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Abstract—Differential privacy enjoys increasing popularity
thanks to both a precise semantics for privacy and effective
enforcement mechanisms. Many tools have been proposed to
spread its use and ease the task of the concerned data scientist.
The most promising among them completely discharge the
user of the privacy concerns by transparently taking care
of the privacy budget. However, their implementation proves
to be delicate, and introduce flaws by falsifying some of the
theoretical assumptions made to guarantee differential privacy.
Moreover, such tools rely on assumptions leading to over-
approximations which artificially reduce utility. In this paper
we focus on a key mechanism that tools do not support well:
sampling. We demonstrate an attack on PINQ (McSherry,
SIGMOD 2009), one of these tools, relying on the difference
between its internal mechanics and the formal theory for the
sampling operation, and study a range of sampling methods
and show how they can be correctly implemented in a system
for differential privacy.

1. Introduction
Sampling is a procedure in statistics that involves study-

ing only a subset of a population to estimate properties and
quantities of the entire population when access to the entire
dataset is costly or practically infeasible. Several sampling
methods have been introduced aiming to give statisticians
an unbiased representative dataset model with properties
generalisable to the entire population.

Regardless of the method, the main reasons to use
sampling/partitioning, especially in the context of privacy
preserving analysis, can be summarised in the following
points.

• Environment-driven. Stream processing or real time
systems usually suffer from limited computing and
storage capabilities. Fitting data into memory is not
always possible and the computation power is not
always sufficient for real time response requirements.
To overcome these limitations, parallel and distributed
computing (e.g. Map-Reduce) and computations on
samples are frequently used.

• Application-driven. Machine learning algorithms
[14] usually train an algorithm on a subset of a
dataset called training set and then use the rest of the
dataset to evaluate the effectiveness of the algorithm
in the validation/test phase before it is used for the

real world application. Keeping these two subsets
separated is one of the main requirements otherwise it
is not clear whether the algorithm generalizes or just
remembers (memorises) the answers.

• Utility-driven. In the differential privacy setting, as
explained in several papers [6], [16], when a dataset
D is decomposed into arbitrary disjoint subsets Di,
the queries Mεi on these disjoint partitions provides
less differential privacy cost than when these queries
are executed in sequence. Sharing of a privacy budget
between two analyses is an important outcome of
parallel composition. This property, known as parallel
composition, is particularly useful to efficiently build
histograms.

• Privacy-driven. Intuitively, working on only a subset
of sensitive data might result in less leakage of sensi-
tive information. Random sampling has the potential
to amplify privacy.

Studying the literature and tools that employ sampling
and partitioning in differential privacy context we noticed
informal, incomplete, and sometimes incorrect arguments
on implication of sampling and partitioning on the privacy
guarantees of an analysis. As an example we show that
operators in PINQ are incorrectly handled and demonstrate
an attack which reliably reveals the presence of an individual
item (Section 3 and Appendix A.1).

The main aim of this paper is to examine the range
of sampling and partitioning operators supporting the men-
tioned goals and their differential privacy implications. We
further study how PINQ and similar frameworks can be
extended to support a range of operators for sampling and
partitioning (Section 4).

Before we go further explaining how these operators
positively or negatively affect the privacy of an analysis,
let’s have an overview on the sampling methods and the
primary and differential privacy principles that PINQ and
similar frameworks are built upon (Section 2).

2. Preliminaries
We begin by recapping the basic definition of differential

privacy, and some standard terminology for sampling that
we will use in the remainder of the paper.

Differential Privacy. Differential privacy is generally pre-
sented as a way to perturbate replies to queries made over



a private dataset in such a way that every individual can
plausibly deny being a member of this dataset. The noise
added to this effect has to be carefully controlled to reach
an acceptable trade-off between privacy and utility preserva-
tion. This control is made through the parameter ε; hence the
name of ε-differential privacy. The definition sets a bound on
the ratio between the result of two queries made on datasets
differing on only one element.

Definition 1 (Differential privacy). Let two datasets A and
A′ be called neighbours if their symmetric difference is
a singleton – i.e. A = A′ ∪ {a} or A′ = A ∪ {a} for
some a,i.e., |A ∆ A′| = 1 (also known as the Hamming
distance, where ∆ is the symmetric difference operation). A
randomized computation M provides ε-differential privacy
if for any neighbours A and A′ and any possible output
S ⊆ Rng(M),

Pr[M(A) ∈ S]

Pr[M(A′) ∈ S]
≤ eε.

with Rng(f) the range of a function f .

This definition of differential privacy is the strongest
among many variants, and is the version studied in this
paper. It is worth mentioning one close relative, which
also goes by the same name but is subtly different. The
variant, which for the present discussion we will call weak
differential privacy1 is obtained by considering two datasets
A and A′ to be neighbours if one can be obtained from the
other by changing exactly one element. The general relation
between the two definitions is that if M is ε-differentially
private then it will be (at least) 2ε-weakly differentially
private. But the converse does not hold, since differential
privacy protects small changes in the size of the dataset,
whereas weak differential privacy does not.

The use of Definition 1 is important in the design of
tools such as PINQ because queries target not only the
input dataset but also datasets constructed by transforming
the input with relational algebra operations. Weak differ-
ential privacy does not compose well with many standard
and useful data transformations. To see this we make the
following observation: the size operation which (determin-
istically) returns the size of its dataset argument is 0-weakly
differentially private. I.e., you can return the size of the
dataset at zero privacy cost. But suppose that the dataset was
built by first selecting all individuals with a specific social
security number. Under (strong) differential privacy this is
not a problem since selection preserves the neighbourhood
property. However, it does not preserve the corresponding
neighbourhood relation under weak differential privacy. This
behaviour cannot be allowed because the size operation
would reveal the presence of a particular individual.

