Total Correctness by Local Improvement
in the Transformation of Functional Programs

DAVID SANDS

Chalmers University and the University of Goteborg

The goal of program transformation is to improve efficiency while preserving meaning. One
of the best-known transformation techniques is Burstall and Darlington’s unfold-fold method.
Unfortunately the unfold-fold method itself guarantees neither improvement in efficiency nor total
correctness. The correctness problem for unfold-fold is an instance of a strictly more general
problem: transformation by locally equivalence-preserving steps does not necessarily preserve
(global) equivalence. This article presents a condition for the total correctness of transformations
on recursive programs, which, for the first time, deals with higher-order functional languages (both
strict and nonstrict) including lazy data structures. The main technical result is an improvement
theorem which says that if the local transformation steps are guided by certain optimization
concerns (a fairly natural condition for a transformation), then correctness of the transformation
follows. The improvement theorem makes essential use of a formalized improvement theory; as a
rather pleasing corollary it also guarantees that the transformed program is a formal improvement
over the original. The theorem has immediate practical consequences: it is a powerful tool for
proving the correctness of existing transformation methods for higher-order functional programs,
without having to ignore crucial factors such as memoization or folding, and it yields a simple
syntactic method for guiding and constraining the unfold-fold method in the general case so that
total correctness (and improvement) is always guaranteed.

Categories and Subject Descriptors: D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; D.2.4 [Software Engineering]: Program Verification—correctness proofs;
F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs

General Terms: Languages, Verification
Additional Key Words and Phrases: Correctness, improvement, operational equivalence, program
transformation, unfold-fold

1. MOTIVATION

The context of this study is transformations on functional programs. Source-to-
source transformation methods for recursive programs, such as unfold-fold trans-
formation, partial evaluation, and deforestation [Burstall and Darlington 1977;
Jones et al. 1993; Wadler 1990], proceed by performing a sequence of equivalence-

A preliminary (unpublished) version of this article was circulated in May 1994, under the same
title. A short version appears in the proceedings of POPL '95.

This work was performed while the author was employed at the Department of Computer Science,
University of Copenhagen (DIKU). The work was partially funded by the DART project (Danish
Research Council), and the Department of Computer Science at Copenhagen University. The
author is partially supported by ESPRIT BRA “Coordination.”

Author’s address: Department of Computing Science, Chalmers University of Technology and the
University of Géteborg, S-412 96 Goteborg, Sweden; email: dave@cs.chalmers.se.

© ACM. In ACM Transactions on Programming Languages and Systems (TOPLAS), 18(2) pp
175-234, March 1996.



2 . David Sands

preserving steps on the definitions in a given program.

The main goal of such methods is to improve the efficiency of programs, but
not at the expense of their meaning. Program transformations should preserve the
ezxtenstonal meaning of programs in order to be of any practical value. In this case
we say that the transformation is correct.

1.1 The Problem

Equivalence-Preserving Steps that Do Not Preserve Equivalence. The problem
is that for many transformation methods which deal with recursive programs (in-
cluding those methods mentioned above), correctness cannot be argued by simply
showing that the basic transformation steps are meaning preserving. Yet this ob-
servation (clarified below) runs contrary to many informal (and some formal) argu-
ments which are used in attempts to justify correctness of particular transformation
methods.

The problem arises through transformation steps for which “equivalence” depends
critically on (i.e., is local to) the function being transformed. Suppose we begin
with a function definition fx £ e, and we transform the right-hand side of the

~ /

definition according to some equivalence e = €’ to obtain a revised definition
fax 2 €. If the equivalence e = ¢’ is independent of the definition of f (i.e., f is
considered to be a free variable in e and e’) then we rightly expect that the old
and new definitions will be equivalent, since we expect that a reasonable definition
of equivalence will be a congruence relation. But for many approaches to the
transformation of programs (we might arguably say most), the transformation step
from e to ¢’ depends critically on the definition of f. A typical example of such a
local equivalence would be an unfold step which replaces a recursive call to f by
the corresponding instance of the body, or its inverse, a fold step. As a result, the
new definition may not be semantically equivalent to the original. In particular it
may introduce new sources of recursion, or change the structure of the recursion,
leading to worse termination properties. To take a concrete (but contrived) example
to illustrate this point, consider the following transformation (where £ denotes
a function definition, and 2 is semantic equivalence with respect to the current

definition):
t
frx2x+42 'mnsform fz2z+f0
using 42 5 0

The problem comes from the fact that the equivalence used in a transformation
step (in this example, the replacement of 42 by the call f 0) is not necessarily an
equivalence with respect to the new definition.

This article proposes a solution to this problem, in the general setting of “transfor-
mation by equivalences,”
transformation framework known as the unfold-fold method.

and studies the application of this solution to a particular

Unfold-Fold Transformations. Unfold-fold transformation [Burstall and Darling-
ton 1977] is a very general transformation framework which employs a collection
of simple syntactic equivalences, in particular, unfolding and folding, as mentioned
above, and the application of laws about primitive functions. Attempts to mecha-
nize, or at least systematize, unfold-fold transformations address the issues of what
to transform, and in what order to apply the basic transformation rules. These



Total Correctness by Local Improvement in Transformation : 3

decisions form what is known as transformation strategies (e.g., Feather [1979] and
Pettorossi and Proietti [1993]), and typical examples are fusion, which aims to
transform nested recursive functions into a single recursion, and tupling, which
aims to combine the computation of several independent recursive function calls.
Regardless of the strategy (which usually dictates what new function definitions to
construct), in practice unfold-fold transformations follow a common pattern:

(1) Within the bodies of some function definitions, unfold some recursive function
calls, thereby exposing computation, and possible optimization;

(2) simplify the expressions by application of laws about primitive functions (for
example, arithmetic laws);

(3) fold instances of the original function definitions, thereby compounding the
effects of the above steps so that they take effect in every recursive call.

We will illustrate the potential correctness problems even for this reasonable strat-
egy. Let us imagine a fictitious program transformation system which, together
with some heuristics, implements the above general strategy when given some def-
initions to transform. Let us suppose that the system is guided by the following
heuristics:

—Unfold nondeterministically, but limited by some bounds on expression size and
number of unfoldings;

—apply only laws which reduce the size of expressions, and do so nondeterministi-
cally and exhaustively;

—fold as many instances of the right-hand sides of the original definitions, but
subject to the constraint that there should be no more fold steps than there were
unfolds.

Now let us suppose that we feed the following definition into the transformation
system:

f z 2 if 2 then(f z) elsetrue.
The transformation process begins by unfolding function calls:

if z then (f z) elsetrue

unfold & @ then (if z then (f z) else true)

elsetrue

unfold & then (if z then (if z then (f z) elsetrue)

elsetrue)
else true.

At this point we suppose that the expression is deemed to be too large to continue
unfolding, so a database of laws is consulted in order simplify this expression. The
following law for conditionals can be applied:

if z then (if z thenyelsez’ ) elsez = if z thenyelsez

So applying this law twice we obtain:

lawX2 £ 2 then (f z) elsetrue



4 . David Sands

Now the transformation moves into the final stage. Recognizing that this expression
is the right-hand side of the initial definition, a single fold step is performed:

ﬂ) fx

The transformed definition is thus £ z £ £ 2 and illustrates the well-known fact that
unfold-fold transformations do not, in general, preserve total correctness. It also
serves as a counterexample to folk-law in functional programming which says that
“more unfolds than folds” is sufficient to guarantee the correctness of the unfold-
fold method. Of course, when applying unfold-fold transformations by hand, one
is not likely to reproduce the transformation above, since the final definition is so
obviously not equivalent to the original. But the following facts remain:

—We can make no guarantees about the correctness of automatic program trans-
formations on the grounds that the basic transformation steps, like unfold-fold,
are equivalences.

—Even for those unfold-fold transformation sequences which are equivalence pre-
serving, the transformation itself does not serve as a formal (or informal) proof
of this fact.

Consequences. The general problem—that transformation by local equivalences
is not sound in general—has important consequences:

(1) Some transformation methods simply do not preserve correctness in general. Tt
1s well known that this is the case for unfold-fold transformations.

(2) Many well-known and widely studied transformation methods have not been
proved to be correct, and it seems that the correctness problem has received
little attention because of an implicit (and incorrect) assumption that it is
sufficient to argue the correctness at the level of the basic steps. In particular we
believe this to be the case for forms of partial evaluation of functional programs
which involve producing specialized, potentially recursive versions of functions,
as well as transformations such as deforestation and supercompilation. For
these kinds of transformations, arguments of correctness based on the nature of
the local transformation steps are unsatisfactory, because the transformations
perform memoization which is analogous to using folding in the unfold-fold
method.!

The Contribution of this Work. This article presents a solution to the problem,
which deals with higher-order functional languages (both strict and nonstrict) in-
cluding lazy data structures.

The main technical result is the Improvement Theorem, which says that if the
transformation steps are guided by certain optimization concerns (a fairly natu-
ral condition for program transformation), then correctness of the transformation
follows.

1A number of rigorous studies of correctness in partial evaluation [Gomard 1992; Palsberg 1993;
Wand 1993] ignore the memoization aspects and deal with the orthogonal issue of the correctness
of binding-time analysis, which controls where transformation occurs in a program. Consel and
Khoo [1993] address memoization issues, but in an abstract form which does not deal with the
construction of recursive programs.



Total Correctness by Local Improvement in Transformation : 5

The above notion of optimization is based on a formal improvement theory. An
expression e is improved by €’ if in all closing contexts C', if computation of Cle]
terminates, then so does C[e'], but requires no more evaluation steps than Cle].
The important property of improvement from the point of view of program trans-
formation 1s that it is substitutive—an expression can be improved by improving
a subexpression. For reasoning about the improvement relation a more tractable
formulation and some related proof techniques are developed.

The Improvement Theorem shows that if e is improved by €’ (in addition to e
being operationally equivalent to e’) then a transformation which replaces e by e’
is totally correct; in addition this also guarantees that the transformed program
is a formal improvement over the original. (Notice that in the above example,
replacement of 42 by the equivalent term f 0 is not an improvement, since the latter
requires evaluation of an additional function call. We will provide a more detailed
analysis of the second transformation later, where we show how the improvement
theory rightly prevents us from amortizing the cost of the last step against the
earlier transformation steps).

The significance of the Improvement Theorem is that it finds immediate practical
application to the consequences of the problem, namely:

(1) A simple syntactic method for restricting the general (incorrect) unfold-fold
method is provided. The method is based on a single annotation (whose mean-
ing and algebraic properties are given by the improvement theory) which ef-
fectively guides and constrains transformations to guarantee correctness and
improvement.

(2) Tt can be applied to give total correctness proofs for existing automatic trans-
formation methods. A notable example, which we have considered in Sands
[1995b], is a higher-order variant of the well-known deforestation method [Wadler
1990]. With a new formulation of the deforestation algorithm (extended to deal
with higher-order functions) the proof of correctness, including the crucial fold-
ing process, becomes simple and modular.

In this article we focus primarily on the first of these areas, the general case of
unfold-fold transformations. Although the transformations considered in the second
of these areas could also be thought of in terms of the general unfold-fold method,
our aims are somewhat different in these two settings. In the second case we are
interested in proving the correctness of transformation methods without essentially
changing or further constraining the transformation (of course, we can only do
this if the transformation turns out to be correct!). In the study of unfold-fold we
are dealing with a much more general transformation framework, but our task is
quite different: the method is not correct in general, and so we must find a way of
restricting or modifying the method to guarantee correctness.

We provide a small illustration of the second application with a correctness proof
for a simple mechanizable program transformation, as described in Wadler [1989a],
which aims to eliminate instances of the concatenate operation from programs. A
more substantial example which includes a higher-order generalization of deforesta-
tion is detailed in Sands [1995b].

In the next section we outline the contents of the article, providing sufficient
detail to enable us to state the main technical result.



6 . David Sands

2. OVERVIEW

In this section we outline the structure and contents of the remainder of the article.
In particular, we state the main technical result, the Improvement Theorem.

Section 3 deals with preliminaries including the syntax and operational semantics
of a simple higher-order functional language. The key points are:

—The introduction of a small untyped functional language, assuming recursive
(curried) function definitions of the form f z;...z; 2 ¢;

—The definition of operational semantics, in terms of a reduction relation on ex-
pressions. This determines when a closed expression e evaluates to a value (weak
head normal form) w, written ellw. The operational semantics models the call-
by-name strategy.

—From the operational semantics, the fundamental notions of operational approx-
tmation and operational equivalence are defined; e observationally approrimates
e/, written e C ¢/, if for all contexts C, if evaluation of Cf[e] terminates, then so

does evaluation of C[e]. Expression e is deemed to be operationally equivalent

to €/, e = e, if they approximate each other.

Section 4 provides a formal definition of a transformation. The definition cap-
tures the essence of “transformation by equivalences.” We summarize the main
definitions and properties:

—To simplify reasoning, a transformation is viewed as a construction of a set of
new functions from a given set: given a function £Z £ e, a transformation is an
equivalence e = ¢/, together with a new definition £/ Z 2 ¢'{£'/¢}.

—We say that a particular transformation of the above form is correct if £ = £'.

—Not all transformations are correct. They are, however, partially correct, in the
sense that £/ C £.

Section 5 gives the definition and properties of improvement, and the Improve-
ment Theorem is stated; we summarize the main definitions and state the Improve-
ment Theorem (in a simplified form):

—Improvement is defined by strengthening the requirements of operational approx-
imation:

Definition (Improvement). Expression e is tmproved by €', e D> ¢, if for all
contexts C such that C[e], C[e'] are closed, if computation of C[e] terminates using
n function-calls then computation of C[e’] also terminates, but uses no more than
n function-calls.

—The Improvement Theorem is given. In slightly simplified form:

IMPROVEMENT THEOREM. IffZ 2 e and e > ¢’ (where the free variables of €
are contained in ¥) then £ > g, where g% 2 ¢{8/¢}.

—By combining the Improvement Theorem with the partial-correctness property
for transformations (Section 4) we obtain a condition for total correctness: a
transformation from £Z 2 e to g& 2 ¢'{8&} (i.e., via equivalence e = ¢’) is

correct if e > €’.
<



Total Correctness by Local Improvement in Transformation : 7

Section 6 investigates the theory of improvement:

—A binary relation R on closed expressions is defined to be an improvement sim-
ulation if whenever (e,e’) € R then if computation of e terminates, producing
w, and using n function calls, then computation of ¢’ also terminates, producing
some w’ in no more than n function calls. Furthermore, informally speaking, we
can say that w and w’ are values of the same “kind” (e.g., they both have the
same outermost constructor), and their “components” are also related by R.

—The Improvement Contert Lemma says that e is improved by e’ if and only if all
closed instances are contained in some improvement simulation.

—A variation of the proof technique associated to the improvement context lemma
is introduced and put to use in the proof of the Improvement Theorem.

Section 7 outlines some simple techniques for establishing the correctness of trans-
formations which are complementary to the Improvement Theorem. They center
around the fact that transformations are partially correct (cf. Section 7), and hence
that if a transformation is “reversible” then correctness follows. A transformation
from £ to g is reversible if there is also a transformation from g to h such that £
and h are syntactically identical up to renaming.

Section 8 provides a simple illustration of an application of the Improvement
Theorem to prove the correctness of a small automatic program transformation.
The program transformation in question [Wadler 1989a] is aimed at eliminating
instances of the concatenate operator (append). With a slightly modified version
of the transformation algorithm, correctness reduces to showing that each rewrite
rule which defined the transformation is contained in the improvement relation.

The correctness argument for the original formulation illustrates the interaction
between proofs using the Improvement Theorem and proofs justified by the more
basic methods of Section 7.

Section 9 considers the general unfold-fold method and how to modify it to ensure
that it is always correct.

To summarize, we introduce an “improved” unfold-fold method (and an extension
of it) which guarantees that the program thus obtained is equivalent to the original.
The problem 1s that fold steps, viewed in isolation, are not improvement steps. The
solution we propose follows, in spirit, the idea of “more unfolds than folds,” in that
it amortizes the cost of fold steps against the savings made by unfolding steps. This
amortization guarantees that the local transformation steps are improvements, and
correctness follows from the Improvement Theorem. To make this work (to disallow,
for example, the incorrect transformation in the opening section) the unfold steps
and fold steps must be related in a certain sense. This is formalized with the help
of the improvement theory.

Section 10 presents a detailed survey of related work, focusing on study of cor-
rectness of transformations in declarative languages and the relationship to:

—the basic transformations (Section 7),
—the Improvement Theorem (Section 5), and
—the application of these techniques to the unfold-fold transformation (Section 9).

Section 11 concludes by considering variations in the Improvement Theorem and
areas for further work.



8 . David Sands

f,g,h... € Function Name
z,Y,2... € Var
€,€1,€3... € Expression = z
| £
| Az.e (Lambda abtraction)
| €1 eq (Application)
| e1@esq (Strict application)
| caseeof (Case expressions)
C1 (fl) L€
en(Zn) @ en
| ¢(€) (Constructors)
| p(€) (Primitive functions)

Fig. 1. Expression syntax.

An appendix contains details of the theory of operational approximation and a
least fixed-point theorem which is needed in the technical development.

3. PRELIMINARIES

We summarize some of the notation used in specifying the language and its op-
erational semantics. The subject of this study will be an untyped, higher-order,
nonstrict functional language with lazy data constructors. Our technical results
will be specific to this language (and its call-by-name operational semantics), but
the inclusion of a strict application operator and arbitrary strict primitive functions
(which could include constructors and destructors for strict data structures) should
be sufficient to convince the reader that the bulk of the theory carries over to call-
by-value languages without particular difficulty. Further discussion of evaluation
orders can be found in the concluding section of the article.

We assume a flat set of mutually recursive function definitions of the form
fzry...2q, 2 er where af, the arity of function £, is greater than or equal to
zero. (For an indexed set of functions we will sometimes refer to the arity by index,
a;, rather than function name.) £, g, h ..., range over function names, z,y,z. ..
over variables, and e, €1, ey . .. over expressions. The syntactic categories are given
in Figure 1.

We assume that each constructor ¢ and each primitive function p has a fixed
arity and that the constructors include constants (i.e., constructors of arity zero).
Constants will be written as ¢ rather than ¢(). The constants include true, false,
and nil; the expression h.t will be used as shorthand for cons(h,t) (where cons is
a (binary) constructor).

