
Declassification: Dimensions and Principles∗

Andrei Sabelfeld David Sands
Department of Computer Science and Engineering

Chalmers University of Technology and the University of Göteborg
412 96 Göteborg, Sweden

www.cs.chalmers.se/˜{andrei, dave}

Abstract

Computing systems often deliberately release (or declassify) sensitive infor-
mation. A principal security concern for systems permitting information release
is whether this release is safe: is it possible that the attacker compromises the in-
formation release mechanism and extracts more secret information than intended?
While the security community has recognised the importance of the problem, the
state-of-the-art in information release is, unfortunately, a number of approaches
with somewhat unconnected semantic goals. We provide a road map of the main
directions of current research, by classifying the basic goals according to what in-
formation is released, who releases information, where in the system information
is released and when information can be released. With a general declassification
framework as a long-term goal, we identify some prudent principles of declassi-
fication. These principles shed light on existing definitions and may also serve as
useful “sanity checks” for emerging models.

1 Introduction
Computing systems often deliberately release (i.e., declassify or downgrade) sensitive
information. Without a possibility to leak secrets, some systems would be of no practi-
cal use. For example, releasing the average salary from a secret database of salaries is
sometimes needed for statistical purposes. Another example of deliberate information
release is information purchase. An information purchase protocol reveals the secret
information once a condition (such as “payment transferred”) has been fulfilled. Yet
another example is a password checking program that leaks some information about
the password. Some information is released even if a log-in attempt fails: the attacker
learns that the attempted sequence is not the same as the password.

Information release is a necessity in these scenarios. However, a principal security
concern for systems permitting information release is whether this release is safe. In
other words, is it possible that the attacker compromises the mechanism for information
release and extracts more secret information than intended? Applying this question to
the examples above: can individual salaries be (accidentally or maliciously) released to
the attacker in the average salary computation? Can the attacker break an information

∗In Journal of Computer Security, c© IOS Press.

purchase protocol to extract sensitive information before the payment is transferred? Is
it possible that along with the result of password matching some other secret informa-
tion is sneaked to the attacker? This leads to the following general problem:

What are the policies for expressing intentional1 information release by
programs?

Answering this question is a crucial challenge [67, 78] for information security. Be-
cause many systems rely on information release, we believe that answering this ques-
tion satisfactorily is the key to enabling technology transfer from existing information
security research into standard security practice.

While the security research community has recognised the importance of the prob-
lem, the state-of-the-art in information release comprises a fast growing number of
definitions and analyses for different kinds of information release policies over a vari-
ety of languages and calculi. The relationship between different definitions of release
is often unclear and, in our opinion, the relationships that do exist between methods are
often inaccurately portrayed. This creates hazardous situations where policies provide
only partial assurance that information release mechanisms cannot be compromised.

For example, consider a policy for describing what information is released. This
policy stipulates that at most four digits of a credit card number might be released when
a purchase is made (as often needed for logging purposes). This policy specifies what
can be released but says nothing about who controls which of the numbers are revealed.
Leaving this information unspecified leads to an attack where the attacker launders the
entire credit card number by asking to reveal different digits under different purchases.

This article does not propose any new declassification mechanisms. Instead we fo-
cus on the variety of definitions of security, in a language-based setting, which employ
some form of declassification. We do not study specific proof methods, program log-
ics, types systems or other static analysis methods. The contributions of this article are
twofold:

• Firstly, we provide a road map of the main declassification definitions in cur-
rent language-based security research (as a timely update on security policies
from a survey on language-based information-flow security [67]). We classify
the basic declassification goals according to four axes: what information is re-
leased, who releases information, where in the system information is released
and when information can be released. Our classification includes attempts to
outline connections between hitherto unrelated methods, as well as mark some
clear distinctions, seeking to crystallise the security assurance provided by some
known approaches.

• Secondly, we identify some common semantic principles for declassification
mechanisms:

– semantic consistency, which states that security definitions should be in-
variant under equivalence-preserving transformations;

1Note that in this article we will refer to both intentional, meaning deliberate, and intensional, meaning
the opposite of extensional, when discussing declassification.

