimum-state Vpa.

Proof Let Σ̂ = (Σcall,Σret,Σloc) with Σcall = {ca, cb}, Σret = {ra, rb} and
Σloc = ∅ be a visibly pushdown alphabet and let k be an integer. Consider the
Vpl L = {w∼w | w ∈ Σkcall,

∼
w ∈ Σkret, s.t. ∀1 ≤ i ≤ k,w[i] = ca ⇔

∼
w[2·k−i+1] =

ra}, i.e. L contains all the words of length 2 · k where the second half is the
mirror of the first half, considering only subscript letters a and b.

It is possible to build a Vpa using only 1 stack symbol as L is indeed a
regular language. If we use only one stack symbol, after reading w with |w| = k
the only information that is on the stack is the number of calls read and it is
useless in the construction of the Vpa. Since we have to know exactly what was
the symbol at position i, we need to memorize this information in the control
state of the automaton, and thus any 1-stack symbol Vpa needs at least O(2k)
states to memorize w.

Now, if two stack symbols are allowed we can put on the stack exactly the
first k letters (either ca or cb). Then we just have to read transitions that read
the corresponding ra or rb. In fact, the minimum-state Vpa needs only k states,
either checking the constant length of the word using the call symbols or the
return symbols.

�
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Figure 3.1: On the left a Nvpa recognizing the Vpl L = {(c(11)∗r)∗} over
({c}, {r}, {1}). On the right, a Vpa that recognizes the same language.

3.2 Minimization of Nvpa

As stated in the introduction of this chapter, the minimization of non-deter-
ministic Vpa is a computationally hard problem. In this section, we will prove
that the minimization of Nvpa is Exptime-complete. We need first to introduce
an argument similar to the one used in the deterministic case, i.e. stack alphabet
can be either bounded or replaced by a generic one without increasing the
number of states of a Nvpa. Note we cannot apply directly Proposition 3.1.2
in order to replace the stack symbols of Nvpa, since the stack symbol can be
used to remember what was the target state of a push transition. This case is
illustrated by Figure 3.1, where we cannot apply the proposition since there are
two outgoing transitions labelled c from q0. However in the deterministic case
(right automaton of Figure 3.1), we can safely replace the stack symbol ∗ by
(q0, c).

Proposition 3.2.1 For any Nvpa over (Σcall,Σret,Σloc), we can build in lin-
ear time an equivalent Nvpa of same size that uses only the set Q×Q× Σcall
as its stack alphabet.

Proof The idea of the proof relies mainly on similar arguments used in the
proof of Proposition 3.1.2, i.e. we will replace a stack symbol by a subset of
Q×Q× Σcall.

Let A = (Q,QI , QF ,Γ,∆
A) be a Nvpa over Σ̂. We will build the Nvpa

B = (Q,QI , QF , Q ×Q × Σcall,∆
B) over the same pushdown alphabet in such

a fashion that both automata will recognize the same language (note A and
B differ only by stack alphabet and transition set). We set ∆Bl = ∆Al , and
∆Bc = {(q, c, q′, (q, q′, c)) | ∃γ ∈ Γ, (q, c, q′, γ) ∈ ∆Ac }.

Now for each γ ∈ Γ let αγ = {(q, q′, c) | (q, c, q′, γ) ∈ ∆Ac }. Then we define
∆Br = {(q, r, (q1, q2, c), q

′) | ∃γ ∈ Γ, (q, r, γ, q′) ∈ ∆Ar ∧ (q1, q2, c) ∈ αγ}.
In order to prove L(A) = L(B) we will show that for every run (q1, σ1),

(q2, σ2), ..., (qn, σn) of A on w, there exists σ′1, σ
′
2, ..., σ

′
n such that the sequence

(q1, σ
′
1), (q2, σ

′
2), ..., (qn, σ

′
n) is a run of B over w (with q1 ∈ QI and σ1 = σ′1 =

⊥). Remark this shows L(A) ⊆ L(B) since there exists an accepting run of A
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implies there exists an accepting run of B, and the opposite can be deduced
easily.

Fix ρ = (q1, σ1), (q2, σ2), ..., (qn, σn) a run of A over w and let us prove by
induction that ∀1 ≤ i ≤ n, there exists σ′1, σ

′
2, ..., σ

′
i s.t. (q1, σ

′
1), (q2, σ

′
2), ...,

(qi, σ
′
i) is a run of B over w[0..i− 1] (i.e. the beginning of a run of B over w).

The basis is obvious, (q1, σ
′
1) is a run of B over ε (since q1 ∈ QI and σ′1 = ⊥).

Assume the property holds until some 1 ≤ k < n, i.e. there exists σ′1, σ
′
2, ..., σ

′
k

such that ρ′ = (q1, σ
′
1), (q2, σ

′
2), ..., (qk, σ

′
k) is a run of B over w[0..k − 1].

If w[k] ∈ Σloc, then ρ′(qk+1, σ
′
k+1) with σ′k+1 = σ′k is a run of B over w[0..k]

as ∆Bl = ∆Al .
Similarly if w[k] ∈ Σcall, then there exists γ ∈ Γ s.t. σk+1 = σkγ as ρ is a

run of A, and thus ρ′(qk+1, σ
′
k(qk, qk+1, c)) is a run of B on w[0..k].

Finally consider the case where w[k] ∈ Σret, we have that if σk+1 = σk = ⊥
then trivially ρ′(qk+1,⊥) is a run of B on w[0..k]. Otherwise, let j denote the
step of the matching call of w[k], and let c = w[j] ∈ Σcall (note j < k).

By induction hypothesis, we have that ∃σ′j , σ′j+1 s.t. (qj , σ
′
j)

c→B (qj+1, σ
′
j+1).

By definition of B, σ′j+1 = σ′j(qj , qj+1, c). Moreover we know that (qj , σj)
c→A

(qj+1, σj+1) s.t. σj+1 = σjγ with γ ∈ Γ. Thus (qj , qj+1, c) ∈ αγ and we
have that (qk, r, γ, qk+1) ∈ ∆Aret since ρ is a valid run of A on w. Even-
tually, ρ′(qk+1, σ

′
k+1) with σ′k = σ′k+1(qj , qj+1, c) is a run of B on w[0..k] as

(qk, r, (qj , qj+1, c), qk+1) ∈ ∆Bret. �

The last proposition is useful in many ways as it gives an idea of the role
played by the stack alphabet in a visibly pushdown automaton. Also it can
be used to give a formal notion of completeness of such model. In fact, by
definition a Nvpa does not imply any bound on its stack alphabet and thus
an unbounded number of transitions can lie between any two states (most of
those transitions are certainly useless or redundant). Since we can replace the
stack alphabet by one that is bounded by a function of the number of states
and the call alphabet, we can assume any Vpa to have this property (otherwise
just apply Proposition 3.2.1). Moreover the proposition says that the symbol
pushed by a call transition is determined directly by the rest of the transition,
i.e. called transitions can be expressed only by a triplet of the form (q, c, q′) with
q, q′ ∈ Q, c ∈ Σcall. We are now ready to give a good definition for a complete
(non-deterministic) Vpa using the previous generalization on the stack:

Definition A Vpa A = (Q,QI , QF ,Γ,∆) is said to be complete if its stack
alphabet is Q × Q × Σcall and its transition set has the following properties
∀q ∈ Q:

• ∀c ∈ Σcall,∃q′ ∈ Q, (q, c, q′, (q, q′, c)) ∈ ∆call

• ∀r ∈ Σret,∀γ ∈ Γ ∪ {⊥},∃q′ ∈ Q, (q, r, γ, q′) ∈ ∆ret

• ∀l ∈ Σloc,∃q′ ∈ Q, (q, l, q′) ∈ ∆loc
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Note that we explicitly require that all potential push symbols have to appear
in a return transition from any state. This way, we ensure that all potential
transitions are written inside the Vpa. Of course, some such transitions are
certainly impossible to use inside any valid run, but they give a simple com-
pleteness definition for Vpa. For instance, in the Vpa illustrated on the right
of Figure 3.1, the stack symbol1 ∗ cannot be read in the initial state q0.

Remark One can complete any Vpa A by first applying Proposition 3.2.1, then
adding a sink state that is not final. Then we can add toA all transitions needed
to satisfy the definition to end in this sink state. The resulting automaton has
only one more state and recognizes exactly the same language as A.

Proposition 3.2.2 For every pushdown alphabet Σ̂ = (Σcall,Σret,Σloc), there
are only two (up to isomorphism) complete single-state Vpa called VΣ∗ and V∅
that recognizes respectively Σ∗ and ∅.

Proof First note that a complete automaton should have the set Q×Q×Σcall
as its stack alphabet, and in the case that the Vpa is reduced to a single state,
this set is equivalent to Σcall.

Also an automaton that has only one state q can have only one set of tran-
sitions that satisfies the definition of a complete Vpa, i.e. the set ∆ = ∆call ∪
∆ret ∪ ∆loc such that ∆call = {(q, c, q, c) | c ∈ Σcall}, ∆ret = {(q, r, c, q) | r ∈
Σret, c ∈ Σcall} ∪ {(q, r,⊥, q) | r ∈ Σret} and ∆loc = {(q, l, q) | l ∈ Σloc}.

The only parameter of such an automaton is whether q is final or not. In
the former case, the Vpa is VΣ∗ and recognizes obviously Σ∗ and in the later
case the automaton is V∅ and recognizes ∅. �

We can now define and show the hardness of the minimization problem for
non-deterministic Vpa.

Definition (Min-Nvpa)
Instance: A Nvpa A and a positive integer k < |A|.
Question: Is there a complete Nvpa B of size k, such that L(A) = L(B) ?