The primitives and constructors are not curried—they cannot be written without
their full complement of operands. We can assume that the case expressions are
defined for any finite subset {c; ...c,} of constructors; the number of variables in
¥; must match the arity of the constructor ¢;, and these variables are considered
to be bound in e;.



Total Correctness by Local Improvement in Transformation : 9

A list of zero or more expressions e1, . ..e, will often be denoted €. Application,
as is usual, associates to the left, so ((- - - (ege1) - - -)en) will be written as eg ey .. .ep;
sometimes we will further abbreviate this to eg €. The expression written e{gl/f}
will denote simultaneous capture-free substitution of a sequence of expressions &’
for free occurrences of a sequence of variables Z, respectively, in the expression e.
The term Fv(e) will denote the free variables of expression e. Sometimes we will

(informally) write substitutions of the form {g/g} to represent the replacement of

occurrences of function symbols g by expressions ¢.2

A contezt, ranged over by C, C1, etc., is an expression with zero or more occur-
rences of a “hole”; [], in the place of some subexpressions; C[e] is the expression
produced by replacing the holes with expression e. Contrasting with substitution,
occurrences of free variables in e may become bound in Cle]; if C[e] is closed then
we say 1t is a closing context for e. A context is called open if it contains free
variables.

Expressions are identified up to renaming of bound variables. This syntactic
equivalence relation is denoted by =. Contexts are identified up to renaming of
those bound variables which cannot capture variables placed in their holes.

3.1 Operational Semantics

The purpose of the operational semantics is to define an evaluation relation |}
(a partial function) between closed expressions and the “values” of computations.
The operational semantics is a standard call-by-name one. Of the many ways in
which such a relation could be defined, we choose a one-step reduction relation on
expressions (—) whose application is governed by reduction conterts, in the style
of Felleisen et al. [1987]. This choice is not critical to the development, but the
notions of one-step reduction, and of reduction contexts, are useful.

The set of values, following the standard terminology (e.g., see Peyton Jones
[1987]), are called weak head normal forms. The weak head normal forms

w, Wy, Wy, ... WHNF

are just the constructor expressions ¢(€), and the Closures, as given by the following
grammar:

w = ¢(€) | Closures
Closures = fey...ex (0< k< as)
| Az.e.

If eJw for some closed expression e then we say that e evaluates to weak head normal
form w. We say that e converges and sometimes write el} if there exists a w such
that ellw. Otherwise we say that e diverges. We make no finer distinctions between
divergent expressions, so that run-time errors and infinite loops are identified.
Reduction contexts (cf. Felleisen et al. [1987]), ranged over by IR, are contexts
containing a single hole which is used to identify the next expression to be evaluated

(reduced).

2This replacement operation must be handled with care, since the various equivalences and pre-
orderings will only be closed under proper substitutions.



10 . David Sands

R[fey...eq) = Rles{€1---Cosfp,  p .} (fun)
R[(Az.c)e'] —~ (/) (8)
R[w@uw'] — R[w w'] (sapply)

Rcase ¢;(€) of ¢1(F1) te1...cn(Fn) 1 €n ]

— IR[e;{€ ;Z}] (1<i<n) (case)

RIp@] —~ RI] (if [p]e="¢) (prim)

Fig. 2. One-step reduction rules.

Definition 3.1.1. A reduction context IR is given inductively by the following
grammar

R = []| Re| RQe | w@QR

| case R of ¢1(%1) 1 e1...cn(8n) : €n
|

p(¢, R, ¢€).

Now we define the one-step reduction relation on closed expressions. We assume
that each primitive function p is given meaning by a partial function [p] from vectors
of constants (according to the arity of p) to the constants (nullary constructors).
We do not need to specify the exact set of primitive functions; it will suffice to note
that they are strict (all operands must evaluate to weak head normal form before
the application of primitive-function can) and are only defined over constants, not
over arbitrary weak head normal forms.

Definition 3.1.2. One-step reduction — is the least relation on closed expressions
satisfying the rules given in Figure 2.

In each rule of the form R[e] — IR[e] in Figure 2, the expression e is referred to as
a redez.

The one-step evaluation relation is deterministic; this relies on the fact that if
€1 — €9 then e; can be uniquely factored into a reduction context IR and a redex
e’ such that e; = IR[e’]. Let —7* and —* denote respectively the transitive closure
and transitive reflexive closure of —.

Definition 3.1.3. Closed expression e converges to weak head normal form w,
ellw, if and only if e =% w .

3.2 Approximation and Equivalence

Here we define the operational approximation relation on expressions, T and its
associated equivalence 2. The ordering we use is the standard Morris-style con-
textual ordering, or observational approrimation [Plotkin 1975; Milner 1977]. The
notion of “observation” we take is just the fact of convergence, as in the lazy lambda

calculus [Abramsky 1990].

Observational equivalence equates two expressions if and only if in all closing



Total Correctness by Local Improvement in Transformation . 11

contexts they give rise to the same observation — i.e., either they both converge,
or they both diverge:

Definition 3.2.1.

(1) e observationally approzimates €', e T €', if for all contexts C' such that Cle],
Cle'] are closed, if C[e]d} then C[e']{).

(2) e is observationally equivalent to €', e 2 €', if e C e’ and €' C .

Remark. Note that we can make a number of variations in the form of this
definition without changing its meaning. For example, if we change the condition
“if Cle]y then C[e'l)” to the requirement that

if Cle]lle for some constant ¢, then Cle'|{}e (%)

then the definition is unchanged. Note that this theory of approximation and
equivalence is “lazy” in the sense of Abramsky [1990], so that we can “observe” the
difference between “L” and “Az.L.” This is due to the inclusion of a strict version
of application into the language, so that the context (Az.true)@[] can distinguish
between these expressions. If we omitted this construct and did not allow closures
to be observable (as in (%)), then we would obtain a strictly weaker definition of
approximation. However, the present theory would still be sound for reasoning
about approximation and equivalence.

If our aim was to study operational approximation and equivalence, then it would
be sufficient to assume that all functions are of arity zero. This is possible because
any function definition of the form £ 2 - - -2, £ e can be represented, up to equiva-
lence, by a function definition of the form £ £ Az;....Az,.e. We take advantage of
this fact in the proof of the least fixed-point property stated below. However, there
are intensional differences between these definitions which become more significant
when we develop and apply the theory of improvement. These differences motivate
us to include both curried function definitions and lambda terms in the language.

3.3 The Theory of Operational Approximation

It is essential to have some characterization of observational approximation to fa-
cilitate reasoning about approximation and equivalence. Other than by defining a
denotational semantics, the principal technique for functional languages is to es-
tablish some form of context lemma® [Abramsky 1990; Bloom 1988; Gordon 1995;
Howe 1989; Milner 1977]. We have made use of a characterization in terms of
an “applicative (bi)simulation” relation [Abramsky 1990]. This provides a useful
proof technique for observational approximation, and we use it to prove a least
fixed-point theorem for recursively defined functions. The development is given in
the appendix. Here we just state the fixed-point theorem that can be established
with the help of these proof techniques.

ProrosITION 3.3.1 (LEAST PRE-FIXED POINT). Let € =eq, ..., e, be a list of
expressions and & = x1, ..., &, be a list of variables such that ¥v(€) C {z1...zn}.

3We use the term “Context Lemma” in a broad sense, to encompass both definitions directly ex-
tending Milner’s, and bisimulation-like characterizations of operational approximation and equiv-
alence (e.g., Gordon [1995]).



12 . David Sands

The inequations e¢; & x;, ¢ = 1...n, have a solution for & = g, where the
functions g are defined by

gi 2 e {8z, i=1...n

Moreover, for any other solution, ¥ = &, we have that g; T e}, i=1...n.

4. DEFINING TRANSFORMATION

In this section we give a definition of transformation. The essence of the defini-
tion 1s that a transformation consists of equivalence-preserving modifications to the
bodies of a set of definitions. This 1s sufficiently general to describe unfold-fold
transformations and many variants (and hence too liberal to ensure correctness in
general).

4.1 Transformation as Definition Construction

For the purposes of the formal definitions and results, transformation is viewed
as the introduction of some new functions from a given set of definitions; so the
transformation from a program consisting of a single function fz £ ¢, to a new
version £z 2 ¢/, will be formally represented by the derivation of a new function
gz 2 ¢'{&}, rather than by modification of the definition of £. Correctness of the
transformation now corresponds to validity of the statement: £ = g.

The reason why we adopt this representation of a transformation is because
observational approximation and equivalence should, strictly speaking, be parame-
terized by the intended set of function definitions. Such explicit parameterization
is unwieldy, but we are able to avoid it by using a certain open-endedness prop-
erty of the language, viz., that extending the language with new function symbols
(i.e., new definitions) conservatively extends operational approximation and equiv-
alence. We can similarly “garbage collect” unreachable functions without affecting
equivalences which do not pertain to those functions.

To make this statement more precise, let us momentarily parameterize the lan-
guage and associated relations by a set of definitions. Let F, G range over sets of
function definitions, and let L(F') denote the language of expressions (and contexts)
whose function symbols are defined in F. Let ,EF denote operational approximation
defined with respect to evaluation using definitions F' (and defined with respect to
evaluation in all L(F)-contexts). So far we have implicitly assumed some fixed set
of definitions F' and have assumed that the right-hand sides of these definitions
are expressions in L(F). Now suppose we wish to extend the definitions in F' with
some disjoint functions G (whose bodies are in L(F U G)). The key property is
summarized in the following proposition:

ProposITION 4.1.1. For all ey, e5 € L(F), €1 ng es if and only if eq EFuG €.

PrOOF SKETCH. First note that if ¢ € L(F) then the statement ellh is not
dependent on the definitions in G. Hence the if direction of the proof is immediate.
For the only-if direction we need to show that e; EF e implies ey EFuG
We show the contrapositive. Assume that el%FuGez, i.e., there exists a context

C € L(FUG) such that C[e;] converges and C[es] does not, or vice-versa. Assume it
is the first of these possibilities (the other case is similar). Now we argue that since

€9.



Total Correctness by Local Improvement in Transformation . 13

the language has lambda abstractions, we can construct equivalent representations
of the functions in G using explicit fixed-point combinators, and hence we can find
a context C' € L(F) such that Cle] Zpyg C’[e] for all e. Now by definition of
operational equivalence we must have that C’[e;] converges and that C'[e3] does
not converge. Hence e;%pes, and we are done.* [

In conclusion, the implication of these properties is that we will be able to keep
the set of definitions implicit in the theory of operational approximation and equiv-
alence, by making sure that we never change the definition of a given function;
transformation just adds new functions which extend the language.

Transformation. Sometimes it is also appropriate to consider weaker transfor-
mations, in which the transformation steps can increase the definedness of terms.
Examples are unrestricted unfolding in a strict language, or optimizations for strict
versions of data structures such as head(cons(eq,es)) C eq. Transformations using
inequalities in this direction will be called weak transformations. Such transfor-
mations are common in strict languages, e.g., in Turchin’s supercompiler[Turchin
1986].

The following definition of transformation (weak transformation) will enable us
to formulate the correctness problem and state some relatively standard partial
correctness results.

Definition 4.1.2 (Transformation). A transformation (weak transformation, re-
spectively) of a set of function definitions,

{fiml...mal éei}ie[

is given by a set of expressions

{62}1'517 FV(e;) C{z1.. 20}

such that e; = e} (respectively, e; T e}), together with a set of new functions (the
transformed program)

{gz T1... %y, ée;{g/f}} :
i€l

We say that there is a transformation (respectively, weak transformation) from
f; to g;, and it will be assumed that the function names g; are fresh.

The form of the above definition of a transformation emphazises the transforma-
tional derivation as the two-phase operation of a local transformation (of the bodies
of the functions) followed by definition construction. We reason about transforma-
tions which introduce new auxiliary functions by considering that all auxiliaries
are introduced at the beginning of the transformation (cf. wvirtual transformation
sequences [Tamaki and Sato 1984]).

A higher-order variant of the classic Unfold-Fold transformation [Burstall and
Darlington 1977] can easily be recast as a transformation according to the above

4The proof is rather specific to particulars of the language we are using. An alternative approach,
achieving the same ends, would be to build this open-endedness property into the definition of
operational approximation itself. This is not difficult, but would require us to delve more deeply
into the theory of operational approximation and equivalence.



14 . David Sands

definition. Burstall and Darlington’s original definition was for a first-order func-
tional language where functions are defined by pattern matching, and a call-by-
name evaluation is assumed. The example is considered in detail in Section 9,
where conditions guaranteeing total correctness are studied.

Definition 4.1.3 (Correctness). A transformation (weak transformation) from
f; to g; is correct (weakly correct) if £; = g; (£; T g;i).

An alternative way of expressing a transformation would be to say that there is a
transformation from £Z £ ef to new definition g¥ £ ¢, if and only if e; = eg{f/g}.

4.2 Completeness

The definition of transformation is “complete” with respect to equivalence of defi-
nitions (cf. second-order replacement [Kott 1980]), since if £Z £ e is equivalent to
some new function® g¥ £ ¢’, it follows that e = ¢/, and hence that e = e’{f/g}; this
latter equivalence defines a transformation from £ to g.

This shows that unfold-fold transformations are only a special case (of transfor-
mation), since the unfold-fold method is known to be incomplete in this sense (see
Boudol and Kott [1983], Kott [1980], and Zhu [1994]). Of course, the problem we
address in this article is that both the general transformation and the special case
of unfold-fold are not sound.

4.3 Partial Correctness

The examples in the introduction show that not all transformations are correct. We
conclude this section with a partial-correctness result which generalizes the well-
known partial correctness result for unfold-fold transformations: if £ is transformed
to g then it is easily verified that £ “satisfies” g’s defining equation. So £ is a fixed-
point of g’s definition. But g is the least fixed-point, and hence g C £.

ProprosITION 4.3.1. Suppose functions {fi T1...Tas 2 efl} are transformed

to

i€l

{giml...maiéegl}iel,
then for allv € I, g; T £;.

ProOF. We give the case of a single function of arity zero. The generalization to
a set of functions of arbitrary arity is straightforward. Given £ £ e¢, suppose there
is a transformation to g £ e,. From the definition of transformation, this implies
that we must have e = eg{f/g}. Since £ = ey we have that £ = eg{f/g}. Now we
can apply Proposition 3.3.1 (we have shown that £ is a fixed point of g’s defining
equation), and we conclude that g C £. O

A version of this result appears in Courcelle [1979] where it is formulated for re-
cursive program schemes (first-order functional programs), but in a more general
form.©

5g being “new” means that £ does not depend on g.
6Specifically: the set of all fixed points of the defining equation of the original definition are also
fixed points of the derived definition.



Total Correctness by Local Improvement in Transformation . 15

4.4 Weak Transformations

In the case of weak transformation, in general we cannot guarantee that the original
and transformed programs will be related by operational approximation.

ProrosITION 4.4.1. In general, weak transformations are not even partially cor-
rect.

PrROOF. Let f2 2 ifz thenl else(ffalse). Then since ftrue = 1 and
ffalse L 2 then

if z thenl else (f false) T if z then (f true) else?2.

So there is a weak transformation from £ to g where gz £ if rthen (gtrue)else2,
but £ and g are incomparable. [

We conjecture that the result of a weak transformation will be consistent with
the original definition, in the sense that if there is a context in which use of either
the original or of the transformed functions both result in some weak head normal
forms, then the respective weak head normal forms will either both be closures, or
both will be terms with the same outermost constructor.

5. CORRECTNESS BY IMPROVEMENT

This section presents the main technical result of the article. It says, roughly
speaking, that a transformation from fz £ ¢, via equivalence e = ¢’ to gz 2
e'{8&/¢}, is totally correct if ¢’ is an improvement over e. The improvement relation
is expressed in terms of the number of nonprimitive function calls; e is improved
by e’ (written e B> ¢’) if in all closing contexts Cle] requires evaluation of no fewer

nonprimitive functions than C[e'].

5.1 Improvement

An intuition behind the use of improvement to obtain total correctness (at least
for the case when the program computes a constant) is that improvement e &> ¢’
represents some “progress” toward convergence, and in the transformation to gz £
e’{8/¢}, this progress is enjoyed on every recursive call.

The main problem with formulating an appropriate notion of improvement is that
the language has a nondiscrete data domain (i.e., lazy data and higher-order func-
tions) as the results of programs. For this reason, as for operational approximation
and equivalence, it is natural to define this as a contextual (pre)congruence.

Definition 5.1.1. Closed expression e converges in n-steps to weak head normal
form w, el},,w, if ellw, and this computation requires n reductions of nonprimitive
functions using rule (fun).

Notation. A reduction of a nonprimitive function corresponds to replacing a call
instance f ej ...eqs with the corresponding instance of the body of £ — namely,
es{€1 - Catfp,  p .} — within some reduction context R, i.e.,

R[f e1...eqt] = Rleg{1---Cotfy,  x 3]

If € — €’ according to this rule then we write e v /. If € — €’ by any other rule
then we write e ~» ¢’



16 . David Sands

Notice that we choose not to count beta reduction steps. This increases the
flexibility of the Improvement Theorem, since we have the option of representing
certain “administrative” computations using lambda expressions, without interfer-
ing with the application of the theorem. An example application illustrating this
point can be found in Sands [1995b]. If our primary interest was in performance-
improvement, rather than just in correctness, then it would be wise also to count
beta steps. The theory developed in this article can be easily adapted to the case
where beta reductions are also counted.

It will be convenient to adopt the following abbreviations:

el, = Jw.ell,w

6U'n<m d:Ef 6“‘71 &n S m

6U§m e 371.6Un§m-
Now improvement is defined in an analogous way to observational approximation,
but taking into account the number of function calls:

Definition 5.1.2 (Improvement). Expression e is improved by ¢, e I> €', if for

all contexts C' such that Cle], C[e'] are closed, if Cle]{,, then C[e']{,,.
Some example properties of the improvement relation are given in Section 6.

5.2 The Improvement Theorem

We are now able to state the main theorem, the proof of which is outlined in the
appendix.

THEOREM 5.2.1. Given a set of function definitions
{fiéL‘l T 2 6i}i€[
and a set of expressions
{eitier wherevv(e;) C{z1.. . x0i,}

if e; > e then £; D> g; where

{gi T1... T & e;{g/f}} .
Y=y

Since improvement implies observational approximation, as a direct consequence of
the theorem we have a condition for correctness and weak correctness:

COROLLARY 5.2.2. Given a transformation (respectively, weak transformation)
from {f;21 ... 20; 2 €i}icr to {giz1...20i 2 €;{8F}}ict, if i B € then the
transformation is correct (weakly correct), and moreover, £; > g;.