2

– conservativity, which states that the definition of security should be a weak-
ening of noninterference;

– monotonicity of release, which states that adding declassification annota-
tions cannot make a secure program become insecure. Roughly speaking:
the more you choose to declassify, the weaker the security guarantee; and

– non-occlusion, which states that the presence of declassifications cannot
mask other covert information leaks.

These principles help shed light on existing approaches and should also serve as
useful “sanity checks” for emerging models.

This article is a revised and extended version of a paper published in the IEEE Com-
puter Security Foundations Workshop 2005 [71]. Compared to the earlier version, we
overview some new work on declassification that has appeared under 2005 [35, 34, 50,
32, 37, 43], consider “why” and “how” as other possible dimensions of declassification,
sketch challenges for enforcing declassification policies along the dimensions, discuss
dimensions of endorsement (the dual of declassification for integrity), and make other
changes and improvements throughout.

2 Dimensions of declassification
This section provides a classification of the basic declassification goals according to
four axes: what information is released, who releases information, where in the system
information is released and when information can be released.

2.1 What
Partial, or selective, information flow policies [15, 16, 38, 70, 27, 28] regulate what
information may be released. Partial release guarantees that only a part of a secret is
released to a public domain. Partial release can be specified in terms of precisely which
parts of the secret are released, or more abstractly as a pure quantity. This is useful,
for example, when partial information about a credit card number or a social security
number is used for logging.

The PER model of information A number of partial information flow policies can
be uniformly expressed by using equivalence relations to model attacker knowledge
(or, perhaps more precisely, to model attacker uncertainty). Here we outline this idea
(and where it has been used previously), before we go on to show how some recent
approaches to declassification can be understood in these terms.

Suppose that the values of a particular secret range over int, and that the value of
the secret is not fixed—it is a parameter of the system. Without fixing a particular value
for the secret, one way to describe how much an attacker knows (or can learn) about the
secret is in terms of an equivalence relation. In this approach an attacker’s knowledge
about the secret is modelled in terms of the attacker’s ability to distinguish elements of
int. If the attacker knows nothing about the secret then this corresponds to saying that,

3

from the attacker’s viewpoint, any value in int looks the same as any other value. This
is captured by the equivalence relation All satisfying ∀m,n ∈ int.m All n. I.e., all
values (or variations) of the secret look the same to the attacker. Knowledge about the
secret can be modelled by other, finer, equivalence relations. For example, if the parity
of a secret is to be released (and nothing else about the secret), then this knowledge
corresponds to a partition of the domain into the even and the odd integers, i.e., the
relation Parity satisfying:

m Parity n ⇐⇒ m mod 2 = n mod 2

Thus an attacker cannot distinguish any two elements in the same equivalence class of
Parity , because at most the parity is known. At the other extreme, total knowledge of
the secret corresponds to the identity relation Id .

This model of information extends to a model of information flow by describing
how systems transform equivalence relations. As shown in [70], this is equivalent
to Cohen’s selective dependency [15, 16], and is related to the so-called unwinding
conditions known from Goguen and Messeguer’s work on noninterference and its de-
scendants [30, 31].

It is worth remarking that noninterference in this paper is mostly concerned with
protecting the secret (high) part of memory from the attacker who can observe the pub-
lic (low) part of memory. This view follows the data protection view of noninterference,
as it is often used in language-based security [16, 77, 67]. This is somewhat different
from the interpretation of noninterference in event-based systems that is concerned with
protecting the occurrence of secret events from public-level observers [25, 46, 65]. For
the relation between these views, see [48, 26].

Suppose that we wish to express that a system leaks no more than the parity of a
given secret, then we assume that the attacker already knows the parity, and show that
nothing more is learned. This is expressed by saying that if we have any two possible
values of the secret, m and n, such that m Parity n, then the attacker-observable
results of running the system will be identical for these secrets. More precisely, if
s : int → int models, for particular public inputs, how the system maps the value of
the secret to the observable output, then we write s :Parity⇒Id , meaning that

∀m,n.m Parity n =⇒ s(m) Id s(n)

In this notation standard noninterference (zero information flow) property corresponds
to s :All⇒Id .