Theorem 3.2.3 The decision problem Min-Nvpa is Exptime-complete.

Proof First remark that Min-Nvpa is in Exptime as we can simply deter-
minize A, then enumerate all k states Nvpa (recall we can assume Γ = Q2 ×
Σcall) and check each equivalence in Exptime.

To prove that Min-Nvpa is also Exptime-hard, we reduce the universality
problem for Nvpa to it (which is known to be Exptime-complete by [2]).

Precisely, if we execute Min-Nvpa with the input (A, 1), i.e. we ask if A
can be reduced to a complete one state automaton. If the answer is no, then
we can deduce that A does not recognize Σ∗ as Σ∗ can easily be recognized by
a one state automaton (Proposition 3.2.2).

Moreover, if the minimal complete automaton recognizing L(A) has one state
it is either VΣ∗ or V∅ (Proposition 3.2.2) and since we can check in polynomial
time if L(A) = ∅, we can know whether L(A) = Σ∗ or not. �

1or {(q0, q1, c)} in a complete automaton.
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3.3 Minimization of Vpa

3.3.1 Min-Vpa is in Np

In Section 3.1, we have seen the relevance to minimize the number of states of
Vpa, and especially why it is more useful to minimize it rather than other size
parameters of such automata. Since the minimization of Nvpa is computation-
ally hard, we will now consider here the decision problem of finding a minimal
deterministic automaton for a given Vpl, defined below.

Definition (Min-Vpa)
Instance: A Vpa A and a positive integer k < |A|.
Question: Is there a Vpa B of size k, such that L(A) = L(B) ?

Whether Min-Vpa is a computationally hard question is an open problem,
but it is suspected to be hard to solve as no polynomial time algorithm is known.
Yet contrary to their non-deterministic versions, we can test in polynomial time
the equivalence of Vpa. Thanks to this test, we can easily show that Min-Vpa
is in Np.

Proposition 3.3.1 The problem Min-Vpa is in Np.

Proof One can guess an automaton of size k and check in polynomial time
using Proposition 2.3.1 (page 13) that it is equivalent to the input automaton.

Note since the stack alphabet is bounded by the product of the call alphabet
and the state set, there are only O(2k

3

) distinct Vpa (up to isomorphism) when
the size of the input alphabet is considered as constant.

�

Remark The above proof shows also that Min-Vpa is Fixed Parameter Trac-
table as we can decide in time O(|A|6 · 2k3) what is the correct answer (recall
k < |A| and Theorem 2.3.1, page 13).

3.3.2 Uniqueness

As previously stated, a VpaA is said to be minimal when its number of states is
the minimal number of states of all other Vpa that recognize the same language
as A. Unfortunately, such minimal automaton is not unique for a given Vpl
and several minimal non-isomorphic Vpa can exist. Let us prove formally our
claim:

Proposition 3.3.2 Some Vpl do not have a minimal unique Vpa recognizing
them.

Proof Let us consider for instance the language L = {(c11(11)∗r+ c2(11)∗r)∗}
over the pushdown alphabet Σ̂ = ({c1, c2}, {r}, {1}). First we can show that L
is effectively a Vpl, as some Vpa recognizes it. A simple argument is that L
is a regular language and the class of regular languages is embedded inside the
class of Vpl.
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Figure 3.2: Two non-isomorphic minimal Vpa for the Vpl L = {(c11(11)∗r +
c2(11)∗r)∗}. On the left A1, and on the right A2.

Let us now consider the Vpa A1 and A2 illustrated in Figure 3.2. One can
easily check that both are recognizing L. Let us prove that any Vpa needs at
least 3 states in order to recognize L. Let B be a 2-states automaton recognizing
L. Since 1 ∈ Σloc, the automaton cannot touch the stack when reading 1’s but
still has to count their parity. In order to do so it needs two states, let us say
q1 and q2 such that (q1, 1, q2) ∈ ∆loc and (q2, 1, q1) ∈ ∆loc. One of them must
be initial, and one them final. Thus 1 ∈ L(B) or 11 ∈ L(B). Contradiction.

Finally, the two automata of Figure 3.2 are not isomorphic, since A2 requires
that all transitions outgoing from q0 go to the same state, and this is definitively
not compatible with the other transitions of A1.

�

The fact that minimal Vpa is not unique has great consequences on their
minimization. Indeed, one cannot merge states in order to find the minimal
automaton, as it is made for Dfa minimization. For instance, consider the
automaton of Figure 2.3, page 11. It is clearly not a minimal automaton, and
one can think that by merging S0 and S1, the automaton could become minimal
(see Figure 2.2, page 9, for a minimal automaton). This guess is wrong as this
reduced automaton recognizes an extra word w = b.c which is not in the desired
language. This implies there is not always a homomorphism between a Vpa and
a minimal equivalent one, thus the minimization of Vpa cannot follow similar
techniques as in the finite state case.

Even if the minimal Vpa for a Vpl is not unique, the minimal automaton
has still some great advantages. One possible application of minimizing Vpa
is to use Vpa as a model in order to recognize regular languages, but using
significantly less states thanks to their stack. For instance, there are some
regular languages where the minimal Vpa can be exponentially smaller that the
minimal Dfa. One such example is the regular language L = {w∼w | ∼w is the
mirror of w and |w| = k} over a finite alphabet Σ where k is a constant (the
language that we have used during the proof of Proposition 3.1.4). The minimal

Dfa that recognizes L must remember w in its state as there is a unique
∼
w which

belongs to L, and thus such minimal Dfa must have at least O(|Σ|k) states.
But the minimal Vpa recognizing L only requires k states (the alphabet has
just to be slightly modified to contain push and pop symbols).
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Complexity of Minimization
Uniqueness

Membership Hardness

String Automata
Dfa [17] in Ptime Nlogspace-hard X
Ufa [15] in Np Np-hard ×
Nfa [18] in Pspace Pspace-hard ×

Tree Automata
Dta [19, 20] in Ptime Ptime-hard X
Duta [21] in Np Np-hard ×

Uta/Uuta [21] in Np Np-hard ×
Nta/Nuta [21] in Exptime Exptime-hard ×

Pushdown Automata
Dvpa in Np ? ×

Nvpa (Theorem 3.2.3) in Exptime Exptime-hard ×
Dpda ≤ Primitive Recursive ×

Table 3.1: The complexity of the minimization problem and uniqueness of a
minimal automaton for different models of automata that are related to the
Vpa.

3.3.3 Insights into hardness

We can wonder if the minimization problem for Vpa can be suspected to be
hard and why. We know (see Table 3.1 for a full sum up of the complexity of
minimizing different models of automata) that only Dfa and Dta (Determinis-
tic Tree Automata) can be minimized within polynomial time if P 6= Np. Since
Dvpa are deterministic and share several aspects with Dta, one could hope
that their minimization is still possible in polynomial time.

But we can see that a little non-determinism makes the minimization prob-
lem harder (for instance the problem is Np-complete for Ufa and Unambiguous
(Unranked) Tree Automata - Uta/Uuta) and full non-determinism makes the
problem even harder (it is Exptime-complete for Nondeterministic (Unranked)
Tree Automata - Nta/Nuta and Nvpa). Although we do not understand yet
where is the combinatorial problem when trying to minimize Vpa, we can see
the stack influences in many way the semantic of the states and we can relate
this to non-determinism in some aspects.

Another argument that convinces us of the hardness of the minimization of
Vpa is the uniqueness of a minimal machine. The only other models that are
known to be minimizable in polynomial time (i.e. Dfa and Dta) accept a unique
(up to isomorphism) minimal automaton for each recognized language. We have
already shown that there are Vpl that have no unique minimal automaton, and
thus we may think that the minimization problem for Vpa is computationally
hard to solve. We failed to prove the hardness of minimizing Vpa although we
suspect the problem to be Np-hard. In fact, we do not know how to minimize
even one of the simplest subclasses of Vpl, see Section 5.3, page 43, for details.

24



3.4 Congruences

Visibly pushdown languages have different formulations: based on Vpa, Mso
with logic, Regular Tree Automata, Visibly pushdown grammar (see [2] for
details about these formulations) and nested word automata [12]. We can also
define Vpl based upon congruences characterization. We shall see in this section
congruences for Vpl that lead to a canonical machine for every Vpl. Unfortu-
nately, this automaton can be exponentially bigger than a minimal Vpa.

Precisely, we shall define three congruences for a given Vpl (based on [8]).
The first one ∼ will be for words when the stack is empty and is equivalent to
the traditional Myhill-Nerode right congruence. The second one ≈ will be for
words that need not see the stack to be distinguished. The third one ≡ will be
used for well-matched words.

Definition We define the visibly pushdown congruences ∼,≈,≡ for a given
Vpl L over a pushdown alphabet Σ̂ as:

For u1, u2 ∈MC(Σ̂), u1 ∼ u2 iff ∀v ∈ Σ∗, u1.v ∈ L⇔ u2.v ∈ L
For u1, u2 ∈ Σ∗, u1 ≈ u2 iff ∀v ∈MR(Σ̂), u1.v ∈ L⇔ u2.v ∈ L
For w1, w2 ∈WM(Σ̂), w1 ≡ w2 iff ∀u, v ∈ Σ∗, u.w1.v ∈ L⇔ u.w2.v

The finiteness of the number of the equivalence classes for ∼,≈ and ≡ is in
fact a characterization of Vpl, as stated by the next theorem.

Theorem 3.4.1 ([8]) A language L is a Vpl over Σ̂ ⇔ ∼,≈ and ≡ are of
finite index.

This characterization results in a canonical machine for visibly pushdown
languages, in contrast to a minimal Vpa which is not necessarily unique (see
Proposition 3.3.2).