Definition 2 (Function sensitivity). Function sensitivity is
the maximum change of a function’s resulting value caused
by any single item change. For a function f : A → R and

1. We are not aware of a standard name when discussed in the context
of the definition above, although in early work it was referred to as ε-
indistinguishability [6].

any two neighbouring datasets A,A′ ⊆ A, sensitivity is
defined as sensitivity(f) = maxA,A′⊆A |f(A)− f(A′)|.

Compositions. Many statistical analyses can be expressed
as a chain of relational algebra transformations of some
input data followed by an aggregation function. Stability,
closely related to sensitivity, is a measure of how much a
data transformation might scale up the sensitivity of a query.

Definition 3 (Transformation stability). A transformation
T , function from datasets to datasets, is said to be c-stable
if for any two neighbouring datasets A and A′, we have
|T (A) ∆ T (A′)| ≤ c.

The result of composing a function f with a c-stable
transformation has the sensitivity of c× sensitivity(f). As
a result the composition theorem of differential privacy is
immediate.

Theorem 2.1 (Transformation composition [16][Theorem
2). ] Let M provide ε-differential privacy, and T be an ar-
bitrary c-stable transformation. The composite computation
M ◦ T provides ε× c-differential privacy.

The relation between stability and differential privacy
parameters lies at the heart of the formal theory behind
differential privacy tools. These tools take advantage of
some simple composition properties of queries themselves,
namely that composite queries have additive privacy cost –
or even better when the data is partitioned into disjoint sets.

Theorem 2.2 (Sequential composition). Composition of n
queries M1,M2, . . . ,Mn that are executed sequentially can
be seen as one query with

∑
1≤i≤n εi-differential privacy.

A “better” result [16, Theorem 4] is obtained if queries
are executed on disjoint subsets (partitions) of the dataset.
In that case the differential privacy bound of max1≤i≤n(εi)
is achieved. We will state this in a more general form, but to
do so we need to lift the definition of differential privacy to
pairs of datasets, by defining (D1, D2) and (D′1, D

′
2) to be

neighbours if D1 and D′1 are neighbours and D2 = D′2
or vice-versa (see [22]). If M1 and M2 are queries on
D, let 〈M1,M2〉 denote the parallel query which when
given a pair of datasets, returns a pair of query results,
i.e., 〈M1,M2〉(D1, D2) = (M1(D1),M2(D2)). Now the
parallel composition can be stated as follows:

Theorem 2.3 (Parallel composition). If Mi is εi-
differentially private, i ∈ {1, 2}, then 〈M1,M2〉 is
max(ε1, ε2)-differentially private.

Note that the parallel composition theorem as we have
stated it, unlike [16, Theorem 4], does not mention parti-
tioning; the benefit of the theorem comes by creating the
input to 〈M1,M2〉 by a partitioning operation. Also, not
all strategies for partitioning are useful here. Indeed, the
key is to have a partitioning operation of stability one, and
thus we can apply the transformation composition theorem
favourably. Fortunately, partitioning using a fixed partition
on the whole domain has this property. The potential benefit



of parallel composition motivates our study not only of
random sampling but also of random partitioning.

Sampling. In the following, we will consider a variety of
data sampling methods, so we also fix the terminology we
will use. A sampling method is a probabilistic function
which, given an input set D, produces a multiset over D,
known as a sample. This very general concept includes de-
terministic sampling operations (e.g., where D is an indexed
set, and the sample is a fixed number of elements based on
the index) – for example what is sometimes called conve-
nience sampling which simply selects the most conveniently
accessible elements.

It also includes the case where the sample is a simple
subset of D – and in this case the sampling method is said
to be without replacement.

Definition 4 (Uniform sampling). If RS is a sampling
method, define

#             »

RS(D) to be the set of possible outcomes –
i.e. {K | Pr[RS(D) = K] > 0} Then RS is a uniform
sampling method if the probability of obtaining any two
samples in

#             »

RS(D) is the same – i.e. the possible samples
are all equally likely.

Uniform sampling includes the standard notion of simple
random sampling, with or without replacement, as well as
fully deterministic sampling methods.

Sampling methods are invariably parameterised over the
desired “size”, which indicates, for example, the number
of elements to be taken in the sample, or the probability
that each element is selected. As a consequence, strictly
speaking, we will be dealing with families of sampling
functions {RSk}k∈size.

Note that any sampling method without replacement can
be viewed as a partition of the input into two disjoint subsets,
the sample and the rest.

We are now ready to have a look at the state of affairs to
perform sampling in the wild and to develop the limitations
mentioned in introduction.

3. Sampling in PINQ
The basic principles highlighted in the theorems of the

previous section, and generalisations thereof, form a basis
for general purpose programming frameworks that allow
construction of analyses which are differentially private by
construction [9], [10], [16], [17], [21], [25]. These frame-
works use a similar method to construct compound queries,
but for the purpose of this paper we focus on PINQ [16].

This tool is a platform to perform differential privacy-
preserving analysis on datasets. It is based on the LINQ
interface from the Microsoft .NET framework. Differential
privacy properties are automatically and transparently en-
forced by PINQ when the naive user only expresses the
queries of interest.

The aim in this section is to analyse the status of
sampling in PINQ to motivate the extension of the frame-
work with sampling and partitioning operations. As men-
tioned, PINQ is an API for enforcing differential privacy,
and is built from deterministic transformations Ti, which

are variants of the well-known SQL-like operations, and
primitive differentially-private aggregation operations Mε,
parameterised by the intended privacy level ε. To get an idea
of the way PINQ works, suppose that we take the original
data, perform a sequence of transformations T1, . . . Tn on
it, apply a primitive aggregation operation Mε, and publish
the result. PINQ counts the overall privacy cost of this by
deducting ε×Πi∈{1,..n} stability(Ti) from the budget (if the
budget is insufficient, an exception is thrown).