The use of explicit equivalence relations to model such dependencies appears in
several places. In the security context it was first introduced by Cohen. Also in the
information flow context, the mathematical properties of the lattice of equivalence re-
lations was explored by Landauer and Redmond [39]. Partial equivalence relations
generalise the picture by dropping the reflexivity requirement. A partial equivalence
relation (PER) over some domain D is just an equivalence relation on E such that
E ⊆ D. Hunt [36], inspired by work in the semantics of typed lambda calculi, intro-
duced the use of the lattice of PERs as a general static analysis tool, and showed that
they could be incorporated into a classic abstract interpretation framework. Abadi et
al. [3] (as well as Prost [62]) use partial equivalence relations in essentially the same

4

way to argue the correctness of dependency analyses. The present authors [70] showed
how the PER model can also be extended to reason about nondeterministic and proba-
bilistic systems, and also showed that not only does the PER model generalise Cohen’s
framework but also other formulations such as Joshi and Leino’s logical formulation,
including the use of abstract variables [38].

Recently, abstract noninterference [27, 28] has been introduced by Giacobazzi and
Mastroeni. The properties expressible using narrow abstract noninterference are sim-
ilar to those expressible using partial equivalence relation models. The relationship
between the two approaches is not completely straightforward, however. On the one
hand abstract noninterference is based on the general concept of a closure operator, so
can also represent classic abstract interpretations. 2

On the other hand the use of partiality in the PER setting—useful for example in
describing security properties of higher-order functions, as well as security properties
of the system as a whole—cannot be directly represented in the abstract noninterference
setting.

Clark et al. [12] suggest more concretely how abstract noninterference relates to
the PER model, and notably how nondeterminism is needed to model the notion of
weak observers—observers who cannot see all the low values in the system. The re-
lation between the two approaches is made more concrete in recent work by Hunt and
Mastroeni [37], where it is shown that information flow properties expressible with a
particular class of (total) equivalence relations can be captured by narrow abstract non-
interference (NNI). It is also shown that, at least in a technical sense, NNI is equivalent
to the equivalence relation model but the more general form of abstract noninterference
is strictly more expressive than the equivalence relation properties. The difference lies
in the attacker model. Implicitly in the deterministic PER model an attacker is as-
sumed to gain information by observing individual runs of the system, whereas in the
NNI model an attacker can be modelled as observing abstractions of sets of runs: for
example, an attacker who can only observe interval approximations of any given set of
integer results.

The abstract noninterference framework allows for the derivation of the most pow-
erful attacker model for which a given program is secure. This is achieved by either
hiding public output data (as little as possible) [27] or by revealing secret input data
(also as little as possible) [28]. Both cases contribute to the attacker’s model of data
indistinguishability: the former is concerned with the indistinguishability of the output
while the latter treats the indistinguishability of the input. Yet Giacobazzi and Mas-
troeni refer to the former as “attacker models” (which is asserted to fall into the “who”
class [50]) and to the latter—somewhat surprisingly—as “declassification” (which is
asserted to fall into the “what” class [50]). The latter is claimed to be adopted from
robust declassification [79] by removing active attackers [27, 28]. This classification
does not agree with ours because, in our view, robust declassification [79] addresses

2In the conference version of this paper we claimed that abstract noninterference could accurately repre-
sent disjunctions of properties such as “at most one of secrets A and B are leaked”. We now believe that this
is not the case. Note that there is a potential confusion of two notions of “property”. Abstract noninterfer-
ence assumes that an attacker observes the system via abstraction functions. One can, as standard in abstract
interpretation, accurately represent disjunctive combinations of arbitrary abstract domains—i.e., disjunctive
properties. But it does not follow from this that disjunctive information flow properties can be represented.

5

the question whether the declassification mechanism is robust against active attackers,
and therefore is a “who” property (as opposed to “what”). The key property of robust
declassification is that active attackers may not manipulate the system to learn more
about secrets than passive attackers already know. When there are no active attackers
(as in partial release), declassification is vacuously robust. We refer to the more recent
paper by Mastroeni [50] which casts more light on this matter.

