Proving the Correctness of Recursion-Based

Automatic Program Transformations '

David Sands 2

Department of Computing Science,
Chalmers University of Technology and Géteborg University,
S-412 96 Géteborg, Sweden; dave@cs.chalmers.se

This paper shows how the Improvement Theorem—a semantic condition
for establishing the total correctness of program transformation on higher-
order functional programs—has practical value in proving the correctness
of automatic techniques. To this end we develop and study a family of
automatic program transformations. The root of this family is a well-
known and widely studied transformation called deforestation; descen-
dants include generalisations to richer input languages (e.g. higher-order
functions), and more powerful transformations, including a source-level
representation of some of the techniques known from Turchin’s supercom-
piler.

1 Introduction

Transformation of recursive programs Source-to-source transformation
methods for functional programs, such as partial evaluation [15] and deforesta-
tion [38,3], perform equivalence preserving modifications to the definitions in
a given program. These methods fall in to a class which has been called gener-
ative set transformations [23]: transformations built from a small set of rules
which gain their power from their compound and selective application. The
classic example of this (informal) class is Burstall and Darlington’s unfold-
fold method [2]; many automatic transformations of this class can be viewed
as specialised instances of unfold-fold rules.

! This is a revised and extended version of a paper which appears in the proceedings
of TAPSOFT 95 [28]

2 This work was developed at, and partially funded by the Department of Computer
Science, University of Copenhagen (DIKU)

Article to appear in Theoretical Computer Science, 167(A), October 1996 (provisional number)

These methods improve the efficiency of programs by performing local opti-
misations, thus transferring run-time computations to compile-time. In order
to compound the effect of these relatively simple local optimisations, it is
desirable that such transformations have the ability to introduce recursion.
Transformations such as deforestation [38] (a functional form of loop-fusion)
and partial evaluation (and analogous transformations on logic programs) have
this capability via a process of selectively memoising previously encountered
expressions, and introducing recursion according to a “déja vu” principle [15].
See [24] for an overview of transformation strategies which fit this style.

The Problem of Correctness Program transformations performed by a
tool such as an optimising compiler should preserve the extensional meaning
of programs — the properties concerning what is computed — in order to be
of any practical value. In this case we say that the transformation is correct.

One might say that there are two problems with correctness — the first being
that it has not been widely recognised as a problem! Because the individual
transformation components often represent quite simple operations on pro-
grams and are obviously meaning-preserving, confidence in the correctness
of such transformation methods or systems is high. The problem with this
view, for transformations that can introduce recursion, is that correctness
cannot be argued by simply showing that the basic transformation steps are
meaning-preserving. Yet this problem (exemplified below) runs contrary to
many informal (and some formal) arguments which are used in attempts to
justify correctness of particular transformation methods.

To take a concrete but contrived example to illustrate this point, consider
the following transformation (where £ denotes a function definition, and = is
semantic equivalence with respect to the current definition):

transform
fx2ax+42 fzztx+f0

USINg 42 f 0

This example fits into the framework of the unfold-fold method (first apply the
law 42 = 0442, and then fold 0+ 42 to get f 0), and thus illustrates the well-
known fact that, in general, unfold-fold transformations preserve only partial
correctness. It also serves as a reminder that one cannot argue correctness of a
transformation method by simply showing that it can be recast as an unfold-
fold transformation. This is an important point because many transformations
are cited as being instances of this class.

A Solution, in Principle To obtain total correctness without losing the
local, stepwise character of program transformation, it is clear that a stronger
condition than extensional equivalence is necessary. In [29] we presented such
a condition, improvement. The Improvement Theorem states that if the lo-
cal steps of a transformation are improvements, in a formal sense, then the
transformation will be correct, and, a fortiori, will yield an “improved” pro-
gram. The improvement relation is defined in terms of the number of recursive
function calls performed during computation: one expression is an improve-
ment over another if in all program contexts it terminates at least as often,
but never requires a greater number of function calls in order to do so. The
method applies to call-by-name and call-by-value functional languages, includ-
ing higher-order functions and lazy data structures. In [29] the improvement
theorem was used to design a method for restricting the unfold-fold method,
such that correctness and improvement are guaranteed. It is also claimed that
the improvement theorem has practical value in proving the correctness —
without need for further restrictions — of transformation methods suitable for
highly optimising compilers.

In this paper we substantiate this claim.

A Solution, in Practice Our aims are firstly to show that the improve-
ment theorem applies to existing transformations. We consider a family of
“automatic” program transformations to illustrate the application of the im-
provement theorem. The root of this family is a well-known and widely studied
transformation called deforestation [38]. The descendants include various gen-
eralisations of the algorithm to handle richer input languages, e.g. including
higher-order functions, and more powerful transformations. The more “power-
ful” methods which are also covered by these generalisations include a source-
level representation of Turchin’s driving, as found in the supercompiler [35].

An essential component of all of these transformations is the ability to create
new recursive structures. We provide what we believe to be the first correctness
proof for any of this class of transformations, including deforestation, to deal
explicitly and correctly with the recursion introduction.

Related Work In this paper we focus on correctness of programs produced
by transformation. This does not, for example, include the question of whether
transformation algorithms actually terminate and produce a program in all
cases. The main technical difficulty in proving correctness is in handling trans-
formations which build recursive programs.

In the study of correctness issues in program transformation of the kind ad-
dressed in this paper it is typical to ignore the folding or memoisation as-

pects of the algorithms. This often occurs because the correctness issues stud-
ied relate to the transformation algorithm rather than the correctness of the
resulting program. For example, studies of correctness in partial evaluation
[11][22][39] ignore the memoisation aspects entirely and deal with the orthog-
onal issue of the correctness of binding time analysis, which controls where
transformation occurs in a program. Transformations considered by Steckler
[34] are quite orthogonal to the ones studied here, since they concern local op-
timisations which are justified by global data-flow properties of the program
in which they are performed. To the author’s knowledge, the only other cor-
rectness proofs for automatic transformations of recursive programs which use
some form of folding are in the study of related logic-program transformation,
e.g. [18] [16]. For an extensive comparison of the improvement theorem with
other general techniques for correct transformations, see [30].

1.1 Qverview

Section 2 introduces the syntax, operational semantics and definitions of
operational approximation and equivalence for a higher-order functional lan-

guage.

Section 3 provides the definition and some properties of improvement, and
the Improvement Theorem is stated. An alternative form of the Improvement
Theorem is also given, based on local recursive definitions (letrec).

Section 4 applies the improvement theorem to prove correctness of the de-
forestation transformation in its original formulation, extended to explicitly
account for folding using local recursive definitions. The correctness proof il-
lustrates use of the local variant of the Improvement Theorem.

Section 5 considers generalisations to the deforestation transformation, in
particular to include higher-order functions. The generalisations are guided by
a reformulation of the deforestation transformation into a stepwise rule-based
approach. The stepwise formulation has two advantages. Firstly, it suggests a
“natural” generalisation of the transformation to the higher-order case, and
secondly, as investigated in the following section, it provides a much simplified

proof of correctness?.

3 This does not consider termination aspects of deforestation algorithms, although
we expect that the stepwise formulation will also be useful here.

Section 6 builds a framework for proving the correctness of recursion-based
program transformations. An abstract transformation algorithm is described,
based on successive transformations of some recursive definitions, using a
memo-table to record expressions previously transformed, and parameterised
by a transformation relation. Using the Improvement Theorem, correctness of
any transformation is reduced to a local correctness condition on the trans-
formation relation. We use this framework to establish the correctness of the
generalised deforestation transform. The proof is robust with respect to the
folding strategy, and is modular with respect to the transformation steps.

Section 7 illustrates the robustness of the proof by considering a number
of further generalisations, including the “positive supercompilation” rule from

[33].

2 Preliminaries

We summarise some of the notation used in specifying the language and its
operational semantics. The subject of this study will be an untyped higher-
order non-strict functional language with lazy data-constructors. Our technical
results will be specific to this language, but related results can be established
for call-by-value languages.

2.1 Language

We assume a flat set of mutually recursive function definitions of the form
fa...2, £ er where af, the arity of function f, is greater than or equal to
zero. For an indexed set of functions we will sometimes refer to the arity by
index, «;, rather than function name. Symbols f, g, h ... range over function
names, f,h,x,y,z... over variables and e, ey, e;... over expressions. The

syntax of expressions is as follows:

e=xz | f | ejey (Variable; Function name; Application)
| Az.e (Lambda-abstraction)
| case e of (Case expressions)
paty 1 ey ...pat, : e,
| c(e) (Constructor expressions and constants)
| p(e) (Strict primitive functions)
pal = ¢(x) (Patterns)

We assume that each constructor ¢ and each primitive function p has a fixed
arity, apand that the constructors include constants (i.e. constructors of ar-
ity zero). Constants will be written as ¢ rather than ¢(). The primitives and
constructors are not curried — they cannot be written without their full com-
plement of operands. We assume that the primitive functions map constants
to constants.

We can assume that the case expressions are defined for any subset of pat-
terns {pat, ... pat,} such that the constructors of the patterns are distinct. A
variable can occur at most one in a given pattern; the number of variables
must match the arity of the constructor, and these variables are considered to
be bound in the corresponding branch of the case-expression.

A list of zero or more expressions €1, ... e, will often be denoted e. Application,
as is usual, associates to the left, so ((---(eper)...)e,) may be written as
€o €1 ... €y, and further abbreviated to ¢ e.

The expression written e{z:= €'} will denote simultaneous (capture-free) sub-
stitution of a sequence of expressions €’ for free occurrences of a sequence of
variables Z, respectively, in the expression e. We will use o, 0, ¢, ¢’ etc. to
range over substitutions. The term Fv(e) will denote the set of free variables
of expression e, and FV(e) will be used to denote a (canonical) list of the free
variables of e. Sometimes we will informally write “substitutions” of the form
{g:=¢€} to represent the replacement of occurrences of function symbols g
by expressions e. This is not a proper substitution since the function sym-
bols are not variables. Care must be taken with such substitutions since the
notion of equivalence between expressions is not closed under these kind of
replacements.

A context, ranged over by C, Cy, etc. is an expression with zero or more
“holes”, [], in the place of some subexpressions; Cle] is the expression pro-
duced by replacing the holes with expression e. Contrasting with substitution,

occurrences of free variables in e may become bound in C|[e]; if C[e] is closed
then we say it is a closing context (for e).

We write e = €’ to mean that e and ¢’ are identical up to renaming of bound
variables. Contexts are identified up to renaming of those bound variables
which are not in scope at the positions of the holes.