Cost Equivalence. Finally we note a small variation of the Improvement Theorem
in the case where the transformation step exactly preserves the number of function
calls. First we give a definition:

Definition 5.2.3. Let < denote cost equivalence, the equivalence relation asso-
ciated to improvement, and given by

def
€1 ?62:61262&62261.



Total Correctness by Local Improvement in Transformation . 17

As a consequence of this definition, if e; < e; then Cle]|, <= Cles]d), for
all contexts C'. A cost equivalence satisfying this property was first introduced
in Sands [1990] for the purpose of reasoning about evaluation cost in a call-by-
name functional language, and extensively studied in Sands [1993]. The following
variation of the Improvement Theorem is useful in that context as well as the
current one:

PRrOPOSITION 5.2.4. Given a set of function definitions {fi T1...Tos 2 ei}z’el

and a set of expressions {e} where Fv(e}) C {x1...20:}, if &5 < €} then

iel
f; < g; where

{gi Ty Toi 2 e;{g/f}} .
i€l

It may appear, at first glance, that this follows easily by a double application
of the Improvement Theorem; in fact we have not been able to prove it in this
manner. Fortunately, it can be proved by a very minor variation on the proof of
the Improvement Theorem (given in the next section) and is therefore omitted.

6. THE THEORY OF IMPROVEMENT

This section introduces a proof technique for establishing improvements, which
arises from an alternative characterization of the improvement relation. Most im-
portantly, the proof technique is essential in our proof of the Improvement Theorem,
which is given at the end of the section. Readers more interested in the applications
may safely skip this section after observing the properties of improvement listed in
Proposition 6.1.3, which presents a collection of important properties from the per-
spective of transformation (such as transitivity and congruence) and other useful
properties of improvement (like the fact that it contains one-step reduction).

6.1 A Context-Lemma for Improvement

To facilitate reasoning about the improvement relation it is essential to obtain a
more tractable characterization (than that provided by Definition 5.1.2)—in par-
ticular one which does not involve a quantification over all contexts. This is also
the case for operational approximation, and the following characterization of the
improvement relation is mirrored in our treatment of operational approximation,
as detailed in the appendix.

It turns out that > is an instance of the improvement theories previously inves-
tigated by the author [Sands 1991] (but quite independently of the transformation
problem addressed in this article). This earlier study provides some crucial tech-
nical background for “improvement” orderings in functional languages. Most im-
portantly, it provides a definition of tmprovement simulation as a generalization of
Abramsky’s applicative bisimulation and provides some results directly extending
those of Howe [1989], which help to characterize when these relations are contextual
congruences. We used these results to show that improvement can be expressed as
an improvement simulation.

In what follows we describe this characterization and outline the associated proof
technique (for improvement) which it provides.



18 . David Sands

Definition 6.1.1. A relation ZR on closed expressions is an improvement simu-
lation if for all e, €', whenever e ZR €', if ell,,w; then €', wy for some ws such
that either N

(1) wi=cler...en), wa=c(e)...e,),and e; IR €, (i €1...n) or
(2) wy € Closures, wy € Closures, and for all closed eq, (wy eg) ZR (w2 €g).

So, intuitively, if an improvement simulation relates e to €’, then if e converges, €’
does so at least as efficiently and yields a “similar” result, whose “components” are
related by that improvement simulation.

The key to reasoning about the improvement relation (and in particular, the
key to proving the correctness of the Improvement Theorem) is the fact that D>,
restricted to closed expressions, is itself an improvement simulation (and is in fact
the mazimal improvement simulation). Furthermore, improvement on open expres-
sions can be characterized in terms of improvement on all closed instances. This is
summarized in the following:

LEMMA 6.1.2 (IMPROVEMENT CONTEXT LEMMA). For all e, ¢, e D> €' if and
only if there exists an improvement simulation TR such that for all closing substi-
tutions o, ec IR €'c.

ProOF. The main part of the proof (the if direction) follows from Sands [1991,
Theorem 2.14], after recasting the language into the appropriate syntactic form.
The only-if direction follows from the fact that the language has sufficiently many
“destructors” — although the details are somewhat tedious (see, for example, the
corresponding proof about a similar relation in Sands [1993, Theorem B.2]). O

The lemma provides a basic proof technique, sometimes called coinduction:

—to show that e D> e’ it is sufficient to find an improvement simulation containing
each closed instance of the pair.

Here are some example improvement laws which follow either directly from its
definition or from the improvement context lemma:

ProprosIiTION 6.1.3.

(1) e e =>el ¢ (improvement implies approrimation )
(2) © on closed expressions is an improvement simulation

(3) e e = Cle] B Cle’] (congruence)
(4) e=e =>el ¢ (reflexivity)
(5) e e &e e =>el e (transitivity)
(6) eme=ele (improvement contains reduction)
(7) elw=elw (improvement contains convergence)
(8) tzeiffr2e (unfolding is an improvement)
(9) et iffer2eand3e £el (folding is not an improvement)
(10) IR[case z of <> case z of (IR-distribute)

61(371) e C1 (371) : JR[el]

en(Yn) * €n] ¢n(¥n) + Rlen]



Total Correctness by Local Improvement in Transformation . 19

Proor. (1) follows immediately from the definition that [> is a strengthening of
the conditions for operational approximation.

For (2), observe that the union of all improvement simulations is an improvement
simulation, and hence from the improvement context lemma, that improvement
(restricted to closed expressions) is precisely this union.”

(3)-(5) follow easily from the definition of improvement.

In (6) we show that the reflexive closure (on closed expressions) of — (i.e., »U=)
is an improvement simulation. Since = is an improvement simulation then it is
sufficient to check the case when e; +— ea. Suppose, then, that e;|},,w. Clearly from
Definition 5.1.1 we have esdl<,,w, and the remaining conditions for improvement
simulation are easily satisfied; and hence (~ U =) is an improvement simulation.

Part (7) follows from the preceding property, together with transitivity and re-
flexivity.

Part (8) says that unfolding is an improvement and is a simple instance of (6).

For (9), suppose £ ¢'|},, for some ¢’. Then since £ ¢/ — e{€'/;}, we have e{€'/3 }}, _,
and hence e [ £ z.

In (10) we show just the I> direction—the other direction is similar. We show
that the reflexive closure of the relation containing all pairs of closed terms of the
form

(R[case eg of c1(Z1) 1 e1...cn(Zn) 1 €n ],
case eg of ¢1(%1) : Rle1]...cn(Zn) : Rlen])

is an improvement simulation. The reflexive part (=) is straightforward. Assume
that R[case eg of ¢1(Z1) :€1...cn(&n) : € [, w. Now since

—

Rlcase[]of c1(#1) 1 e1...cn(Zn) en ]
is a reduction context, then it should be clear that we must have

IR[case eg of ¢1(Z1) 1 e1...cn(Fn) t€n ]
—* Rlcase ¢;(€") of ¢1(ZF1) 1 e1...cn(Zn) : €n ]

and since each of these reductions is “in” ey, we have matching reduction steps

case eg of ¢1(%1) : Rle1]...cn(Zy) : Rlen]
—* case ¢;(€") of ¢1(#1) : Rle1] ...cn(Zn) : Rlen] .

Now the former derivative reduces in one more step to B[ei{gl/fi}], while the latter

reduces to R[ei]{gl/fi}. Since reduction contexts do not bind variables, these are
syntactically equivalent, and so we conclude that

case eg of R[e1(Z1) 1 e1]... Rlen(Zn) en] I, w

and the remaining conditions for improvement simulation are trivially satisfied,
since we have reflexivity. [

7 Alternatively, one can equivalently define the improvement simulations to be the pre-fixed-points
of a certain monotonic functional, in the standard way (e.g., see Milner [1989] and Sands [1991]),
and using basic set-theoretic fixed-point theory improvement is then characterized as the maximal
fixed point (and hence a pre-fixed-point).



20 . David Sands

6.2 Improvement “Up To"

To prove the Improvement Theorem we first introduce a useful variant of the im-
provement simulation proof technique, which is well known from CCS as “(bi)sim-
ulation up to” [Milner 1989]. First we give a more convenient definition of improve-
ment simulation in terms of the following operation:

Definition 6.2.1. Given a relation R on closed expressions, we define R to be
the least relation on weak head normal forms such that

—c(er...en) RV c(e) .. ¢)ife; R el ie{1...n} and

—e RV ¢ ife, ¢ € Closures, and for all closed ¢, (ee”) R (' ).

So the definition of an improvement simulation can now be written more compactly
as:

—A relation ZR on closed expressions is an improvement simulation if for all eq, es,
whenever e; IR es, if e1{l, w1 then eall.,, wa for some wy such that w; IR 1 ws.

If S and T are relations then S; T denotes the relational composition given by the
following:

a (S;T) bif and only if a S @’ and a' T b for some a’.
The following properties about _ will be useful:
LEMMA 6.2.2. For all weak head normal forms w, w',
(1) ’LUETUJI < wlkw and
(2) wPhQ v = w (P;Q)T w'.
The proof is straightforward from the definitions and is omitted.
The up-to proof technique relaxes the condition that the “components” of match-

ing weak head normal forms of related terms must be exactly related by the simu-
lation relation in question—but they should be related up to improvement:

Definition 6.2.3. A relation ZR on closed expressions is an improvement simu-
lation up to improvement(abbreviated to an i-simulation) if for all e1, e2, whenever
e1 IR eq, if e1d),,wy then ezl ws for some wsy such that w; B; RT; > ws.

ProOPOSITION 6.2.4. To prove e; B ey it is sufficient to find an i-simulation
which contains each closed instance of the pair.

Proor. It is enough to show that if R is an i-simulation then R C B>. First we
show that >; R; > is a simulation. Suppose that ¢; >; R;> es and that e}, wy.
Then using the fact that > is a simulation, we have the following, for some €], €5,
wy, Wy, wsy:

er D> e R eh > ey
‘U’m ‘U’m’fm ‘Unfm’ n'<n
w Bhwl mRLE W, B

From Lemma 6.2.2, and transitivity of >, it follows that wq (B; R;E)Jr ws 1n the
bottom line of the diagram, and thus B>; R;> is a simulation. This shows that
(&; R; ) C B>, Since improvement is reflexive, it follows that R C >. O



Total Correctness by Local Improvement in Transformation . 21

6.3 On Curried Function Definitions

Consider two similar function definitions of the form fiz;---z, 2 e and f5 2
Azq....dx,.e. We will use certain similarities between such functions in order to
simplify proofs involving the improvement relation. However, we will also point
out certain differences which explain why we study a language which permits both
forms of definition.

Firstly, note that the expressions £; and f5 are not cost equivalent. The reason
is that £1 is a weak head normal form, so 1t evaluates in zero steps to itself. The
expression fs evaluates in one step to the weak head normal form Azq.... Az, .c.

One might feel that the distinction between £; and f£5 i1s unnecessarily pedantic.
However, if we were to weaken the theory of improvement adding the equation
f; <> £, then the “Improvement Theorem” would become unsound.®

Eliminating Functions of Arity > 0. Tt is possible to express £ in terms of £5 as
follows:

f1 ?AIl)\IanIlIn

This 1s possible because the extra beta reductions involved in applying the expres-
sion on the right are not counted in the definition of improvement. More generally,
any reasoning involving functions of arity > 0 (like £1) can be reduced to reasoning
about functions of arity zero (like £2) by using the following:

ProrosiTION 6.3.1. For any function definition £z, ...x, = ¢, we have £ <>
AZ1 ... AZp.g21 ... 2, where g2 Axy .. .)\mn.e{)\l’l AT g Ty “Tnfe}.

The proposition extends to sets of mutually recursive functions in the obvious way.
The proof proceeds by showing that the symmetric closure of

R={'{Tfy}, ' A2 An g} [ FV (') C {y}}

is an i-simulation. We omit the details.

The upshot is that in any proof about expressions involving the improvement
relation we can assume, without loss of generality, that all function definitions in-
volved have arity zero. We will take advantage of this in the proofs which follow. In
particular, this means that we can assume that all closures are lambda expressions.

Using Functions of Arity > 0. There are good reasons not to abandon definitions
of nonzero arity altogether. One reason is that they simplify the presentation of
transformation systems and rules, in particular those which are based on first-
order languages. More importantly, the definition of a transformation is sensitive
to the arity of the functions involved. Transformation of a function of the form
fi 21 2, 2 e must, by definition, derive a function of the same arity. For a
definition of the form £3 £ Azy....Az,.e, a transformation is not obliged to leave
the abstractions Az;.... Az, intact. It turns out that having control over the arity
of a definition can be a useful restriction on a transformation. We use this restriction
in a crucial way in a transformation method described in Section 9.6.

8Proof hint: this can be shown by taking f; z 2 f, and f2 2 \z.f;, and showing that the
extension of improvement to include £; <> f5 together with the Improvement Theorem allows us

to conclude that £, E g1 where g 2 g142.



22 . David Sands

6.4 Proof of the Improvement Theorem

The preceding proof technique is useful for establishing concrete improvement laws.
Here we use it to establish the main theorem. We make a slight generalization of
the theorem. In the sequel let f=+f,...f, and € = g1...8n be defined as follows:

e ¥ | .
T i

where FV(e;,ef) C 7, and e;{f/j} & e}{f/}. Following Proposition 6.3.1, the
assumption that all functions have arity zero is without loss of generality.

We will show that £ P> g. The theorem is then a simple corollary, taking the case
when e; and e} contain no occurrences of £ or g.

We prove this by constructing a relation that includes the set {(£;,g:;) |1 € {1...n}}
and which we show to be an i-simulation.

f;
gi

(112

Definition 6.4.1. Define relation ZS on closed expressions by
IS = {(ed,e7) | 7 (e) C 7} where
def (F
¢ = {T/z}
def o
v = {8y}
To show that ZS is an improvement simulation up-to improvement we will need
some technical results connecting ZS and the one-step reduction relation —.
Recall that improvement is measured in terms of the number of steps of the
function application rule, and that if e — ¢’ according to this rule then we write
e ¢'; if e — ¢’ by any other rule (the redexes are disjoint, so only one rule can
apply) then we write e > ¢’. In what follows let +>*denote the transitive reflexive

closure of ¥s. The following key proposition details the interactions between the
one-step reduction and the relation ZS .

PROPOSITION 6.4.2.

(1) Ife1 IS ey then e; € WHNF if and only if e; € WHNF.
(2) Ife1 IS eq and ey v €} then ey~ ¢y and ¢ IS ¢},
(3) Ife1 IS ey and ey N €} then ey N ehy, and €} (B>, 1S )€l

Proo¥. In what follows, suppose that e; ZS e3. Then we have an expression eg
containing at most free variables i such that e; = eg¢ and es = ey .

(1) Suppose that e; € WHNF (the case for es is symmetric). Then there are two
possible cases for the structure of eq:

(a) eq = ¢(€) and hence ez = ¢(€7y) € WHNF, or
(b) eg = Az.e angl hence e; = (Az.€)y € WHNF.

(2) Suppose that eo{/5} + €| Then we can write eq as C[e] for some open context
C and expression e such that C'¢ is a reduction context and e{f/7} is a redex.
(Note that C'¢ is well defined since C' cannot capture variables.) Using part (1)
of the proposition, it is easy see that Cv is also a reduction context. So now
we show, by considering cases according to e, that ey is also a redex, and that
the reducts of e¢ and ey are also related by ZS, from which it easily follows



Total Correctness by Local Improvement in Transformation . 23

that e} and e}, are also ZS -related.

Case e = case ¢;(€) of ¢1(Z1) : €f ...en(Zn) : € . Clearly ey is also a redex,
so the reducts of e¢, ey are, respectively, e/ ¢{€%/z} and e/y{€V/z}. We can
assume, without loss of generality, that Nz = (), so these redexes are e} {¢/z}¢
and ¢!/ {F}.

The case where e = (Az.e’)e” is similar to the above. The remaining cases
where e = p(¢) and e = ¢’@e" are straightforward.

(3) Suppose eg¢ +» ¢;. Then as above we argue that we can write eq as C[e] for
some open context C' and expression e such that C{f/g‘} is a reduction context
and e{f/g‘} is a (fun)-redex. There are two possible cases for the structure of
expression e:

Case e = h. The details are straightforward since e¢p = h and ey = h, and
we use the fact that = CZS C (B;ZS).

Case e = y;, for some j € 1...n. In this case e¢ = £;, which reduces to

ej¢. Now since g; £ €7, ey similarly reduces to ejvy. So e N Cle;]¢ (since

C' cannot bind any of the ), and similarly ey N Clef]y. Now by definition
of the f and g, and the substitutivity/congruence properties of >, we have
Clejlg & Clei]¢, and by definition of ZS that Clei]¢ ZS Clef]y, and so we
conclude Cle;]¢(2;ZS ) Clej]y as required. O

Now we can furnish a proof of Theorem 5.2.1:

PrOOF (THEOREM 5.2.1). Assume e; ZS ez and ey, w1. We show by com-
plete induction on n that e, ws for some wsy such that wq (B;ZS )ws. By simple

properties of > and ZS we can see that this is sufficient to show that ZS is an
i-simulation up-to, and hence that f; > g;.

Let ¢ = {f/g‘} and v = {g/g‘} We have, by definition of ZS , an expression e such
that e¢p = ey and ey = es.

Base (n = 0). Then e¢ +>*w;. By part (2) of Proposition 6.4.2, ey +3*¢’ for some
¢’ such that wy ZS e’. By part (1) of Proposition 6.4.2 it follows that ¢/ € WHNF
and hence ¢/ = w5, and we are done.

Induction (n > 1). Since e¢l),~, then for some eg, €1, e¢ o * €g, € N e1 and

e1l},,_jw1. We summarize the main argument with the diagram in Figure 3. We
complete the squares (A)—(D) from top left to bottom right:



24 . David Sands

e s <
. 0 " o 3
¢d 23 18 ¢h ey
. (B) .
wy €1 B¢ IS ey _w2_n
(©) (D)
-1 y<n—1 w1
w1 ) (R:IS) wa
(E)
11;1 (&5 18) wz

Fig. 3. Induction argument for the Improvement Theorem.