The basic idea of partial release based on (partial) equivalence relations is sim-
ple and attractive. As we shall see later, the fact that it is essentially an extensional
definition means that it is semantically well behaved.

Related approaches In the remainder of this section we argue that two other recent ap-
proaches to declassification can be understood (at least in part) in terms of the “equiv-
alence class” approaches—even though at first glance they appear to be of a rather
different nature.

Delimited release Recent work by Sabelfeld and Myers [68] introduces a notion called
delimited release. It enables the declassification policy to be expressed in terms of a
collection of escape hatch expressions which are marked within the program via a
declassify annotation. This policy stipulates that information may only be released
through escape hatches and no additional information is leaked.

More precisely stated, a program satisfies delimited release if it has the following
property: for any initial memory state s and any state t obtained by varying a secret
part of s, if the value of all escape-hatch expressions is the same in both s and t, then
the publicly observable effect of running the program in state s and t will be the same.

Interestingly, this definition does not demand that the information is actually re-
leased via the declassify expressions (even though the specific type system does indeed
enforce this)—only that the declassify expressions within the program form the policy.
As a rather extreme example, consider

if true then l := h ∗ h else l := declassify(h ∗ h)

This satisfies delimited release: the secret characterised by the expression h ∗ h is
released to the public variable l, i.e., if we have two memories which differ only in h
and for which the respective values of h ∗ h are equal, then the respective final values
of l after running the above program will also be equal. This example illustrates that
even when we know what information is released, it may be useful to also know where
it is released.

To see how delimited release relates to the PER model, we note that every ex-
pression (or collection of expressions) over variables in some memory state induces an
equivalence relation on the state. For any expression e, let JeK denote the corresponding
(partial) function from states to some domain of values. Let 〈e〉 denote the equivalence
relation on states (s, t, . . .) induced by JeK as follows:

s〈e〉t ⇐⇒ JeKs = JeKt

We generalise this to a set of expressions E as

s〈E〉t ⇐⇒ ∀e ∈ E.JeKs = JeKt

6

If we restrict ourselves to the two-point security lattice (for simplicity) the delimited
release property can be expressed in the PER model as:

If E is the set of declassify expressions in the program, then for all memory
states s and t such that the low parts of s and t are equal, and such that
s〈E〉t, then the respective low observable parts of the output of running
the program on s and t are equal.

Sabelfeld and Myers also point out that delimited release is more general than Cohen’s
simple equivalence relation view: declassification expressions may combine both high
and low parts of the state. This provides a form of conditional release.3 For example,
to express the policy: “declassify h only when the initial value of l is non-zero” we can
just use the expression declassify(h ∗ l) since from this the low observer can always
reconstruct the value of h—except when l is zero. A more general form of conditional
release is specified by expressions such as

if (payment > threshold) then topsecret else secret

with the guarantee that the sensitive information stored in topsecret is released if the
value of the public variable payment is greater than some constant threshold . Other-
wise, the less sensitive information secret is released.

Reflecting this idea back into the equivalence relation view, this just corresponds to
the class of equivalence relations which are expressed in terms of the whole state and
not just the high part of the state.

Syntactic escape hatches for characterising what can be leaked is a convenient
feature of delimited release. It is however worth highlighting that the purpose of an
escape hatch is merely to define indistinguishability. For example, policies defined
by escape hatch expressions e and f(e) (for some bijective function f) are equiva-
lent. Indeed, they define the same indistinguishability relations because JeKs = JeKt if
and only if Jf(e)Ks = Jf(e)Kt. Interestingly, this implies, for example, that program
l := declassify(f(h)); l := h is secure for all bijective f .

It appears natural to declare encryptk(secret) and hash(pwd) as escape hatch
expressions (cf. [68]). The intuition with such a declaration is that the result of en-
cryption or hashing can be freely released. Clearly, if encryption and hashing functions
are bijective then a laundering attack along the lines above is possible. If collisions
are possible, exploiting this artifact becomes more involved. Nevertheless, suppose
noncolliding(x) is true whenever ∀y.hash(x) = hash(y) =⇒ x = y. Leaky
program

l := declassify(hash(pwd)); if noncolliding(pwd) then l := pwd

is accepted by the delimited release definition. Clearly, these examples are possible
because problematic invertability of encryption and hashing functions are outside the
delimited release model.