2.2 Operational Semantics, Approximation and Fquivalence

The operational semantics is used to define an evaluation relation |} (a partial
function) between closed expressions and the “values” of computations. The
set of values, following the standard terminology (see e.g. [25]), are called
weak head normal forms. The weak head normal forms, w, wy, ws,... € WHNF
are just the constructor-expressions ¢(€), and the Closures, as given by the
following grammar:

w = c(e) | Closures

Closures = Az.e | fer...ep (0 <k < o)

The operational semantics is call-by-name, and |} is defined in terms of a
one-step evaluation relation using the notion of a reduction context [6]. If
ellw for some closed expression e then we say that e evaluates to w. We
say that e converges, and sometimes write ell if there exists a w such that
ellw. Otherwise we say that e diverges. We make no finer distinctions between
divergent expressions, so that run-time errors and infinite loops are identified.

Reduction contexts, ranged over by IR, are contexts containing a single hole
which is used to identify the next expression to be evaluated (reduced).

Definition 1 A reduction context IR is given inductively by the following
grammar

IR=1[]|Re|case IR of pat, : e ... pal

. en | plc, IR, €)

The reduction context for primitive functions forces left-to-right evaluation
of the arguments. This is just a matter of convenience to make the one-step
evaluation relation deterministic.

Now we define the one step reduction relation. We assume that each primitive
function p is given meaning by a partial function [p] from vectors of constants
(according to the arity of p) to the constants (nullary constructors). We do not
need to specify the exact set of primitive functions; it will suffice to note that
they are strict—all operands must evaluate to constants before the result of

R[fer...eq] — Rleg{x1...208:=€1...€4,}] (fun)
(if f is defined by f ;... 2., £ €f)

R[(Az.€) €] — R[e{z:=¢€"}] (B)
IR[case ¢;(€) of ...c;(z;) 1 e;...] — IR[e;{z,:=¢€}] (case)
Rlp(c)] = R[] (prim)

(if [ple=¢)

Fig. 1. One-step reduction rules

an application, if any, can be returned-— and are only defined over constants,
not over arbitrary weak head normal forms.

Definition 2 One-step reduction — is the least relation on closed expressions
satisfying the rules given in Figure 1.

In each rule of the form IR[e] — IR[¢'] in Figure 1, the expression e is referred
to as a redex. The one step evaluation relation is deterministic; this relies on
the fact that if e; — e; then e; can be uniquely factored into a reduction
context IR and a redex €’ such that e; = IR[€']. Let —* denote the transitive
reflexive closure of —.

Definition 3 Closed expression e converges to weak head normal form w,
ellw, if and only if e —=* w).

Using this notion of convergence we now define the standard notions of opera-
tional approximation and equivalence. The operational approximation we use
is the standard Morris-style contextual ordering, or observational approrima-
tion see e.g. [26].The notion of “observation” we take is just the fact of con-
vergence, as in the lazy lambda calculus [1]. Operational equivalence equates
two expressions if and only if in all closing contexts they give rise to the same
observation — i.e. either they both converge, or they both diverge.

Definition 4 (i) e operationally approximates €', e C €', if for all contexts
C such that Cle], C[e'] are closed, if Cle]l} then C[e']l).

(ii) e is operationally equivalent to €', e = €', if e C € and € L e.

Choosing to observe, say, only computations which produce constants would
give rise to slightly weaker versions of operational approximation and equiv-
alence - but the above versions would still be sound for reasoning about the
weaker variants of the relation.

3 Improvement

In this section we outline the main technical result from [29], which says that
if transformation steps are guided by certain natural optimisation concerns,
then correctness of the transformation follows.

There are two main differences from the results in [29]. First, we add lambda
abstractions to our programming language. This is not a major addition from
the point of view of the expressive power of the language, since we already
had higher-order functions in the guise of curried functions (partial applica-
tions). The difference arises because we treat beta-reduction differently from
function-call reduction when we define the notion of improvement. This, in
turn, extends the power of the improvement theorem, since we can choose
between the different representations of higher-order expressions according to
our needs. It also means that we can pick out different sub-languages to suit
our particular needs.

Secondly, we introduce a “local” version of the main theorem which is appli-
cable to expression-level recursion using a simple “letrec” term.

Summary We summarise the two main concepts introduced in this section:

(i) We introduce a formal improvement-theory. Roughly speaking, improve-
ment 1s a refinement of operational approximation, which says that an
expression e is improved by €’ if, in all closing contexts, computation using
e’ is no less efficient than when using e, measured in terms of the number
of function calls made. From the point of view of program transforma-
tion, the important property of improvement is that it is substitutive—an
expression can be improved by improving a sub-expression. For reasoning
about improvement a more tractable formulation of the improvement re-
lation is introduced and some proof techniques related to this formulation
are used.

(ii) The improvement theorem says that if e is improved by €', in addition to e
being operationally equivalent to €', then a transformation which replaces
e by €' (potentially introducing recursion) is totally correct; in addition
this guarantees that the transformed program is a formal improvement
over the original. (Notice that in the example in the introduction, re-
placement of 42 by the equivalent term f 0 is not an improvement since
the latter requires evaluation of an additional function call).

The Role of Improvement We should once again stress that the purpose
of using the improvement relation in the above theorem is that it guarantees
that the transformation yields an operationally equivalent term. If we do not

impose the condition that e is improved by €', but just rely on the fact that
they are equivalent, then the transformation will not, in general, be correct.
The fact that the theorem also guarantees that the transformed program is
an improvement over the original is an added bonus. It can also allow us
to apply the theorem iteratively. It also gives us an indication of the limits
of the method. Transformations which do not improve a program cannot be
justified using the improvement theorem alone. However, in combination with
some other more basic methods for establishing correctness, the Improvement
Theorem can still be effective. We refer the reader to [30] for examples of other
more basic methods and how they can be used together with the Improvement
Theorem.

Variations on the Definition of Improvement There are a number of
variations that we can make in the definition of improvement. We could, for
example, additionally count the number of primitive functions called. Such
variations might be used to give additional information about transformations.
(See [27] for further examples). However, the fact that we count the number
of recursive function calls in the definition of improvement is essential to the
Improvement Theorem; the Theorem does not hold if we use an improvement
metric which does not count these function calls.

3.1 The Theory of Improvement

We begin by defining a variation of the evaluation relation which includes the
number of applications of the (fun) rule.

Definition 5 Define e vs €' if e — €' by application of the (fun)rule; define
e e if e = e by application of any other rule.

Define the family of binary relations on expressions {—,} ., inductively as

follows:
. o
errg e if e e
12 . [¢] * L] 12 .
errpr1 € if e = er = ey > € for some ey, €.

We say thal a closed expression e converges in n (fun)-steps to weak head
normal form w, written el}"w if e —, w.

The determinacy of the one-step evaluation relation guarantees that if el}"w
and el}” w’ then w = w’ and moreover n = n’. It will be convenient to adopt
the following abbreviations:

o " Jw.ell"w o e Ee"&n<m e el Y In e "

10

Exp x Exp

@
T

Fig. 2. A N-semi-sub-lattice of preorders

Now improvement is defined in a way analogous to observational approxima-
tion:

Definition 6 (Improvement) e is improved by €', e &> €, if for all contexts

C such that Cle], C[€'] are closed, if C[e]y™ then C[e/|yS".

It can be seen from the definition that > is a precongruence (transitive, re-
flexive, closed under contexts, i.e. e > €’ = Cle] > C[e']) and is a refinement
of operational approximation, i.e. e > €' = e L €.

We also add a strong version of improvement which implies (by definition)
operational equivalence:

Definition 7 (Strong Improvement, Cost-Equivalence) The strong im-
provement relation &> is defined by: e > ¢ if and only if e > €' and e = €',

The cost equivalence relation, <T>, is defined by: e <> €' if and only if e I> €'
and €' > e.

If R is a relation, then let R~!' denote the inverse of the relation, so that
aRb <= bR 'a Itisnot difficult to see that > = (>) N (g_l). This
fact, and other relationships between the various preosrders and equivalence
relations we have considered so far, are summarised in the Hasse diagram of
Figure 2. In this lattice, the binary meet (greatest lower bound) corresponds
to the set-intersection of the relations, and the top element, Exp x Exp, relates
any two expressions.

11

3.2 The Improvement Theorem

We are now able to state the Improvement Theorem. For the purposes of
the formal statement, transformation is viewed as the introduction of some
new functions from a given set of definitions, so the transformation from a
program consisting of a single function f z £ e to a new version fz = ¢’ will
be represented by the derivation of a new function gz £ €'{f:=g}. In this
way we do not need to explicitly parameterise operational equivalence and

improvement by the intended set of function definitions.

In the following (Theorem 8 — Proposition 11) let {f;},.; be a set of functions
indexed by some set I, given by some definitions:

{fiz1.. .20 2 € }icr

Let {e}},.; be aset of expressions such that for eachz € I, ¥v(e}) C {z1... 20}
The following results relate to the transformation of the functions f; using the
expressions e}: let {g;},.; be a set of new functions (i.e. the definitions of the

f; do not depend upon them) given by definitions
{giz1... 70 2 e{f:=8} }bier

We begin with the standard partial correctness property associated with “trans-
formation by equivalence”:

Theorem 8 (Partial Correctness) If ¢; = €, for all i € I, then g; C f;,
1€ 1.

This is the “standard” partial correctness result (see eg. [17][5]) associated
with e.g. unfold-fold transformations. It follows easily from a least fixed-point
theorem for T (the full details for this language can be found in [30]) since the

f are easily shown to be fixed points of the defining equations for functions g.

Partial correctness is clearly not adequate for transformations, since it allows
the resulting programs to loop in cases where the original program terminated.
We obtain a guarantee of total correctness by combining the partial correctness
result with the following:

Theorem 9 (The Improvement Theorem [29]) If we have e; &> € for all
1€ 1, then f; > g;, 1€ 1.

The proof of the Theorem, given in detail in [30], makes use of the alternative
characterisation of the improvement relation given later.

Putting the two theorems together, we get:

12

Corollary 10 If we have €; > el for all v € I, then f; > g, i€l
Informally, this implies that:

if a program transformation proceeds by repeatedly applying some set of
transformation rules to a program, providing that the basic steps of a pro-
gram transformation are equivalence-preserving, and also contained in the
improvement relation (with respect to the original definitions), then the re-
sulting transformation will be correct. Moreover, the resulting program will
be an improvement over the original.

['here is also a third variation, a “cost-equivalence” theorem, which is also
” q ”
useful:

Proposition 11 [fe; <T ¢} for all 1 € I, then f; T g;, 1 € I.