Take and Skip. Since the theory of PINQ is based on
non-probabilistic transformations, PINQ supports just two
sampling operations which allow the selection of (at most)
a fixed number of elements based on the underlying ordering
of the elements in the database.

PINQ supports sampling as a stand-alone transforma-
tion but not with the purpose of amplifying privacy. The
two complimentary transformation methods Take(n) and
Skip(n) are based on their equivalent methods in LINQ.
Take(n), as explained in Microsoft Software Developer
Network documentation [2] “returns a specified number
of contiguous elements from the start of a sequence” and
Skip(n) [1] “bypasses a specified number of elements in
a sequence and then returns the remaining elements”. Since
these two methods work similarly, albeit in a dual manner,
we only discuss the issue with the Take(n) method in this
paper. A similar argument holds for the Skip(n) method.

The sensitivity of Take. Discussing the sensitivity of Take
is tricky because it treats the data A as a sequence and not
a set. In the following we assume that the index is part
of the data. Let Take(A,n) be the mathematical function
corresponding to the A.Take(n) PINQ operation. When
n ≤ |A| the difference between results of Take(A,n)
and Take(A ∪ {ax}, n) is assumed to be zero, and when
n > |A|, the difference is one as it returns all the elements.
Consequently, in PINQ, the stability of Take transformations
is assumed to be one.

However, the ordering of elements influences the sta-
bility. As an example, in the case of union of item a and
dataset A, there is no guarantee that element a takes the
highest ordering value and is placed at the end of the list
A. In the current implementation the ordering of resulting
dataset follows the following rules:

• the relative ordering of items within a set remains the
same, and

• the order of sets passed as arguments to union deter-
mines the order of sets.

To be more specific, when ax is added to the end of the
list (the item ax appears as the second argument) we have a
stability of zero: Take({a1 . . . an}, 1) ∆ Take({a1 . . . an}∪
{a1}, 1) = {a1} ∆ {a1} = ∅. When the item is added
to the beginning of the list we observe a stability of
two: Take({a1 . . . an}, 1) ∆ Take({ax}∪{a1 . . . an}, 1) =
{a1} ∆ {ax} = {a1, ax}. This demonstrates that PINQ’s
assumption that Take has stability of 1 is incorrect. The
problem with the incorrect sensitivity of Take is not imme-
diately visible when applying aggregation operations to the
result. This is because many of the aggregation operations



supported by PINQ, e.g. NoisyCount, provide the same ε
of privacy for both variants of differential privacy, since they
are no more sensitive to removing an element (a symmetric
difference of one) than they are to changing an element (a
symmetric difference of two).

An attack that can scale up the difference by any ar-
bitrary factor is demonstrated and explained in Listing 1
from Appendix A.1. The proof of concept code determines
the existence of a specific element (i.e., number 7) in the
dataset with higher probability than the limited privacy
bound ε. The idea behind the proof of concept is to apply
some transformation that iteratively adds random items to
the dataset if an individual item, here number 7, is not
present in the dataset. With an actual dataset of size 9, we
got 9867.4529 (≈ 10000 + 9) as the randomized size of
the protected dataset object in one experiment after 10000
iterations. Running the same program, by adding the number
7 results in -20.0768 (≈ 9) as the randomized size. The large
distance between the two possible outcomes can reveal the
presence of any item in the database.

4. Uniform Sampling and Partitioning
The previous section highlights some shortcomings in

PINQ:
• sampling for the purpose of scaling data to available

resources is the only supported operation, and
• the privacy cost (the sensitivity) is worse than as-

sumed, and thus taking elements halves the available
privacy budget.

In this section we consider a variety of sampling methods
with a view to including them in a PINQ-like framework.
We wish to explore sampling for the various purposes listed
in the introduction, and answer the following questions:

1) From a privacy perspective, can we do (significantly)
better than Take for selecting a specific number of
elements by using random sampling?

2) Can we partition the unknown-sized data into portions
of known relative size, to share the data between
different analyses and to take advantage of the parallel
composition benefits of analyses on disjoint data?

3) For which kinds of sampling can we achieve ampli-
fication of privacy?

4) Is it possible to do partitioning that is parameterised
on the size of the intended sample?

5) What are the stability properties of a well-behaved
partitioning transformation?

Methods that are used for sampling data from a dataset
is generally categorised into fixed size and unfixed size
sampling methods. Fixed size sampling methods, given the
sample size as a numerical number or a fraction of dataset,
return a fixed number of elements every time the sampling is
performed. Common fixed size sampling methods, including
sampling without replacement, sampling with replacement,
and fraction sampling are studied in this paper. For the
unfixed size sampling we study Bernoulli sampling in which,
given the sample inclusion probability, each element of the

population is subject to an independent Bernoulli trial which
decides about its inclusion.

Random uniform sampling with and without replacement
are used when the algorithm, the system capacity, or the
real-time requirements enforces a specific number of items
for the system input (which are all environment-driven
limitations). Randomized fraction sampling guarantees a
precise ratio between the sample size and the population.
Knowing the population size, one can compute the sample
size. However when the size of population is not known
(in the case of differential privacy) the sample size remains
unknown. The size of samples from Bernoulli sampling
is dynamic and follows the Bernoulli distribution. All the
sampling methods can be used to reduce the size of the
database but it is the application that influences the choice
of the sampling method. In the following, we focus on utility
and privacy-driven goals. Before this, we need to revisit the
notion of stability.