Proposition 3.4.2 ([8]) For every Vpl, there is a canonical Vpa over Σ̂ based
upon ∼,≈ and ≡.

Proof Let L be a well-matched language over Σ̂ = (Σcall,Σret,Σloc). Theo-
rem 3.4.1 claims that ∼,≈ and ≡ have finitely many equivalence classes.

The idea is to build an automaton that has equivalence classes of ∼ (for the
empty stack) and couple of equivalence classes of ≈ and ≡ as states. We will
keep as an invariant that after reading a word u ∈ Σ∗ the configuration of the
automaton is:

- ([u]∼,⊥) if u ∈MC(Σ̂).

- (([u]≈, [wn]≡), σ) otherwise, s.t.:

– u = u′cnwn with u′ ∈ Σ∗, cn ∈ Σcall and wn ∈WM(Σ̂)

– u′ = vc1w1...cn−1wn−1 with v ∈ MC(Σ̂), w1, ..., wn−1 ∈ WM(Σ̂),
c1, ..., cn−1 ∈ Σcall

– σ = ⊥([v]∼, c1)(([vc1w1]≈, [w1]≡), c2)...(([u′]≈, [wn]≡), cn)

25



Formally, we construct the Vpa A = (Q, qi, QF , Q × Σcall,∆), where Q =
{[u]∼ | u ∈ MC(Σ̂)} ∪ {([u]≈, [w]≡) | u ∈ Σ∗ ∧ w ∈ WM(Σ̂)}, qi = [ε]∼,
QF = {[u]∼ | u ∈ L} ∪ {([u]≈, [w]≡) | u ∈ L ∧ w ∈ WM(Σ̂)} and with the
following transitions2:

Empty Stack

– for all c ∈ Σcall, ([u]∼, c, ([uc]≈, [ε]≡)) ∈ ∆call

– for all r ∈ Σret, ([u]∼, r,⊥, [ur]∼) ∈ ∆ret

– for all l ∈ Σloc, ([u]∼, l, [ul]∼) ∈ ∆loc

Non-empty Stack

– for all c ∈ Σcall, (([u]≈, [w]≡), c, ([uc]≈, [ε]≡)) ∈ ∆call

– for all r ∈ Σret,

∗ (([u]≈, [w]≡), r, (([u′]≈, [w
′]≡), c), ([u′cwr]≈, [w

′cwr]≡)) ∈ ∆ret

∗ (([u]≈, [w]≡), r, ([u′]∼, c), [u
′cwr]∼) ∈ ∆ret

– for all l ∈ Σloc, (([u]≈, [w]≡), l, ([ul]≈, [wl]≡)) ∈ ∆loc

One can check that our previous invariant is indeed correct and thus A
recognizes exactly L.

�

Proposition 3.4.2 allows us to construct a canonical automaton for a given
Vpl and once this automaton has been computed, we can check equivalence of
Vpa efficiently. Besides the constructed automaton might not be the minimal
Vpa, it can also be exponentially bigger.

For instance, consider the language Lk = {ai.c.Lai .r | i ∈ [1..k]} over the
pushdown alphabet Σ̂ = ({c}, {r},Σloc) with k being a fixed integer and where
Σloc = {a1, a2, ..., ak} and Lai = {w ∈ Σ∗loc | the number of ai in w is even}.
After reading ai, the automaton built using the above proof will go to state
[ai]∼, which are obviously different states for each i ∈ [1..k].

In state [ai]∼, when reading c the automaton will go to state ([aic]≈, [ε]≡).
The problem is [a1c]≈ = [a2c]≈ = ... = [akc]≈, as for all matched-return3 words
v and i ∈ [1..k], ai.c.v 6∈ L. Thus after reading c, the automaton has completely
forgotten which was the initial local action read (i.e. the initial ai) and it has
to wait until reading the last return symbol before checking the stack. Hence,
the automaton needs at least 2k states to memorize all possible combinations
of parity of ai’s.

Remark also that we can build a trivial automaton that uses only O(k)
states. The automaton has just to go to different states after reading c and it
can check the parity of ai with only two states. An example of such automaton
is depicted in Figure 5.1, page 36 (where k = 3).

2Call transitions push the current state and the call symbol, so we omit them for clarity.
3In fact, the only words v ∈ Σ∗, such that aicv ∈ L are v ∈ Lair, which is trivially not a

matched-return word.
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4 Block Visibly Pushdown
Automata

Block Visibly Pushdown Automata (Bvpa) is an automaton model introduced
recently by Chevret and Walukiewicz [14] in order to combine the expressiveness
of Vpa and still conserve some good minimization properties. A Bvpa is a Vpa
where the states can be partitioned into modules (or blocks), such that when
reading a local action the current module is unchanged and if a call is read in
module m, then when we read its matching return the automaton come back to
module m. Another way to express this, is that two positions in a word with
the same stack level l, such that all intermediate positions are on levels greater
than l, will be within the same module1. Moreover, each module has only one
entry-state, i.e. transitions can enter the module by only a single state.

An interesting property of Bvpa is that for each Vpa, one can build an
equivalent Bvpa of quadratic size. Thus minimizing such automaton gives a
Bvpa that is no more than quadratically bigger than the minimal Vpa for the
desired visibly pushdown language, and therefore it gives a quadratic approx-
imation of the minimal Vpa. Bvpa is the only model where a minimization
algorithm is known that achieves a polynomial approximation for Vpa.

Chevret and Walukiewicz proposed a minimization algorithm for Bvpa rela-
tive to so-called associated partition (see Section 4.2 for definition). Thus if one
finds a Bvpa with an optimal associated partition, we can use the minimization
algorithm in order to find the minimal Bvpa for a given Vpl, hence a quadratic
approximation of the minimal Vpa. Unfortunately a method to find such a
partition is not known yet and moreover there exist partitions that lead to an
exponentially larger minimal Bvpa compared to the minimal Vpa.

We shall first introduce in Section 4.1 the model of Bvpa and useful notions
about it. Then, we will describe in Section 4.2 associated partitions and known
results about Bvpa minimization. In Section 4.3, we will prove the hardness
of a module-based minimization of Bvpa. We will conclude by focusing on the
general Bvpa minimization in Section 4.4.

4.1 Definitions

Bvpa are deterministic Vpa with a partition on their states which separates the
states into modules. First, Bvpa assume the stack alphabet to be the cross
product of its states and call alphabet. Recall every Vpa can be transformed
to match this requirement without increasing its number of states 2.

1For this reason the starting module always corresponds to an empty stack.
2See Section 3.1, page 17, or Figure 4.1 for an example.
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Figure 4.1: Two Vpa that recognize the visibly pushdown language L =
(c1(11)∗r|c′(11)∗r)∗ . (c(11)∗r|c′1(11)∗r). On the left, using a single stack-
symbol ∗; on the right, using a uniform stack with γ1 = (c, q0) and γ2 = (c′, q0).

Intuitively, a module is a set of states that has a single entry and every
local transition must stay inside the same module. Also for each call transition
(q, c, q′, (q, c)), going from module m to m′, every return transition going from
module m′ and reading (q, c) as stack symbol must end in module m. Finally,
we forbid for technical reasons to re-use the module of the empty stack, i.e.
no call transitions end in the initial state module. The formal definition is as
follows:

Definition A Vpa A = (Q, qi, QF , Q× Σcall,∆) over Σ̂ = (Σcall,Σret,Σloc) is
a Bvpa, if there exists a partition of the states into modules such that if [q]
denotes the module of state q, the following properties hold:

Empty stack: for all (q, c, q′, (q, c)) ∈ ∆call, [qi] 6= [q′]

Single entry: for all (q1, c1, q
′
1, (q1, c1)), (q2, c2, q

′
2, (q2, c2)) ∈ ∆call,

[q′1] = [q′2] → q′1 = q′2

Return to entry module: for all (q, r, (q′, c), q′′) ∈ ∆ret, [q′] = [q′′]

Local actions preserve module: for all (q, l, q′) ∈ ∆loc, [q] = [q′]

Note that we will usually not mention the stack when defining Bvpa as it
can be directly inferred from the state set and the pushdown alphabet. For the
same reasons, push transitions will be noted (q, c, q′) since the push symbol is
implicitly (q, c). Now, we can see how to build a Bvpa from a Vpa:

Proposition 4.1.1 For every Vpa A, we can compute in quadratic time an
equivalent Bvpa of size O(|A|2).

Proof Let A = (Q, qi, QF ,Γ,∆) be a Vpa. Recall that we assume that Γ =
Q×Σcall and the automaton pushes (q, c) when using a transition from control
state q and reading call symbol c.
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Figure 4.2: Bvpa that recognizes the same language as the Vpa of Figure 4.1
(right), i.e. L(B) = (c1(11)∗r|c′(11)∗r)∗(c(11)∗r|c′1(11)∗r). The Bvpa is built
using Proposition 4.1.1. We have S0 = (I, q0), S1 = (q1, q1), S2 = (q1, q2),
S3 = (q2, q2), S4 = (q2, q1) and S5 = (I, qf ).

The idea of the proof is to build a Bvpa B based on A by simulating a copy
A for each module of B.

Precisely, each module will be associated with a single state of A, and it
will be accessed by any transition pointing to this state (hence we only need a
module per state with ingoing call transitions). Then the module will simulate
A until a call transition that targets another state of A is read.