3.3 Proving Improvement

Finding a more tractable characterisation of improvement (than that provided
by Def. 6) is essential in establishing improvement laws (and in the proof of
the Improvement Theorem itself). The characterisation we use says that two
expressions are in the improvement relation if and only if they are contained
in a certain kind of simulation relation. This is a form of context lemma eg.
[1,14], and the proof of the characterisation uses previous technical results
concerning a more general class of improvement relations [27].

Definition 12 A relation IR on closed expressions is an improvement sim-
ulation if for all e, €', whenever e TR €, if el w; then €' <"w, for some w,
such that either:

(i) wy =cler...e,), wa=c(e)...e), and e; IR €., (1 €1...n), or

(ii) wy,wy € Closures, and for all closed eq, (w1 e9) IR (w2 €g)

For a given relation IR and weak head normal forms wy and wy we will
abbreviate the property “(i) or (ii)” in the above by wy TR T w,.

So, intuitively, if an improvement simulation relates e to €', then if e con-
verges, €' does so at least as efficiently, and yields a “similar” result, whose
“components” are related by that improvement simulation.

The key to reasoning about the improvement relation is the fact that >, re-
stricted to closed expressions, is itself an improvement simulation, and is in
fact the largest improvement simulation. Furthermore, improvement on open
expressions can be characterised in terms of improvement on all closed in-
stances. This is summarised in the following:

13

Lemma 13 (Improvement Context-Lemma) For all e, €', e > €' if and
only if there exists an improvement simulation TR such that for all closing
substitutions o, eac IR €'o.

The lemma provides a basic proof technique:

to show that e I> ¢’ it is sufficient to find an improvement-simulation con-
taining each closed instance of the pair.

An alternative presentation of the definition of improvement simulation is in
terms of the maximal fixed point of a certain monotonic function on relations.
In that case the above proof technique is sometimes called co-induction. This
proof technique is crucial to the proof of the Improvement Theorem. It can
also be useful in proving that specific transformation rules are improvements.
Here is an illustrative example; it also turns out to be a useful transformation
rule:

Proposition 14

IR[case z of pat, : e1---pat, : e, |

<> case z of pat, : Rlei]- - pat, : Re,)

PROOF. We illustrate just the I>-half. The other half is similar. Let R be
the relation containing =, together with all pairs of closed expressions of the
form:

(IR[case eg of ¢1(71) : e1...¢,(Tn) 1 €n],

case eg of ¢1(z1) : Rleq]...cn(zy) : Rle,])

(1)

It is sufficient to show that R is an improvement simulation. Suppose e R €',
and suppose further that el"w. We need to show that €/l}<"w’ for some w’
such that w R w'. If e = ¢’ then this follows easily. Otherwise e and ¢’ have the
form of (1). Now since IR[case [] of ¢1(%1) : €1...¢,(Zy) @ €, | is a reduction
context, then we must have

IR[case eg of ¢1(Z1) :e1...¢c,(T0) : €y]

k

—"* IR[case ¢;(€") of ¢1(Z1) 1 e1...cn(Tn) : €n |

for some expression ¢;(€”), and some k < n and since each of these reductions
is “in” ey, we have matching reduction steps

case ¢ of ¢ (Z1) : Rleq]...c.(2,) : Rley,)

—* case ¢;(€”) of ¢1(71) : Rle1]...cu(z,) 1 Rle,)

14

Now the former derivative reduces in one more step to R[e;{z;:=¢€"}], whilst
the latter reduces to IR[e;]{z,:=€"}. Since reduction contexts do not bind
variables, and since IR must be closed, these are syntactically equivalent, and
so we conclude that

case eg of R[ci(z1) : e1]... R[c. () :] " w.

The remaining conditions for improvement simulation (recall Def. 12 and the
T operator) are trivially satisfied, since w =" w, which implies w R w as
required. O

We can also use the context lemma to build some simpler tools for proving
improvement properties. The following will be adequate for many of the local
transformation steps described in the remainder of the paper:

Proposition 15 [f ey —,, €] and ey —, €, then

(1) e =

(ii) m > n and €] > €, implies e; > e,

(iii) m > n and €} > el implies e; > e

(iv) m = n implies (e} T e, <= e T e3)

el if and only if e; = ey

PROOF. Assume that e, —,, €] and e; —, €.

(i) Follows from the fact that — is contained in =, which we state without
proof.

(ii) Suppose that m > n and €| > €,. By the context lemma (Lemma 13),
it is sufficient to find an improvement simulation containing all closed
instances of (e1,e3). Let R = > U {(e10, €20) | €10, €20 are closed}; we
will show that R is an improvement simulation. Suppose (e, €¢’) € R.
Assume that el}*w;. To show that R is an improvement simulation we
are required to prove that el}skwg for some wy such that wy; R wy. Now
by the definition of R, either e I> €', or (e, €’) is equal to (€10, e;0) for
some closing substitution #. In the first case we are done, since > is itself
an improvement simulation. In the second case, since e; —,, €| we know

<k—m
= wq for some wy such

that e """ w,. Now since €| I> ¢} we have ¢} |}
that w; ET wy. But the fact that ey +—, €}, implies that egl}”/wg where
n' <k—m+n < k. Finally, since () C R we have that w; R w, as
required.

(iii) Follows by combining (i) and (ii).

(iv) Follows from (ii) and symmetry. O

O

15

3.4 An Improvement Theorem for Local Recursion

In this section we introduce a form of the improvement theorem which deals
with local expression-level recursion, expressed with a fixed point combinator
or with a simple “letrec” definition. This will be useful for reasoning about
transformations which introduce recursion through such a mechanism; the
next section provides an example of its application.

Let fix be a recursion combinator defined by

fix [2 f(fix f)

The following property relates recursion expressed using fix, and recursive
definitions:

Proposition 16 For all expressions e, if Af.e is closed then fix A\f.e < g
where g is a new function defined by g = e{f:=g}.

PROOF. Defineg™ 2 e{f:=fix A\f.e}. Now since g™ r» e{f:=fix \f.e} and
fix A f.e = e{f:=fix Af.e} it follows by Prop. 15(iv) that g= <& fix Af.e.
Since cost equivalence is a congruence relation, we have that e{ f :=fix A f.e} <
e{f:=g "}, and so by Proposition 11, we have a cost-equivalent transforma-
tion from g~ to g, and hence g <> g~ <> fix A\f.e O

Now we can define a letrec expression by “translation” using fix.
Definition 17 letrec hz = ein ¢/ = (Mh.¢')(fix \h.)\Z.¢)

The following properties are consequences of the definition, which are easily
proven:

Proposition 18

(i) letrec hz = ein ¢’ <& €{h:=(fix \h.AZ.€)}
(ii) letrec hz = ein h < fix \h.AZ.e
(iii) letrec hz = ein ¢/ <t e'{h:=letrechz =einh }
(iv) (letrec hz =ein e’)e” <& letrecht = eine'e” if h € FV(e”)

Now we give a local improvement theorem analogous to Corollary 10:

Theorem 19 [f variables h and include all the free variables of both ey and
e1, then if

letrechz =¢eginey B> letrechr =epin ¢
S

16

then for all expressions e

letrechz =¢yine > letrechz =e ine
S

PROOF. Using Prop. 18(iii) we can see that (from the premise of the the-
orem) it is sufficient to prove letrec hz = ¢y in h > letrec hz =¢; in h;
by definition of letrec we can see that this is equwalent to showing that

fix Mh.Az.eq ES fix Ah. Az .e;.

Define a new function g & Az.ep{h:=g}. By Prop. 16, g < fix Ah.AZ.eq.
Now we use this, and the properties listed in Prop. 18 to “transform” the

body of g:
AZ.eg{h:=g} < Az.eg{h:=fix \h.A\Z.eq}
<> Az.letrec hr = g in e

> Az.letrec hT = egin ey

<> Az.ei{h:=fix \h.AZ.e}
< Az.e{h:=g}

So by Prop. 10, g e g’ where g’ £ ¢'{h:=g'}. Hence by Prop. 16, fix Ah.AZ.ep <
g ES g < fix \hAz.ey. O

4 Deforestation

In this section we recall a well-known example of a recursion-based program
transformation, namely deforestation, and show how the local version of the
Improvement Theorem can be used to furnish a correctness proof.

Deforestation [38] is a transformation developed for first-order lazy functional
programs, which aims to eliminate the construction of intermediate data struc-
tures (eg. trees, hence the name). The aim of the transformation is the fusion
of code which produces some data structure with the code which consumes it.
The general aims of the transformation are well known in the transformation
literature as a form of loop fusion; deforestation is an attempt to make this
transformation fully mechanisable.

In this section we will restrict our attention to a small subset of the lan-
guage introduced in Section 2. This subset corresponds to the core language
introduced in [38]. Let meta-variables e, ¢’ etc. range over the first-order sub-
set of the language built from constructor-expressions, case expressions, and
function applications of the form fe; ---e,s, where the body of fe;---e,s is

17

(1) T[] =2
(2) Te(er-..ex)] = c(Ted] - - - Tex])

(3) T[f €] = T[eg{z :=&}]

(4) T[case z of paly : €| ...pall, : e]

n

= case x of paty : T[e}] ... pat, : T[e]

(5) T[case c(€) of paly : €| ...pal, : €]
= Tlei{z:=e}] if pat; = ¢(z)

(6) T[case (fe) of paty : €| ...pat, : e,]
= T[case (es{z:=¢€}) of pal| : €} ... pal] : ¢l]
(7) T[case (case ey of pal, : e1...pat, : ey,)of pal) : e ... pal) : €]
= T'[case ¢ of
!

pat, : (case ey of pat| : €} ... pal] €l)

T n

pat, : (case e, of pat| : €} ... patl : e)]

Fig. 3. Original transformation rules for Deforestation.

also a first-order expression of this form. We will sometimes abbreviate such
a function application as feé, and assume that the function f is defined by

fz 2 cr.

The heart of the deforestation algorithm is the set of seven rules reproduced

in Figure 3.

The transformation rules resemble a recursively defined interpreter. The prob-

lem with the bare rules, operationally speaking, is that they will “loop” on

most open terms containing calls to recursive functions. Consider (a small
example from [38]) the application of the transformation rules to the term

18

flip(flip) where flip is defined by

flipz £ case z of
Leaf z : Leaf =
Branch(/,r) : Branch(flip r, flip /)

By application of the rules we can see that

T'Aip(flip z)]
= case z of
Leaf 2 : Leaf
Branch(/,r) : Branch(7'[flip(flip /)], T[flip(flip r)])

Clearly the transformation algorithm will not terminate, since renamings of
the initial term are encountered in the branches. To enable well-formed (ie.
finite) programs to be produced, the crucial step in the algorithm is to add fold-
ing. The idea of folding is that when 7' is applied to a “previously encountered”
expression, the transformation is shortcut and recursion is introduced. In order
to introduce recursion, new function definitions need to be constructed, and
the terms encountered by the transformation must be recorded, or memoised.