A) by part (2) of Proposition 6.4.2;
) by part (3) of Proposition 6.4.2;
) since improvement is an improvement simulation;
D) by the induction hypothesis, and finally
)

the bottom line follows from the preceeding line by Lemma 6.2.2 and transi-
tivity of >. O

7. BASIC CORRECTNESS RESULTS

Before we present some applications of the improvement theorem, it is useful to
note some basic techniques for establishing the correctness of transformations which
complement the improvement-based method. These basic techniques are corollaries
of the partial correctness property (Proposition 4.3.1) and follow from the fact that
“reversible” transformations are correct.

7.1 Reversible Transformations

A simple corollary of the partial correctness property is that if we have a trans-
formation from f to g and a transformation from g to h such that & C f then
f = g (since £ gL h C f). Tn essence this is just McCarthy’s recursion induc-
tion principal [McCarthy 1967]. A simple but practical instance of this scheme is
the following reversible transformation: a transformation from £ to g is reversible
if there exists a transformation from g to h such that the definitions for £ and i are
syntactically equivalent up to variable renaming. In practice reversible transforma-
tions have limited power, but are useful for proving simple transformations that
do not introduce new recursive structure and can be useful to complement other
correct transformation methods.



Total Correctness by Local Improvement in Transformation . 25

Abstraction. A common form of transformation, which is easily justified by ap-
pealing to reversibility, is abstraction. The abstraction transformation lifts some
instances of subexpressions from the right-hand sides of a set of definitions and
replaces them with function calls for some new functions.

The abstraction process can be used in conjunction with a call-by-need imple-
mentation to avoid repeated evaluation of subexpressions. A well-known example is
Hughes’ supercombinator abstraction [Hughes 1982]. Another form of abstraction
which is common in program transformation is syntactic generalization in which
an expression e is replaced by a function call ge; ...e,, where g is a new function
defined by gz1...x, 2 €', such that e = e’{€1---Enfp 4 }.

General statements about abstractions and their correctness are notationally
rather complex. In practice we have found it is easier to appeal to a reversibil-
ity argument on a case-by-case basis than to instantiate very general statements
about abstraction.

Independent Transformations. Finally, we consider a class of reversible transfor-
mation which we call independent transformations. These are a class of correct
transformations whose correctness follows from the fact that the transformation
step does not depend on the functions being transformed. At the expression level
this transformation (and its correctness) are easily understood. Stated in terms
of explicit lambda expressions, if e = ¢, then by congruence fixAz.e = fix Az.€e/,
where fix is a fixed-point combinator. Stated in terms of recursive definitions, this
corresponds to the transformation from fz 2 e{f/,} to gz 2 ¢'{&/,} (where we
assume that e, e’ are independent of either £ or g).

The generalization of this transformation to a set of mutually recursive functions,
and proof that the resulting transformation is reversible (and hence correct), is left
as an easy exercise.

There are reversible transformations which are not improvements and therefore
cannot be justified by the improvement theorem. Because of this, these more ba-
sic methods for arguing correctness are complementary to the application of the
improvement theorem. The idea is that even though a transformation from £ to g
may not be provable by the improvement theorem, it may be possible to justify it
by splitting the transformation into two or more stages, and justifying some stages
by a reversibility argument, and some by appealing to the improvement theorem.
We will see an example of this at the end of the next section.

8. APPLICATION TO THE VERIFICATION OF TRANSFORMATION METHODS

The Improvement Theorem has immediate application to program transformation
methods. In Sands [1995b] it is used to provide a total correctness proof for an au-
tomatic transformation based on a higher-order variant of the deforestation method
[Wadler 1990].

In this section we illustrate the utility of the Improvement Theorem with a smaller
example: a simple mechanizable transformation which aims to eliminate calls to
the concatenate (or append) function. The effects of the transformation are well
known, such as the transformation of a naive quadratic-time reverse function into
a linear-time equivalent.

The systematic definition of the transformation used here is due to Wadler [1989a]



26 . David Sands

(with one small modification). Wadler’s formulation of this well-known transfor-
mation is completely mechanizable, and the transformation “algorithm” always
terminates. Unlike many other mechanizable transformations (such as deforesta-
tion and partial evaluation), it can improve the asymptotic complexity of some
programs.

The basic idea is to eliminate an occurrence of concatenate (written here as
an infix function ++) of the form fe; ...e, + €, by finding a function £* which
satisfies

tte . zpy= (frr...2,) Hy

Definition 8.1 ( “Concatenate Vanishes”). The transformation has two phases:
initialization, which introduces an initial definition for £1, and transformation,
which applies a set of rewrites to the right-hand sides of all definitions.

Initialization. For some function £ zq ...z, 2 e, for which there is an occurrence
of a term (fe;...e,) + €' in the program, define a new function

e oyl ety
Transformation. Apply the following rewrite rules, in any order, to all the right-
hand sides of the definitions in the program:

(1) nil Hz > =

(2) (zy)Hz—>z.(y+H2)

() (z+Hy)+Hz—oz+(y+2)

(4) (case z of — case r of
e1(71) : ex c1(1) : (1 +H 2)
en(Un) 1 en) H 2 en(¥n) @ (en H 2)

(B) (fz1...xn)Hy— 2. .20y
6) (£t zr...zny)Hz—ftte .z, (y+H2)

In rule (4) (strictly speaking it is a rule schema, since we assume an instance for
each vector of expressions e; .. .e,) it is assumed that z is distinct from the pattern
variables y;.

Henceforth, let — be the rewrite relation generated by the above rules (i.e., the
compatible closure) and —7 be its transitive closure.

It should be clear that the rewrites can only be applied a finite number of times,
so the transformation always terminates—and the rewrite system is Church-Rosser
(although this property is not needed for the correctness proof).

Ezample 8.2. Here is a simple example to illustrate the effect of the transfor-
mation: itrav computes the inorder traversal of a binary tree. Trees are assumed
to be built from a nullary leaf constructor, and a ternary node, comprising a left
subtree, a node-element, and a right subtree.

itravt £ caset of
leaf : nil
node(l,n,r) : (itravl) H(n.itravr).

The second branch of the case expression is a candidate for the transformation,
so we define:



Total Correctness by Local Improvement in Transformation . 27

itravtity 2 (caset of

leaf : nil
node(l,n,r) : (itravl) H(n.itravr)
) +Hy

Now we transform the right-hand sides of these two definitions, respectively:

caset? of leaf :nil
node(l,n,r) : (itravl) H(n.itravr)
caset? of leaf :nil
node(l,n,r) : itravt ! (n.itravr)

(case t of leaf :nil
node(l,n,r) : (itravl) H(n.itravr)) Hy
— caset of leaf :nilHy
node(l,n,r) : ((itravl) +(n.itravr)) Hy
—+t caset of leaf :y
node(l,n,r) : itravt ! (n.itravt ry)

The resulting expressions are taken as the right-hand sides of new versions of itrav
and itrav* respectively (where we elide the renaming):

itravt 2 caset of leaf :nil

node(l,n,r) : itravt ! (n.itravr)

itravtty 2 caset of leaf :y
node(l,n,r) : itravt ! (n.itravt ry)

The running time of the original version is quadratic (worst case) in the size of the
tree, while the new version is linear (when the entire result is computed).

The following correctness result for any transformation using this method shows
that the new version must be an tmprovement over the original, which implies that
the new version never leads to more function calls, regardless of the context in
which it is used.

Correctness. It is intuitively clear that each rewrite of the transformation is an
equivalence; the first two rules comprise the definition of concatenate; the third is
the well-known associativity law; the fourth is a consequence of distribution law for
case expressions; and the last two follow easily from the preceding rules and the
initial definitions. This is sufficient (by Proposition 4.3.1) to show that the new
versions of functions are less in the operational order than the originals, but does not
guarantee equivalence. In particular note that rule (5) gives the transformation the
ability to introduce recursion into the definition of the new auxiliary functions. To
prove total correctness we apply the Improvement Theorem; it is sufficient to verify
that the transformation rewrites are all contained in the improvement relation.

ProPOSITION 8.3. The transformations rules (1)—(6) are improvements.

Proor OUTLINE. Using the context lemma for improvement it is sufficient to
consider only closed instances of the rewrites. Rules (1) and (2) are essentially just



28 . David Sands

unfoldings of the standard definition of concatenate and thus are improvements.
Rule (3) can be similarly proved from the operational semantics by showing that
its reflexive closure is an improvement simulation. Rule (4) can be proved with the
help of Proposition 6.1.3, part (10), observing that the context [ ]+ z unfolds to a
reduction context. Rule (5) follows directly from the definition of f* provided by
the initialization, since after two reduction steps on each side of the laws the left
and right-hand sides are identical. Furthermore, this law is a “cost equivalence” —
it is also an improvement in the other direction, and so for (6) we have that:

(fter...zpy)Hz < ((fz1...2,) Hy) H 2 (since (v) C (<))

> (fay...x,) H(y+2) (by (iii))
> fta .z, (yHz)  (by (v)

v

O
Then we get the following, directly from the Improvement Theorem:

ProproSITION 8.4. The transformation is correct, and the resulting functions are
improvements over the originals.

8.1 A Variation

In the introduction to this section we mentioned a small difference to the trans-
formation as described by Wadler [1989a]. This is a small “performance bug”
highlighted by the use of the Improvement Theorem. Wadler includes a rule which
replaces the original definition of the function (£) by

frq...0, 2f 2. .. 2,nil. (1)

In order to apply the Improvement Theorem it was necessary to omit this rule.
This 1s because the rule can lead to less efficient programs. More specifically, there
are many examples where the number of computation steps needed to compute the
first & elements of the expression fe; ...e, will be increased by O(k) function calls.
However, in cases where the concatenate operator is successfully eliminated, the
overhead of using (1) reduces to O(1). What is more, this version is more efficient
in terms of code size. In our modification, one could say that we have solved the
“performance bug” at the expense of a “code size” bug.

In the remainder of this section we show how the correctness of this original
formulation of the transformation can be justified. We make use of the Improve-
ment Theorem by factoring the transformation into two steps and justifying these
independently. The first step i1s not an improvement, but can be easily justified
by elementary means, appealing to reversibility (cf. Section 7). The second step
(the core of the transformation) is an improvement and can be justified by the
Improvement Theorem in the manner of the transformation considered earlier.

We describe the original variation of the transformation as follows.

Initialization. As before, for some function £ zy ...z, £ e define a new function
Tz yl ey
Transformation Step (1). Replace definition (f 21 ...z, 2 €) by

fry...2,2f 2. 2,nil.



Total Correctness by Local Improvement in Transformation . 29

Transformation Step (2). As before, apply the rewrite rules (1)—(6) to the right-
hand sides of all definitions.

ProrosiTiON 8.1.1. The original variation of the transformation s correct.

ProoF. We prove the correctness of the two steps separately, and the result
follows by transitivity.

Step (1). Given the following well-known equivalence z +nil = z, it is easy
to establish that the transformation step is reversible (see Section 7) and hence
correct.

Step (2). Since the first step is correct, we can still argue that all the rewrite
rules are equivalences, and so, just as for the earlier transformation, it is sufficient
to show that the rules are contained in the improvement relation. Correctness then
follows from the Improvement Theorem (but note that the improvement property
established by the improvement theorem is with respect to the functions obtained
after Step (1), and not the original functions). The difference is that we must verify
this improvement property with respect to definition (1). The only rule which needs
to be checked is (5), since the others are independent of definition of £. But this is
easily verified, and we leave 1t as a simple exercise. [

9. APPLICATION TO UNFOLD-FOLD TRANSFORMATIONS

In this section we consider a different kind of problem: unfold-fold transformation.
The problem is different from the task of verifying specific transformation methods
(such as the one in the previous section) because, in general, unfold-fold is not
correct. Qur task is to design, with the help of the Improvement Theorem, a
simple method for constraining the transformation process such that correctness is
ensured.

In summary of this section, we will introduce an “improved” unfold-fold method
(and an extension of it) which guarantees that the program thus obtained is equiv-
alent to the original. The method follows the spirit of the idea of “more unfolds
than folds” in that it amortizes the cost of fold steps (which introduce new function
calls) against the savings made by unfolding steps. This amortization guarantees
that the local transformation steps are improvements, and hence that correctness
follows from the Improvement Theorem. To make this work (to disallow, for ex-
ample, the incorrect transformation in the introduction) the unfold steps and fold
steps must be related in a certain sense. This is formalized with the help of the
improvement theory.

9.1 The Unfold-Fold Transformation

Burstall and Darlington’s original definition was for a first-order functional language
where functions are defined by pattern matching, and a call-by-name evaluation is
assumed [Burstall and Darlington 1977]. The following six rules were introduced
for transforming recursion equations:

(1) Definition introduces a new recursion equation whose left-hand side is not an
instance of the left-hand side of a previous definition.

(2) Instantiation introduces a substitution instance of an existing equation.



30 . David Sands

(3) Unfolding replaces an instance of a function call by the appropriate instance of
the body of the function.

(4) Folding replaces an instance of a body of a function by a corresponding call.

(5) Abstraction replaces occurrences of some expressions by a variable bound by a
where clause.

(6) Laws rewrite according to laws about primitive functions.

There 1s an important point which is not made clear from this standard definition
(but which is essential in practice): the folding step—which replaces an instance
of the body of a function definition by the corresponding instance of the call to
the function—is able to make use of an earlier version of the function. In other
words, one can replace an instance of the body of an older version of a function
with the corresponding call. Without this ability it would not be possible to obtain
nontrivial recursive programs. In the original formulation of the transformation
from Burstall and Darlington [1977] one is also allowed to unfold using any earlier
definition, but in practice this is less critical.

Unfold-fold transformation carries over to higher-order functional languages es-
sentially unchanged. To suit our particular language but without significant loss
of generality we simplify the rules we will consider and the style in which they are
applied.

—The definition rule above may be applied freely, since it just introduces new
functions (and conservatively extends the theories of operational approximation
and improvement).

—Instantiation will not be used explicitly; the role of instantiation will be played
by certain distribution laws for case expressions. In any case, unrestricted instan-
tiation is problematic because it is not even locally equivalence preserving, since
it can force premature evaluation of expressions (a problem noted in Bird [1984],
and addressed in some detail in Runciman et al. [1989]) and is better suited to a
typed language in which one can ensure that the set of instances is exhaustive.

—Abstraction will not be used explicitly, since this can easily be represented by laws
using lambda abstractions to represent the binding (which has the advantage of
enabling us to deal implicitly with possible problems with bound variables which
do not arise in Burstall and Darlington’s language).

9.2 Simplified Unfold-Fold Transformation

In our setting, an unfold-fold transformation will consist of adding new defini-
tions and (repeatedly) transforming the right-hand sides of some set of definitions
{£:Z; 2 e;}ier, according to unfolding, folding, and rewriting laws, to obtain a set
of expressions {e}};cr. Using these expressions a set of new function definitions is
constructed, namely

{£12; 2 el {T'/F) }ier.
Henceforth, the terms unfolding and folding refer to local transformations on
expressions and not to operations which in themselves give rise to new definitions.
Given definitions £;% £ ¢;, the unfold and fold rewrites are just instances of the

~

congruences ;7 = e; (although this law does not hold in a call-by-value language



Total Correctness by Local Improvement in Transformation . 31

under arbitrary substitutions, so for strict languages further restrictions must be
applied). We take the laws to be operational equivalences by definition. So we
see that an unfold-fold transformation step is now a transformation according to
Definition 4.1.2, and we obtain the standard partial correctness result that the new
program may be less defined than the original (see Kott [1978; 1985] and Courcelle
[1979]).

9.3 Correctness by Improvement in Unfold-Fold

If we restrict the application of the laws so that they are improvement steps (as
they usually are in practice), then since the unfolding step is an improvement,
transformation steps not involving folds are totally correct, and the results are
improvements. This follows directly from Corollary 5.2.2. (In fact it is not too
difficult to show that any transformation without folding is correct, provided that
the laws are not dependent on the definitions of the recursive functions [Courcelle
1986; Zhu 1994].

The problem is that no fold step, viewed in isolation, is an improvement.® The
key to guaranteeing correctness is to ensure that we pay for each fold step at some
point, thus maintaining overall improvement.

9.4 The Tick Algebra

In order to obtain correctness through the Improvement Theorem, it is sufficient
to verify that the net effect of the local transformation steps is an improvement.
Intuitively, unfolding “speeds up” an expression, and folding “slows it down”; so if
the transformation sequence contains some folding steps, it must also contain some
corresponding unfolding steps. A key point which must be formalized is that the
unfolding steps and folding steps must be suitably related for the net result to be
an improvement.

We introduce a mechanism to enable the required net improvement condition to
be maintained stepwise through the transformation—rather than enforce it through
a post hoc justification of each transformation. We will extend the unfold-fold
process with a single “annotation”, v “tick.” Although we will think of the tick
as an annotation, formally it is a function

Ve = ticke
where tick i1s an identity function, given by the definition
tickz £ x.

The tick function will be our canonical syntactic representation of a single computa-
tion step. From the point of view of observational equivalence we can safely regard
it as an annotation, since Ve = ¢; but from the point of view of improvement it is
more significant. In particular, since the tick is a function call, from the operational
semantics it should be clear that

ell,h <= Vell, 1.

9Except for the trivial case when the function introduced by the fold step is everywhere undefined.



32 . David Sands

In terms of improvement, observe that Ve > e but e Ve (except if all closed
instances of e diverge).

The technique for ensuring correctness of unfold-fold will be to use a tick to pay
for a fold step, paid for by a “nearby” unfold. With respect to a definition fz £ e,
the unfolding and folding steps correspond to instances of the law fz = e. In
terms of improvement, we have the following laws (which follow easily from the

improvement context lemma) relating a function and its body:
ProposiTION 9.4.1. If function £ is defined by £ % £ e, then

£tz > Ve
\/62 £

Proor. Easy by construction of appropriate improvement simulations, since
Verseand £7 v e. [

The idea of our “improved” unfold-fold transformation will be to use (substitution
instances of) these improvements, in place of unfolding and folding, respectively.
Since unfolding speeds up a computation by one step, the first improvement “saves”
that computation step in the form of an application of the tick function. We can
understand an instance of the second improvement as follows: folding introduces
one extra function call, but we can make this an improvement step providing we
eliminate a tick function call in the same step.