3The conditional noninterference notion from [31] is a predecessor to the notion of intransitive noninter-
ference discussed in Section 2.3 on “where” definitions.

7

Relaxed noninterference Li and Zdancewic [42] express downgrading policies by
labelling subprograms with sets of lambda-terms which specify how an integer can be
leaked.4 They show that these labels form a lattice based on the amount of information
that they leak. This is claimed to be closely related to intransitive noninterference (dis-
cussed below). Here, however, we argue that the lattice of labels from [42] is closely
related to the lattice of equivalence relations, and thus the class of declassification prop-
erties that can be expressed is similar to the equivalence-relation class. The semantic
interpretation of a label l [42][Def. 4.2.1] is closure operation:

{g′ | g′ ≡ g ◦ f, f ∈ l}

Intuitively we can think of the meaning of a given f ∈ l as an abstraction of all possible
ways in which a program might use the result of the “leaky component” f .

In [42] the equality relation (≡) in the above definition is taken to be a particular de-
cidable syntactic equivalence. We will refer to this original definition as an intensional
interpretation of labels. To relate labels to the PER model we consider an extensional
interpretation of labels in which ≡ is taken to be semantic (extensional) equality.

We can map labels to equivalence relations (over the domain of secrets) using the
same mapping as for delimited release: if l is a set of lambda-terms, each with an
integer-typed argument, then we define the equivalence relation on integers as:

m〈l〉n ⇐⇒ ∀f ∈ l.fm = fn

Without going into a detailed argument, we claim that the extensional semantic
interpretation of labels yields a sublattice of the lattice of equivalence relations. Note in
particular (as with the intensional definition) that the top and bottom points in the lattice
of labels are H ≡ {λx : int.c} (for some constant c) and L ≡ {λx : int.x}, which
following the construction above can easily be seen to yield the largest equivalence
relation (All, which relates everything to everything) and the smallest (the identity
relation Id), respectively.

Downgrading is specified by actions of the form l1
a
 l2. In the equivalence rela-

tion view this corresponds to saying, roughly, that the action a maps arguments related
by 〈l1〉 to results related by 〈l2〉, or, using the PER notation from [36, 70]:

a : 〈l1〉 ⇒ 〈l2〉

The intensional interpretation makes finer distinctions than the equivalence relation
interpretation, and these distinctions are motivated by the requirement to express not
only what is released, but to provide some control of how information is leaked. Take
for example the policy consisting of the single function λx.λy.x == y. In principle
this function can reveal everything about a given secret first argument, via suitably
chosen applications. In the extensional interpretation this policy is therefore equivalent
to the policy represented by λx.x. However, the intensional interpretation of labels
distinguishes these policies—the intuition being that it is much harder (slower) to leak
information using the first function than using the second.

4We focus here on the so-called local policies.

8

In conclusion we see that relaxed noninterference can be understood in terms of
PERs under an extensional interpretation, but provides potentially more information
with an intensional interpretation. What is missing in this characterisation is a clear
semantic motivation for which intensional equivalence is appropriate, and what gen-
eral guarantees it provides. One suggestion5 is to use a complexity preserving subset
of extensional equivalence. This should guarantee that the attacker cannot leak secrets
faster than if he literally used the policy functions. However it should be noted that the
syntactic equivalence from [42] (which include, amongst other things, call-by-name
β-equivalence) is not complexity-preserving for the call-by-value computation model
used therein. See [72] for an exploration of complexity preservation issues. The inten-
sional view of relaxed noninterference thus requires the addition of information about
the speed of computation, something which is covered by the “when” dimension.

Quantitative abstractions Under the category “what” we also include properties
which are abstractions of “what.” One extreme abstraction is to consider the quan-
tity of information released. Thus we consider “how much” to be an abstraction of
“what.” The most direct representation of this idea is perhaps the information-theoretic
approach by Clark et al [11], which aims to express leakage in terms of an upper
bound on the number of information-theoretic bits. The approach of Lowe [45] can be
thought of as an approximation of this in which we assume the worst-case distribution.
With this approximation the measure corresponds, roughly, to counting the number of
equivalence classes in an equivalence-relation model. For a framework that integrates
attacker belief into the analysis of quantitative information flow in a language-based
setting see recent work by Clarkson et al. [14].