Wadler notes [38]:

When should new definitions be introduced? Any infinite sequence of steps
must contain applications of rules (3) and (6), the unfold rules. Therefore,
it is sufficient to take as right-hand sides, each term of the form 7...]
encountered just before applying rules (3) or (6). Keep a list of such terms.
Whenever a term is encountered for a second time, create the appropriate
function definition and replace each instance of the term by a corresponding
call to the function.

In the above example, this results in the following function:
T[flip(flipz)] = fox, where
foz & case x of
Leaf z : Leaf 2
Branch(/,r) : Branch(fy [, fy r)

A more declarative view of the process of folding is obtained by viewing T'
as a mapping from terms to term-trees (i.e. possibly infinite expressions).
Folding then corresponds to transforming the infinite tree produced by T
into a finite graph, by collapsing equivalent nodes. For deforestation, nodes

19

are considered equivalent if they are are equivalence up to variable renaming
(so-called “identical folding” in [9]). See for example Ferguson and Wadler’s
account of folding in deforestation [7], and related descriptions of folding for
“process trees” in [9].

Wadler originally argued that the expression level transformation is obviously
correct (since it essentially uses just unfolding, and simplifications which elim-
inate constructors).

But the property that the local steps are equivalence-preserving, whilst neces-
sary, does not in itself imply the correctness of the resulting programs, because
it does not address the memoisation process used to introduce recursion. *
What remains to be achieved is to show that the resulting programs are equiva-
lent to the originals — and in particular in the presence of folding. Since folding
is so crucial to the deforestation algorithm, and is at the heart of the problem
of proving correctness, we will present a modification of the transformation
rules which makes folding explicit.

4.1 FExplicit Memoisation and Folding

Some earlier explicit accounts of folding [7,19] have taken the declarative view

mentioned above. ?

Firstly, the infinite expression-tree produced by T[] is
annotated with expressions; if e annotates some expression-tree ¢, then ¢ (ig-
noring annotations which might occur therein) was obtained by applying 7 |
to e. Folding is then implemented by walking down the expression tree and in-
troducing recursion whenever an annotation occurs twice on the same branch.
At the first occurrence a recursive definition is set up, and at the subsequent

occurrences recursive calls are made.

In our scheme, we merge these two phases to yield a simpler account. The
combination of these phases has the advantages that it does not need to intro-
duce infinite-terms (cf. [7]), and it is not dependent on lazy-evaluation within
the meta-language defining 7' | (cf. [19]). To represent the construction of
recursive programs we make use of the letrec construct (Def. 17) in the output
syntax.

The basic idea is that the transformation T'[] is given a parameter p, which
contains a record of the terms encountered so far. Only terms of the form of

4 There are some other approaches to fusion — which sometimes also go under the
name “deforestation”, e.g. [8] but which do not encounter this problem since they
do not operate directly on recursive definitions.
5 It should be noted that folding is introduced in [7] for the purpose of a termination
proof for the algorithm (applied to a certain class of terms); folding is introduced
in [19] in a discussion of implementation issues.

20

rules (3) and (6) are recorded, since these are the only rules that can lead to
a nonterminating transformation. This extra parameter is the memo-list, and
will be modelled by a substitution. The domain of the substitution is the set of
local function names which are in scope, and the range is the set of expressions
which have been seen before. If at some point in the transformation we have
that p(f) = Azy....Az,.e, where € is a first-order expression, it means that the
expression e has been “seen before”, and that the action of the transformer,
roughly speaking, was to introduce a call to a new function fz;....z,.

The transformation rules with explicit folding are given in Figure 4. The pa-
rameter p is written as a subscript to avoid later confusion with the application
of a substitution.

We have combined rules (3) and (6) into a single rule by abstracting over the
context in which the function call occurs; E ranges over single-hole contexts
of the following form:

FE:=][] | case[]of pal, :e1...pat, : e, .

n *

Suppose that e is in the right syntactic form to apply rule (3)/(6). Now if
p(h) = Ay.e for some h then we know that a renaming of expression e has
been encountered before, and that we can just make a call to A with argu-
ments y. Otherwise we construct a local recursive definition, and add a binding
to p, thus recording the expression encountered and the name of this local def-
inition. Introducing local definitions gives the remainder of the transformation
the opportunity to introduce recursive calls to this new function whenever a
renaming of the expression occurs in the transformation of the body of the
new definition. Of course, if recursion is not subsequently introduced, then
the letrec is redundant. Such redundant letrecs can easily be eliminated by a
simple local transformation (namely unfolding).

There are a couple of extra conditions relating to name-clashes which must be
satisfied by renaming the bound variables in a term before applying a rule.

— In rule (4) we assume that the variables Domain(p) are distinct from the
free variables in pat] ... pat), so that the variables in the patterns do not
capture the variables which are introduced by the folding process.

— In rule (7) we assume that Fv(pat, ... pat,) is disjoint from Fv(e] ...¢€!) and
Domain(p).

The deforestation algorithm applied to some open expression e is now com-

21

(1) T[], =z

(2) Te(ey ... ek)]]p = c(T[[el]]p . T[[ek]]p)

(3)/(6) T[E[fe]], = Ry, if 3h.p(h) = \y.EIf €]
= letrec hy = T[] , in hy , otherwise,
where h ¢ (y U Domain(p))
and € = Eleg{z:=€}]
and p' = pU {h:=X\y.E[f €]}

where y = FV(E|[f €])

(4) T[case x of pat) : €| ...pat, : €],

n

= case z of paty : T[e}], ... pat, : T[e,],

n

= Tle{z:=¢e}], if pat; = ()

(5) T[case c(e€) of paly : ey ...pal, : e,],

7) T[case (case ¢ of pat, : e;...pal : e,)of pal| : €| ...pal :¢€
1 1° €1

= T[case ¢q of
pal, : (case e; of pat] : €} ...pat] : €])

n n

pat, : (case e, of pat} : €} ...pat) : ¢})],

Fig. 4. Deforestation with explicit folding
pletely described by T[e]., where € is the empty environment.

Example 20
T[fip(flipz)], =
letrec oz = (letrec hy x = case z of
Leaf z : Leaf =

Branch(/,r) : Branch(hgl, hor) in hy)
in ho x

22

There is one redundant letrec, which can be eliminated by unfolding the call to
hy x, giving:

letrec hgz = case z of
Leaf z : Leaf =
Branch(/r) : Branch(hg !/, hor)

in holl’}

4.2 Correctness

There are many interpretations of the term “correctness”, which sometimes
include efficiency properties, and termination properties of algorithms. Here we
are only interested in proving that the transformation, whenever it terminates,
gives an equivalent expression. Henceforth this is what we mean by the term
“correctness”.

A need for improvement The correctness of the deforestation algorithm
has been asserted many times in the literature. In this section we use the
improvement theorem to furnish a proof of correctness. Moreover, we claim
that this is the first such proof which both explicitly, and correctly, includes
the folding process.

The correctness requirement of the transformation is easily stated: we need to
show that for all expressions e, if T'[e], is defined then T'[e], = e.

The obvious proof strategy is to use induction on the size of the transformation
T'[e].. Clearly we need a more general theorem in order to apply the induction
hypothesis in the crucial case (3)/(6) where the environment is extended. So in
general we need to prove a property about a transformation of the form T[[e]]p.
The term T[[e]]p possibly contains some free variables in the domain of p, which
will have been introduced whenever a term recorded in p is encountered. The
following is a first attempt at a more suitable generalisation:

For all expressions e, and environments p, if the range of p contains only
closed expressions, its domain is disjoint from the free variables of e, and if

T'[e], is well-defined, then e = (T'[e])p.

One could now attempt the proof by induction on the size of the transfor-
mation T[[e]]p. However, this property, although true, is not sufficiently strong
to complete the induction. The problem is that preservation of equivalence
is not a sufficiently strong property to justify the recursion introduction —
specifically in the case when rule (3)/(6) is applied, in the sub-case where the

23

expression has not been “seen before”. The solution is to prove a stronger
property, namely that T[[e]]p is also an improvement over e, and to apply the
improvement theorem in this crucial case.

Theorem 21 Let e be a closed expression, and p an environment such that

(i) the range of p contlains only closed expressions, and
(ii) ¥V(e) N Domain(p) = 0.
(ii) Tle], is well-defined (i.e. the transformation terminates).

Then e > (T'[e],)p-

We will need the following technical lemma, which states a certain trade-off
between reduction-steps: informally, it says that if ey reduces using one (fun)-
step to ep, then an instance of eg “costs the same” as an indirect instance of
e1, where by “indirection” we mean an occurrence of a function call bound to
e1 by a letrec.

Lemma 22 For all expressions e and substitutions 6 such that h ¢ Domain(6),
if eg F>1 €1 then

letrec hy = e, in e{z:=¢egf} < letrec hy = e, in e{z:=h (y)6}

PROOF. Straightforward from the definition of letrec, by application of
Proposition 15(iv) by showing that both expressions have a common
derivative. O

Proof of Theorem 21

We will focus only on the case where rule (3)/(6) is applied. The remaining
cases are straightforward and require just simple arguments about equivalence
and improvement.

In what follows, let eg = E[f €], where f is defined by f £ e¢, e; = Eles{z :=€}],
and y = FV(eg).

Under the conditions (i)—(iii) of the theorem, we are required to show that

co & (T[eo],)p. According to rule (3)/(6), there are two sub-cases. We con-
sider each case in turn:

(i) Suppose Fh.p(h) = Ay.eo, and hence that T'[eo], = R y.

The conditions of the proposition ensure that § N Domain(p) =), and so we
have that (T'[eo],)p = (hy)p = (Ay.eo) y. But (Ay.eo) y is cost equivalent to

24

€0, and since cost-equivalence implies strong improvement we can conclude
that e & (T'[eo],)p-

(ii) Otherwise we have that T'[eo], = (letrec hy = Tei] , in hy)p where
p'=pU{h:=Xy.ep} and h & (y U Domain(p)). We need to show that

co > (letrechy =T[e] , inhy)p (3)

Since h,y ¢ Domain(p) we have that (letrec hy = T[ei], in hy)p =
letrec hy = (T'[e1],)p in hy. Since E is a reduction context, it follows that
€0 ~ e1. By Lemma 22 we have that letrec h gy = €, in e <> letrec hy = ¢
in hy . Since h € FV(eg) then this simplifies to eg <> letrec hy =¢; in hy
Hence it is necessary and sufficient to prove that

letrechy =¢, in hy > letrec hy = (T'[e1] ,)p in hy.