4.1. From Deterministic to Probabilistic Transfor-
mations

In this subsection we look at general considerations in
the analysis of sampling methods. We generalise the notion
of stability and the associated composition methods from the
deterministic to the probabilistic case, introduce random par-
titioning, and outline a simple strategy for reasoning about
the differential privacy of queries applied after sampling.

Probabilistic Stability. The definition of transformation
stability (Definition 3) is not useful when lifted naively to
non-deterministic transformations, since in the worst case
the Hamming distance between two samples of size n is 2n
when the samples are selected from two disjoint subsets.
While the stability of 2n is an obvious upper-bound for
PINQ’s randomized Take(n) method, we investigate the
possibility of introducing a lower upper bound that can be
plugged into differential privacy frameworks.

To introduce uniform sampling, we propose a general-
isation for definition of stability that allows us to reason
about uniform sampling and its composition with differential
private mechanisms. This generalised notion of stability has
to be independent of the content and of the size of the
database and to be pluggable as a function of the privacy
cost in these frameworks.

Definition 5 (Probabilistic stability). Let σ be a function in
R≥0 → R≥0. We say a randomized transformation RS is
σ-probabilistically stable if for any ε-differentially private
mechanism M , M ◦RS is σ(ε)-differentially private.

We observe that c-stability can be expressed as a σ-
probabilistic stability as follows:

Proposition 4.1. If T is c-stable, then T is σ-
probabilistically stable with σ(ε) = c× ε.

Thus this simple generalisation provides a drop-in re-
placement for the composition principle of Theorem 2.1
since it is compositional by construction; the simple ac-
counting mechanism of PINQ can be generalised from



deterministic transformations with known c-stability, to ran-
domised transformations with known σ-probabilistic stabil-
ity:

Proposition 4.2. Suppose that RS1, . . . , RSn is a se-
quence of randomised transformations for which RSi is σi-
probabilistically stable, and M is ε-differentially private.
The mechanism which computes M ◦ RS1 ◦ · · · ◦ RSn is
ε′-differentially private, where ε′ = (σ1 ◦ · · · ◦ σn)(ε).

This follows easily from Proposition 4.1, the associa-
tivity of function composition, and a simple induction on
n.

Partitioning and Parallel Queries. The sampling algo-
rithms that are considered in this paper (except sampling
with replacement), can also be seen as a partitioning algo-
rithm. Selected items for the sample and the excluded items
construct the two partitions that cover all the items.Let RS
be a sampling method without replacement. Let R̂S denote
the partitioning operation defined as

Pr[R̂S(D) = (K, K̄)]

=

{
Pr[RS(D) = K] if K ∪ K̄ = D and K ∩ K̄ = ∅
0 otherwise

It turns out that for just one sampling method we get
a low σ-sensitivity (i.e. where σ(ε) < ε, but for others the
results are more expansive (σ(ε) > ε).

Reasoning About Sampling Methods. Probabilistic stabil-
ity measures the effect of a transformation on the privacy
that a differentially private algorithm enjoys. We observe
that any transformation that is expressed in a primitive
recursive form keeps the amount of changes limited in each
iteration, and have a bounded and easily understood stability.
This is the case, for example, for map functions (such as
the projection operation of relational algebra), recursively
defined for some mapping function f as mapf (D ∪ {a}) =
mapf (D)∪{f(a)}. In this form it is immediate to see that
it has stability of one. In general a recursive equation which
allows us to compare the operator’s action on D ∪ {a} and
D respectively is precisely what we need to reason about
(probabilistic) stability.

Thus, in the following subsections we take the same
approach for reasoning about sampling. It turns out that
we have a useful generic theorem for recursively specified
sampling:

Theorem 4.3. Let RS be a uniform sampling function. If
RS is characterised by a recursive equation RS(D+{e}) =
ψD(RS(D), e) for some randomised function ψD then:

• The probabilistic stability of uniform sampling RS is
σ(ε) = ln

∑
i∈N e

iε.Pr[|ψD(K, e) ∆K| = i].
• The probabilistic stability of uniform partitioning R̂S,

built based on uniform sampling RS, is
σ̂(ε) = ln

∑
i∈N e

(i+|i−1|)ε.Pr[|ψD(K, e) ∆K| = i].

The proof of this theorem is given in Appendix B.
These theorems extract the common part of the reason-

ing about sampling methods in this paper. But how easy

is it to find a (nontrivial) recursive form for a sampling
algorithm? Some methods are trivial to phrase in this form
(e.g. Bernoulli sampling, for example). For others we can
find a recursive form by looking to the literature on on-
line (stream) versions of sampling methods. In a streaming
version of a sampling method a new sample is computed
from the previous sample and the newly arrived datum. As a
consequence, this can be viewed as a recursive specification
of the underlying sampling method.

4.2. Uniform (Fixed Size) Sampling Without Re-
placement

The first method we consider is fixed size uniform
sampling without replacement which we denote by the
size-indexed family of functions {Rn}n∈N. This method is
potentially useful when a specific maximum sized target set
is desired. Let n be the (maximum) number of elements to
be sampled, and D the dataset. When n < |D|, n non-
distinct items are randomly chosen from the dataset D.
When n ≥ |D| the entire dataset D is returned. Each item
can be selected at most once, which means a sample larger
than the dataset itself is not possible.

Definition 6 (Probabilistic behaviour of Rn). If K is
any random sample in the range of Rn(D) (shown as
K ∈

#            »

Rn(D), the probabilistic behaviour of random uni-
form sampling without replacement when n < |D| is
Pr[Rn(D) = K] =

(|D|
n

)−1
. When n ≥ |D|, the probability

doesn’t play any role and the function behaves determinis-
tically as: Pr[Rn(D) = D] = 1.