The remaining problem is to determine when unfold steps and fold steps are
“suitably related.” In order to perform a fold we must be able to move a tick—
generated by some earlier unfold step—to the fold site. This is achieved by the tick
algebra. The tick algebra is a collection of improvement laws for propagating ticks
around an expression while preserving or increasing improvement. Figure 4 gives
some basic laws for ¥ which will augment the transformation rules. We also need a
distribution law for nested case expressions (Proposition 6.1.3, part (10)). The basic
reduction steps of the operational semantics are also included in the improvement
relation, and are therefore useful. In the laws, IR ranges over reduction contexts,
possibly containing free variables.

The laws are straightforward to prove using the improvement context lemma.
But it is not intended (or expected) that one should (need to) prove tick-laws “on-
the-fly.” The method is intended to be viewed as completely syntactic—given a
“reasonable” set of tick laws.

9.5 “Improved” Unfold-Fold Transformations

We show by two small examples how the tick algebra can be used to maintain
improvement throughout the steps of a transformation, thereby guaranteeing total
correctness and improvement. This will be followed by the formal definition of
improved unfold-fold transformation and its proof of correctness.

Ezample 9.5.1. In Figure 5 we give a standard unfold-fold example, but now
locally maintaining the improvement relation at each step of the transformation by
introducing ticks at unfold steps, and propagating these, via the tick laws, to the
fold site. The example ensures, by construction, that the derived program sumsq’
is an improvement over the original (in addition to being equivalent). Note that



Total Correctness by Local Improvement in Transformation . 33

Ve, D> Ve
o Vel e . 1~ o R[Ve] < VR[e]
€1 E €9 ~
fr2e
. ffﬂ?\/e . \/p(el en) T ples Ve €n)
e Vcasee of <> casec of
c1(Z1) re1...cn(Zn) i en ACHE Veq .. en(Zn) Ve

Fig. 4. Tick laws.

in this particular case, since the improvement steps above are all represented by
cost equivalences, we get a good picture of the degree of improvement: namely, one
function call is saved for each call to sumsqs’, plus one more when the argument is
nil.

Ezample 9.5.2. To take a smaller (but less standard) example, consider the usual
Y-combinator of the lambda calculus (in head normal form) given by

Ah.h((Az.h(zz))Ae.h(zz)).

A direct translation of this into recursion equations would be the expression Y,
where

Yh

Dhz

h(Dh(Dh))

h(zz)

Now we transform the definition of Y to obtain a direct recursive version, by un-
folding the call to D then immediately folding against ¥:

A
A

Yh 2 h(Dh(Dh))
> hV(h (DA(DA))) (unfold D)
> h(Yh) (fold with Y)

thus obtaining a new definition Y'h 2 h (Y'h). The correctness of this method shows
that Y is equivalent to Y/, and Y > Y. (In fact since the steps of the transformation
are all cost equivalences, Proposition 5.2.4 gives us that Y <> Y'.)

Ezample 9.5.3. We take the unfold-fold transformation given in the introduction
and illustrate why we cannot justify it in the “improved” unfold-fold method. Recall
the following definition from the introduction which with the usual interpretation of
the conditional function returns true when the argument is false and is undefined
otherwise:

f 2 2 if z then(f z) elsetrue.

Now we attempt to simulate the unfold-fold transformation from the introduction,
using only improvement steps. We make use of the following improvement law,
which we state without proof:

if r then (if z thenyelsez’ ) elsez D> if z thenyelsez.



34 . David Sands

Consider the following definitions:

sumzs 2 case zs of

nil: o0
Y.Yys Yy + sumys
sqr 2 v+
map fxs £ case xs of

nil : nil
y.ys : (fy).map f ys
We will transform the following function:
sumsqs s £ sum(map sqzs).
Transforming the right-hand side we obtain:

sum(map sq zs)

case rs of
<> sumY nil :nil (unf. map)
y.ys : (sqy) mapsqys

case zs of
<> Vease V nil :nil of (unf. sum)
y.ys : (sqy)mapsqys
nil: 0
.xS:x -+ sumzs

<> Wcase zs of (V [case-laws)
nil: 0
y.ys : (sqy) + sum(mapsqys)
<> Vcase zs of (V-laws)
nil: v0
y.ys : (sqy) + \/sum(map sqys)
<> Vcase x5 of (fold sumsgs)
nil: 0
y.ys : (sqy) + sumsq ys
After eliminating the ticks we construct the new definition:

sumsq’ s £ case zs of
nil: o0
y.ys : (sqy) + sumsq'ys

Fig. 5. Improved sumsqs transformation.



Total Correctness by Local Improvement in Transformation . 35

We can transform the body of the definition as follows:

if z then (f z) elsetrue

<> if z then \/(if z then (f z) elsetrue ) elsetrue (unfold)
<> if z then \/(if T then \/(if z then(f z) elsetrue) ) (unfold)
elsetrue
elsetrue

D> if x then \/\/(f r) elsetrue (\/— distribution and law (twice))

We have expressed many of the transformation steps as cost equivalences, to indi-
cate that we have not discarded any potentially useful ticks. Now the final step of
the incorrect transformation was to fold the expression if xrthenf relsetrue. To
do this in the transformation above, we would need to be able to propagate a tick
from the first branch of the conditional to the outside. This is not possible with
the tick algebra we have considered, or any (sound) tick algebra for that matter,
since

if z then \/\/(f z) elsetrue ¥ Vif x thenf z elsetrue.

The general technique of the “improved” unfold-fold method should now be clear
from the examples. The following gives the formal definition and its correctness.

Definition 9.5.4. A pair of expressions (e1, e3) is defined to be an improvement
law if

(1) neither expression contains recursive function names other than the tick func-
tion, and

(2) e1 = ey, and

(3) e1 > ea.

Definition 9.5.5. Improved Unfold-Fold Transformation Given a set of function
definitions £; #; £ ¢;, ¢ € {l...m} an improved unfold-fold transformation is any
transformation which begins with the sequence of expressions (the bodies of the
functions) ey, . .., em, and which constructs a new sequence of expressions e/, ..., e},

by some finite iteration of applications of the following rules to any subexpressions
of the sequence:

(1) (improved unfolding) replace an instance of a function call £; #;, with the cor-
responding instance of the expression Ves;

(2) (improved folding) replace an instance of the expression \/ej, for some j €
{1...m}, with the corresponding instance of the call £; Z;;

(3) (improvement laws) replace an instance of the left-hand side of an improvement
law by the corresponding instance of the right-hand side.

Finally, construct the new functions £} #; £ eg{f//f’}, ie{l...m}.

THEOREM 9.5.6. Any improved unfold-fold transformation is correct and yields

new functions which are improvements over the respective originals.

ProoF. Each replacement operation preserves equivalence and is an improve-
ment: for (3) this follows by definition; for improved unfolding and improved fold-
ing, this follows from the cost equivalence £ ¥ <> Ve given in Proposition 9.4.1.



36 . David Sands

Since improvement and operational equivalence are (pre)congruences, it follows
that e; = ¢} and ¢; > ¢e;, i € {1...m}. Finally, by Corollary 5.2.2 and Theo-

rem 5.2.1, respectively, we have that the transformation is correct (£f; = £}) and
yields functions which are improvements over the originals (£; > £}). 0

Notice that we leave the set of improvement laws open. In fact we can safely
allow replacements using any operational equivalence which is also an improvement
(i.e., those which depend on the functions), but this goes beyond what is usually
considered to be unfold-fold transformations; so we restrict ourselves to proper
“laws,” in the sense that they are equivalences independent of the user-defined
functions. (In Section 9.6 we consider an extension of this method for which this
condition is a necessary one.)

The tick laws are crucial in the examples. The following proposition covers these
and other useful improvement laws:

ProrosiTION 9.5.7. The following pairs of expressions are instances of improve-
ment laws:

(1) (e,€') and (¢',¢€), whenever e v ¢’ (i.c., e — €' via any reduction rule other

than (fun));

(
(\/p(azl coozn),p(ey .. Vg zy)) and the symmetric pair;
(e,¢’') whenever e and €' satisfy the following conditions
a) e=e', and

) e and e are built from only primitive function calls, constants, and vari-

ables; and
(c) each variable in ¢’ occurs at most once.
(6) <\/case zr of , case x of )
c1(Z1) re1...cn(Zn) :en c1(%1) : Vei .. cen(Zn) Ven
and the symmetric pair;
(7) <1R[case z of , case z of )
c1(Z1) 1e1...en(Fn) 1 en ] e1(Z1) : Rlei] .. .cn(Zn) : Rlen]

and the symmetric pair.

ProoF. For each pair it is necessary to show that they are expressible as in-
stances of operational equivalences and improvements not involving recursive func-
tions. Proving operational equivalence and improvement for the pairs (with the
exception of (5) is straightforward, so we omit the details.

With regard to (3) and (7) we need to check that they can be expressed as
instances not involving function symbols. This follows (via a simple structural
induction) from the fact that any (open) reduction context IR can be expressed
as IR'o for some reduction context IR not containing function names, and some
substitution o.

For (5) we need to prove e > ¢’. We give a sketch. Assume that there is
some instance of e that converges (otherwise we are finished). Consider any closed
instance of the pair (ec, e’c). Suppose eo converges in k steps. Since e is built from
only primitive functions, variables, and constants, it follows that eoc must evaluate



Total Correctness by Local Improvement in Transformation . 37

to a constant. It follows by operational equivalence that e’c evaluates to the same
constant. It remains to show that ¢’c converges in less than or equal to k steps.

First, note that e and e’ are strict in all their variables, i.e., if ea|} then it follows
that zol|} for all = in the free variables of e, and similarly for ¢/. Now we argue
that the free variables of e and e’ must be the same, since if they were not, then
we could find a substitution 7 which made one expression converge and the other
diverge, contradicting the assumption that e = ¢’. Now suppose €’o converges in m
steps. Since e and e’ are built from only primitive functions (which are strict, and
reduce in zero steps), constants, and variables, and since each variable in ¢’ occurs
only once it can be established by a straightforward induction on the structure of
e/ that m = Y {n |y €Frv(e),yol,} and since the free variables of ¢’ also occur
in e at least once, we conclude by a similar argument that £ > m. O

9.6 An Extension to Improved Unfold-Fold

There 1s a commonly occurring problem with the improved unfold-fold method as
outlined above. The problem relates to folding in a “lazy” context. Any expression
to be folded must be ticked, but ticks cannot propagate across lazy contexts, e.g.,
z.[], so if the lazy context is produced by an unfolding step, the tick generated by
the unfold cannot be used to justify the fold step.

The practical solution to this problem is presented in terms of an extension to
the improved unfold-fold method. The solution has the additional advantage that,
in practice, it can greatly simplify the amount of tick bookkeeping necessary.

The Problem

Ezxample 9.6.1. Consider the following definitions where the conditional is just

shorthand for the corresponding boolean case expression, and the period “.” is infix
cons:
filter pxs £ case xs of
nil : nil

y.ys : if py theny.filter p ys
elsefilter p ys
iterate fz £ z.(iteratef(fz))

Suppose we wish to transform the expression:
filterp (iterate f z).

So, for example, filter even (iterate(add 1) 1) is the “infinite” stream of even
integers greater than one. We begin unfold-fold transformation by introducing a
definition:

fitpfa 2 filterp (iterate fz).

Now we attempt to transform the right-hand side by improved unfold-fold steps
(we use cost equivalence steps to show that we have not discarded any potentially
useful ticks):



38 . David Sands

filterp (iterate f z)
e filterp\/(m.(iteratef (fz))) unfold, tick-elim.
< Wifprthenz.filterp (iterate f (fz)) unfold, laws
elsefilterp (iterate f (f z))
< \/ifp:t: then \/:b.filterp (iterate f(fz)) tick-laws
elseVfilterp (iterate f (f z))
< Vifpz thenVz.filterp (iterate f(fz)) fold
elsefitp f(fz)

At this point we want to fold the other instance of filterp (iterate f (fz)) in
the first branch of the conditional, but the tick cannot propagate over the cons-
constructor to enable this fold, even though the result of this fold is correct.

Ezxtended Improved Unfold-Fold. The practical solution to this problem comes in
the form of an extension to the improved unfold-fold method. The extension will
allow more folds. The basic intuition of the solution is as follows. Suppose we are
performing transformation steps on the body of some function g. Further, suppose
there is an instance e¢ of the body of some function £, which we wish to replace by
the corresponding call to £ (in the previous example, the functions £ and g were
the same function, £it). In the improved unfold-fold transformation method, one
attempts to propagate ticks (generated from earlier unfold steps) to the expression
es in order to perform an improved fold. This is sound because the extra function
call £ thus introduced is balanced by the elimination of the tick function call.

The extended method described in the remainder of this section provides an
alternative means to justify the fold step: instead of paying for the fold step at
the site of the fold operation (the subexpression e which occurs in the body of g),
it can be paid for at the outermost level of the body of the function £. In other
words, if we can propagate a tick from the body of the function £ to the outermost
level of the expression, then if we eliminate this tick we have guaranteed to speed
up the function £ by at least one step, thus making it safe to fold any instances of
f. This idea of paying for a fold step by speeding up the callee, rather than caller,
is subject to one further restriction: the initial definition of the function £ must
be nonrecursive, in the sense that it does not occur in the right-hand side of any
definition (including £). In practice this condition is not too restrictive because it
covers the common case where £ is a newly introduced definition (a “eureka”), like
fit in the example.

Definition 9.6.2 (Extended Improved Unfold-Fold Transformation). Assume we
wish to transform a set of function definitions £; #; £ ¢;, 7 € {1...m} An extended
improved unfold fold transformation is any transformation performed as follows.
Begin with the sequence of expressions ey, ..., e, and construct a new sequence of

expressions €}, ..., e/, by some finite iteration of applications of the following rules.

y “ms
In addition, during the transformation each function definition is either marked or
unmarked. Initially all definitions are unmarked. In the following rules, j ranges

over {1...m}:

(1) (improved unfolding) replace an occurrence of an instance of a function call,

f; #;, with the corresponding instance of the expression \/ej, providing the
definition of £; is not marked;



Total Correctness by Local Improvement in Transformation . 39

(2) (improved folding) replace an occurrence of an instance of the expression \/ej,
with the corresponding instance of the call £; &;;

(3) (improvement laws) replace an occurrence of an instance of the left-hand side
of an improvement law by the corresponding instance of the right-hand side;

(4) (marked folding) replace an occurrence of an instance of the expression e;, for
some j with the corresponding instance of the call £; Z;, providing that £; is
marked.

(5) (marking) if the jth expression of the sequence is Ve, for some e, and definition
f; is unmarked and nonrecursive, then replace the jth expression by e, and
mark f;.

Finally, construct the new functions £} #; 2 ¢/{£'/7}, ie {1...m}.

THEOREM 9.6.3. Any extended improved unfold-fold transformation is correct
and yields new functions which are improvements over the respective originals.

Proor. Partial correctness is immediate, since the transformation steps are all
equivalences. Tt is sufficient to show that the new functions are improvements over
the originals.

Consider a transformation beginning with functions £; %; £ ¢;, i € {1,...,m}
and producing functions

£ 2 {fF), ie{l,...,m}.

Let k& be the number of transformation steps performed, starting at the expres-
sions e;, and ending with expressions €. Let expressions e;1,..., e (1 € {1,...,m})
denote the intermediate expressions after each step of the transformation, where
Cik = 62.

We consider the case where only one function becomes marked during the trans-
formation. The general case is a straightforward (but notationally complex) gener-
alization. Assume that only the function £; becomes marked during the transfor-
mation, and assume that £; becomes marked at step 7, 1 < j < k.

Define the following functions:

£/ 8 2 e {T1fe,} i€ {l...m}.
Claim (1). £; > £},
Claim (2). £ > £},

The proof of the theorem then follows by transitivity. It remains to prove the
claims.

ProoF oF CLAIM (1). Since e;; is obtained from e; without using the marked
folding rule, the functions £ are derivable via an improved unfold-fold transforma-
tion. Hence the claim follows from Theorem 9.6.3. O

Before we move to the proof of Claim (2), we need a couple of technical lemmas
giving us some properties of the intermediate functions £

LEMMA 9.6.4. e, D £ Z;.



40 . David Sands

ProOF. Recall that £ #; £ ey;. Since eq; is the expression obtained after
rule (5), and since all the preceding transformation steps are all improvements (since
they are all steps (1)—(3)), we must have that e; > \/elj. By Claim (1), it follows
that \/elj > \/elj{f/f/fl}, and by Proposition 6.1.3 we have that \/elj{flll/fl} >
£Y ;. Putting these together we conclude that e; > £{ & as required. [

LEMMA 9.6.5. Let e be any expression not involving functions £. Let €' be
any expression obtained from e by an application of one of the rules (1)-(4) of
Definition 9.6.2, under the assumption that the definition of £1 is marked (and
nonrecursive). Then it follows that E{flll/fl} > e'{flf/fl}‘

ProOF. We argue by cases according to rules. We will also adopt the following
convention: if § denotes some substitution, then 6’ will denote the substitution
obtained by applying the replacement {flll/fl} to the range of 6.

(1) Since e does not contain any instances of functions £ and since £; is marked,
in this case a subexpression (f; #;)f is replaced by e;f for some i > 1. Tt
follows that a corresponding subexpression (£; ;‘Ei)g{f/l//fl} occurs in e{flll/fl},

. . . 1" . . .
so by a similar replacement we can obtain El{fl/fl}. Since unfolding is an

"

improvement, we have that 6{f/1//f1} > e'{fi/e, }.

(2) Consider the case when we replace an occurrence of Ve, 0 by (£1 Z1)6 (for the
other cases we can argue as above). There is a corresponding occurrence
of \/elﬁ{flf/fl}. Now since e; by assumption does not contain f£;, we have
that \/elﬁ{flf/fl} = \/616’, and since Ve, 6’ > (£ Z1)0" we can conclude that
e{f1/e,} & e/ {T1/e, }.

(3) Since improvement laws do not depend on function definitions (and are im-
provements by definition), the law is also applicable in e{flf/fl}, and the result
s an improvement.