The key step® is that by the letrec-form of Improvement Theorem (19) it is
then sufficient to show that

letrechy = e ine; > letrechy = erin (T[],)p
Claim 23 (T'[ei] ,)p" <& letrec hy = e, in (T'e] ,)p

From this claim, and the fact that letrec hy =-e; in ¢, < ey, this is
equivalent to showing that

er & (Tl e’

— which follows from the induction hypothesis, since Tﬂel]]p, is a shorter trans-
formation.

It just remains to prove the Claim; By inspection of the rules for T[], all
free occurrences of £ in T'[e;] , must occur in sub-expressions of the form A z.
Suppose there are k such occurrences, which we can write as hyé;...hyb,
where the 0; are just renamings of the variables y. So T'e;] , can be written as
e{z1...zk:=hyb ... hyb}, where ¢’ contains no free occurrences of h. Then

6 This is the only step of the proof which depends on the strict-improvement prop-
erty. All other steps could be made with operational equivalence relation in place
of strict improvement, but this step cannot be justified by operational equivalence
alone.

25

we reason as follows (where application of substitutions associates to the left):

(Tlea],)’ = (Tleal,)= Ag.e0}

(

< (21 ...z5:=hyb ... hybi})p{h:=Ay.eo}
(e
(

> (e{z1...2zp:=€pb ...e0bi})p

<> (by Lemma 22)
letrec hy = ey in (€'{z1...z:=hybi ... hybi})p
= letrechy = e in (T[e] ,)p

5 Generalisations: Stepwise Transformation and Higher Order Func-
tions

In the previous section we considered Wadler’s original formulation of defor-
estation and showed that correctness could be argued using a local version of
the improvement theorem. In this section we will consider a number of gen-
eralisations. The key generalisations come from a new “stepwise” formulation
of the deforestation transformation. The stepwise formulation expresses the
transformation in terms of a one-step rewriting relation on programs, based
on a novel strategy for describing the transformation process. This involves
identifying the following components of the transformation:

— reduction contexts, as in our standard operational semantics (and as implicit
in some other formulations of deforestation [7]),

— passive contexts which enable transformations to be pushed deeper into a
term, and

— basic rewrites which mimic those of ordinary evaluation, plus rules which
also perform driving [35].

This strategy yields a very simple and uniform extension of the transformation
to richer languages, including higher-order functions, since extensions to the
language (and its operational semantics) can be expressed in terms of additions
to reduction contexts, passive contexts and basic rewrites.

More importantly, the stepwise formulation has a simpler, more modular cor-
rectness proof. The correctness proof is addressed in the next section. By
making use of global recursive definitions and the corresponding Improvement
Theorem, correctness reduces to showing that each transformation step is in
the strict improvement relation. The number and order of transformation steps
does not affect correctness.

26

5.1 Stepwise Deforestation

By inspection of the basic deforestation rules of Figure 3, we can classify them
into basic classes:

Passive rules (1), (2), and (4), which just drive the transformation deeper
into a term

Reduction rules (3), (5), and (6), which mimic the actions of the operational
semantics, and

Nested-case rule (7) which allows propagation of context (specifically, a
case expression) into the branches of a case-expression.

Based on this analysis, we will break down the transformation 7] into the
repeated application of a certain reduction relation. To mimic the effect of
the passive rules, we define the passive contexts as the contexts in which
transformation steps are permitted.

Definition 24 (First-order Passive Contexts) The first-order passive con-
texts, ranged over by IP, are single-holed contexts given by

P=[] | casevof---pat;: IP--- | ¢...IP...)

A key property is that T'[_] is compositional with respect to passive contexts.
In other words:

Lemma 25
T[Pe]] = ¢ +—
deg, e1. T[IP[z]] = eo (x fresh) and T[e] = e and eg{z: =€} =€

Recall the class of contexts £ =[] | case [] of ... which was used
to combine rules (3) an (6) into one rule-schema (Fig. 4). (An analogous
simplification is present in [7,3]).

In Figure 5 we present the stepwise version of the deforestation rules. Note
that the inference rule (s0) could, alternatively, be eliminated by replacing
expressions of the form E[e] by IP[FEle]] in the other three rules.

In rule (s3), as before, we assume that the variables of pat, ... pat, are made
distinct from the free variables of E. Let ~»* denote the transitive and reflexive
closure of the ~» relation, and write e +4 if there is no €’ such that e ~ €’. The
correspondence between the one-step rules and the original rules can now be
stated:

Proposition 26 (i) If T[e] = €' then e ~* €' +» .

27

!
€~ €

(0) Br = e
(s1) EIf €] ~ Eleg{z:=€}]
(s2) Flcase c¢;(e) of ---¢;(z;) 1 e;---]

~> E[ez{i}z = é}]

(s3) Elcase e of pat, : ey ---pal, : e, |
~» case ¢g of pal, : Eleq]...pal, : Ele,] FE #][]

Fig. 5. Stepwise Deforestation Rules
(ii) If e~ €1~ -+~ €~ -+, then T|e] is undefined.

The proof, with the help of the above Lemma, is left as an exercise. Note that,
if we imposed a simple type discipline on the language to ensure that we do
not get badly-formed case-expressions where the constructor-expression does
not match any of the patterns, then the converse of these properties would

also hold.

5.2 Folding with stepwise deforestation

We have established a tight correspondence between the deforestation rules
and the stepwise formulation. We now consider what happens when we add
memoisation and folding. For the stepwise formulation it does not make sense
to add local recursion in the manner of Figure 4. Instead we use global recur-
sion, by allowing the transformation steps to introduce new top-level defini-
tions. This approach is already common in describing deforestation, see e.g.

[13] [4].
First we modify rule (s1) to introduce a call to a new function:
(s1') R[fe] ~ f°y
where y = FV(IR[f €])
and f°is a new function given by

foy 2 R[eg{z:=€}]

Now we can add a “memo table” as before: we associate the function call £°y
with the expression IR[f €]. Whenever a renaming of IR[f €] is encountered at

28

a later step in the transformation, the corresponding renaming of £y can be
introduced.

Definition 27 (Stepwise Deforestation Algorithm) Using memoisation
as described above, the stepwise deforestation algorithm applied to an expres-
sion eq is defined as follows:

First abstract the free variables from eg to form a new (non-recursive) defini-
tion f§ T £ €.

Maintaining a distinction between the original functions in the program (ranged
over by f,g...), and the new functions introduced by the transformation steps
(henceforth ranged over by £°,g°...) including {5, transform the right-hand
sides of the new functions by repeated (nondeterministic) application of the
rules but never applying rule (s1’) in order to unfold a new function.

We now conjecture that whenever the original deforestation algorithm termi-
nates, then so will the above algorithm (assuming that the rules are applied
exhaustively). We might then be tempted to conjecture that the outcomes of
the two versions of the algorithm will be syntactically the same. However, the
correspondence is not that tight. The stepwise view of deforestation is in fact
more general (it is nondeterministic). The generality comes from the fact that
the memo-table which records the expressions seen before in the application
of rule (s3) is now global.

To explain the difference, consider the deforestation rule for constructors:

Tle(eq, - .., ek)]](;S = c(T[[el]]¢, el T[[ek]](b)

The expressions ey, ..., e are transformed independently, each with their own
copy of the memo-list ¢. This means that if, in the transformation of two of
the sub-expressions e; and e;, some common sub-expressions arise, then trans-
formation work will be duplicated. In the stepwise account, each argument of
the constructor occurs in a passive context, so the transformation rules can
be applied to any of these expressions. But in this case, any new function
introduced in the transformation of one sub-expression ¢; can be subsequently
used in the transformation of some other sub-expression e;.

The practical consequences of this difference is that the stepwise transforma-
tion has the ability to terminate more quickly, and produce more compact
definitions. An illustrative example, too involved to reproduce here, can be

found in [10][§6 (cf. footnote 4)].

The “theoretical” difference is that the stepwise deforestation algorithm is
not deterministic. We do not consider this to be a problem of the formulation,
since we will show that any outcome of the transformation is correct. In other

29

words, the choice of “transformation order” is orthogonal to the correctness
issue. What is more, the correctness argument does not depend on the use
of the memo-list, so it is possible to allow the transformation sometimes to
apply rule (s1’) blindly, without bothering to check if the expression has been
encountered before. Of course, in general this might have adverse effects on
the termination of the algorithm, but not on the correctness of the outcome.

5.3 Higher-Order Deforestation

Let us add function names f, and general application e; e; back into the lan-
guage, so that now we can have partially applied functions, and thus full
higher-order capabilities.

From the formulation we have given, our strategy for generalisation of the
deforestation rules to this language is fairly straightforward. Before we can
proceed, we make a small modification to the original algorithm. First, consider
the contexts F, representing either the trivial context [], or a case-context
(case [] of ...). A small generalisation which is commonly (but implicitly)
used in the description of the standard deforestation algorithm (eg. [7,4]) is
to allow the contexts K to be nested, i.e.,

E =[] | case F of pat, : e, ...pal, : e, .

n *

With this generalisation, the contexts E are now just the reduction contexts
for this first-order language (an observation first made explicit in [31]).

The first step in our strategy for generalising to the higher-order case is to use
the reduction contexts for this language, i.e.:

R=1[] | case Rof ¢;(z1):e1...c,(Zs) €, | IRe

Now we must generalise the passive contexts. We propose the following:

Definition 28 (Higher-Order Passive Contexts) The (higher-order) pas-
sive contexts, ranged over by IP, are single-holed contexts given by

P ::=1]] | casedof - --(pat;: IP)---
| c(...IP...) | dIPe ---¢

where d ranges over the simple dynamic expressions, given by d ::=z | de.

Note that the passive case-expression is generalised using a simple grammar
of dynamic expressions. The rational of the dynamic expressions is that they

30

e~ e
d0 ST T
(d0) Ple] ~ P[]
(dl) RIf €1...€4,] ~ %y
where y = FV(IR[f ¢; ...¢€,,])

and f°y 2 Rles{z1...20,:=€1... €ap}]

(d2) IR[case ¢;(€) of ---c;(z;) 1 e;---]
~> ﬂi’[el{i’l = é}]

(d3) IR[case d of pat, : e, ...pal, : e, |

~» case d of pat, : R[eq]...pal, : IR[e,)

n

(d4) fer...eap~fy (k>0)
where y = FV(f ey ...eq,—k)

and f°yz...zr 2 ee{ar .. x0,i=€1. . ok 21.. .2k}, 21...zifTE

Fig. 6. Stepwise Higher-Order Deforestation Rules

represent terms from which no information can be extracted. Two examples
of passive contexts are:

(z (fy) cons([],nil)) case zy of
nil : nil

cons(y,ys) : []

It turns out that in the correctness proof of the transformation, the details of
the definition of passive contexts will play no part. In other words, correctness
follows for any definition of the context IP. However, from the point of view of
deforestation-like transformations, the present definition is more interesting:
we are therefore treading a line between generality — from the point of view
of the correctness argument — and practical relevance — from the point of
view of the effects of the transformation.