Formally, letM = {q | ∃(q′, c, q, (q′, c)) ∈ ∆call}∪{I} and B = (Q′, q′i, Q
′
F ,∆

′)
be a Bvpa defined as follows. We set Q′ = {(m, q) | m ∈M , q ∈ Q}, q′i = (I, qi)
and Q′F = {(m, q) ∈ Q′ | q ∈ QF }. The transitions are as follows for all
m,m′ ∈M :

• for each (q, c, q′) ∈ ∆call, ((m, q), c, (q′, q′)) ∈ ∆′call

• for each (q, r, (q′, c), q′′) ∈ ∆ret, ((m, q), r, ((m′, q′), c), (m′, q′′)) ∈ ∆′ret

• for all (q, l, q′) ∈ ∆loc, ((m, q), l, (m, q′)) ∈ ∆′loc

We can easily check that B is a Bvpa by setting the module of (m, q) ∈ Q′
to be m (note the size of B is indeed O(|A|2)). Finally, it recognizes exactly the
same language of A as after reading a word w if B is in state (m, q) then the
current state of A is q.

�

Example Consider the Vpa of Figure 4.1 (right). It is not a Bvpa as q1 and
q2 must belong to the same module (due to local transitions) but this particular
module possesses two entry-states (q1 and q2 because of transitions (q0, c, q1) and
(q0, c

′, q2)). However, we can build a Bvpa using Proposition 4.1.1 (illustrated
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in Figure 4.2) that has only two more states. In this Bvpa, we can clearly see
the states S1 and S2 (resp. S3 and S4) simulating A when the last transition
used was (q0, c, q1) (resp. (q0, c

′, q2)).

Remark When a Bvpa has k modules, we will usually refer as a k-module
Bvpa. Also, we name the module of the initial state of a Bvpa the empty
stack module, and the other modules are the call modules.

4.2 Associated partition minimization

In the last section, we have introduced how to build a Bvpa of quadratic size
from any Vpa and thus the approximative minimization of Vpa can be achieved
through minimization of Bvpa. Unfortunately, we do not yet know how to
minimize efficiently Bvpa, however [14] presents a way to minimize any Bvpa
under the assumption to keep the same module partition (the minimization
applies to each module separately). More precisely, for any Bvpa B there is a
unique (up to isomorphism) minimal Bvpa Bmin that enters the same module
as B at any call. In particular, B and Bmin have the same number of modules.

Definition Let B = (Q, qi, QF ,∆) be a k-module Bvpa over the visibly push-
down alphabet Σ̂ = (Σcall,Σret,Σloc) and M the set of its call modules (|M | =
k − 1). The associated partition of B is the partition of LM = {u.c | u ∈
MR(Σ̂), c ∈ Σcall, u.c ∈ Pref(L)} into |M | disjoint sets (Lm)m∈M such that:

∀m ∈M,Lm = {u.c | u.c ∈ LM ∧ [q] = m s.t. qi
uc−→B q}

Theorem 4.2.1 ([14]) Given a Bvpa B, we can compute in cubic time the
unique (up to isomorphism) minimal equivalent Bvpa that has the same asso-
ciated partition.

The idea behind the proof of the previous theorem is first to build an Ecda
E (another variant of Vpa defined in Section 5.1.1) based on the original Bvpa
B. Then we can minimize E and convert back to Bvpa Bmin in order to obtain
a minimal unique automaton with the same module partitioning as B. Also,
Theorem 4.2.1 is a promising first step in the minimization of Vpa. If we start
from a Bvpa that has the optimal associated partition, we can compute a good
approximation of the minimal Vpa. The actual problem is to find such a Bvpa
to start our minimization, and finding a good partition seems as hard as the
general minimization of Bvpa (see next section).

Chevret and Walukiewicz also showed that some Bvpa have a really un-
efficient associated partition, and their minimization leads to an exponential
blow-up if we compare to the minimal Bvpa. For instance, consider the visibly
pushdown language3 Lk. In Section 3.4, we have stated that there exists a Vpa
of size O(2k) which recognizes Lk (k ∈ N). This Vpa Ak is in fact a Bvpa

3The definition of Lk is given in Section 3.4, page 26. An example of Lk for a fixed integer
is illustrated in Figure 5.1, page 36 (where k = 3).
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that has two modules: the empty stack module and a single call module mc. Its
associated partition is Lmc = {a1c, ..., akc} and Ak is already the smallest Bvpa
with such associated partition. However, there exists obviously a Bvpa that has
k modules (one for each aic, i ∈ [1..k]) and only O(k) states (see page 26 for
the construction).

4.3 Module minimization

The minimization problem for Bvpa can be stated in different ways, and an
interesting one is when we want to minimize both the number of modules and
the size of them. Precisely, we do not want to minimize the total number of
states of the automaton, but rather the number and the size of the modules.
In practice, this is motivated when each module represents a subroutine of a
recursive program, and we want to bound both the number of subroutines and
their maximum size.

Let us formally define the aforementioned decision problem:

Definition (K-s-min-bvpa)
Instance: A Bvpa B and two integers k and s given in unary.
Question: Is there a k-module Bvpa A, such that L(A) = L(B) and the

size of each module is bounded by s?

Proposition 4.3.1 K-s-min-bvpa is in Np.

Proof K-s-min-bvpa is indeed in Np as one can guess a Vpa A and a partition
of its states4, then check if the automaton A with this partition is a k-module
Bvpa and that each module does not exceed s states. Finally, we can check in
polynomial time if two Bvpa are equivalent, using Proposition 2.3.1 since Bvpa
are naturally also Vpa.

�

Such a minimization of Bvpa is in fact computationally hard and we can
prove it using a reduction to a variant of Bin-packing that we call Set-union-
packing. Recall bin packing is the problem of finding a partition of a set of
weighted objects into bins that have a limited capacity, such that each bin
does not overfill and the total number of bins used is minimal. For the Np-
completeness of (unary) Bin-packing, we guide the reader toward [7].

Definition (Bin-packing)
Instance: A finite set U of items, a size v(u) ∈ N+ for each u ∈ U and two

integers k and s, all given in unary.
Question: Is there a partition of U into k disjoint sets U1, U2, ..., Uk such

that for each 1 ≤ j ≤ k,
∑
u∈Uj

v(u) ≤ s.

4Remark there are at most O(2K) possible Bvpa and partitions with K = k · s.
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Definition (Set-union-packing)
Instance: A collection S1, S2, ..., Sn of subsets of a finite set U and two

integers k and s, all given in unary.
Question: Is there a partition of {1, 2, ..., n} =

⋃
i∈[1..k]

Xi such that for each

1 ≤ j ≤ k, |
⋃
i∈Xj

Si| ≤ s?

Lemma 4.3.2 Set-union-packing is Np-complete.

Proof First, we can see that Set-union-packing is in Np as one can guess a
partition of {1, 2, ..., n} then check in linear time that the partition satisfies the
size condition on each set.

Let I = (U, v, k, s) with U = u1, u2, ..., un be an instance of Bin-packing.
Let us build an instance I ′ = (U ′, (Si)1≤i≤n, k

′, s′) of Set-union-packing.
We set U ′ = {ui | u ∈ U ∧ 1 ≤ i ≤ n} and we set for each 1 ≤ i ≤ n,

Si = {u1
i , ..., u

v(u)
i } (recall that the weights v(u) are given in unary). Finally we

set k′ = k and s′ = s.
Let us prove now that I has a solution for Bin-packing if and only if I ′ has

a solution for Set-union-packing.
Assume we can find a k partition of U into disjoint sets U1, U2, ..., Uk such

that for each 1 ≤ j ≤ k,
∑
u∈Uj

v(u) ≤ s. Then the partition X1, X2, ..., Xk of

{1, 2, ..., n} s.t. 1 ≤ j ≤ k, Xj = {i | ui ∈ Uj} is a solution of I ′. Indeed, for
each 1 ≤ j ≤ k,

∑
u∈Uj

v(u) ≤ s we have that for each 1 ≤ j ≤ k, |
⋃
i∈Xj

Si| ≤ s by

definition of I ′ (note that the Si are disjoint). Moreover, since U1, U2, ..., Uk is
a partition of U , X1, X2, ..., Xk is effectively a partition of {1, 2, ..., n}.

Now assume there is a partition X1, X2, ..., Xk of {1, 2, ..., n} such that 1 ≤
j ≤ k, |

⋃
i∈Xj

Si| ≤ s. In the same fashion as previously, we build the solution

Γ = U1, U2, ..., Uk for I, such that for each 1 ≤ j ≤ k, Uj = {ui | i ∈ Xj}.
Since X1, X2, ..., Xk is a partition {1, 2, ..., n}, every u ∈ U should belong to a
set Ui, and thus Γ is indeed a partition of U . Finally, since for every 1 ≤ j ≤ k,
|
⋃
i∈Xj

Si| ≤ s we get that for every 1 ≤ j ≤ k,
∑
u∈Uj

v(u) ≤ s.
�

Lemma 4.3.3 K-s-min-bvpa is NP-complete.

Proof First, recall that K-s-min-bvpa is in Np as stated by Proposition 4.3.1.
The idea of the proof is a reduction from decision problem Set-union-

packing that has been shown to be NP-complete in Lemma 4.3.2. Let I =
(S1, S2, ..., Sn, U, k, s) be an instance of Set-union-packing. We will build a
Bvpa that recognizes the language LI = {ci.u.ru | u ∈ Si} over the visibly
pushdown alphabet Σ̂ = ({ci | 1 ≤ i ≤ n}, {ru | u ∈ U}, U).

Let B = (Q, q0, QF ,∆) be a Bvpa over Σ̂. We set Q = {q0, q1} ∪ {qu | u ∈
U} ∪ {qf}, with QF = {qf}. We use the following transitions:

• for each 1 ≤ i ≤ n, (q0, ci, q1) ∈ ∆call
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• for each u ∈ U , (q1, u, qu) ∈ ∆loc

• for each u ∈ U , (qu, ru, (q0, ci), qf ) ∈ ∆ret ⇔ u ∈ Si

It is straightforward that B recognizes LI , and also that B is a Bvpa (it has
only two modules {q0, qf} for the empty stack and the rest of the states).