(4) Replaces an occurrence of e;6 by (f1 #1)0. Since e; does not contain f; we
have that:

c10{f%,}

el (since £1 nonrecursive)
(£Y #1)0 (Lemma 9.6.4)

(£1 7)0(21e,)
(£121)0{%1/s, }
Thus we can conclude that e; H{f/f/fl} > (£4 fl)ﬁ{flf/fl} and hence that €{flll/f1} >
e’{f/f/fl} as required. [

v il

ProoF oF CLAIM (2). Using the Improvement Theorem, it is sufficient to show
that

eii {E1/e,} & e (£} (2)

since this ensures that the functions £} can be obtained from the £} in the manner
of the Tmprovement Theorem. To establish (2) it is enough to show that

eij{f1/e,} & e {f1/e, ), (3)



Total Correctness by Local Improvement in Transformation . 41
since by Claim (1) we have that (;‘Z'k{flll/fl} > e {f"/F}. But (3) is readily es-
tablished by inductive application of Lemma 9.6.5, (noting that improvement is
transitive and reflexive), and this completes the proof. O

FErample. Returning to the problematic example, we transform the function fit
using the extended method. We begin with expression filterp (iterate fz). We
will use “—=” to denote an application of one or more transformation rules'® and
derive

filterp (iterate f z)
— filterp (z.(iterate fz)) (unfold, tick-elim)
— Vifpx thenz.filterp (iterate f (fz)) (unfold)
elsefilterp (iterate f (f z))
— if pr thenz.filterp (iteratef(fz)) (mark fit)
elsefilterp (iterate f (fz))
— ifpzthenz.fitp f(fx) (marked fold, twice)

elsefitp f(fx)

Now we conclude with the construction of the new function

fit'pfz 2 ifpr thenz.fit'pf (f2)
elsefit'p f(f )

Notice that the amount of tick manipulation is very minimal. The reader is
invited to rework the example from Figure 5 using the extended method, making
use of marked folding instead of improved folding, and compare the degree of tick
“bookkeeping” required.

As a final remark on the extended method, we note that it is sensitive to the
arity of the initial definitions. If we had started the above transformation with a
similar definition

fit" pf 2 Az.filterp (iterate f z)

then we would not have succeeded, because we cannot propagate a tick up to the
top level to enable the marking step. It is possible to come up with a version of the
transformation rules which would circumvent this problem, but the rules become
much more complex, since they involve a much more complex definition of marked

folding.

9.7 Further Extensions

In conclusion of this section we note some 1deas for further extensions to the unfold-
fold transformations described here.

Improvement Lemmas. One reasonable question is whether the transformation
for eliminating concatenate described in the previous section can be justified using
the improved unfold-fold method (or its extension). The answer is: almost. Each
of the transformation rules (1)-(6) of Definition 8.1 can be justified as sequences of
improved unfold-fold steps, with the exception of rule (3) (the associativity property

10Tn the earlier examples we simply used the improvement relation. Since marked folding is not
a local improvement it does not make sense to use it here.



42 . David Sands

of concatenation) and rule (6) (which depends on rule (3)). As we mentioned earlier,
we could simply add (3) as an “improvement law,” although in general we would
probably need to add conditions that say that functions involved in such extended
improvement laws are not themselves subject to further transformations.

A more interesting point is how we might establish this lemma using the improved
unfold-fold method itself. The idea of using unfold-fold to prove lemmas comes from
Kott [1980]. Proietti and Pettorossi [1994] describe how it can be done in such a
way that it can be safely integrated into correct unfold-fold transformations. Here
we outline how it can be achieved within the framework of improved unfold-fold
transformations.

We can achieve safe “unfold-fold lemmas” using the improved unfold-fold method
as follows. Suppose we wish to replace an occurrence of expression e; by ey dur-
ing an improved unfold-fold transformation. The replacement will not violate the
correctness of the transformation providing that e; = es, and e; B es. We can
establish these properties using the improved unfold-fold method as follows. First
define g1Z £ e; and g2 & £ eq, where # includes the free variables of e; and es. It
is necessary and sufficient to prove that g; = g, and g, 2 g».

We can proceed by transforming g1 and ga, by improved unfold-fold transforma-
tion, to obtain new functions g} and g,. If we do this in such a way that g} and
gh are syntactically equivalent, then we have proved that g; = go, and hence that
e1 = es. To establish that e; B> ey it is sufficient to add the condition that the
improvement laws used to obtain g} are cost equivalences (so for example we are
not allowed to perform tick elimination). By this means (using Proposition 5.2.4)
we have guaranteed that gf, < g5. Thus we have gy I> g} <> g/, < g5 and hence
that e; I> es.

To take the example of the associativity property of concatenate, take

grzyz £ (z+y) +H2
g2ryz zH(y+H2)

and routinely derive

A
A

Vcase x of
nil:y+ =z
ht:h(gityz)

ghzyz 2 Ycaser of

nil:y+H =z
hit:h(ghtyz)

13

giryz

where gi, is obtained by a single improved-unfold step, and so is cost equivalent
to gz. Thus we have proved that (z Hy) H 2z Z 2 +H(y+H2) and (2 Hy) H 2z >
zH(y+H 2).

Folding Using Previous Definitions. Derived functions are improvements on the
originals, so we can allow folding against functions obtained from previous trans-
formation steps. For example, if an improved unfold-fold transformation from f
derives a function £’ then £ > £’. So a subsequent transformation can include a
more general form of fold, in which an instance of the body of £ (suitably “ticked”)
can be replaced by a call to £’. Integration of this idea with the extended method
is a topic for further work.



Total Correctness by Local Improvement in Transformation . 43

Negative Ticks. Transformations in which folds steps occur before any unfold
steps can be allowed by “borrowing” ticks and “paying them back” later. This
corresponds to use of the law \/61 > \/62 = e; > ey in order to establish the
improvement property. It might be possible to incorporate this idea into a stepwise
transformation (which uses only axioms, congruence properties, and transitivity)
by introducing negative ticks. At the time of writing we have not found examples
which motivate a deeper investigation of this idea.

10. RELATED WORK

Although the techniques developed in this article may find applications to the
verification of schematic transformations (e.g., see Huet and Lang [1978]), our main
focus has been on transformations of the “generative set” nature,'’ where a small
set of rules are repeatedly applied in a variety of ways—the archetypical example
being the unfold-fold method. These styles of program transformation, including
partial evaluation, have been active research topics in functional programming for
the last decade and more, and the problem of correctness has received surprisingly
little attention, particularly in contrast to the situation in logic programming.

In this section we present a detailed survey of related work in the study of cor-
rectness of transformations in declarative languages and the relationship to:

—the basic transformations (Section 7),
—the Tmprovement Theorem (Section 5), and

—the application of these techniques to the unfold-fold transformation (Section 9).

10.1 The Basic Transformations

Our basic definition of a transformation as a replacement of an expression by an
equivalent one within a recursive definition, and the fact that this operation is
partially, but not totally, correct (Proposition 4.3.1), occurs in a number of guises,
as do a number of the “basic” transformations of Section 7.

Partial Correctness. In the setting of recursive program schemes (which for the
present purposes we can consider to be first-order nonstrict functional programs),
Kott [1978] (and Courcelle [1979]) studied transformations consisting of unfolding,
folding, and laws about primitives; one of the basic correctness results in these
works is a partial-correctness result for the transformation (Theorem 1 of Kott
[1978] and Theorem 5.20 of Courcelle [1979]), which in turn depends on a least
fixed-point property of the recursive schemes. A direct proof of partial correct-
ness of transformation under general equivalence (rather than the more restrictive
equivalence under transformation by unfold-fold plus laws) is given by Scherlis for
a first-order strict functional language Scherlis [1980, Program Substitution Theo-
rem, 2.7]. With respect to unfold-fold transformations in their full (but arguably
unnecessary) generality —where one is allowed to unfold as well as fold against ear-
lier versions of a given function— partial correctness follows from the main results

of Zhu [1994].

1 For a classification of transformation approaches see Partsch and Steinbruggen [1983].



44 . David Sands

Unique Fized Points for Total Correctness. Courcelle [1979] studies conditions
under which a system of recursive equations has a unique solution (modulo some
equational theory of the primitive functions). One of the applications of such
conditions is the total-correctness problem in unfold-fold transformations, but the
idea is equally applicable to the more general definition of transformation used here.
The basic idea 1s as follows. Just as in Proposition 4.3.1, the partial-correctness
result follows from the observation that, when £ is transformed to g, £ is a fixed
point of g’s defining equation, and thus g T f. Now if we can show that g’s
definition has a unique fixed point, then it follows that £ and g are equivalent.
Courcelle’s conditions to guarantee uniqueness of fixed points are expressed in terms
of properties of the intended algebraic laws of the primitive functions rather than the
program itself. The conditions are somewhat technical, but also very restrictive—
e.g., in the presence of nonlinear laws—and so have limited practical application to
unfold-fold transformations.

A related approach to correctness appears in the synthesis method of Manna and
Waldinger [1979]. Their method (independently proposed at about the same time
as Burstall and Darlington’s unfold-fold transformation) uses the same basic steps
as the unfold-fold method; but in their system, a derivation of a program g from
f must come together with a termination proof — i.e.; a proof that g terminates
for all inputs. Given the partial-correctness property, this is sufficient to guarantee
total correctness because it shows that the function computed by ¢ is maximal in
its domain. The applicability of the method depends on f being total: the method
is applied to a language with a discrete data domain (i.e., no lazy data structures
or higher-order functions).

Reversible Transformation. A simple application of the partial-correctness prop-
erty ensures that a reversible transformation is totally correct.

Based on this observation, in a later work by Courcelle [1986] a much simpler and
more syntactic condition for total correctness of unfold-fold-like transformations is
presented. The method restricts the application of the unfold-fold steps so as
to guarantee that the transformation is reversible. The restriction is very simple:
partition the set of functions fto be transformed into two sets f_h and fﬂ; transform
only the functions f’ﬁ, but only allowing unfold and fold steps which use functions
in f_h. It is easy to see that this method guarantees reversibility, but in practice
this transformation is too restrictive to justify nontrivial transformations, since it
never allows the introduction of direct recursion.

The use of reversibility conditions also occurs in the study of unfold-fold trans-
formations of logic programs. Maher [1987] and Gardner and Shepherdson [1991]
define a folding operation for logic programs which only allows folding against a
clause in the current program. This guarantees that the folding step 1s reversible
(via an unfolding), and certain total-correctness results can then be established.
Pettorossi and Proietti [1993] discuss reversible folding and the principle of using
reversibility to obtain correctness for goal replacement, which can be thought of as
the analogy of the definition of transformation in this article. As Pettorossi and
Proietti (and others) note, the reversibility restrictions seriously limit the power of
the transformation, and this also appears to be the case for functional languages.



Total Correctness by Local Improvement in Transformation . 45

10.2 Replacement Transformations

The Expressive Power of Unfold-Fold Transformations. Kott [1980] notes that
the unfold-fold transformation method (in his formulation) is incomplete: there
are equations which cannot be synthesized from each other. This result'? is a
consequence of the fact that in any unfold-fold there is a certain linear relationship
(“parallel-outermost linear” in the terminology of Boudol and Kott [1983]) between
the respective approximants (in the Kleene-chain) to the least fixed points of the
original and transformed programs, but that there exist equivalent programs whose
approximants are related in a “nonlinear” fashion.

Kott’s observation seems to have been independently rediscovered by Zhu [1994],
where the result is strengthened to some extent by use of a more general definition
of unfold-fold transformation and clarified by application to a number of concrete
examples which show that the incompleteness has some practical significance. Re-
lated results applicable to pure unfolding and folding transformations are derived
by Amtoft [1993] using so-called multilevel transition systems. Incompleteness of
the unfold-fold method motivated Kott to define a (complete) generalization called
second-order replacement (see also Kott [1985]). The basic definition is of trans-
formation via replacement of equivalent expressions (in the context of recursive
definitions); the definition of a transformation used in this article is the direct anal-
ogy of this definition for a higher-order language. Completeness of the second-order
replacement method (with respect to the corresponding definition of equivalence),
as with our transformation, is obvious. Kott suggests an application of second-
order replacement to proving equivalence of programs by using a variant of the
above reversibility condition to ensure that the replacement is totally correct.

Replacement in Logic Programming Languages. The analogy of a replacement
transformation in logic programs would be to allow the replacement of a sequence
of goals by a “logically equivalent” sequence. Just as for our definition of a transfor-
mation, total correctness is not guaranteed because the logical equivalence does not
necessarily hold in the new program. Relative to unfold-fold transformations, re-
placement transformations have not been widely studied in the logic programming
community.

A more restricted notion of replacement, together with conditions ensuring total
correctness, was introduced by Tamaki and Sato [1984] as an extension to the
unfold-fold method. Tamaki and Sato’s replacement condition guarantees that the
logical equivalence in question does not depend on the clause which is transformed
— hence the goal replacement step is reversible. This reversibility is sufficient to
yield total correctness (with respect to a least Herbrand model semantics) (see also
Pettorossi and Proietti [1993]). Gardner and Shepherdson [1991] study similar goal
replacement conditions (correcting an error in the formulation of Tamaki and Sato’s
condition) for stronger semantics, and Maher [1987] defines replacement conditions
which also effectively mean that the equivalence in question does not depend on
the clause which is transformed.

Tamaki and Sato’s main technical result concerning goal replacement is a con-
dition that guarantees total correctness when it is used in conjunction with a cor-

12The main technical results are developed in Boudol and Kott [1983].



46 . David Sands

rectness preserving unfold-fold transformation approach (discussed below). The
condition in question is derived from the total correctness proof of their unfold-fold
strategy: it relates to the improvement condition of our main theorem in the sense
that it requires reduction in the size of the proof trees of (respectively) the clauses
and their intended replacements.

A related goal replacement condition is considered by Proietti and Pettorossi for
computed answer substitutions [Proietti and Pettorossi 1994]. In this work the par-
tial correctness of goal replacement itself is established by using (correct) unfold-fold
transformation (following a strategy suggested by Kott [1980]). Progress properties
of the unfold-fold proof which relate to the number of unfolding versus the number
of folding steps are then used to establish total correctness. In conclusion of the
previous section we showed how this idea could be justified in conjunction with the
improved unfold-fold method. However, it seems that we can go further than Proi-
etti and Pettorossi and allow this replacement operation to be used “recursively”
within the sub-unfold-fold proofs.

Bossi, Cocco, and Etalle: Replacement Using Semantic Delay. Starting with the
more general form of replacement, Bossi, Cocco, and Etalle [Bossi et al. 1992b]
study conditions guaranteeing total correctness with respect to both Fitting’s and
Kunen’s semantics. The main condition relates two quantities: the dependency
degree and the semantic delay. Suppose we wish to replace some conjunction of
literals C' by D in the body of a clause ¢/ in some program P. The first requirement
is that C' and D are semantically equal in the given program (note that Tamaki
and Sato’s condition —and in effect many of the other conditions for replacement
in the literature— requires that they are equal in P — ¢l). Now if D is independent
of ¢l the transformation is totally correct (since no new loops can be introduced).
Otherwise there is some dependency between D and ¢l. They define the dependency
degree, roughly, to be the shortest path from a literal in D to the clause ¢l. The
semantic delay of D with respect to C is a semantic measure (based on the minimal
ordinal number of iterations of the least fixed-point operator required to prove the
truth or falsehood of each closed instance of the literals) of how much “slower” D
is than C'. Their main theorem says that if the dependency degree of D on ¢l is not
less than the semantic delay (in the program P) of D with respect to C, then the
replacement is correct. The intuition i1s that under the conditions of the theorem
“there 1s no room to introduce a loop.”

There is a strong analogy between the notion of improvement and that of semantic
delay. In particular, if the semantic delay is zero then in some sense D is an
improvement over C', and the replacement is correct (irrespective of the dependency
degree). However, in practice the theorem is not used in this way: the use of the
dependency degree part seems essential. Bossi et al. show how the theorem can
be used to justify operations such as folding, fattening, and thinning (see also
Bossi et al. [1992a] which considers the application to folding for the computed
answer substitution semantics). It may be possible to simplify the application of
the techniques to Tamaki and Sato-style unfold-fold transformations by allowing
semantic delay to be negative and by adopting an analogy of the tick function to
perform the necessary accounting. Bossi et al. [1992a] argue that their theorem
allows some folding steps to be justified without appealing to the “transformation



Total Correctness by Local Improvement in Transformation . 47

history” (the unfold-fold steps taken so far). Our justification of folding steps
necessarily depends on the transformation history, but this is not a negative point
since we use the history to justify in a simple syntactic way the necessary semantic
conditions; as a corollary we guarantee a desirable improvement property of the
resulting program.

Pursuing the analogy in the other direction, can we make use of some form of
dependency degree? The main obstacles seem to be the nondiscrete nature of data
in our language that leads to more distinctions in termination behavior than just
“looping” and “nonlooping.” It is possible that we can achieve the same effect by
developing a “weighted” version of improvement in which we can assign different
weights to each function. Amtoft [1993] suggests that his framework can account
for the dependency degree idea using a similar idea of weights.

10.3 Unfold-Fold-Specific Correctness Conditions

There are a number of approaches to total correctness which are specific to the
unfold-fold transformations. In the setting of first-order functional languages we
consider the work of Kott [1978; 1985], who was the first to study total correctness
of unfold-fold transformation, and the work of Yongqiang, Ruzhan, and Xiaorong
[1987]. We also mention the related transformation method of Scherlis [1981] for
which a total correctness result has been established. Finally we will consider
some key methods in the extensive literature on unfold-fold transformations in logic
programming languages and their relation to the method described in Section 9.

Kott: A Theoretical Study of Unfold-Fold. Of the very few studies of correctness
in unfold-fold transformations of functional programs, Kott’s work [Kott 1978; 1985]
is probably the most well known.

We believe that Kott’s results on the subject have not been well understood.
References to Kott’s work within the functional programming community usually
produce a slogan to the effect of “an unfold-fold transformation is correct if there
are at least as many unfolds as their are folds”— and indeed Kott’s work has
some theorems which are conditional on this “at least as many unfolds as there
are folds” property. This unqualified slogan is certainly not an accurate picture
of Kott’s technical results; nevertheless this basic idea can provide a reasonable
intuition for many of the methods for total correctness in logic programming—as
noted by Pettorossi and Proietti [1993], who add the intuition that this condition
ensures that “going backward in the computation (as folding does) does not prevail
over going forward in the computation (as unfolding does).” Amtoft [1992; 1993]
takes this intuition as a starting point. With suitable generalizations (e.g., noting
that “some unfoldings are more important than others”) he is able to construct a
framework which can explain many of the total correctness conditions used in the
logic programming literature.