This follows from the simple fact that Rn is a uniform
sampling method, so the probability of any sample is just
one over the number of possible samples of that size.

One common implementation of sampling without re-
placement is based on the Fisher-Yates shuffle [8] with the
complexity of O(n) to randomly pick n indices from the
array that is holding the item set. This algorithm relies on
the presence of all elements in the system and knowing
the exact size of the dataset. However in the streaming
setting where the size of dataset is not known in advance or
when the dataset is larger than the available memory, Vitter
[28] introduced the Reservoir sampling algorithm with a
complexity of O(|D|). An inductive proof for this algorithm
can be found in [3] and [27].

The simplified Algorithm 1, known as reservoir sam-
pling, produces a sample with the required probabilistic
property. In each iteration the algorithm maintains a reser-
voir sample that keeps the sample collected so far. When
a new data item is introduced, the algorithm inductively
construct the new sample by using the sample constructed
from the previous step [4].

The algorithm can be explained as follows. For the first
n items introduced (one by iteration), the items are directly
put into the reservoir. Once the reservoir is full and cannot
get the ith item (i > n), the algorithm generates a random
number r between 1 and i. If r is less than or equal to n, it
replaces the element stored in the index r of the reservoir



with the new item. This determines whether an item should
be included or excluded.
Algorithm 1 Uniform Sampling Without Replacement

function Rn(D)
for i← 1, |D| do

if i ≤ n then
K[i]← D[i] . Deterministically add D[i]

else
r ← RANDOM(1, i)
if r ≤ n then

K[r]← D[i] . Include D[i]
. Otherwise exclude D[i]

return K[1..n]

The array D in the Algorithm 1 can be a stream of
data items processed one at the time (D[i]). This algo-
rithm provides a recursive specification of random sam-
pling without replacement with the base case Rn(D) = D
when |D| ≤ n and the recursive case in the form of
Rn(D ∪ {e}) = ψn,|D|(Rn(D), e). The family of prob-
abilistic functions ψn,|D| models inner iterations of the
Algorithm 1. When the reservoir is not full (i ≤ n) all items
are added to the reservoir deterministically. For i > n, the
incoming element replaces one item of the reservoir with
the probability of n

|i| .

Theorem 4.4. The following is a recursive characterisation
of Rn:

Rn(D) = D if |D| ≤ n
Rn(D ∪ {e}) = ψn,|D|(Rn(D), e) otherwise

such that for all samples K of D of size n, ψn,|D| is the
probabilistic function defined by the following:

Pr[ψn,m(K, e) = K] = m+1−n
m+1

Pr[ψn,m(K, e) = K+e
−f ] = 1

m+1 (for any f ∈ K)

Pr[otherwise] = 0

where K+e
−f stands for the dataset K to which the element

e has been added and the element f removed.

A proof of this theorem is provided in Appendix B.1.

Theorem 4.5 (Probabilistic stability of Rn). Random sam-
pling of n elements without replacement, Rn, has a proba-
bilistic stability σ(ε) = ln(ne

2ε+1
n+1 ).

The proof is outlined as follows. To find this proba-
bilistic stability σ for sampling without replacement, we
instantiate Theorem 4.3 for different value of D:
Case n ≥ |D ∪ {e}|: using ψn,|D| from Theorem 4.4 we
have the upper bound of σ(ε) = ε.
Case n < |D ∪ {e}|: using ψn,|D| from Theorem 4.4 we
have the upper-bound of ln(ne

2ε+1
n+1 ) < 2ε.

The maximum value appears in the case n < |D∪{e}|.
For practical purposes (small ε, large n), the value of
ln(ne

2ε+1
n+1 ) doesn’t lead to a significant improvement of the

privacy cost compared to the deterministic case 2ε.

Partitioning property. We now consider the case of a
parallel query of a partition using Rn.

Theorem 4.6. Let M̂ = 〈M1,M2〉 where M1 and M2 are ε-
differentially private queries. Then 〈M1,M2〉◦R̂n is σ̂ = 3ε-
differentially private.

The proof is as follows: consider the two possible cases
and, by using Theorem 4.3:
Case n ≥ |D|+ 1: ˆσ(ε) = ε.
Case n < |D|+ 1: σ̂(ε) = ln(ne

3ε+1
n+1 ) < 3ε.

In total we have a probabilistic stability of σ̂(ε) =

ln(ne
3ε+1
n+1 ) < 3ε.

4.3. Uniform (Fixed Size) Sampling with Replace-
ment

This method of sampling takes n elements from the
dataset D. Each selection is independently done from the
entire dataset D, meaning an item may appear more than
once in the sample or the sample may be larger than
the dataset itself. We have analysed this sampling method
using ideas from Park et. al [19], [20] who propose sev-
eral algorithms with different complexities and prove their
correctness. The algorithm closest to the recursive form
is the RSWR-naive algorithm [19]. We have been able to
show that the probabilistic stability of the recursive step
is σ(ε) = ln

∑
0≤l≤n e

2lε.
(
n
l

)
( 1
n )l(n−1n )n−l. We omit the

details since the result is not really useful; it is easy to
see that we have a lower bound of n × ε which is already
not practical; this bound is achieved by comparing the two
neighbours ∅ and {a}. In the former case we must get an
empty sample, but in the latter case a sample of n copies
of a.

4.4. Fraction Sampling
Fraction sampling randomly chooses precisely b|D|×pc

items (with b.c being the floor function) from dataset D,
which corresponds to a fraction of items of approximately
p. While in statistics this method and fixed size sampling are
treated similarly (a sample size can be expressed as a frac-
tion/ratio), the strong notion of differential privacy where the
exact size of sample is secret makes this distinction useful
in our case. The advantage of using this method of sampling
over fixed size sampling is that the analyst doesn’t need to
have any information about the number of elements in the
database while still getting precise partitioning.