Now let (B, k+ 1, s+ 1) be an instance of K-s-min-bvpa and let us prove it
has a solution if and only if I has a solution.

Assume there exists a partition X = X1, X2, ..., Xk of {1, 2, ..., n} such that
X is a solution for I. Then we build the following Bvpa C = (Q′, q′0, Q

′
F ,∆

′)
such that Q′ = {q′0} ∪ {q′j | 1 ≤ j ≤ k} ∪ Q′J ∪ {q′f} with Q′J = {q′j,u | ∃i ∈
Xj , u ∈ Si} and Q′f = {q′f}. C has the following transitions:

• for each 1 ≤ i ≤ n, (q′0, ci, q
′
j) ∈ ∆call ⇔ i ∈ Xj

• for each 1 ≤ j ≤ n, q′j,u ∈ Q′J , (q′j , u, q
′
j,u) ∈ ∆loc

• for each q′j,u ∈ Q′J , (q′j,u, ru, (q
′
0, ci), q

′
f ) ∈ ∆ret ⇔ i ∈ Xj ∧ u ∈ Si

There is a simple partition of Q′ into modules (in fact there is only one
possible) by letting the empty stack module mI to be {q′0, q′f}, and then the
k other modules named mj for each 1 ≤ j ≤ k are the union of the state q′j
and the states q′j,u ∈ Q′J . Let us check that C is indeed a Bvpa against this
partitioning. There is no call transitions that end in the empty stack module,
all return transitions come back to the original module (i.e. {q′0, q′f}), local
transitions stay in the same module and finally there is only a single entry
state by module (q′j for each module mj). Moreover each module mj is of size
bounded by s+ 1 as mj = {q′j} ∪ {q′j,u ∈ Q′J} = {q′j} ∪ {q′j,u | u ∈

⋃
i∈Xj

Si}, i.e.

|mj | ≤ |
⋃
i∈Xj

Si|+ 1.

Eventually we have to verify that C recognizes exactly LI . Consider a word
w = c.u.r and let examine when it is accepted by looking at possible ways
to reach q′f : w is accepted by C iff c = ci ∈ Σcall for some i ∈ [1..n] and

(q′j , (q
′
0, ci))

u.r→C (q′f ,⊥) s.t. Xj contains5 i, i.e. if u ∈ {u ∈ Si | i ∈ Xj}
and (q′j,u, (q

′
0, ci))

r→C (q′f ,⊥) since (q′j , (q
′
0, ci))

u→C (q′j,u, (q
′
0, ci)), and thus

r = ru ∈ Σret and u ∈ Si as (q′j,u, (q
′
0, ci))

ru→C (q′f ,⊥) is the only transition
which reaches q′f from q′j,u. Hence w ∈ L(C)⇔ w ∈ LI .

Now assume that K-s-min-bvpa has a solution for (B, k+1, s+1) and name
A such a solution, i.e. A = (Q, q0, QF ,∆) is a (k+ 1)-modules Bvpa with each
module size bounded by s and it recognizes LI . Since ε 6∈ LI , A needs at least
two states for the empty stack module, an initial state q0 and a final one qf .
Also there cannot be any loop on any states, so we can split Q into three sets
Q0, Q1, Q2 s.t. Q0 = {q0, qf} (we can assume there is only one final state). Q1

5Note that j exists and is unique since X is a partition of [1..n].
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is the set of states reached after having read the first letter and Q2 the second
letter. Between Q1 and Q2 there can be only local transitions, so states in Q2

reachable from a state q ∈ Q1 belong to the same module as q. Thus every state
in Q1 determines a different module, every state in Q2 belongs to one of these
modules, and Q0 is the empty stack module. This directly implies |Q1| ≤ k,
and thus we can define Q1 = {q1, q2, ..., qk}.

Let X = X1, X2, ..., Xk be a partition of [1..n] such that ∀1 ≤ j ≤ k,

Xj = {i | (q0,⊥)
ci→A (qj , (q0, ci))}. Remark this partition is well defined as

A is deterministic and of course each ci ∈ Σcall has to follow a transition of A
as they all appear in at least one word of LI . There remains one last thing to
prove, that X is a solution for I, formally that ∀j ∈ [1..k], |

⋃
i∈Xj

Si| ≤ s.

Assume ∃j ∈ [1..k] s.t. |
⋃
i∈Xj

Si| > s. As the modules of A are bounded

by s + 1, ∃u1, u2 ∈
⋃
i∈Xj

Si such that u1 6= u2, (qj , (q0, ci))
u1→A (q′, (q0, ci)) and

(qj , (q0, ci))
u2→A (q′, (q0, ci)) with q′ ∈ Q2, [q′] = [qj ] and i ∈ Xj .

Also the words ci.u1.ru1
and ci.u2.ru2

have to be recognized so we must have

(q′, (q0, ci))
u1→A (qf ,⊥) and (q′, (q0, ci))

u2→A (qf ,⊥). This implies that the word
ci.u1.ru2

(as well as ci.u2.ru1
) is also recognized, thus L(A) 6= LI and it leads

to a contradiction.
�

4.4 General minimization

The minimization problem introduced in the last section can be seen as a rather
difficult problem compared to the general minimization. Indeed, the traditional
minimization asks only to minimize the number of states of an automaton,
contrary to K-s-min-bvpa that forces both the number of modules and the
size of each module to be minimal. This problem is in fact much harder that
the normal minimization as we can reduce one to the other problem, but the
converse is not known yet. Let us show here this reduction.

Definition (Min-bvpa)
Instance: A Bvpa B and an integer k.
Question: Is there a Bvpa A, such that L(A) = L(B) and |A| ≤ k ?

Proposition 4.4.1 Min-bvpa ≤ K-s-min-bvpa.

Proof Let (A, k) be an instance of Min-bvpa. (A, k) is a positive instance iff
there exists a Bvpa using between 1 and k modules that recognizes L(A). If
such a Bvpa uses i ∈ [1..k] modules, then each module cannot have more than
k
i states.

Hence, we can call k times K-s-min-bvpa with input (A, i, ki ) for 1 ≤ i ≤ k.
If one of those calls answers positively, then we ensure that a k-states Bvpa
exists. If we get only negative answers, then no k-states Bvpa exist. �
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5 Minimization of variants of
VPA and subclasses of VPL

We have previously seen that it is computationally hard to minimize Bvpa. Al-
though Bvpa are close in succinctness to Vpa, their minimization seems as hard
as in the case of Vpa. Apart from Bvpa, several other variants of Vpa have
been introduced in order to achieve a polynomial-time minimization. Among
those variants, Single-Entry Vpa [8] and Multi-Entry Vpa [3] have been intro-
duced to model different kind of recursive programs. Both these variants have
been shown to be special cases of a larger model: the Call Driven Automata
(Cda) introduced in [14]. All these variants share with Bvpa some module par-
titioning of the states, and for instance in the Cda case each module represents
a set of call symbols and each time the automaton reads some call symbol c, it
has to go inside the corresponding module, hence the name of Call Driven.

The minimization of Cda is obtained through the minimization of a simpler
pushdown machine: Expanded Call Driven Automaton (Ecda). This model
has been introduced by Chevret and Walukiewicz in [14] to serve as a simple
basic Vpa model in order to show minimization of more complex models such
as Sevpa, Mevpa and Cda. Unfortunately, although Ecda can be minimized
within polynomial time, they are exponentially less succinct that both Bvpa
and Vpa, i.e. there exist Vpl such that a minimum Ecda recognizing it is of
size O(2k) whereas minimum Bvpa and Vpa are of size O(k).

All these variants have shown to be either difficult to minimize (e.g. finding
the optimal partition of Bvpa) or easy to minimize1 but the minimal automaton
can be exponentially larger than the minimal Vpa (e.g. Cda, Sevpa, Mevpa
and Ecda). We investigate in Section 5.2, models of automata that are simul-
taneously easy to minimize and do not show any blow-up against minimal Vpa
at the cost of expressiveness, i.e. automata that recognize subclasses of Vpl.

In Section 5.1, we will describe one of the general variants of Vpa which is
Ecda and we will introduce a direct translation from Vpa to Ecda. This trans-
lation can be used to find a canonical representative of a Vpl as well as giving a
translation between these two classes that does not use congruences. Then, we
will extend this translation to the general case of Cda. In Section 5.2, we will
focus on several subclasses of Vpl in order to explore where the minimization
of Vpa seems to start to be intractable. We will conclude with Section 5.3
by giving a reduction from one subclass of Vpa to a minimization problem on
finite state machines. This reduction is intended to show the actual difficulty in
establishing the tractability frontier for Vpa minimization.

1We use here the traditional computability analysis sense of easy, i.e. within polynomial
time.
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Figure 5.1: The minimal Vpa recognizing the Vpl L3 = {ai.c.Lai .r | 1 ≤ i ≤ 3}
over the pushdown alphabet Σ̂ = ({c}, {r}, {a1, a2, ..., an}), where Lai is the
regular language over Σloc = {a1, a2, ..., an} that contains all words with an
even number of ai.

5.1 Direct translations

5.1.1 From Vpa to Ecda

An Expanded Call Driven Automaton is a Bvpa where each call symbol has its
own dedicated module. Traditionally, in Bvpa a module can be characterized
by a set of call-transitions (i.e. pairs of the form (q, c) ∈ Q×Σcall) that end in
the entry-state of the module. In Ecda, the call symbol determines uniquely
which is the module to invoke and therefore the automaton has always |Σcall|+1
modules: one for each call symbol, and one for the empty stack.