In fact, Kott’s results are restrictive, primarily, we believe, because they do not
satisfactorily take into account where the respective folds and unfolds occur,3 other
than by applying some very general restrictions to the transformations and by

13Tn our setting this is managed by the tick algebra. For example if a tick from an unfolding
cannot be propagated (using the full theory of improvement) to an intended folding site then the
unfold and fold steps are unrelated with respect to termination properties.



48 . David Sands

weakening the correctness condition.

We will primarily discuss results from the later work [Kott 1985] which is closely
related to, but less restrictive than, the results in Kott [1978].

The language studied is a first-order nonstrict functional language consisting of
a set of mutually recursive equations. The semantic setting is that of algebraic
semantics, so the results are parameterized on an interpretation of the meaning of
the primitive functions (which could include lazy and strict data constructors, as
well as conditional expressions.)

A restricted form of unfold-fold transformation is studied, in which the body of
a single function (among a set of functions) is rewritten by a sequence of unfolding
steps, a sequence of applications of laws about the primitives, and finally a sequence
of folding steps (strictly in that order). The expression thus obtained forms the
body of a new version of the function.

The results are split into two cases according to the very last folding step per-
formed. The cases do not seem to be exhaustive, since the term folded in the last
folding step is assumed to contain (the results of) all previous folding steps.

The interesting case is when the last fold step introduces direct recursion, and we
explain the main results with the help of the example of an incorrect transformation
given in the introduction, and Example 9.5.3. The transformation begins with

f r 2 if z then (f z) elsetrue

and proceeds by two unfold steps, two applications of the law:

~

if r then (if z thenyelsez’ ) elsez = if zr thenyelsez

and concludes with a fold step, yielding the new version of the function: £ z £ £ z.

The transformation is within the scope of Kott’s definition.!* Notice again that
there are more unfolds than folds, but that the transformation yields a definition
which is not equivalent (in the intended interpretation) to the original.

Kott’s results (Theorem (4.2)1 and Proposition (4.2)1 of Kott [1985, p.426]) state
that the original and transformed versions are equivalent in all interpretations for
which an additional law holds. An algorithm is given for producing the required
extra law, which has the form e = L where e is an expression not containing any
recursive function symbols, but possibly containing L (representing a looping term).
The extra law is dependent on the transformation. The expression e is constructed
from the transformation sequence by combining the expressions immediately before
the sequence of laws are applied, with those immediately after. In this case the
algorithm produces the law

if x then | elsetrue = L

which clearly does not hold in the intended interpretation.

In comparison with the tick approach (Example 9.5.3), the unfolding steps and
the applications of the law in the above example are allowed (since they are all
improvement steps), but the fold step cannot be justified because the ticks generated
by the unfolding steps cannot be propagated to the outer level (to “pay” for the
fold) because the conditional is not strict in its second argument.

14The law is not left linear and so would not be allowed under the additional restrictions of the
earlier paper [Kott 1978], but a similar example can be constructed using only left-linear laws.



Total Correctness by Local Improvement in Transformation . 49

Kott defines the additional law constructed in the theorem to be bad if the
constructed expression e in the law does not contain L. Such a law is “bad”
because it is unlikely to be true for the intended interpretation and therefore tells
us nothing about the actual validity of the unfold-fold transformation in question.

Kott [1985] has a proposition (Proposition (4.2) 3) which says that the con-
structed law will be bad if and only if there are more folds than unfolds. However,
this 1s a syntactic definition of “bad,” and it does not catch all degenerate cases;
there are correct transformations for which the number of unfolds is not less than
the number of folds, but for which the extra “law” is false in the intended interpre-
tation. As a (contrived) example, begin with the original definition of the function £
in the above example, and obtain a syntactically equivalent “new” version by apply-
ing one unfold and then one fold step. Even though the transformation is trivially
correct, Kott’s theorem still only guarantees correctness under the condition that
the law if 2 then | elsetrue = true is satisfied.

A consequence of the above proposition about “bad” transformations is the fol-
lowing (Theorem (4.2)2): if the interpretation of all the basic functions is strict,
then whenever the number of unfoldings is greater or equal to the number of fold-
ings, the transformation is correct. The intuition for this result is that the “extra”
law in this case will already be a consequence of the strict interpretation. Kott
claims that this theorem “is of practical interest if we think about programs writ-
ten in LISP.” Unfortunately the practical interest of the theorem is severely limited
by the fact that for a first-order pure subset of LISP (even if we consider a nonstrict
semantics) it is necessary to have at least one nonstrict primitive function, typically
“if-then-else,” to perform interesting computations.

In comparison, in addition to the fact that we can handle higher-order functions
and much less restricted transformations, our approach to obtaining unfold-fold
transformations is technically simpler, and more practical, since it can guide the
transformation rather than being a post hoc verification.

Yonggiang et al.’s Approach. Yonggiang et al. [1987] propose a method for the
correctness of unfold-fold transformations on FP programs (a first-order strict func-
tional language with only “functional” expressions, i.e., no (object) variables—see
Backus [1978]). The method is in some sense a dual to the approach suggested by
the Improvement Theorem, since it views the computations by the primitive func-
tions as the significant ones and the recursive function call steps as being “free.”

The conditions are quite technical (and we will not attempt to reproduce them
here), but one particular reductive measure function is given — together with a
reductive set of laws — for which it is claimed that there are many practical trans-
formations.

The method is described in terms of a transformation of a single recursive func-
tion, and in the formal definition of an unfold-fold transformation it is assumed that
each transformation step derives a new program from the previous one. Clearly this
1s not as intended, since one must be able to refer back to earlier versions in order
to perform useful fold steps. This point seems to be easy to fix (although proofs
of the results are not included in the article), but there are some remaining ques-
tions when one combines this with the possibility of mutually recursive functions,
since, for example, if one is also allowed to unfold using earlier definitions then the



50 . David Sands

method breaks.
Tt is not clear (to this author) how the method can be extended to handle lazy
data structures, but it is claimed that it can handle some higher-order functions.

Scherlis: Ezxpression Procedures. Considering more specific transformation meth-
ods, of particular note is Scherlis’ transformation method based on ezpression pro-
cedures [Scherlis 1980]. This method is less general than (i.e., can be simulated by)
the unfold-fold method, but has the distinction that it preserves total correctness
without need for any global constraints. The method is proved correct (for a strict
first-order language) using a notion of progressiveness, based on reduction orderings
(related ideas are used in Reddy [1989] for the synthesis of Noetherian rewrite rules
from equational specifications).

In order to describe his transformation method, Scherlis extends programs in a
strict first-order functional language with ezpression procedures. Expression pro-
cedures are pairs of equivalent expressions that are more general in form than the
left and right-hand sides of a function definition, since the left-hand side of an ex-
pression procedure is allowed to be a complex term. The transformation system
consists of just four rules (ignoring definition deletion) which successively modify
a (generalized) program (and do not need to refer back into the transformation
history). Briefly, the four rules are (ignoring the side conditions on application
relating, in particular, to the intended strict semantics):

(1) Composition: introduces a new expression procedure of the form C[(f z)o] 2

C[(eo)] from an existing definition £z £ e and a strict context C.

(2) Abstraction: the usual notion of simultaneous abstraction extended to the
right-hand sides of expression procedures.

(3) Application: unfolding, generalized to include replacing an instance of the left-
hand side of an expression procedure with the corresponding right-hand side.

(4) Laws: applying laws about primitives to the right-hand sides of definitions.

Notice that there is no folding rule: recursion is typically introduced by first ab-
stracting the body of an expression procedure and then using the application rule
to introduce recursion in the abstracted version.

Correctness. The proof of correctness of the expression procedure approach shows
that the transformations on the bodies of functions are equivalence preserving.
In turn this fact depends on the expression procedures being consistent with the
program (i.e., equivalences). These properties essentially give the usual partial
correctness result. The final step is to show that the expression procedures are
progressive—i.e., they guarantee termination properties. Interpreted operationally,
this means that one can freely use expression procedures as computation rules
without introducing new nonterminating computations.

Progressiveness and Improvement. Our initial aim was to extend Scherlis’ cor-
rectness result to a higher-order (and nonstrict) language using the improvement
theorem. Improvement can be used to characterize the key progressiveness prop-
erty of expression procedures, but we are unable to prove correctness using the
Improvement Theorem because the abstraction rule (which for this transformation
is crucial) arbitrarily introduces an additional function call.



Total Correctness by Local Improvement in Transformation . 51

In a separate study [Sands 1995a] we prove the correctness of the expression-
procedure approach for a lazy higher-order language using a version of improvement,
but without using the corresponding Improvement Theorem. The key to the proof
is to characterize the progressiveness property of each expression procedure e; £ es
by the requirement that

€1 E \/62.

It should be easy to see that the composition rule defined above guarantees this
property for new expression procedures. The problem is to show that this property
is maintained by applications of the other transformation rules. To show this, a
family of improvement relations is defined. Improvement is parameterized by a
weighting which assigns a positive integer “cost” to each function definition. The
improvement theory used here corresponds to the instance where the weight of each
function is one. The core of the proof is to show that after each transformation
step there exists some weighting which establishes the above property. For this, an
additional syntactic restriction on abstraction is added.

Unfold-Fold Transformations of Logic Programs. In contrast to the research on
functional languages, the literature on correctness issues in unfold-fold transfor-
mations is extensive (e.g., see Tamaki and Sato [1984], Seki [1993; 1991], Amtoft
[1992], Kawamura and Kanamori [1990], Kanamori and Fujita [1986], Sato [1990],
and Proietti and Pettorossi [1991]) — for a brief survey see Pettorossi and Proietti
[1993]. The basis of many of these results is the original paper by Tamaki and Sato
[1984], where a particular formulation of the unfold-fold method is introduced. For
the most part, the proliferation of results on this topic within the logic programming
community is due to the wide spectrum of semantics that can reasonably be used
in defining the correctness problem, e.g., least Herbrand model, computed-answer
substitutions, finite failures, etc. We have touched upon many of the techniques
from logic programming in the preceding discussion — for example, where they
rely on certain general ideas such as “partial correctness + reversibility = total
correctness” or where the techniques use a more general form of transformation
such as replacement (which is often able to simulate unfold-fold transformations).

In this section we consider the key ideas in the original definition (and proof of
total correctness) of an unfold-fold transformation method due to Tamaki and Sato
[1984]. The relationship to the use of the tick annotations in Section 9 will also
be discussed in the light of a direct generalization of Tamaki and Sato’s method
proposed by Kanamori and Fujita [1986].

In logic programming, Tamaki and Sato’s formulation of unfold-fold transforma-
tion is often taken to be the definition. It was the first method proposed for logic
languages which preserved total correctness (with respect to the least Herbrand
model) without need for a post hoc proof of correctness.

The basic part of Tamaki and Sato’s transformation system consists of applying
three rules: definition, unfolding, and folding. These steps are the natural analogues
of the corresponding steps in a functional language (we will not go into details here),
but their application is restricted in a number of ways.

The unfold and fold steps are defined with respect to particular definitions in
the transformation sequence. The transformation sequence consists of a sequence
of programs P;. Each unfold or fold step defines a new program in the sequence



52 . David Sands

in which the transformed clause is replaced with the modified one. In the initial
program, Py, we identify a subset of clauses D which are nonrecursive (i.e., their
bodies contain only clauses defined in Py\D). Unfolding at step 7 4+ 1 uses only
the clauses defined in P;. Folding at step ¢ + 1 operates on a clause in F; but folds
against a predicate as defined in D. Note that this description is of the wvirtual
transformation sequence in which all definitions (“eurekas”) are collected at the
beginning.

To obtain totally correct transformations Tamaki and Sato add some further
restrictions to the folding steps based on the transformation history. These restric-
tions are that the above form of folding can occur in a clause if either

(1) it is one of the original clauses in Py \ D or

(2) it is a clause which is the result of applying at least one unfolding.

This method is implemented in the transformation by a process of marking foldable
clauses during the transformation process.

Marks vs. Ticks. The informal connection with the method of “ticks” of Sec-
tion 9 is clear: to “pay” for a fold step which is not independently justifiable by
reversibility (case (1) above) we need to justify it with an earlier fold step. The tick
algebra is necessary in our setting because we need to ensure that the unfold and
fold steps are related. Some analogy of the tick algebra is not necessary in Tamaki
and Sato’s language because the simpler syntactic structure of programs ensures
that any unfolding in a clause will be “related” to any possible folding. Another
way of saying this is that ticks anywhere in the body of a program can be propa-
gated to the top level. So the marks of Tamaki and Sato informally correspond to
“one or more ticks in the body.”'® With this insight we anticipate Kanamori and
Fujita’s generalization of Tamaki and Sato’s method.

From Marks to Counters. Kanamori and Fujita’s [1986] refinement of Tamaki and
Sato’s transformation replaces the basic “foldable” marks by a counter (a natural
number) attached to each clause. Unfolding a clause C with counter v in a clause D
will add v to D’s counter. Folding (in a clause with a non-zero counter) decrements
the counter of the clause. Given the above analogy with the tick approach, the
counter corresponds to the number of ticks in the body of a function. The details
of the proof of the counter approach (a direct generalization of Tamaki and Sato’s
proof) reveal analogies with the use of ticks to represent degrees of improvement. A
refinement of Tamaki and Sato’s goal replacement conditions is provided by the use
of counters. This refinement can be explained by analogy with improvement-based
transformation with the following observation: during an unfold-fold transforma-
tion a law of the form e > V... Ve' is more useful than its consequence e > ¢’; since
with the former transformation potentially more folding steps can be justified.

15We have adopted the notion of “marking” in the extended improved unfold-fold method (defined
in Section 9.6). Although we have taken the terminology of certain clauses being “marked” from
Tamaki and Sato, it should be noted that the conditions for marking in Tamaki and Sato’s
method are more analogous to improved folding. Our condition for marked folding requires that

k) “

the function introduced by the fold step is marked. Tamaki and Sato’s
that the clause in which the fold occurs is marked.

marked folding” requires



Total Correctness by Local Improvement in Transformation . 53

11. CONCLUSIONS AND FURTHER WORK

We have presented an improvement theorem which says that if the local transforma-
tion steps are improvements, then correctness of the transformation follows. The
significance of the theorem has been demonstrated with applications to existing
transformation methods (which lacked rigorous correctness proofs) (see also Sands
[1995b]) and to the long-standing problem of correct unfold-fold transformation in
higher-order functional languages. The fact that the improvement condition is a
(pre-)congruence relation means that the local “stepwise” character of transforma-
tion methods remains, both in correctness proofs which employ the improvement
theorem (cf. Section 8) and in the method proposed to constrain unfold-fold trans-
formations (Section 9).

11.1 Variations

Our development has been with respect to a particular language. There are a
number of variations in language and the theory of improvement which could be
considered. Here we outline the consequences of some orthogonal variations and
some areas for further work.

Types. The addition of types to the language does not significantly affect the
development of the improvement theorem. Typed versions of improvement can be
developed along the lines of typed theories of equivalence (e.g., see Gordon [1995]).
From the point of view of the improvement theorem, types play a minor role, and
for this reason we have stuck to an untyped language. However, a statically typed
version of improvement is useful since some (local) equivalences depend critically
on types. For example, “instantiation” makes sense in a typed language, since if e
is of list type, then

e <> case e of
~
nil :nil

ht:ht

Other important examples of local improvements which hold in polymorphically
typed languages include the parametricity theorems which are derived from poly-
morphic types (e.g., see Wadler [1989b]).

Call-by- Value. The theory of improvement for a call-by-value (CBV) version of
the language is straightforward to develop. The theory of improvement can also
be developed along similar lines, and the improvement theorem goes through for
call-by-value without any significant changes. The more significant differences come
in the application of the theorem. Firstly CBV-improvement is not closed under
arbitrary substitution, but only under substitution of values, so that e >ctv €’ does
not in general imply that ec D>cbv €’0. A related point is that arbitrary unfolding or
beta reduction is not a CBV-improvement, since unfolding can duplicate expressions
which would otherwise have been evaluated only once. This means that unfold-fold
transformations must use linearity properties to justify unfoldings or must use the
rule:

fegPebvlet x =¢p ine, if £is defined by £ 2 .



54 . David Sands

Clearly one needs further CBV-improvement laws for let expressions. It appears,
then, to require more effort to verify the correctness of call-by-value transforma-
tions. On the positive side, the additional reward of such correctness proofs is that
the improvement theory for call-by-value is a more realistic than that for call-by-
name (since actual implementations of call-by-name languages use a call-by-need
evaluation mechanism).

Call-by-Need. A problem left open in Sands [1991] is: is there a tractable call-by-
need theory of improvement? A “reasonable” call-by-need theory is a prerequisite
to answering the following natural question:

Does the improvement theorem hold for call-by-need?

At the time of writing we do not know the answer to this question. A first step is to
find a characterization of the call-by-need improvement theory. A recently proposed
term-based call-by-need theory [Ariola et al. 1995] might prove an interesting basis
for this investigation. Interestingly, many of the call-by-need reduction rules are
anticipated by the above call-by-value theory of improvement. As it stands, the call-
by-value, call-by-name, and call-by-need improvement relations are incomparable.
We might also look for a contribution from improvement theory to the study of
call-by-need calculi, since improvement defined in terms of a call-by-need reduction
relation might provide a more appropriate semantic criterion for the “correctness”
of call-by-need calculi (since, as shown by Ariola et al. [1995], the criterion of
observational congruence does not distinguish call-by-name and call-by-need).

Alternative Improvement Relations. There are many possible variations on the
theory of improvement which stem from the many possible ways of counting the
“cost” of evaluation. The characterization of improvement in terms of a simulation
relation (Definition 6.1.1) and the corresponding context lemma can be proved once
and for all for a large class of improvement relations (see Sands [1991] for further
details). Tt appears that the Improvement Theorem also holds for many of these
variations. In particular, it is easy to verify that the Improvement Theorem holds
for versions of improvement which also count other operations, other than just
function calls (e.g., f-reductions). However, most of these variations do not add
significantly to the transformations that we are able to prove.

A version of improvement which deserves some further investigation is the weighted
improvement from Sands [1995a], which assigns a different (positive) weight to each
function definition. If the Improvement Theorem holds for weighted improvement
(for any weight) then it should be possible to verify the transformation described
in Sands [1995a]. We leave this topic as another avenue for further work.

APPENDIX
The Theory of Operational Approximation

In this appendix we fill in some details of the theory of operational approximation,
leading to a proof of a least (post-)fixed-point theorem. The development largely
mirrors that of the theory of improvement from Section 6.