One can see that fraction sampling, which samples a
fraction p of elements from the dataset, is similar to sam-
pling without replacement in which the size of reservoir is
dynamic and increases over time. Pareto πps schema – or
order sampling schemes – introduced by Rosén [23], [24]
is referred to as the class of algorithms for sampling with
probability proportional to size (πps). The basic form of
these algorithms, with equal inclusion probability, assigns
each item a unique random value chosen from a certain
range (0,1) and calculate the Pareto ranking variable that
is basically just an artificial random ordering. A similar
algorithm for a distributed setting that can also be used to
achieve fraction sampling is explained in [5]. The authors
state that:



“The core insight behind reservoir sampling is that
picking a random sample of size k is equivalent
to generating a random permutation (ordering) of
the elements and picking the top k elements.”

For the purpose of this research, centralised system
with equal probabilities for each item, the algorithm can be
simplified as Algorithm 2. We claim that fraction sampling,
Algorithm 2 Fraction Sampling

function P(D, p)
for i← 1, |D| do

r ← RANDOM(1, i)
R[i]← R[r]
R[r]← D[i]

return R[1..bp× |D|c]

Pp, with K ∈
#           »

Pp(D), lb = bp.|D|c (the current sample size)
and ub = bp.(|D|+ 1)c (possibly the new sample size after
addition of e), has the following recursive characterisation:

Pp(∅) = ∅ (base case)
Pp(D ∪ {e}) = ψp,D(Pp(D), e) (recursive step)

if K is a valid sample of Pp(D), for the case ub − lb =
1 when we increase the size of reservoir, the probabilistic
function ψp,D is defined as

Pr[ψp,D(K, e) = K ∪ {e}] = 1
|D|+1

Pr[ψp,D(K, e) = K ∪ {e} \ {f} ∪ {x}] = ub
|D|+1

Pr[ψp,D(K, e) = K ∪ {x}] = 1− ub+1
|D|+1

For the case ub − lb = 0, when we have no change in
the size of reservoir, it is defined as:

Pr[ψp,D(K, e) = K] = 1− lb
|D|+1

Pr[ψp,D(K, e) = K ∪ {e} \ {f}] = lb
|D|+1

Theorem 4.7. The probabilistic stability of fraction sam-
pling, Pp, is σ(ε) = ln(max(e2εp+1−p, e3εp+eε(1−p))).

The probabilistic stability is the maximum of the upper
bound for the case (ub− lb = 1) and the case (ub− lb = 0).

Partitioning Property. Similarly considering the maximum
of both cases, we get a probabilistic stability of σ̂(ε) =
ln max(e3εp+ (1− p)eε, e5εp+ 1− p).

4.5. Bernoulli Sampling
The differential privacy of Bernoulli Sampling has been

previously considered in the literature [15], [26] with the aim
of amplifying privacy. Bernoulli Sampling independently
decides about inclusion of each item from the population.
Given inclusion probability of b, iterating over all members
of a population, Bernoulli trials with probability b decides
about the inclusion of each item.

Definition 7. In Bernoulli sampling, a sample K ⊆ D
of size n has a probability of Pr[Bb(D) = K] =

bn(1− b)|D|−n.

The following is a recursive characterisation of Bb:
Bb(∅) = ∅ (base case)
Bb(D ∪ {e}) = ψb(Bb(D), e) (recursive step)

where ψb(Bb(D), e) is the probabilistic function defined for
all samples K of Bb(D) as :

Pr[ψb(K, e) = K] = 1− b
Pr[ψb(K, e) = K ∪ {e}] = b

As sketched in [26] and proved in the more general case
of (ε, δ)-differential privacy [15], we benefit from improved
privacy of σ(ε) = ln(b.eε + 1− b).

Partitioning Property. The result is the same privacy cost
as for parallel composition of a deterministic partitioning
method.

Theorem 4.8. Bernoulli partitioning has the probabilistic
stability of σ̂(ε) = ε.

Proof. Instantiating Theorem 4.3 with ψb from the recursive
definition, we reach the bound of ε as follows.

σ̂(ε) = ln(e(0+|0−1|)ε.Pr[|ψb(K, e) ∆K| = 0]
+e(1+|1−1|)ε.Pr[|ψb(K, e) ∆K| = 1])
= ln eε(b+ (1− b)) = ε

It is reasonable not to expect a better result. Indeed, the
privacy amplification of this sampling method occurs when
b is small. Alas, in the context of partitioning, that means
that the largest partition will be a sample of 1 − b. As a
consequence, whatever privacy amplification was achieved
for the small half is lost on the big half.

5. Related work
Sampling and partitioning is explicitly used in several

frameworks. Airavat [25] uses partitioning in its MapReduce
framework. In the sample and aggregation framework used
for computing smooth sensitivity, Nissim et al. [18] uses
random partitioning to divide the database into smaller
databases. For simplification, instead of partitioning, the
databases is constructed by taking random samples that are
chosen independently of each other. When the number of
clusters is low, each data item has the chance to appear in
multiple samples. However the weak variant of differential
privacy is used (indistinguishability). As mentioned earlier,
the privacy amplification effects of sampling are discussed
in [15], [26]. In earlier work, Kasiviswanathan et al. [12]
used this amplification effect to build private learners. Some
works focus on data dependant partitioning of data to build
histograms, Xiao et al. [29] research two partitioning strate-
gies, cell-based and kd-tree based partitioning for building
histograms and Kellaris and Papadopoulos [13] use a group-
ing technique based on sampling.