2.2 Who
It is essential to specify who controls information release in a computing system.
Ignoring the issue of control opens up attacks where the attacker “hijacks” release
mechanisms to launder secret information. Myers and Liskov’s decentralised label
model [55] offers security labels with explicit ownership information (see, e.g., [24,
61, 6] for further ways of combining information flow and access control). Accord-
ing to this approach, information release of some data is safe if it is performed by the
owner who is explicitly recorded in the data security label. This model has been used
for enhancing Java with information flow controls [54] and has been implemented in
the Jif compiler [58].

The key concern about ownership-based models in general is assurance that in-
formation release cannot be abused by attackers. As a step to offer such an assurance,
Zdancewic and Myers have proposed robust declassification [79] which guarantees that
if a passive attacker may not distinguish between two memories where the secret part
is altered then no active attacker may distinguish between these memories.

Recent work by Myers et al. [56] connects ownership-based security labels and ro-
bust declassification by treating ownership information as integrity information in the
data security labels. In this interpretation of robust declassification, information release

5[Peng Li, personal communication]

9

is safe whenever no change in the attacker-controlled code may extract additional in-
formation about secrets. Interestingly, this implies that declassification annotations of
the form declassify(e) do not pertain to the “what” (the value of expression e) or
the “where” (in the code) dimensions because robust declassification accepts any leak
as intended unless the active attacker may affect it.

Furthermore, qualified robustness is introduced, which provides the attacker with
a limited ability to affect what information may be released by programs. Dually to
declassification, an endorse primitive is used for upgrading the integrity of data. Once
data is endorsed to be trusted, it can be used in decisions on what may be declassified.
Qualified robustness intentionally disregards the values of endorsed expressions by
considering arbitrary values to be possible outcomes of endorsement.

Tse and Zdancewic also take the decentralised label model as a starting point. They
suggest expressing ownership relations via subtyping in a monadic calculus and show
that typable programs satisfy two weakened versions of noninterference: conditioned
noninterference and certified noninterference [74].

2.3 Where
Where in a system information is released is an important aspect of information release.
By delegating particular parts of the system to release information, one can ensure that
no other (potentially untrusted) part can release further information.

Considering where information is released, we identify two principal forms of lo-
cality:

Level locality policies describing where information may flow relative to the security
levels of the system, and

Code locality policies describing where physically in the code information may leak.

The common approach to expressing the level locality policies is intransitive non-
interference [64, 59, 63, 47]. Recall that confidentiality policies in the absence of in-
formation release are often regulated by conventional noninterference [30, 77], which
means that public output data may not depend on (or interfere with) secret input data.
However, noninterference is over-restrictive for programs with intentional informa-
tion release (average salary, information purchase and password checking programs
are flatly rejected by noninterference). Intransitive noninterference is a flow-control
mechanism which controls the path of information flow with respect to the various se-
curity levels of the system. For standard noninterference the policy is that information
may flow from lower to higher security levels in a partial order (usually a lattice) of
security levels. The partial order relation between levels x ≤ y means that informa-
tion may freely flow from level x to level y, and that an observer at level y can see
information at level x. Since the flow relation ≤ is a partial order it is thus always tran-
sitive. Intransitive noninterference allows more general flow policies, and in particular
flow relations which are not transitive. The canonical example (but not the only use
of intransitive noninterference) is the policy that says that information may flow from
low to high, from high to a declassifier level and from the declassifier level to low,
but not directly from high to low. The definition of intransitive noninterference must

10

ensure that all the downgraded information indeed passes through the declassifier, and
is thereby controlled.

Mantel [47] has introduced a variant of this idea which separates the flow policy
into two parts: a standard flow lattice (≤), together an intransitive downgrading rela-
tion () for exceptions to the standard flow. This has been adapted to a language-based
setting by Mantel and Sands [49], in which both kinds of locality are addressed: in-
transitive flows at the lattice level, associated to specific downgrading points in the
code.