The rules generalising the stepwise deforestation rules (Fig. 5) are given in

Figure 6.

Partial application Rule (d4) has no analog in the first-order version, and
requires some explanation. This rule deals with the case of a partially applied

31

function. Firstly, note that the rule contains no reduction context. This is
because a partial application f e;...e,.—; only makes sense in one kind of
non-trivial reduction context, namely an application context []e’. But in this
case we are interested in handling the term f e ... e,,_j € (which may or may
not be a partial application).

The motivation for the rule is that we want to produce a specialised version
of the function f e ... e,,— which takes advantage of the specific arguments
€1 ...€q—k. However, the function does not have sufficiently many arguments
to unfold the call as it stands (as in rule (d1)), so we enable the unfold by the
construction of an auxiliary function.

The effect of rule (d4) can be understood in terms of the corresponding
lambda-expressions. If we included lambda-expressions, we would have pas-
sive contexts of the form Az.P. The partial application f e;...e,,_; would
correspond to Azy.... Azp.f ey ...€qp—k 21 -+ - 2, and then it is easy to see that
the effect of the transformation would be the same.

Folding in Higher-Order Deforestation Just as before, in order to get
the above algorithm to terminate in some non trivial cases we need to add
folding, or memoisation”. Folding is needed to produce useful results; if the
rules are applied exhaustively then without folding the algorithm will hardly
ever terminate. Both rules (d1) and (d4) introduce new function definitions
(without these rules termination would be assured, but the effects of the trans-
formation would be uninteresting). The basic idea is the same as before: to
use a memo-table, which is accumulated during the transformation, to enable
(d1) and (d4) to make use of previously defined functions.

When there is a possibility of applying the rule (d1) to an expression e; then
we look into the memo-list. If there is an entry (e, f°y) such that e; = egf,
where 6 is a renaming (a substitution mapping free variables to variables) then
we replace e; by f°yf. Otherwise we apply the rule as normal, introducing a
new function call f°z, where z = FV(e;) and add the pair (e;,f°z) to the
memo-table. We can use memoisation in rule (d4) in exactly the same way.

Example 29 The following example illustrates the transformation rules in
action. Consider the definitions given in Figure 7.

Writing compose in the usual infix style (e 0 ¢ = composee€') we wish to
transform the expression (map f)o(filter p). We begin with the new definition:

fs fp = (map f) o (filter p)

7 Although with this stepwise formulation we can simply stop the transformation
at any point and we have a well-formed program.

32

filter p s £ case s of
nil : nil
cons(y,ys) : case py of
true : cons(y, filter p ys)
false : filter p ys
map frs £ case xs of
nl : nil
cons(z,zs) : cons((fz),map f zs)

compose fgz 2 f(gx)

Fig. 7. Example Definitions

Now we transform the right-hand side of this new definition and of the right-
hand sides of subsequently introduced definitions. The initial transformation
steps are given in Fig. 8; each derivation step (~) refers to the right-hand side
of the preceding definition. We have labelled the steps according to the rule
applied, but we have elided the use of the (s0) inference rule.

After these steps the transformation can proceed to the two occurrences of
the sub-term filter p (map f zs) (both of which occur in passive contexts) —
but these expressions (modulo renaming) have been encountered above at the
first application of rule (d1) (and therefore would occur in the memo-table),
so we “fold”, introducing recursive calls to f5, obtaining:

fopfas2fypfas
fopfas2fipfas
fspfxs £ case xs of
nul : nil
cons(z,zs) : case p(f z) of
true : cons((f z),fy p f zs)
false : £5p f zs

We can eliminate the trivial intermediate functions f{ and {5 by post-unfolding

[15].

With regard to the “higher order” capabilities of the transformation, we sug-
gest that the transformation copes equally well with ordinary recursive defi-

33

(filter p) o (map f) 4 fipf where

fy p fxs & filter p(map f zs)

53N fopfxs where

(>

fypfrs & case (map fxs) of
nal : nil
cons(y,ys) : case py of
true : cons(y, filter p ys)
false : filter p ys
A fspfxs where
fypfas £ case (case zs of
nal : nil
cons(z,zs) : cons((f z),map f zs)) of
nal : nil
cons(y,ys) : case py of
true : cons(y, filter p ys)

false : filter p ys

d3 d2 d2

case zs of
nil : nil
cons(z,zs) : case p(fz) of
true : cons((f z),filter p (map f zs))
false : filter p (map f zs)

Fig. 8. Initial Deforestation Steps

nitions, or definitions expressed with an explicit fixed-point combinator fix.
What is more, we conjecture that whenever transformation of an expression
terminates it will also terminate on an explicit recursive representation using
fix as the only recursive function. We leave it as an exercise to rework in this
style the flip(flip 2) example from Section 4.

34

9.4 Related Descriptions of Higher-Order Deforestation

The effects of the transformation, using this generalisation, are not substan-
tially different from those previously introduced by Marlow and Wadler [19],
but the presentation is more concise; in some sense this extension of the de-
forestation method to deal with higher-order functions is the canonical one,
stemming from the fact that, in addition to the case-reduction context, the
language now has an application reduction context (IR e), plus an additional
set of weak head normal forms—the partially applied functions. More recent
higher-order generalisations are due to Hamilton [12] and also to Marlow [20];
notably both Hamilton and Marlow give a grammar of terms (a “treeless for-
m”) which is used to characterise a set of expressions for which their respective
algorithms always terminates.

Following [28], this style of stepwise transformation has been adopted by
Nielsen and Sgrensen [21] in a study of the relationship between deforesta-
tion and partial evaluation. They define a class of passive contexts (what they
also call “dead contexts”) which makes their analog of ~» deterministic.

6 Correctness of Memoising Transformations

In this section we address the correctness issue for transformations in the
style of the generalised deforestation of the previous section. We begin with
an abstract definition of a memoising transformation algorithm, which is pa-
rameterised by some transformation relation on expressions. This definition
captures the essential features of memoising stepwise transformations.

Then we give certain conditions on the transformations relation, with re-
spect to the definitions transformed, which guarantee that any output of the
recursion-based transformation algorithm is a strong improvement over (and
hence equivalent to) the input.

Finally, we show the correctness of the higher-order stepwise transformation.
Definition 30 A transformation relation, —, is a ternary relalion belween
two expressions, and a set of new definitions. If (e,e’, D) € — then we write
e — €, D'. Furthermore, we assume thalt D' are some new definitions upon

which e does nol depend.

Definition 31 A memoising transformation of a sel of definitions D, using
a transformation relation — s defined as any outcome of the following non-

35

deterministic algorithm:

M:=(0 \x M is a binary relation on expressions *\
for any number of iterations do
* Choose any function f, and any sub-expression which
can be viewed as an instance of some expression ey *\
choose (fz 2 Clegl]) from D;
if (eg,e1) € M then
D:=(D\{fz 2 Clef]})U{fz 2 C
elseif ¢y — ¢, D’ then
D:=(D\{fz 2 Clef]})U{fz 2 C
M := M U{(eg,e1)};
end if;
end for;
return D;

[ed0]};

[el0]} U D';

Notice that the algorithm permits us to add new definitions to the set D, and
the memo-table M allows us to shortcut a transformation step that we have
done before, rather than introduce further new definitions.

Definition 32 (Independence) The call-graph of a function f is inductively
defined as the the set of function names occuring in the body of f, together with
the call-graphs of these functions.

Let D be a subset of the function definitions in a given program. An expression
e ts independent of D, the function names contained in e and their respective
call graphs are disjoint from the functions in D.

A transformation relation — is defined to be domain independent of D if
whenever eg — ey, D' then the following conditions hold:
There exists a substitution 0, and expressions ep, €| such that

(i) eo = epf), e; = €40,
(ii) eq — e}, D', and
(iii) ef is independent of D.

So, for example, if some transformation relation — is domain independent of
D = {g £ ez}, then we could not have g — ¢,) unless we also had = — ¢',0)
for some z and €’ such that e is an instance of ¢'{z:=g}.

Theorem 33 Let D' denole any resull of applying the memoising transfor-
mation algorithm to definitions D, using some relation —.

i) If e — €', D" implies e <T €' with respect to the definitions D U D" then
) p = P
the definitions in D are cost-equivalent to the corresponding definitions

36

in D'

(it) If for all e, e—e', D" implies e%se' with respect to the definitions in DU
D", and — is domain independent of D then the definitions in D are
strongly improved by the corresponding definitions in D’.

The domain independence condition in part (ii) maintains the invariant prop-
erty that it is contained in the strict-improvement relation with respect to the
current definitions (rather than just with respect to the definitions at the time
the respective entries were added). The symmetry of cost equivalence means
that we do not need this condition in part (i). In the proof we will distinguish
between the definitions at each iteration of the transformation loop.

PROOF. Consider some transformation of D = {f; £ ¢;},.; (we assume func-
tions of zero-arity just to simplify the presentation). Suppose that {f; £ ¢;;} is
the value of D after j > 0 iterations of the loop. Let D; = {ff S ef{fi = fg}1€[}7
and let M; be the value of M after j iterations. Now we consider the two parts
of the transformation in turn.

i Assume that e — 6/ D// 1m lies e <> 6/ . NOW we establish the fOHOWiH
5 P N g
invariant:

f/ <> fi and M; C ()

We proceed by induction on j; we omit the details as they are similar
to (but simpler than) the following argument for the second part of the
theorem.

(ii) Assume e—¢€’, D" implies e> €', and that — is domain independent of D.
We proceed by induction on Sj, establishing the following loop invariant:
(a) fi & £/, and
(b) V(e,e') € M;.3e", €, ¢.

("0, e"d) = (e,€),€" > e" and " is independent of D

The base case is immediate. For the induction assume that it holds for
j = k for some k. Assume without loss of generality that fy £ Clegf] is
the chosen function (context, subexpression and substitution) from the
fi & e;r.. We consider the cases eg — €1, D" or (eg, 1) € My, in turn (and
if neither case holds the functions are unchanged and we are done).