A non uniform sampling is used by Jorgensen et al.
[11] which assigns a numerical value corresponding to the
personal privacy preference for each database item. The per-
sonalised privacy then influences the inclusion probability of
that individual in the sample used for differentially private
analyses.



6. Conclusion
In this paper we have explored a variety of sampling

methods and their effect on differential privacy in the strong
case where the size of the dataset is private.

In particular we demonstrated a simple and practical at-
tack on PINQ’s deterministic sampling transformation which
surprisingly shows that a sampling procedure may have a
negative effect on the differential privacy cost of an analysis.

Further we investigated whether introducing randomness
in selection of samples and partitions can significantly im-
prove the differential privacy bounds compared to what their
deterministic alternatives promise.

Technically, we have also shown how the concept of
probabilistic stability provides a suitable generalisation of
stability in systems that take advantage of composition
principles to guarantee differential privacy.

While the choice of a sampling method is mainly driven
by the environment and the application, we showed that,
among common probability sampling and partitioning meth-
ods studied in this paper, (i) only Bernoulli sampling has
the privacy amplification property and (ii) the correspond-
ing partitioning algorithm fits perfectly with parallel query
composition.

Further work includes the generalisation to approximate
(ε, δ)-differential privacy and the implementation of the
sampling mechanisms in a PINQ-style framework.
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Appendix A.
A.1. Proof of Concept to Demonstrate the PINQ’s

Weakness
The programming frameworks introduced in this paper

comes with the guarantee that an analyst with the permission
to run arbitrary analyses on a database will not learn more
than the limited private budget specified by the administra-
tor. An attack that can break any of the following guaran-
tees, beyond the limited probability of eε, is considered a
successful privacy breach:

• Determine whether an individual is in the database or
not.

• Extract the individuals properties (age, salary, . . . ).
Given information about an item i (here number 7), the

goal of proof of concept code in Listing 1 (simplified in
Algorithm 3) is to determine the presence of the item in
the dataset D. It is easy to show that the second attack
is a form of the first attack if the attacker enumerate over
possible value of the property to find which value in the
domain of the private property appears in the dataset.

The first step in the proof of concept is to partition
the dataset D into two parts according to satisfying the
equality with the target element i. As a result K = {x|x ∈
D,λx → x = i} and K̄ = D \ K. Note that K and K̄
share ε budget since they are disjoint subsets and PINQ’s
budget management system request only ε when two ε-
differential private query are executed on K and K̄. Figure 1
demonstrate how request for privacy budget flows between
intermediate protected objects of Algorithm 3 when a query
with ε cost is executed on the protected object containing
the result of K̄ ∪ Take(K ∪ r, 1).

The following transformations that are used in this sam-
ple code don’t scale up the stability since they are all 1-
stable over their arguments:

• addition of r to the K using union
• taking the first element
• merging the result with the partition K̄ using union
If item i is present in D, the partition K has only the

item i. In this case taking the first element of K ∪ r gives i
and when we merge K̄ and Take(K ∪ r, 1) together using
union transformation, we end up with the starting dataset
D. The interesting case happens when i is not in D, in
this case K is empty and take returns the random item r.
The final merge (union) of K̄ and Take(K ∪ r, 1) results in
D∪r. Performing this procedure several times to add several
arbitrary random items makes the outcomes so different that
they are distinguishable even after a differentially private
counting query with a low value of ε.

Listing 1. Proof of concept code
// Secure initialisation
double[] rawData =
new double[] {1,2,3,4,5,6,8,9,10};

var sourceD = rawData.ToArray().AsQueryable();
var agent= new PINQAgentBudget(1.0);
var D = new
PINQueryable<double> (sourceD, agent);

Algorithm 3 Proof of concept code that reveals the existence
of the item i in the protected dataset D

1: procedure REVEAL(i,D)
2: for s← 1, scale do
3: (K, K̄)← Partition(D,λx→ (x == i))
4: r ← RandomItem() . random r (r 6= i)
5: D ← Take(K ∪ r, 1) ∪ K̄
6: return NoisyCountε(D)

K̄ ∪ Take(K ∪ r, 1)

Take(K ∪ r, 1)

K ∪ rK

K̄

D

ε

ε

ε
ε

ε

ε

Figure 1. privacy budget request between protected objects

double[] invalid = new double[] { 999 };
double i = 7; // The item we are looking for
int scale = 1000;
bool[] keys = new bool[] {true,false} ;
for (int s = 0; s < scale; s++) {
invalid[0] += 0.0001; // a unique item (random)
var r = invalid.ToArray().AsQueryable();
var parts = D.Partition
(keys, x => (x==i)? true :false);

var K = parts [true];
var K_ = parts [false];
D = K_.Union(
K.Union(r).Take (1)

);
}
Console.WriteLine("Noisy result:\t\t{0:F4}",
D.NoisyCount(0.01));

Appendix B.
Probabilistic Stability of Uniform Sampling (With-
out Replacement)
Proof. We want to find the probabilistic stability σ(ε) such
that e−σ(ε) ≤ Pr[M(RS(D∪{e}))⊆S]

Pr[M(RS(D))⊆S] ≤ eσ(ε). We fix S, an
arbitrary query result in the range of M . By using the
recursive form of RS(D ∪ {e})) (Theorem 4.4) and the law
of total probability over

#             »

RS(D), we have:
Pr[M(RS(D ∪ {e})) ⊆ S]

Pr[M(RS(D)) ⊆ S]

=
Pr[M(ψD(RS(D), e)) ⊆ S]

Pr[M(RS(D)) ⊆ S]

=

∑
K∈

#           »

RS(D) Pr[M(ψD(K, e)) ⊆ S].Pr[RS(D) = K]∑
K∈

#           »

RS(D) Pr[M(K) ⊆ S].Pr[RS(D) = K]