Code locality can be thought of as a simple instance of intransitive noninterfer-
ence based loosely on the idea of all “leaks” passing through a declassification level.
Roughly speaking, the declassification constructs in the code can be thought of as the
sole place where information should violate the standard flow policy. Thus the defin-
ition of intransitive noninterference should ensure that the only information release in
the system passes through the intended declassifications and nothing more. With this
simple view, the approaches of Ryan and Schneider (so called constrained noninterfer-
ence [66]), Mullins6 [53], Bossi et al. [8], and Echahed and Prost [22, 23] could also
be seen as forms of intransitive noninterference.

Most recently, Almeida Matos and Boudol [4] define a notion of non-disclosure.
They introduce an elegant language construct flow F in M to allow the current flow
policy to be extended with flows F during the computation of M . To define the se-
mantics of non-disclosure the operational semantics is extended with policy labels.
This could be seen as a generalisation of the “default base-policy + downgrading tran-
sitions” found in Mantel and Sands’ work. Although developed independently, the
bisimulation-based definition of security is very close to that of Mantel and Sands,
albeit less fine grained and focused purely on code locality.

Three other recent papers describe dynamic policy mechanisms whereby an infor-
mation flow policy can be dynamically modified by the program.

The first, described by Hicks et al. [35] investigates an information flow type sys-
tem for a small functional language with dynamic policies based on the decentralised
label model [55]. They coin the phrase noninterference between updates. This phrase
intuitively captures a natural security requirement in the presence of policy changes.
However in terms of semantic modelling the only precise semantic condition provided
in [35] might be more accurately described as noninterference in the absence of up-
dates—which is essentially the principle of conservativity described in Section 3.

In the second work [17], Dam describes a policy update mechanism in which the
security level of variables can be dynamically reclassified. Security is then defined,
like for Mantel and Sands [49], as an adaptation of strong low-bisimulation [69]. In-
terestingly, Dam’s definition does not coincide with that of Mantel and Sands on the
common subset of features. Consider the program

if h = 0 then [l := h1] else [l := h2]

where [. . .] denotes a declassified assignment. Unlike the definition of [49] Dam’s
definition deems this program to be secure. In [49] one would instead have to also

6Despite the similarity in terminology, there is no tight relation between Mullins’ admissible interfer-
ence [53] and Dam and Giambiagi’s admissibility [18]; in fact the two conditions emphasise different di-
mensions of declassification.

11

declassify the result of the boolean test, e.g.,

[l0 := (h = 0)]; if l0 then [l := h1] else [l := h2]

One might argue that Dam’s definition does not exhibit code locality—at least not to
the extent of [49]; see [17] for an alternative perspective.

In the third approach [32], Gordon and Jeffrey consider dynamically generated
security levels in the context of π-calculus. Generalising Abadi’s definition of secrecy
for spi-calculus [2], they propose a notion of conditional secrecy, which guarantees
that secrets are protected unless particular principals are compromised.

A combination of “where” and “who” policies in the presence of encryption has
been recently investigated by Hicks et al. [34]. The authors argue that declassification
via encryption is not harmful as long as the program is, in some sense, noninterfering
before and after encryption. In order to accommodate this kind of leak locality prop-
erty, they define two semantics: operations semantics whose job is to evaluate program
parts free of cryptographic functions and reduction semantics for evaluating crypto-
graphic functions. The key policy is noninterference modulo trusted functions, which
is intended to guarantee that if all encryptions are trusted (a trust relation is built in the
underlying security lattice) then the attacker is not able to distinguish secrets through a
visibility relation that ignores differences arising from the application of cryptographic
functions. They show that if no trusted cryptographic functions are used, their security
characterisation reduces to noninterference.

2.4 When
The fourth dimension of declassification is the temporal dimension, pertaining to when
information is released. We identify three broad classes of temporal release specifica-
tion:

Time-complexity based Information will not be released until, at the earliest, after a
certain time. Time is an asymptotic notion typically relative to the size of the
secret.