Case ¢y — e, D": then eg = ey¢ and €j¢ = ey, for some e, €] and
¢ such that e is independent of D, and e — €, D”. By the assump-
tion we know that e e e}, and hence by the first part of the induction
hypothesis that e B e {f:=f*}. Let ¢ denote the result of applying
replacement {f:=f*} to the range of ¢. Since B s closed under sub-
stitution we know that epd’ & e {f:=fF}¢'. But ¢/ {f:=fF}¢' can be

written as e/ ¢p{f:=f*}, and since ¢ is independent of D we have that

37

ehd' = el p{f :=f*} = eo{f :=f*}. Hence we know that
eo{f =%} B e {f =%} (4)

Let ¢’ = C{f:=f*} (this is well defined since this is a replacement
operation, not a proper substitution) and let § = (§{f :=f*}). By the
substitutivity and congruence properties of B, we have from (4) that

C'leo{f :=1%}0] B C'le{f:=1%}0']. (5)

But e;{f:=f*}0' = ;0{f:=f*}, i = 1,2 and so we can write (5) as
Cleod{f :=f*} & Clei0){f := f*}. Now by the corollary of the Improve-
ment Theorem (Cor. 10) we know that f¥, given by f§ 2 Cleof]{f := f*},
is strictly improved by the function f;*' 2 Cle,0]{f :=f**'} (the other
£5+1 4 = 0 are just renamings of the £¥). Thus we can conclude that ff B
£+ By part (a) of the induction hypothesis and transitivity it follows
that f; > ff+!1 Now for the second conjunct (b): Myy1 = My U (eg, €1),
so we need to verify that the property b holds for the new pair (e, €1),
but this follows directly from the fact that — is “contained in” strict
improvement, and domain-independent of D.

Case (eg,e1) € Mg: we apply the induction hypothesis to get €], €]
and ¢ such that ¢f is independent of D, e(¢ = eq, €/¢ = €1, ¢ B> €], and
we proceed as in the last case. ’

6.1 Correctness of Higher Order Deforestation

We now argue that any sequence of steps of the higher order deforestation
algorithm corresponds to a sequence obtainable by an instance of the mem-
oising transformation algorithm of Definition 31: the transformation relation
is the stepwise relation ~», where new definitions are only generated by rule
(s1’) (and (s4) is we choose to memoise this rule also). Notice that when
representing an application of the deforestation rules as an instance of the
memoising transformation algorithm, the substitution # in the algorithm will
always correspond to a (possibly trivial) renaming.

To prove correctness using the Improvement Theorem, it will be sufficient
to prove that each transformation step is an improvement. The key to this
fact, in the case where the memo-table is used, is that each new function
call introduced by the transformation comes together with an unfolding step
in the body of that function’s definition. First we consider the individual
transformation steps:

Proposition 34 e~ ¢ implies e < €.

38

PROOF. We need to reason by induction on the rules. The only non-axiom is
rule (d0), but this case is easy since <> is a congruence (note that this would be
sound for any context). Rules (d1)-(d2) and (d4) are easily established using
Prop. 15(iv) by showing that e and ¢’ reduce in the same number of ((fun))-
steps to syntactically equivalent (and hence cost-equivalent) expressions. Rule
(d3) was proved in Prop. 14. O

There are generally considered to be three aspects to the correctness of defor-
estation [31]: (i) termination of the algorithm, (ii) correctness of the resulting
program, and (iii) non degradation of efficiency. It is not difficult to construct
example programs for which an attempt to apply the transformation rules
exhaustively would not terminate, so the effort in point (i) must be, eg., to
find some syntactic characterisation of the programs for which the algorithm
terminates (such as “treeless form”). This issue is outside the scope of this pa-
per. The improvement theorem deals with aspect (ii) and to some extent (iii);
from the previous proposition it is a small step to show that the transforma-
tion yields equivalent programs, and these will be, formally, equally efficient
(in terms of I>) under call-by-name evaluation.

Proposition 35 The higher order deforestation algorithm yields totally cor-
rect programs in that any resull of applying the transformation steps (including
folding) to an initial definition £°9 & £ eq will result in a set of new definitions
in which the new version of £° will be cost-equivalent to the original.

PROOF. From the previous proposition, the basic steps are all cost-equivalences.
Then using Proposition 34 we can apply Theorem 33(i) to show that the result

of the transformation of the initial definition is cost-equivalent to, and hence
operationally equivalent to, the original. O

On Efficiency Improvement is defined in terms of a call-by-name execu-
tion model. We do not have a corresponding Improvement Theorem for call-
by-need. Under a call-by-need implementation the usual restrictions of the
transformation seem sufficient to ensure that the result is also a “call-by-need
improvement” over the original. These restrictions are that only functions
which are linear in their arguments should be transformed — see [38], [3]. Al-
ternatively, duplication of sub-expressions (eg. Example 29 (fz) is duplicated
in f5) can be avoided by the use of let-bindings, in the obvious way.

We have shown that the resulting programs are cost-equivalent to the originals,
so we might ask whether there is any optimisation achieved by the algorithm.
Many of the new function definitions introduced by the transformation will
not be recursively called, and so can easily be in-lined during a post-processing

39

stage. Of course, it should be remembered that the main purpose of the al-
gorithm is to eliminate the construction of intermediate data structures. This
property becomes evident from the syntactic form of the output, and is not
the measure upon which our improvement theory is based.®

One aspect of efficiency which is not addressed in any way by the improvement
theory is the size of the resulting code. Even using linearity to avoid slowdown
of more than a constant factor, we can get code explosion due to the “case-
case” rule in the original transformation, and in its generalisation (d3). This
problem is outside the scope of this paper.

7 Further Variations

In this section we consider a number of systematic extensions and variations
of the higher order deforestation rules, for which there is little or no additional
work to be done with regard to the correctness proof.

The correctness proof is dependent on the fact that the individual steps (and
hence the folding steps) are cost-equivalences, but not on the overall structure
of the transformation, or on exactly how the memo-table is utilised. Theo-
rem 33 provides a modular approach to correctness. We can add or replace
transformation rules to increase the power of the method, and the only prop-
erty that needs to be checked is that the new rule is a cost equivalence. How-
ever, some rules that we might wish to add are not cost-equivalences. To
handle these cases we need to show that the correctness result for higher or-
der deforestation can also be obtained using part (ii) of Theorem 33. All we
need is the following:

Proposition 36 In any application of the higher-order deforestation rules,
the stepwise transformation relation ~» is domain independent of the new
functions, £ etc.

PROOF. Since rules (d1) and (d4) do not apply to new functions, and since
the definition of reduction contexts does not depend on function definitions,
then this follows easily by inspection of the rules. O

The consequence of this proposition is that we can add any rule schema of
the form e; ~» e, and it will be sufficient to verify that the rule schema is
independent of the new definitions, and that e; > e,.

8 With good reason: the improvement theorem does not hold for an improvement
theory based only on the number of constructor-expressions built.

40

In the remainder of this section we consider a number of variations of this form,
concluding with a look at a rule which generalises the positive information
propagation found in Turchin’s supercompiler [35,33].

7.1 Language Fxlensions

We can systematically extend the transformation rules to cover new con-
structs. New (functional) constructs will typically be defined by the addition
of one or both of: basic rewrites and reduction contexts. It is natural to extend
the transformation rules to include the new rewrite rule (and, of course, the
new reduction context), and possibly a new class of weak head normal forms.
For the transformation rules we also need to add the new passive contexts.
As we have mentioned before, from the perspective of correctness it is safe to
allow any context, but following our strategy for extending the deforestation
rules we are led to some more focussed choices.

Consider, for example, extensions to handle primitive functions as given in the
full language of Section 2. Now we can systematically extend the transforma-
tion:

— reduction contexts are extended with the clause p(¢, IR, €),

— the reduction rules are extended with R[p(¢)] ~ R[] if p(¢) — ¢

— the grammar of dynamic expressions is extended with the production p(e, d, €');
that is to say, if any argument of a primitive function is dynamic, then the
whole application can be considered dynamic. This is consistent with the
other forms of passive context, since primitive functions need all of their
arguments.

— the passive contexts are extended with p(e, IP, €’) where either € or € contain
a dynamic expression. This is consistent with other passive context since the
primitive function can never be reduced, so the transformation can proceed
to any of the arguments.

Correctness follows easily since the rewrite rule is independent of the function
definitions.

7.2 Generalisation and Control of Termination

The stepwise formulation of the algorithm has an advantage when we come
to discuss termination issues. We are at liberty to control (restrict) where
the rules are applied or simply to stop the transformation after a certain
number of steps, and the result will be a well-formed program. Furthermore,
the correctness argument is completely independent of these choices.

41

Generalisation is a familiar concept in inductive proofs, and has a fairly direct
analogy in program transformation (see eg. [2] [35]), where in order to be
able to fold one must proceed by transforming a more general function. In
the transformation studied here we can model generalisation as follows. Rule
(d1) (and also (d4)) abstracts the free variables from a term and introduces
a new function which replaces the term. Generalisation is enabled if we allow
abstraction of sub-terms other than just the free variables, thereby creating
a more general new function f°. There is a corresponding generalisation of
the folding process: if we encounter a term of the form e;, and our memo-list
contains a pair (e, f°y) such that e; = eo for any substitution o, then we can
replace e; by f°yo.

Note that the memoising transformation algorithm does not need to be ex-
tended to handle these forms of generalisation, since the definition itself allows
us to use any instance of a previously encountered expression. Therefore the
correctness of these variations is also easily proved from the congruence prop-
erties of the improvement relation.

In the original deforestation algorithm an annotation scheme (called “blaz-
ing”) was given to ensure termination of the algorithm for a wider class of
programs (this was subsequently generalised to ensure termination for all
first-order programs by e.g. Chin [4] and Hamilton and Jones [13]). These
annotations achieve the effect of indicating which sub-expressions should be
generalised. Following [38], we can represent this by an extension of the al-
gorithm to handle let-expressions of the form let x = e in €. To achieve
generalisation we do not add the obvious reduction rule for this expression,
but instead we add the passive contexts let x = IP in ¢’ and let x = e in IP.
In this way, the two sub-expressions will be transformed independently. Since
let-expressions can not be eliminated, it also makes sense to add a context-
propagation rule analogous to (d3): R[let x = e in €'] ~ let = ¢ in R[€']

Of course, too much generalisation can prevent interesting transformation from

occurring. Too little, and it can be hard to ensure termination. The question
of when and where to generalise is beyond the scope of this paper. See e.g.

36,31,32] [36].

7.3 Adding Laws

In principle, any strong improvement laws eg B €1, can be added, and correct-
ness follows providing that the law is domain independent of the definitions
thus transformed.

As a simple example, we can add properties about the list-concatenate function

42

append such as:

append (append z y) z > appendz (appendy z)
append (case e of pal, :e;---pal, e,)y
> case e of pal, : (appende; y)--- pat, : (appende, y)

Along these lines we can enable transformations which yield non-linear speed-
ups (see for example [37]), in contrast to the transformations considered so
far, and the following generalisation.