Then, by equality of all samples probability (Definition 6),
we derive:

=
α.
∑

K∈
#           »

RS(D) Pr[M(ψD(K, e)) ⊆ S]

α.
∑

K∈
#           »

RS(D) Pr[M(K) ⊆ S]

Let us define K±i = {K ′
∣∣|K ∆K ′| = i} a function defin-

ing Hamming distance-based equivalence classes on neigh-



bourhoods. Thus, by law of total probability over N, we
have:

=

∑
K∈

#           »

RS(D)

∑
i∈N

Pr[ψD(K, e) ∈ K±i].
Pr[M(K±i) ⊆ S]∑

K∈
#           »

RS(D) Pr[M(K) ⊆ S]

We now give an over-approximation by relying
on the fact that all probabilities are greater
than zero. By differential privacy (Definition 1),
we have Pr[M(K±i) ⊆ S] ≤ eiε Pr[M(K) ⊆ S].
Similarly for the lower-bound, we have
e−iε Pr[M(K) ⊆ S] ≤ Pr[M(K±i) ⊆ S].

Thus, for any i,

≤
∑

i∈N
∑

K∈
#           »

RS(D) Pr[M(K) ⊆ S].eiε.βi∑
K∈

#           »

RS(D) Pr[M(K) ⊆ S]

with βi = Pr[ψD(K, e) ∈ K±i].
Finally, by Observation 1 in [7] and simplification, we

get the following upper-bound:

≤
∑
i∈N

eiε.Pr[|ψD(K, e) ∆K| = i]

We have a similar lower-bound by the same approximation.
This allows us to conclude the following result:

σ(ε) ≤ ln
∑

i∈N e
iε.Pr[|ψD(K, e) ∆K| = i] for any K, D,

e, and ψ.

Probabilistic Stability of Uniform Partitioning
(Without Replacement)
Proof. We follow a similar proof technique and almost iden-
tical steps as the previous part, to find probabilistic stability
σ̂(ε) such that e−σ̂(ε) ≤ Pr[M̂(R̂S(D∪{e}))⊆S]

Pr[M̂(R̂S(D))⊆S] ≤ eσ̂(ε) we fix

S = 〈S1, S2〉 to be a set of pairs of results in the range of M̂
2. Using recursive form of RS and law of total probability.

Pr[M̂(R̂S(D ∪ {e})) ⊆ S]

Pr[M̂(R̂S(D)) ⊆ S]

=

∑
〈K,K〉∈

#           »

R̂S(D)

[
Pr[R̂S(D) = 〈K,K〉].

Pr[M̂(ψ̂D(〈K,K〉, e) ⊆ S]

]
∑

〈K,K〉∈
#           »

R̂S(D)

[
Pr[R̂S(D) = 〈K,K〉].

Pr[M̂(〈K,K〉) ⊆ S]

]

Knowing K ∪ K̄ = D, after introducing e, K ′ ∪ K̄ ′ =
D ∪ {e} such that K ′ is the result of function ψD(K, e), if
|K ∆K ′| = i then |K̄ ∆ K̄ ′| = |i− 1|.

α.
∑

K∈
#           »

RS(D)

[∑
i∈N

[
Pr[ψ̂D(〈K,K〉, e) ∈ 〈K±i,K±i〉].

Pr[〈M1(K±i),M2(K±i)〉 ⊆ S]

]]
α.

∑
K∈

#           »

RS(D)

Pr[〈M1(K),M2(K)〉 ⊆ S]

2. R̂S is lifted function from sampling method RS that creates two
disjoint partitions K and K. Similarly M̂ is lifted function that run two
queries M1 and M2 on these two partitions.

=

∑
K∈

#           »

RS(D)

∑
i∈N βi.Pr[〈M1(K±i),M2(K±i)〉 ⊆ S]∑

K∈
#           »

RS(D)

Pr[〈M1(K),M2(K)〉 ⊆ S]

≤

∑
i∈N

∑
K∈

#           »

RS(D)

βi.

[
eiε.Pr[M1(K ) ⊆ S1]

e|i−1|ε.Pr[M2(K ) ⊆ S2]

]
∑

K∈
#           »

RS(D)

Pr[M1(K ) ⊆ S1].Pr[M2(K ) ⊆ S2]

with βi = Pr[ψD(K, e) ∈ K±i].
Simplifying the expression we have probabilistic stabil-

ity of σ̂(ε) = ln
∑

i∈N e
(i+|i−1|)ε.Pr[|ψD(K, e) ∆K| = i]

B.1. Recursive (Fixed Sized) Uniform Sampling
(Without Replacement)

Proof. In the case where n ≥ |D ∪ {e}|, the probability of
the sample to be D ∪ {e} is 1.

For the case where n < |D ∪ {e}|, we rely on the
inductive definition of Rn(D∪{e}). Two cases are possible:

Case e ∈ X : Pr[Rn(D ∪ {e}) = X]

=
∑

a∈D∪{e}\X

[
Pr[Rn(D) = X ∪ {a} \ {e}]

Pr[ψn,|D|(X ∪ {a} \ {e}, e) = X]

]

= (|D|+ 1− n)︸ ︷︷ ︸
from summation

.

(
|D|
n

)−1
.(|D|+ 1)

−1

=

(
|D|+ 1

n

)−1
Case e /∈ X : Pr[Rn(D ∪ {e}) = X]

= Pr[Rn(D) = X].Pr[ψn,|D|(X, e) = X]

=

(
|D|
n

)−1
.
|D|+ 1− n
|D|+ 1

=

(
|D|+ 1

n

)−1
In both cases, |D| + 1 − n makes match the expected
probabilities.