Definition A Bvpa A = (Q, qi, QF ,∆) over Σ̂ = (Σcall,Σret,Σloc) is an Ecda
if ∆ has the following property:

• for all (q1, c1, q
′
1), (q2, c2, q

′
2) ∈ ∆call, q

′
1 = q′2 ⇔ c1 = c2

Since each module can be accessed through a unique call symbol, we can
refer to mc for the module of call symbol c, and mI for the empty stack module.

As stated before, Ecda can be efficiently minimized and moreover contrary
to Vpa, the minimum Ecda for a given Vpl is unique, as the following theorems
show.

Theorem 5.1.1 ([14]) For every Vpl L ⊆WM(Σ̂) over a pushdown alphabet
Σ̂, there exists a unique (up to isomorphism) minimum-state Ecda recognizing
L.
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Proof (Sketch) The idea of the proof is to define an equivalence relation
for each module of the Ecda, then build a syntactic Ecda based on these
relations. Precisely, we define the following equivalence relations for every
w1, w2 ∈WM(Σ̂):

• w1 ∼I w2 iff ∀v ∈ Σ∗, w1.v ∈ L⇔ w2.v ∈ L

• for all c ∈ Σcall, w1 ∼c w2 iff ∀u, v ∈ Σ∗, u.c.w1.v ∈ L⇔ u.c.w2.v ∈ L

Note that ∼I is exactly ≡ (defined in Section 3.4, page 25) and all ∼c include
≡, hence from Theorem 3.4.1 all these relations have finite index. We will write
[w]I for the equivalence class of w based on ∼I (resp. [w]c for ∼c).

We can construct now an Ecda that uses as states the equivalence classes
of these relations. Formally, we build the Ecda A = (Q, qi, QF ,∆) with Q =
{(a, [w]a) | a ∈ Σcall ∪ {I} ∧ w ∈WM(Σ̂)}, qi = (I, [ε]I), QF = {(I, [w]I) | w ∈
L} and ∆ is defined as follows for all a ∈ Σcall ∪ {I}:

• for all c ∈ Σcall, ((a, [w]a), c, (c, [ε]c)) ∈ ∆call

• for all r ∈ Σret, c ∈ Σcall, ((c, [w]c), r, ((a, [w
′]a), c), (a, [w′.c.w.r]a)) ∈ ∆ret

• for all l ∈ Σloc, ((a, [w]a), l, (a, [w.l]a)) ∈ ∆loc

We can easily check that A is well-defined and that A is an Ecda (the
module of state (a, [w]a) is simply a). Moreover, this Ecda can be shown to
be the unique (up to isomorphism) minimal automaton that recognizes L as a
homomorphism between any Ecda recognizing L and A can be exhibited.

�

Theorem 5.1.2 ([14]) For any Ecda A, we can compute the minimal Ecda
recognizing the same language in cubic time.

We can now describe how to explicitly build an Ecda from any Vpa. Of
course, the construction can lead to an exponential blow-up but this blow-up
cannot be avoided in general. For instance consider the language Lk (defined
in Section 3.4, page 26), where if all transitions reading a c lead to the same
state then the automaton needs O(2k) states, whereas the minimal Vpa is of
size O(k). As the input can be any Vpa, this construction allows to determinize
in the same time as building an equivalent Ecda.

Theorem 5.1.3 Given a (N)Vpa A over Σ̂ = (Σcall,Σret,Σloc) recognizing a
Vpl L ⊆WM(Σ̂), we can build an Ecda E recognizing the same language such

that |E| ≤ |Σcall + 1| · 2|A|2 .

Proof The main idea is to use a similar construction as for determinization,
i.e. we will keep track of summary edges in order to simulate the automaton
after reading a call.

Contrary to determinization, we have also to remember in the control state
the last unmatched call symbol read (this will indicate what is the current
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module of the Ecda). We refer the reader to the proof of Theorem 2.1.1 (page
9) for the definitions of Id and Π.

Let A = (Q,QI , QF ,Γ,∆) be a (N)vpa over Σ̂ = (Σcall,Σret,Σloc). We
build the Ecda E = (Q′, q′i, Q

′
F ,∆

′) with Q′ = Σcall ∪ {mI} × 2Q×Q, q′i =
(mI , IdQI

), Q′F = {(mI , S) ∈ Q′ | Π2(S) ∩ QF 6= ∅}. mI is an extra symbol
that designates the initial module. The transition set of the Ecda is as follows:

• ∀c ∈ Σcall, S ∈ Q′, (S, c, (c, IdQc)) ∈ ∆′call
⇔ Qc = {(q, q) ∈ Q2 | ∃q′ ∈ Q, γ ∈ Γ, (q′, c, q, γ) ∈ ∆call}

• ∀r ∈ Σret, ((c, s), r, ((m, s′), c), (m, s′′)) ∈ ∆′ret
⇔ s′′ = {(q, q′) ∈ Q2 | ∃q1, q2, q3 ∈ Q, γ ∈ Γ, (q, q1) ∈ s′ ∧ (q1, c, q2, γ) ∈
∆call ∧ (q2, q3) ∈ s ∧ (q3, r, γ, q

′) ∈ ∆ret}

• ∀l ∈ Σloc, ((m, s), l, (m, s′)) ∈ ∆′loc
⇔ s′ = {(q, q′′) ∈ Q2 | ∃q′ ∈ Q, (q, q′) ∈ s ∧ (q′, l, q′′) ∈ ∆loc}

First of all, let us check that E is an Ecda. For that purpose, associate
the state (m,S) ∈ Q′ to the module m. This way, no call transitions go to the
empty stack module (module mI), all call transition c go to the specific module
c, all return transitions come back to their original module and at last local
transitions do not change the current module. Moreover, each module has a
unique entry-state, i.e. (mI , IdQI

) for the empty stack module and (c, IdQc
) for

each module2 c.
Now, we have to verify that L(E) = L(A). It is essentially due to the same

reasons as in the determinization (we use the same invariant), but this time
the summary-set S in a state (m,S) with m 6= mI does not contain reachable
states. This is mainly due to the fact that we have lost all information when
reading a call symbol c. But since we have restrained ourselves to well-matched
words, we cannot finish in a state of the form (m,S) with m 6= mI .

The only final states are of the form (mI , S), and every time such a state is
reached we know that the stack is empty. This means that the set of summary-
edges for final states does only contain reachable states. Precisely, whenever E
reaches a state (mI , S) after reading a word w ∈ Σ∗, then Π2(S) is the set of
reachable states for A after reading w.

At last, it is clear that |E| ≤ |Σcall + 1| · 2|A|2 .
�

Example Consider the Vpa of Figure 5.1. It is clearly not an Ecda as there ex-
ist several call transitions that lead to different states, e.g. (1, c, 4, ∗), (2, c, 5, ∗)
and (3, c, 6, ∗).

Once we use the previous construction, the states 0, 1, 2, 3, 10 become (mI , 0),
(mI , 1), (mI , 2), (mI , 3) and (mI , 10), the later is the only final state. When
reading a c in (mI , {(0, 1)}), (mI , {(0, 2)}) or (mI , {(0, 3)}), we go to the state
(c, {(0, 1), (0, 2), (0, 3)}). Then we have to memorize which are the ai’s that are

2Remark that several modules can have the same starting summary-set, i.e. it is possible
that c 6= c′ and Qc = Qc′ . It is mainly for that purpose that we have to keep separate the
module and the summary-set.
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in even numbers, so we need 8 more states. Each of these states has as much as
needed return transitions to (mI , 10), depending on the parity of the different
ai’s.

5.1.2 From Vpa to Cda

Call Driven Automata (Cda) are an extension of Ecda that generalize interme-
diate models such as Sevpa and Mevpa. The minimization of Cda can be done
through the minimization of Ecda (see [14]) since from any Cda we can build
an Ecda of size no more that |Σcall| times larger, where Σcall is the input call
alphabet. Therefore, we can re-use the translation of Theorem 5.1.3 to build a
Cda of size O(|Σcall|2 ·2n

2

) from a Vpa of size n. However, we can build directly
a Cda using a similar construction as previously and thus the factor |Σcall| can
be skipped. This construction is more intended to show how to generalize the
previous proposition than of practical use for minimization, since in order to
minimize Cda the only known algorithm has to build an Ecda.

Cda are Vpa that have a partition of its states into modules, in the same
fashion as all variants of Vpa seen so far, but rather that a module is specific
to a unique call symbol as Ecda, a module can be accessed by a subset of the
call alphabet. Moreover unlike Bvpa, Cda can have several entry-states for
each module, thus some Cda are not Bvpa. The other rules on the structure
of modules and transitions are similar to Bvpa and Ecda.

Definition A Vpa A = (Q, qi, QF , Q× Σcall,∆) over Σ̂ = (Σcall,Σret,Σloc) is
a Cda, if there exists a partition of the states into modules noted [] and the
following properties hold:

Empty stack: for all (q, c, q′, (q, c)) ∈ ∆call, [qi] 6= [q′]

One target state per call: for all (q1, c1, q
′
1, (q1, c1)), (q2, c2, q

′
2, (q2, c2)) ∈

∆call, c1 = c2 → q′1 = q′2

Return to entry module: for all (q, r, (q′, c), q′′) ∈ ∆ret, [q′] = [q′′]

Local actions preserve module: for all (q, l, q′) ∈ ∆loc, [q] = [q′]

In the same fashion as Bvpa, we will omit to write the push symbol in a call
transition as it can be inferred from the other parameters.

Example The automaton of Figure 4.1, page 28, is a Cda. One can notice it
is clearly not a Bvpa (number of entry-states).