The key to studying operational approximation and equivalence is to find tractable
characterizations of these relations; the characterization which we use says that two
expressions are related by observational approximation if there is a certain kind of



Total Correctness by Local Improvement in Transformation . 55

simulation relation which relates them.'® An expression is simulated by another if
(1) whenever the first evaluates to a weak head normal form, so does the second
and (2) the weak head normal forms are of the same kind (same constructor, or
both are closures) whose “components” are themselves in the simulation relation.
To simplify the presentation and use of simulation we define the following;:

Definition A.1. If R is a relation on closed expressions then let R denote the
least relation on weak head normal forms such that eg Rt ey 1f

—eg = ¢(€), e =¢(€’) and € R &' and

—eq, €1 € Closures, and if for all closed e, (ege) R (e;e).

Definition A.2. A relation R on closed expressions is a stmulation if for all ey,
€q, whenever e; R e, if e Jw; then egllws for some wy such that w; RT ws.

There 1s a largest simulation relation, given by the union of all simulation rela-
tions. The following important characterization says that this maximal simulation
coincides with observational approximation on closed expressions:

THEOREM A.3. For all e, ¢ we have e C €' if and only if there exists a simula-
tion R such that for all closing substitutions o, ec R €'o.

ProOF. Using the now standard techniques of Howe [1989] (see also Gordon
[1995]), and recasting the language in the form of Howe’s lazy computation systems,
the proof follows easily. [

Proof Techniques for Operational Approzimation. Now we have our basic proof
technique for demonstrating operational approximations, a so-called coinduction
principle (after Milner and Tofte [1991]):

—to show that e T ¢’ it is sufficient to find a simulation relation containing each
closed instance of the pair.

The above properties ensure that the existence of such a simulation relation is a
necessary and sufficient condition for e T e’. In fact, there is a useful refinement
of this proof technique which is well known from (bi)simulation in CCS — that of
bisimulation up-to [Milner 1989]:

Definition A.4. A relation R on closed expressions is a stmulation up to obser-
vational approrimation if for all ey, e, whenever e; R eq, if e1{}w; then esfws for
some ws such that w; C; RY L ws.

ProprosITION A.5. If R is a simulation up to observational approrimation then
R CLC

Proo¥. A straightforward adaptation of the up-to technique for improvement
given in Section 6, Prop. 6.2.4. [

16 Qjven that our operational semantics is in terms of reduction contexts, it would me more
standard to characterize observational approximation in terms of reduction contexts. We stick with
a “simulation” characterization because (1) we take advantage of some metatheory for simulation
relations [Howe 1989; Sands 1991], (2) we will make use of certain proof techniques associated
with (bi)simulation relations, and (3) because it gives a more reasonable treatment of constructor
expressions



56 . David Sands

To summarize:

—to prove that e C ¢’ it is sufficient to find a simulation up to observational

~

approximation which contains all closed instances of the pair.

A Least Post-Fixed-Point Theorem

Now we turn to one last property of the language which we will need. This concerns
recursive definitions and takes the form of a least fixed-point property. If we view
a recursive definition (or, in general, a mutually recursive set of definitions) as
an equation in £ (the defined function), then the actual expression £ is a minimal
solution (with respect to operational approximation) of this equation. In the proofs
that follow we will assume that all functions have arity zero, so that closures are
just lambda abstractions. This is without loss of generality since and function of
arity > 0 can easily be represented, up to operational equivalence, by a function of
arity zero.

ProPosITION 3.3.1 (LEAST PRE-FIXED POINT). Let &€ = ey, ..., €, be a list of
expressions and Z = 1, ..., 2, be a list of variables such that rFv(€) C {z1...2,}.
The inequations e¢; & ;, ¢ = 1...n, have a solution for ¥ = g, where the

functions g are defined by

gi 2 e {8z}, i=1...n
Moreover, for any other solution, ¥ = €”, we have that g; C e, i=1...n.

ProOF. Assume the conditions of the proposition. First we need to show that
gi C ¢;{&/z}, but this is straightforward to argue since the left-hand side reduces
to the right-hand side in one reduction step. Now suppose that there is another
solution €’. We need to show that g; C e}, i = 1...n. It is sufficient to show that

ei{8/z} C ei{€'/z}. Define the following relation:

R = {(eoy,e0c) | FV(eo) C 7}
where v = {8/7}
e = {7}
It 1s now sufficient to show that R is a simulation up to observational approximation.
Now we take an arbitrary pair of R-related terms, which we can write as ey and
ee, where v = {&/7} and € = {€'/} for some e, . Suppose that eyljw. We show, by
induction on the length of this reduction (and by cases according to the syntactic
form of e), that eel}w’ for some w' such that w (C; R;E)T w'.

Base. ey € WHNF. There are two subcases according to the structure of e:
either e 1s a constructor expression or a lambda abstraction. Note that e cannot
be a variable z;, since g; is not a weak head normal form. We will consider the
case where e = Ay.e”’. The other case is easier. Assume without loss of generality
that the variable y is distinct from the variables #. Now ey = Ay.e” v Ay.e”’v and
similarly ecllA\y.e”’¢. From the definition of bisimulation up-to, it remains to show

that, for all closed expressions e'’,

(Ay.e"7)e"(C; R; ) (Ay.e’e)e”.



Total Correctness by Local Improvement in Transformation . 57

Tt is sufficient to show that (Ay.e’y)e” R (Ay.e”€)e’, but this is immediate since
e’ is closed, and so we have that (Ay.e’’y)e’” = ((Ay.e”)e’')y and (Ay.e”¢)e’” =
((Ay.e")e)e.

Induction. Assume ey +— ¢’ and ¢’ Jw. We can write e uniquely as C[e”'], where
C does not capture variables; C'y is a reduction context; and e”+ is a redex. We
proceed by cases according to the reduction rule applied. We will only consider
the more interesting case, when the redex is a function application (the remaining
cases are then straightforward). There are two possible subcases for the structure
of e:

(1)
(2)

In case (1) ey — Cles]y. Now we have that ee = C[e¢]e. The induction hypothesis

e = C[f] for some function £ given by £ £ e and
e = Cla;] for some i € {1...n}.

gives that Cles]elJw” for some w” such that w (5; R; E)T w'. By simulation, ee{}w’
for some w’ such that w” = v/, and w C; R;E)T w’ then follows from properties

of .t and C. In case (2) ey = Clzily = Cv[ei{&/z}]. We summarize the remainder
of the proof in the following diagram, which is filled from left to right and top to
bottom (the first square by the induction hypothesis, the second by the assumption
that ¢’ is also a solution to the inequations, and by simulation:

Claily = Cylei{&/z}] =Cleily R Clei{€/z}]e C Celef]= Claile = ec

U U U U U
w w (E;R;E)T w" ET w' w!

Finally, in the bottom line, w (C; R; E)T w' follows easily from properties of .T and
C. O

ACKNOWLEDGMENTS

The author gratefully acknowledges Torben Amtoft for discussions on the problem
early in the development of this work and his help in obtaining some of the refer-
ences. Thanks to the “Topps” group at DIKU, and in particular to Robert Gluck,
Morten Heine Sgrensen, John Hatcliff, Neil Jones, Kristian Nielsen, Bob Paige, and
Tom Reps for numerous discussions on the subject of program transformation and
for comments on earlier drafts. Philip Wadler and the anonymous referees gave
valuable comments and suggestions which have helped to improve both the presen-
tation and the technical content. Thanks to L. P. Zong and Mian Tuo for help in
obtaining reference information.

REFERENCES

ABRAMSKY, S. 1990. The lazy lambda calculus. In Research Topics in Functional Programming,
D. Turner, Ed. Addison-Wesley, Reading, Mass., 65-116.

AMTOFT, T. 1992. Unfold/fold transformations preserving termination properties. In PLILP ’92.
Lecture Notes in Computer Science, vol. 631. Springer-Verlag, Berlin, 187—201.

AMTOFT, T. 1993. Sharing of computations. Ph.D. thesis, DAIMI, Aarhus Univ., Aarhus, Den-
mark.

ARIOLA, Z., FELLEISEN, M., MARAIST, J., ODERSKY, M., AND WADLER, P. 1995. The call-by-need
lambda calculus. In The 22nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL '95). ACM Press, New York.



58 . David Sands

Backus, J. 1978. Can programming be liberated from the von Neumann style? A functional style
and its algebra of programs. Commun. ACM 21, 8 (Aug.), 613-641.

BirD, R. 1984. Using circular programs to eliminate multiple traversals of data. Acta Informat-
ica 21, 1, 239-250.

Broowm, B. 1988. Can LCF be topped? Flat lattice models of typed lambda calculus. In The 3rd
Annual Symposium on Logic in Computer Science. IEEE, New York.

Bossi, A., Cocco, N., AND ETALLE, S. 1992a. On safe folding. In PLILP ’92. Lecture Notes in
Computer Science, vol. 631. Springer-Verlag, Berlin, 172—-186.

Bossi, A., Cocco, N., aND ETALLE, S. 1992b. Transforming normal programs by replacement.
In The 8rd Workshop on Meta-Programming in Logic, META 92. Lecture Notes in Computer
Science, vol. 649. Springer-Verlag, Berlin, 265-279.

Boupor, G. aNnD KotT, L. 1983. Recursion induction principle revisited. Theor. Comput.
Sei. 22, 1, 135-173.

BURSTALL, R. AND DARLINGTON, J. 1977. A transformation system for developing recursive pro-
grams. J. ACM 24, 1 (Jan.), 44-67.

CoNsEL, C. AND KHOO, S. 1993. On-line and off-line partial evaluation: Semantic specification
and correctness proofs. Tech. Rep., Yale Univ., New Haven, Conn. Apr.

COURCELLE, B. 1979. Infinite trees in normal form and recursive equations having a unique
solution. Math. Syst. Theor. 13, 1, 131-180.

COURCELLE, B. 1986. Equivalences and transformations of regular systems—applications to re-
cursive program schemes and grammars. Theor. Comput. Sci. 42, 1, 1-122.

FEATHER, M. 1979. A system for assisting program transformations. Ph.D. thesis, Univ. of
FEdinburgh, Edinburgh.

FELLEISEN, M., FRIEDMAN, D., AND KOHLBECKER, E. 1987. A syntactic theory of sequential
control. Theor. Comput. Sci. 52, 1, 205—-237.

GARDNER, P. AND SHEPHERDSON, J. 1991. Unfold/fold transformations of logic programs. In
Computational Logic: FEssays in Honor of Alan Robinson, J.-L. Lassez and G. Plotkin, Eds.
MIT Press, Cambridge, Mass.

GoMARD, C. 1992. A self-applicable partial evaluator for the lambda calculus: Correctness and
pragmatics. ACM Trans. Program. Lang. Syst. 14, 2, 147-172.

GORDON, A. D. 1995. Bisimilarity as a theory of functional programming. In Proceedings of the
11th Conference on Mathematical Foundations of Programming Semantics, MFPS’95. Elec-
tronic Notes in Computer Science, vol. 1. Elsevier Science, Amsterdam.

Howe, D. J. 1989. Equality in lazy computation systems. In The 4th Annual Symposium on
Logic in Computer Science. IEEE, New York, 198-203.

HueT, G. aND LaNG, B. 1978. Proving and applying program transformations expressed with
second order patterns. Acta Inf. 11, 1 (Jan.), 31-55.

HuGHES, R. 1982. Super-combinators: A new implementation method for applicative languages.
In Proceedings of the 1982 ACM Symposium on Lisp and Functional Languages. ACM, New
York, 1-10.

JonEgs, N. D., GoMARD, C., AND SESTOFT, P. 1993. Partial Fvaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs, N.J.

KanaMori1, T. anD Fuirta, H. 1986. Unfold /fold transformation of logic programs with counters.
Tech. Rep. ICOT TR-179, ICOT Research Center, Tokyo.

KawaMURA, T. AND KANAMORI, T. 1990. Preservation of stronger equivalence in unfold /fold logic
program transformation. Theor. Comput. Sei. 1, 73, 139-154.

KoTT, L. 1978. About transformation system: A theoretical study. In Program Transformations,
B. Robinet, Ed. Dunod, Paris, 232-247.

KotT, L. 1980. A system for proving equivalences of recursive programs. In The 5th Conference
on Automated Deduction, W. Bibel and R. Kowalski, Eds. Lecture Notes in Computer Science,
vol. 87. Springer-Verlag, Berlin, 63-69.

KotT, L. 1985. Unfold/fold transformations. In Algebraic Methods in Semantics, M. Nivat and
J. Reynolds, Eds. Cambridge University Press, Cambridge, Chapter 12, 412—-433.



Total Correctness by Local Improvement in Transformation . 59

MaHER, M. 1987. Correctness of a logic program transformation system. Tech. Rep., IBM T. J.
Watson Research Center, Yorktown Heights, N.Y. Revised 1989.

MaNNA, Z. AND WALDINGER, R. 1979. Synthesis: Dreams = programs. ACM Trans. Program.
Lang. Syst. 5, 4.

McCARTHY, J. 1967. A Basis for a Mathematical Theory of Computation. North-Holland, Ams-
terdam.

MILNER, R. 1977. Fully abstract models of the typed A-calculus. Theor. Comput. Sci. 4, 1.

MILNER, R. 1989. Communication and Concurrency. Prentice-Hall, Englewwood Cliffs, N.J.

MILNER, R. AND TOFTE, M. 1991. Co-induction in relational semantics. Theor. Comput. Sci. 87, 1,
209-220.

PALSBERG, J. 1993. Correctness of binding time analysis. J. Funct. Program. 8, 3, 347-364.

PARTSCH, P. AND STEINBRUGGEN, R. 1983. Program transformation systems. ACM Comput.
Surv. 15, 1, 199-236.

PETTOROSSI, A. AND PROIETTI, M. 1993. Transformation of logic programs: Foundations and
techniques. Tech. Rep. R 369, CNR Istituto di Analisi dei Sistemi ed Informatica, Rome.

PevyTON JONES, S. L. 1987. The Implementation of Functional Programming Languages. Prentice-
Hall International Litd., London.

PrLoTkIN, G. D. 1975. Call-by-name, call-by-value and the A-calculus. Theor. Comput. Sci. 1, 1,
125-159.

PROIETTI, M. AND PETTOROSSI, A. 1991. Semantics preserving transformation rules for Pro-
log. In Proceedings of the Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, PEPM '91. SIGPLAN Not. 26, 9 (Sept.).

PROIETTI, M. AND PETTOROSSI, A. 1994. Total correctness of a goal replacement rule based on
the unfold-fold proof method. CNR Istituto di Analisi dei Sistemi ed Informatica, Rome.

REDDY, U. 1989. Rewriting techniques for program synthesis. In Rewriting Techniques and
Applications. Lecture Notes in Computer Science, vol. 355. Springer-Verlag, Berlin, 388—-403.

RunciMaN, C., FIrRTH, M., AND JAGGER, N. 1989. Transformation in a non-strict language: An
approach to instantiation. In Functional Programming, Glasgow 1989: Proceedings of the 1st
Glasgow Workshop on Functional Programming. Springer-Verlag, Berlin.

SANDs, D. 1990. Calculi for time analysis of functional programs. Ph.D. thesis, Dept. of Comput-
ing, Imperial College, Univ. of London, London.

SANDs, D. 1991. Operational theories of improvement in functional languages (extended abstract).
In Proceedings of the 4th Glasgow Workshop on Functional Programming (Skye, Scotland).
Springer-Verlag, Berlin, 298-311.

SanNDs, D. 1993. A nailve time analysis and its theory of cost equivalence. TOPPS Rep. D-173,
DIKU. Also in Logic and Comput. 5, 4, 495-541.

SANDs, D. 1995a. Higher-order expression procedures. In Proceeding of the ACM SIGPLAN Sy-
posium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM’95. ACM,
New York, 190-201.

SANDs, D. 1995b. Proving the correctness of recursion-based automatic program transforma-
tions. In The International Joint Conference on Theory and Practice of Software Development
(TAPSOFT/FASE ’95). Lecture Notes in Computer Science, vol. 915. Springer-Verlag, Berlin.
Extended version to appear in Theor. Comput. Sci.

SaTo, T. 1990. An equivalence preserving first order unfold/fold transformation system. In The
2nd International Conference on Algebraic and Logic Programming. Lecture Notes in Computer
Science, vol. 462. Springer-Verlag, Berlin, 175-188.

ScHERLIS, W. 1980. Expression procedures and program derivation. Ph.D. thesis, Stanford Rep.
STAN-CS-80-818, Dept. of Computer Science, Stanford Univ., Stanford, Calif.

ScHERLIS, W. L. 1981. Program improvement by internal specialisation. In The 8th Symposium
on Principals of Programming Languages. ACM, New York.

SEKI, H. 1991. Unfold/fold transformation of stratified programs. Theor. Comput. Sci. 86, 1,
107-139.

SEKI, H. 1993. Unfold/fold transformation of general logic programs for the well-founded seman-
tics. J. Logic Program. 16, 1, 5-23.



60 . David Sands

TaMmaki, H. AND SaTo, T. 1984. Unfold/fold transformation of logic programs. In The 2nd
International Logic Programming Conference, S. Tarnlund, Ed. MIT Press, Cambridge, Mass.,
127-138.

TuURCHIN, V. F. 1986. The concept of a supercompiler. ACM Trans. Program. Lang. Syst. 8, 3
(July), 292-325.

WADLER, P. 1989a. The concatenate vanishes. Univ. of Glasgow, Glasgow, Scotland. Preliminary
version circulated on the fp mailing list, 1987.

WADLER, P. 1989b. Theorems for free! In Functional Programming Languages and Computer
Architecture, FPCA 89 Conference Proceedings. ACM, New York, 347-359.

WADLER, P. 1990. Deforestation: Transforming programs to eliminate trees. Theor. Comput.
Seci. 73, 1, 231-248. Preliminary version in ESOP 88, Lecture Notes in Computer Science, vol.
300.

WanND, M. 1993. Specifying the correctness of binding time analysis. J. Funct. Program. 3, 3,
365-387.

YONQUIANG, S., RUZHAN, L., AND X1AORONG, H. 1987. Termination preserving problem in the
transformation of applicative programs. J. Comput. Sci. Tech. 2, 3, 191-201.

Zuu, H. 1994. How powerful are folding/unfolding transformations? J. Funct. Program. 4, 1
(Jan.), 89-112.

Received January 1995; revised October 1995; accepted December 1995