7.4 Driving and Positive Supercompilation

In terms of transformational power (but ignoring termination issues) Turchin’s
driving techniques, as realised in the supercompiler (for: supervised compilation)
[35] subsume deforestation. This increased power is due to a dynamic gener-
alisation strategy (which means that decisions as to when and how to gener-
alise are taken at transformation-time) together with increased information-
propagation in the transformation. Propagation of the so-called “positive”
information [9] can be easily added to the one-step deforestation rules along
the lines of [33]. The basic idea is that when a case-expression has a variable
in the test position, as in (case y of ...c;(z;): e ...), then within the i'"
branch we know that free occurrences of y are equivalent to ¢;(z;). The effect
of “positive information propagation” is achieved by substituting ¢;(z;) for
all free occurrences of y in e;. Thus we have transmitted the “positive” infor-
mation that y has value ¢;(z;) in the i branch (the corresponding negative
information is that y % ¢;(z;), and this information could be used, e.g. to
prune redundant branches of case-expression). In a language with conditional
expressions, this information propagation is achieved by unification.

The transformation seems trivial (for this language at least), but cannot be
achieved in any obvious way by preprocessing the original program, because it
is applied to terms generated on the fly by earlier unfolding steps. The effect
of this extra power is illustrated in [33], where this addition is sufficient to
enable the transformation to automatically specialise a naive pattern matcher
to achieve the effect of automata-construction in the classic Knuth-Morris-
Pratt pattern matching algorithm.

We introduce a natural generalisation of this transformation rule by general-

ising the propagation from the case of a single variable, to propagate informa-
tion to free occurrences of a simple dynamic expression d (Def. 28). Positive

43

information propagation is implemented by adding the following rule
Definition 37 Define the following transformation rule (d5):

IR[case d of ...c;(z;):e{z:=d}...]
~ IR[case d of ...c;(%;) : e{z:=¢;(%:)}...]

where we assume: the free variables in d and x; are all distinet; we allow
renaming of bound variables in a term, and thal there is al least one free
occurrence of z in e.

Proposition 38 ¢ A3 et implies e > ¢’

PROOF. Straightforward using the fact that e;|le; implies e, 25 ez, (so in
particular, if df|.¢;(€) then df > ¢i(€)) together with congruence properties
of improvement. O

8 Conclusions

The following lists some contributions of this article:

— We have shown that the improvement theorem has practical value in prov-
ing the correctness of existing recursion-based transformations, using the
example of deforestation; moreover,

— we have provided the first correctness proof for deforestation which correctly
includes a treatment of folding (Section 4).

— We have devised a strategy for extending the deforestation algorithm to
richer languages, including higher-order functions. This strategy is based
on a novel stepwise description of the algorithm (Section 5).

— We have defined a general “memoising transformation algorithm”, parame-
terised by a transformation relation, and derived conditions for its correct-
ness in terms of the transformation relation (Section 6).

— We have shown how a number of further variations of the stepwise deforesta-
tion algorithm can be made, including generalisation and the information
propagation found in supercompilation (Section 7).

Topics for further work include an investigation into the applicability
of these methods for automatic transformation on call-by-value languages;
alternatively, one can attempt to understand call-by-value transformations
by translating them to call-by-name [21]. Recursion-based transformations
are also relevant in languages with side-effects, such as Lisp, Scheme or
Standard ML. It remains to be seen whether the improvement theorem can

44

be shown to hold for these kinds of languages, and whether it is equally
applicable to proving the correctness of transformations.

Acknowledgement

Thanks to Robert Glick, John Hatcliff, Morten Heiner Sgrensen, Kristian
Nielson and Phil Wadler for a number of invaluable discussions and feedback
on earlier drafts, and to the referees for suggesting many clarifications and
improvements.

References

[1] S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research Topics
in Functional Programming, pages 65—-116. Addison Wesley, 1990.

2] R. Burstall and J. Darlington. A transformation system for developing recursive
g g
programs. JACM, 24:44—67, January 1977.

[3] W. N. Chin. Automatic Methods for Program Transformation. PhD thesis,
Imperial College, University of London, 1990.

[4] Wei-Ngan Chin. Safe fusion of functional expressions II: further improvements.
Journal of Functional Programming, 4(4):515-555, October 1994.

[5] B. Courcelle. Infinite trees in normal form and recursive equations having a
unique solution. Mathematical Systems Theory, 13:131-180, 1979.

[6] M. Felleisen, D. Friedman, and E. Kohlbecker. A syntactic theory of sequential
control. Theoretical Computer Science, 52:205-237, 1987.

[7] A. Ferguson and P. Wadler. When will deforestation stop. In Proceedings of the
1988 Glasgow Workshop on Functional Programming, Glasgow Coputer Science
Department Research Report 89/R4, 1988.

[8] A. Gill, J. Launchbury, and S. Peyton Jones. A short cut to deforestation. In
FPCA °93, Conference on Functional Programming Languages and Computer
Architecture. ACM Press, 1993.

[9] R. Gliick and A. V. Klimov. Occam’s razor in metacomputation: the notion of
a perfect process tree. In G.File P.Cousot, M.Falaschi and A.Rauzy, editors,
Static Analysis. Proceedings, volume 724 of LNCS, pages 112-123. Springer-
Verlag, 1993.

[10] Robert Gliick and Morten Heine Sgrensen. Partial deduction and driving
are equivalent. In M. Hermenegildo and J. Penjam, editors, Programming
Language Implementation and Logic Programming, volume 844 of Lecture Notes
in Computer Science, pages 165—-181. Springer-Verlag, 1994.

45

[11] C. Gomard. A self-applicable partial evaluator for the lambda calculus:
correctness and pragmatics. ACM TOPLAS, 14(2):147-172, 1992.

[12] G. W. Hamilton. Deforestation for higher order functional programs.
Unpublished, Keele University, UK, April 1995.

[13] G. W. Hamilton and S. B. Jones. Extending deforestation for first order
functional programs. In Proceedings of the Fourth Glasgow Workshop on
Functional Programming, Workshops in Computing Series, pages 134-145, Skye,
August 1991. Springer-Verlag.

[14] D. J. Howe. Equality in lazy computation systems. In Fourth annual symposium
on Logic In Computer Science, pages 198-203. IEEE, 1989.

[15] N. D. Jones, C. Gomard, and P. Sestoft. Partial Fvaluation and Automatic
Program Generation. Prentice-Hall, 1993.

[16] J. Komorowski. An introduction to partial deduction. In Proceedings of the
Third International Workshop on Meta-Programming in Logic, volume 649 of
LNCS, pages 49-69. Springer-Verlag, 1992.

[17] L. Kott. About transformation system: A theoretical study. In B. Robinet,
editor, Program Transformations, pages 232-247. Dunod, 1978.

[18] J. W. Lloyd and J. Shepherdson. Partial evaluation in logic programming.
Journal of Logic Programming, 3—4(11), November 1991.

[19] S. Marlow and P. Wadler. Deforestation for higher-order functions. In
Functional Programming, Glasgow 1992, Springer Workshops in Computer
Science, pages 154-165. Springer-Verlag, 1992.

[20] S. D. Marlow. Deforestation for Higher-Order Functional Programs. PhD
thesis, Dept. of Computing Science, University of Glasgow, 1995.

[21] K. Nielsen and M. H. Sgrensen. Call-by-name CPS-translation as a binding-
time improvement. In Static Analysis Syposium (SAS ’95), volume 983 of
LNCS, pages 296-313. Springer-Verlag, 1995.

[22] J. Palsberg. Correctness of binding time analysis. Journal of Functional
Programming, 3(3), 1993.

[23] P. Partsch and R. Steinbruggen. Program transformation systems. Computing
Surveys, 15:199-236, 1983.

[24] A. Pettorossi and M Proietti. Rules and strategies for transforming functional
and logic programs. ACM Computing Surveys, 1995.

[25] S. L. Peyton Jones. The Implementation of Functional Programming
Languages. Prentice-Hall International Series in Computer Science. Prentice-
Hall International (UK) Ltd, London, 1987.

[26] G. D. Plotkin. Call-by-name, Call-by-value and the A-calculus. Theoretical
Computer Science, 1(1):125-159, 1975.

46

[27] D. Sands. Operational theories of improvement in functional languages
(extended abstract). In Proceedings of the Fourth Glasgow Workshop
on Functional Programming, pages 298-311, Skye, August 1991. Springer
Workshop Series.

[28] D. Sands. Correctness of recursion-based automatic program transformations.
In International Joint Conference on Theory and Practice of Software
Development (TAPSOFT/FASE ’95), number 915 in LNCS. Springer-Verlag,
1995.

[29] D. Sands. Total correctness by local improvement in program transformation.

In Proceedings of the 22nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). ACM Press, January 1995.

[30] D. Sands. Total correctness by local improvement in the transformation of
functional programs. Technical report, DIKU, University of Copenhagen,
January 1995. 48pages (Submitted for Publication).

[31] M H Sgrensen. Turchin’s supercompiler revisited: An operational theory of
positive information propagation. Master’s thesis, Department of Computer
Science, University of Copenhagen, 1994.

[32] M H Sgrensen and R Gliick. An algorithm for generalization in positive
supercompolation. In International Logic Programming Symposium (I1LPS’°95),
Portland, Oregon, 1995. MIT Press.

[33] M. H. Sgrensen, R. Gliick, and N. D. Jones. Towards unifying partial evaluation,
deforestation, supercompilation, and GPC. In FSOP’94. LNCS 788, Springer
Verlag, 1994.

[34] P. Steckler. Correct Higher-Order Program Transformations. PhD thesis,

College of Computer Science, Northeastern University, Boston, 1994. Tech
Report NU-CCS-94-15.

[35] V. F. Turchin. The concept of a supercompiler. ACM TOPLAS, 8:292-325,
July 1986.

[36] V. F. Turchin. The algorithm of generalization. In D. Bjgrner, Ershov, and
N. D. Jones, editors, Partial Fvaluation and Mized Computation. Proceedings
of the IFIP TC2 Workshop, Gammel Avernes, Denmark, October 1987, pages
531-549. North-Holland, 1988.

[37] P. Wadler. The concatenate vanishes. University of Glasgow. Unpublished
(preliminary version circulated on the FP mailing list, 1987), November 1989.

[38] P. Wadler. Deforestation: transforming programs to eliminate trees. Theoretical
Computer Science, 73:231-248, 1990. Preliminary version in ESOP 88, LNCS
300.

[39] M. Wand. Specifying the correctness of binding time analysis. Journal of
Functional Programming, 3(3), 1993.

47