Theorem 5.1.4 Given a Vpa A over Σ̂ = (Σcall,Σret,Σloc) recognizing a Vpl
L ⊆ WM(Σ̂), we can build a Cda C recognizing the same language such that

|C| ≤ 2 · 2|A|2 .
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Proof The construction is almost the same than in the case of Ecda but since
one module can have several entry-states and represent several call symbols, we
do not have to make |Σcall| + 1 modules, two are enough: one for the empty
stack and one for all the call symbols. Also now that the states do not contain
the last unmatched call, we have to push it on the stack.

Let A = (Q,QI , QF ,Γ,∆) be a Nvpa over Σ̂ = (Σcall,Σret,Σloc). We build
the Cda C = (Q′, q′i, Q

′
F ,∆

′) with Q′ = {mI ,mcall} × 2Q×Q, q′i = (mI , IdQI
),

Q′F = {(mI , S) ∈ Q′ | Π2(S)∩QF 6= ∅} and the transition function is as follows:

• ∀c ∈ Σcall, S ∈ Q′, (S, c, (c, IdQc), (S, c)) ∈ ∆′call
⇔ Qc = {(q, q) ∈ Q2 | ∃q′ ∈ Q, (q′, c, q, γ) ∈ ∆call}.

• ∀r ∈ Σret, ((m0, s), r, ((m, s
′), c), (m, s′′)) ∈ ∆′ret

⇔ s′′ = {(q, q′) ∈ Q2 | ∃q1, q2, q3 ∈ Q, γ ∈ Γ, (q, q1) ∈ s′ ∧ (q1, c, q2, γ) ∈
∆call ∧ (q2, q3) ∈ s ∧ (q3, r, γ, q

′) ∈ ∆ret}

• ∀l ∈ Σloc, ((m, s), l, (m, s′)) ∈ ∆′loc
⇔ s′ = {(q, q′′) ∈ Q2 | ∃q′ ∈ Q, (q, q′) ∈ s ∧ (q′, l, q′′) ∈ ∆loc}

The modules of C are mI for the empty stack and mcall for all call symbols.
See the proof of Theorem 5.1.3 for the correctness of the construction. �

Note the well-matched constraint cannot be avoided in the construction since
when reading a call symbol, the automaton has to move to a unique state
whatever was read before. Thus the set of summary edges is accurate (i.e. for
the set S, Π2(S) is exactly the set of reachable states) only when no more call
have been postponed and so the stack is empty.

Also when the input Vpa A is deterministic, we can reduce the module of
the empty stack to the original states of A and thus the Cda would be of size
|A| + 2|A|

2

. In fact, the corresponding Cda has just to remember what state
is reached after reading a return symbol that comes back to the empty stack
module. Since A is deterministic, a single state can be reached.

5.2 Stack-depth 1 subclass

Since a minimization algorithm is not yet known for Vpa or any of its variants
that are polynomially close in size, we shall try to focus on subclasses of Vpl
instead of trying to constrain the structure of Vpa (for instance by assuming
a modular structure). We will explore here one of the simplest subclass of
Vpa, the class of languages that use only a single space in the stack. All these
languages are trivially regular, however the minimal Vpa can be smaller than
the minimal Dfa recognizing such languages up to a factor |Γ|, where Γ is the
stack alphabet of the Vpa.

Proposition 5.2.1 Let A be a Dfa over Σloc and let LA = {c.w.r | w ∈ L(A)}
be a Vpl over Σ̂ = ({c}, {r},Σloc). We can find in polynomial time the smallest
Vpa recognizing LA.
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Proof Let A′ = (Q, q0, QF , δ) be the minimal Dfa for LA. We can build the
Vpa C = (Q ∪ {qi, qf}, qi, {qf}, {∗},∆) such that

• (qi, c, q0, ∗) ∈ ∆call

• (q, l, q′) ∈ ∆⇔ δ(q, l) = q′

• ∀q ∈ QF , (q, r, ∗, qf ) ∈ ∆ret

Obviously a word w is accepted if and only if it is of the form c.w′.r with
w′ ∈ L(A), and thus C recognizes LA. This Vpa can be computed in time
O(|A| · |Σloc| · log |A|) using a well known algorithm on Dfa minimization [22].

Now let us consider a minimal Vpa C′ = (Q′, q′i, Q
′
F ,Γ

′,∆′) for LA. C′
must first check that we read only a single c and thus C′ must have indeed
a state q′0 different than q′i, and the transition3 (q′i, c, q

′
0, (q

′
i, c)). Also, note

that we cannot allow a back-transition from q′0 to q′i since it would allow C′
to accept words that contain more than one symbol c. So q′i has only one
outgoing transition, and we know that all states reachable from q′0 should not
have any outgoing call transitions, hence using Proposition 3.1.2 (page 17),
we have that Γ′ is reduced to the symbol (q′i, c). Also, C′ needs a final state
different that q′i, q

′
0 for obvious reasons, let us call it q′f . Let Q′F denote the set

{q′ ∈ Q′ | (q′, r, (q′i, c), q
′
f ) ∈ ∆′ret}. Note q′f 6∈ Q′F , otherwise r would not be

the last symbol read, or several r could have been read. Finally, |C′| ≥ |A′|+ 2,
as otherwise we can build a Dfa that recognizes L(A) smaller than |A′| using
C′ and Q′F .

�

We can slightly improve Proposition 5.2.1 by increasing the number of call
or return symbols, as long as we do not force any relation between calls and
returns.

Proposition 5.2.2 Let A be a Dfa over Σloc and let LA = {c.w.r | w ∈
L(A), c ∈ Σcall, r ∈ Σret} be a Vpl over Σ̂ = (Σcall,Σret,Σloc). We can find in
polynomial time the smallest Vpa recognizing LA.

Proof The proof is identical to the previous one, but in this case more stack
symbols can be produced after reading the first call symbol (exactly |Σcall|).
Anyway, since when reading the last return letter all possible stack symbols have
to lead to the final state, they are equivalent and one can build the resulting
Vpa such that it uses a unique call symbol. �

So far, we have reduced automata where the stack symbol put on the stack
was completely irrelevant, and thus a single dummy symbol was enough. An
interesting question likely to arise is whether Vpa and Dfa are equivalent model
in term of space consumption when the stack alphabet is reduced to 1. Another
constraint can be that only well-matched words are considered, as otherwise we

3Precisely, if C′ loops on q′i when reading c, the automaton would have no way to distinguish
the case that it has read only one symbol, compare to the case where it has read several c’s.
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Figure 5.2: On the left, a minimal Vpa recognizing L = {c.r2} over ({c}, {r}, ∅)
(above) and the minimal Dfa that recognizes the same language (below). On
the right, a minimal Vpa recognizing L = {cn rm | n ∈ N+,m ∈ N+,m ≤ n}.

can use the special bottom symbol to save some states compare to a Dfa as
illustrated in Figure 5.2 (left). Naturally, if the stack is not reduced to a single
space, non-regular languages can be recognized (see Figure 5.2, right).

Proposition 5.2.3 Every Vpa A over Σ̂ s.t. L(A) ⊆ WM(Σ̂), A uses only
one stack symbol and one stack space is minimizable.

Proof Let A = (Q, qi, QF ,Γ,∆) be a Vpa with the same assumptions that in
the proposition (i.e. |Γ| = 1 and ∀v ∈ L(A),∀u ∈ pref(v), u ∈ MR(Σ̂) and the
number of unmatched calls in u is at most 1). W.l.o.g we assume that all states
of Q are reachable and co-reachable 4 and that the unique symbol of Γ is ∗.

First notice that A cannot use transitions of the form (q, r,⊥, q′) since L(A)
is well-matched. Second remark that the states can be divided into two sets Q0

and Q1 such that:

1. qi, qf ∈ Q0

2. ∀(q, c, q′, ∗) ∈ ∆call, q ∈ Q0 and q′ ∈ Q1

3. ∀(q, r, q′, ∗) ∈ ∆ret, q ∈ Q1 and q′ ∈ Q0

4. ∀(q, l, q′) ∈ ∆loc, q ∈ Q0 ⇔ q′ ∈ Q0

The above statement is correct as we can always set Q0 as the set of states
reachable with an empty stack and Q1 its complement against Q. This partition
is sound as all states are reachable and co-reachable.

Now consider the Dfa A = (Q, qi, QF , δ) over Σ∗ defined as δ(q, a) =
q′ ⇔ a ∈ Σcall, (q, a, q

′, ∗) ∈ ∆call ∨ a ∈ Σret, (q, a, ∗, q′) ∈ ∆ret ∨ a ∈
Σloc, (q, a, q

′) ∈ ∆loc. A recognizes exactly L(A) as whenever A is in state
q, if q ∈ Q0 then the configuration of A must be (q,⊥) and if q ∈ Q1, the
configuration of A must be (q,⊥∗).

Hence minimizing A will keep this partition of the states, as the minimization
will only merge the states q and q′ if they are both in Q0 or both in Q1. Thus
we can easily construct a Vpa based on the minimal Dfa using the visibly

4Otherwise we can eliminate unreachable states in polynomial time.
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pushdown alphabet. This Vpa is minimal as otherwise we can apply the same
construction as above and find a smaller Dfa than the minimal one.

�

This technique starts to present some severe limitations when we start to
generalize a little more. For instance, if the call symbol influences what should
be the last return symbol, then the Vpa recognizing such language is generally
much smaller than a Dfa, as it can uses its one memory space to remember
what was such a symbol and reuse it at the end. An example of such a language
can be the Vpl L = {ci ri | i ∈ [1..k]} for some integer k over the pushdown
alphabet Σ̂ = ({c1, c2, ..., ck}, {r1, r2, ..., rk}, ∅). We can easily build a Vpa of
size 3 but any Dfa has to remember what was the original call symbol in its
state since it has no other kind of memory, and therefore its minimum size is
k + 2. However, we can still minimize such automaton by carefully considering
couple (c, r) ∈ Σcall × Σret such that c.L.r ⊆ LA, with L being a fixed regular
language.

Proposition 5.2.4 Let A be a Dfa over Σloc and let LA =
⋃

(c,r)∈X
Lc,r with

X ⊆ Σcall×Σret and Lc,r = {cw r | w ∈ L(A)} be a Vpl over (Σcall,Σret,Σloc).
We can find in polynomial time the smallest Vpa recognizing LA.

Proof The proof is similar to the one of Proposition 5.2.1 and 5.2.2, but this
time several stack symbols are needed. The idea is to minimize the original Dfa
A (let Amin = (Q, q0, QF ,∆) be a minimal Dfa for L(A)) then build a Vpa
A = (Q′, qi, Q

′
F ,∆) such that Q′ = Q∪{qi, qf} and Q′F = {qf}. A has the same

transitions as A, plus for all c ∈ Σcall (qi, c, q0, c) and for all q ∈ QF , r ∈ Σret,
(q, r, c, qf ) s.t. Lc,r ⊆ L.

For the same reasons as previously, any automaton needs at least two extra
states compare to the minimal Dfa.

�

5.3 Difficult subclasses

In the previous section, we have seen some simple subclasses of Vpl, where
we can exhibit a polynomial time minimization algorithm. When we try to
generalize a bit more, we face minimization problems that we do not know how
to solve efficiently. So far, languages considered were Vpl that includes a fixed
regular language on the local alphabet. If the regular language depends on the
call read, then the minimization problem starts to be difficult.

For instance, consider languages L such that L ⊆ ΣcallΣ
∗
locΣret, where Σret

can be reduced to a single return symbol r. Such languages are regular and are
included in the class of stack depth 1 Vpl, but still we do not know how to find
a minimal Vpa that recognizes them5. Let us reformulate this problem into a
finite automaton problem.

5Note if |Σcall| = 1, the problem becomes straightforward as stated in Proposition 5.2.2.
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Definition A n Sets Deterministic Finite Automaton (n-Sdfa) S over a finite
alphabet Σ is a tuple (Q,αi, αf , δ), such that Q is a finite set of states, n ∈ N,
αi : [1..n] → Q is the initial state function, αf : [1..n] → 2Q is the final state
function and δ : Q× Σ→ Q is the (partial) transition function of S.

Intuitively, such automaton recognizes n different regular languages with the
same set of states. A tuple (u, k) ∈ Σ∗ × [1..n] is accepted by an n-Sdfa if the
word u is accepted by the Dfa obtained by applying αi and αf on k, i.e. the
Dfa Ak = (Q,αi(k), αf (k), δ). Analogously to other classes of automata, L(S)
is the set of such accepted tuples. For any n-Sdfa S, we denote Lk(S) = {u ∈
Σ∗ | (u, k) ∈ L(S)} the kth language recognized by S.

This kind of automaton can be used in practice to store efficiently large
number of regular languages, especially when these languages share common
subautomata. A concrete example can be when one has to check the type of a
natural word u (and secondarily that u is well spelled). For instance, two words
such as antidisestablishmentarianism and antiestablishment will share a lot of
states and transitions in a Sdfa, nevertheless the former belongs to Lnoun and
the latter to Ladjective.

Now, we want to exhibit that minimizing some of the simplest subclasses
of Vpl is an equivalent problem to the minimization of Sdfa. Hence, either
one can find an efficient minimization algorithm for Sdfa that provides directly
a minimization algorithm for such subclasses of Vpa, or minimizing Sdfa is
computationally hard thus minimization of all Vpa is hard.

Definition (Min-Simple-Vpa)
Instance: A Vpa A over (Σcall, {r},Σloc) with L(A) ⊆ ΣcallΣ

∗
locΣret and

a positive integer k < |A|.
Question: Is there a Vpa B of size k, such that L(A) = L(B) ?

Definition (Min-Sdfa)
Instance: n Dfa A1, A2, ..., An and a positive integer k < |S|.
Question: Is there a n-Sdfa S of size k, such that Li(S) = L(Ai) for all

1 ≤ i ≤ n ?

Proposition 5.3.1 Given n regular languages L1, ..., Ln ⊆ Σ∗loc, there exists
an n-Sdfa S of size k, such that Li(S) =  Li for all 1 ≤ i ≤ n, iff there exists a
Vpa A over ({cj | j ∈ [1..n]}, {r},Σloc) of size k+2 that recognizes

⋃
1≤j≤n

cjLjr.

Proof Let L1, ..., Ln ⊆ Σ∗loc be n regular languages.

⇒) Let S = (Q,αi, αf , δ) be an n-Sdfa of size k over Σloc as in the
proposition (i.e. Li(S) =  Li for i ∈ [1..n]). We build the following Vpa
A = (Q′, q′i, Q

′
F ,Γ,∆) over (Σcall, {r},Σloc) with Σcall = {cj | j ∈ [1..n]},

such that Q′ = Q ∪ {qi, qf}, Q′F = {qf}, Γ = [1..n] and its transitions are:

• for all cj ∈ Σcall, (qi, cj , αi(j), j) ∈ ∆call
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• for all q ∈ Q, j ∈ [1..n], if q ∈ αf (j) then (q, r, j, qf ) ∈ ∆ret

• for all q ∈ Q, l ∈ Σloc, if δ(q, l) = q′ then (q, l, q′) ∈ Σloc

We have |A| = k + 2, thus it remains just to show L(A) =
⋃

1≤j≤n
cjLjr.

Consider a word w ∈ Σ∗. By looking at the transitions of A we have that

w ∈ L(A) ⇔ ∃w′ ∈ Σ∗, j ∈ [1..n], q ∈ Q,w = cj .w
′.r and (αi(j), j)

w′−→A (q, j)
with q ∈ αf (j). Since all states reached after reading cj and before reading r

are in Q, only transitions of S can be applied, thus w′ ∈ Σloc and αi(j)
w′−→S q.

Finally, since q ∈ αf (j), w′ ∈ Lj .

⇐) LetA = (Q, qi, QF ,Γ,∆) be a Vpa of size k+2 that recognizes
⋃

1≤j≤n
cjLjr.

For the same arguments used in the earlier proof (see for instance Propo-
sition 5.2.2), A must have two distinct states one initial qi with no ingoing
transitions and one final qf with no outgoing transitions (we can also assume
QF = {qf}). Also we can assume Γ to be restrained to the set Σcall as qi can
be assumed to be the only state with outgoing call transitions.

We construct the following n-Sdfa S ′ = (QS , αSi , α
S
f , δ
S), such that Q′ =

Q \ {qi, qf}, and

• for all j ∈ [1..n], αSi (j) = q s.t. (qi, cj , q, cj) ∈ ∆call

• for all j ∈ [1..n], αSf (j) = {q | ∃(q, r, cj , qf ) ∈ ∆ret}

• for all l ∈ Σloc, δ(q, l) = q′ iff (q, l, q′) ∈ Σloc

A tuple (u, j) ∈ Σ∗loc × [1..n] is accepted by S ′ iff u ∈ Lj(S ′), i.e. cj u r ∈
L(A). Since L(A) =

⋃
1≤j≤n

cjLjr, the word cjur is accepted by A iff u ∈ Lj .
�

Corollary 5.3.2 Min-Simple-Vpa and Min-Sdfa are equivalent problem.

We do not know how to solve Min-Sdfa, but we suspect the problem to
be Np-hard. If one shows the hardness of Min-Sdfa then we have a hardness
proof for Min-Simple-Vpa based on the previous corollary. This will have great
consequences, as it implies that Vpa are not minimizable within polynomial time
unless P=Np. We leave this remark as a conjecture.

Conjecture Min-Simple-Vpa is Np-complete.
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6 Conclusion

We have studied the minimization problem for a recently introduced automaton
model: Visibly Pushdown Automata. This abstract model is used in a wide range
of areas and an efficient minimization algorithm would have direct consequences
on several of their applications.

The minimization problem for Vpa is suspected to be computationally hard
but we failed to prove the hardness of the problem. Instead we have given
several arguments to guide a future Np-hardness proof and have shown that
the minimization problem for non-deterministic Vpa is Exptime-complete, al-
though it is a less interesting question than in the deterministic case. Also, we
have investigated minimization on Bvpa, a variant of Vpa. We have demon-
strated that modular minimization of Bvpa is Np-complete, which can lead to
a hardness proof for general Bvpa.

Apart from hardness of minimization, we have introduced a direct translation
between Vpa and one of their only minimizable variants, i.e. Ecda. This
translation has also been extended in order to suit to Cda, a more generic model.
This translation can be used to compute a unique (up to isomorphism) minimal
Ecda from any Vpl directly from a Vpa. At last, we have explored several
subclasses of Vpa and have proposed polynomial algorithms when possible.
Also, since some subclasses seem hard to minimize, we have given a reduction
to minimization of some finite state machines (called Sdfa). This reduction
can lead to a hardness result for Vpa or extend the subclasses of Vpa where
polynomial time minimization algorithms are known.

Our work can be extended by several ways. First, our hardness result on
Bvpa can be generalized to the traditional minimization. Second, minimization
of Vpa can be shown to be computationally hard with further work on minimiz-
ing particular submodels. This work has also introduced a new model of finite
automata, and the complexity of their minimization is an open question (it is
in fact equivalent to minimizing a subclass of Vpl). At last, we think that we
can find more polynomial algorithms for subclasses of Vpl by bounding some
parameters of Vpa, e.g. the number of call symbols used or the maximal stack
depth.
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