Examples of this category include Volpano and Smith’s relative secrecy and one-
way functions [76, 75]. In these cases the security definition says that the at-
tacker cannot learn the (entire) value of a secret of size n in polynomial time.
Putting it another way, the secret may be leaked only after non-polynomial time.
This is related to the approaches found in Laud’s work [40, 41] and Mitchell et
al.’s work on polynomial-time process calculus (see, e.g., [44, 52]). Here the at-
tacker is explicitly given only polynomial computational power, and under these
assumptions the system satisfies a noninterference property.

Probabilistic With probabilistic considerations one can talk about the probability of
a leak being very small. This aspect is also included in Mitchell et al.’s work,
and complexity-theoretic, probabilistic and intransitive noninterference are com-
bined in recent work of Backes and Pfitzmann [5]. The notion of approximate
noninterference from [21] is more purely probabilistic: a system is secure if the
chance of an attacker making distinctions in the values of secrets is smaller than

12

some constant ε. We view this (arguably) as a temporal declassification since it
essentially captures the fact that secrets are revealed infrequently.

Relative A non-quantitative temporal abstraction involves relating the time at which
downgrading may occur to other actions in the system. For example: “down-
grading of a software key may occur after confirmation of payment has been
received.”

The work of Giambiagi and Dam [29] focuses on the correct implementation of
security protocols. Here the goal is not to prove a noninterference property of
the protocol, but to use the components of the protocol description as a specifi-
cation of what and when information may be released. The idea underlying the
definition of security in this setting is admissibility [18]. Admissibility is based
on invariance of the system under systematic permutations of secrets.

Chong and Myers’ security policies [9] address when information is released.
This is achieved by annotating variables with types of the form `0

c1 · · · ck `k,
which intuitively means that a variable with such an annotation may be subse-
quently declassified to the levels `1, . . . , `k, and that the conditions c1, . . . , ck

will hold at the execution of the corresponding declassification points. An ex-
ample of a possible domain of conditions is predicates on the variables in the
program.

3 Some principles for declassification
In addressing the issue of what constitutes a satisfactory information release policy, it
is crucial to adequately represent the attacker model against which the system is pro-
tected. A highly desired goal is a declassification framework that allows for modelling
the different aspects of attackers, enabling the system designer to tune the level of
protection against each of the dimensions. As a first step toward such a framework,
we suggest some principles for declassification intended to serve as sanity checks for
existing and emerging declassification models.

This section discusses the semantic consistency, conservativity, monotonicity of re-
lease, non-occlusion and trailing attack principles. For convenience, a partial mapping
of these principles to some of the models from the literature is collected in Table 1. It
is not the goal of this section to be complete with respect to all definitions mentioned
in Section 2.

3.1 Semantic consistency
This principle has its roots in the full abstraction problem [60, 51], which has important
implications for computer security [1]. Full abstraction is about preserving equivalence
by translation from one language to another. Viewing equivalence as the attacker’s view
(cf. Section 2) of the system, semantic consistency ensures that the view (and hence the
security of the system) is preserved whenever some subprogram c is replaced by a
semantically equivalent program d (where neither c nor d contains declassification).
Hence, the first principle:

13

W
ha

t

Pr
op

er
ty

Se
m

an
tic

co
ns

is
te

nc
y

C
on

se
rv

at
iv

ity
M

on
ot

on
ic

ity
of

re
le

as
e

N
on

-
oc

cl
us

io
n

Pa
rt

ia
lr

el
ea

se
[1

6,
38

,7
0,

27
,2

8]
X

X
N

/A
X

D
el

im
ite

d
re

le
as

e
[6

8]
X

X
X

×
R

el
ax

ed
no

ni
nt

er
fe

re
nc

e
[4

2]
×

X
X

X
N

ai
ve

re
le

as
e

X
X

X
×

W
ho

R
ob

us
td

ec
la

ss
ifi

ca
tio

n
[5

6]
X

∗
X

X
X

Q
ua

lifi
ed

ro
bu

st
de

cl
as

si
fic

at
io

n
[5

6]
X

∗
X

X
×

W
he

re
In

tr
an

si
tiv

e
no

ni
nt

er
fe

re
nc

e
[4

9]
X

∗
X

×
X

W
he

n
A

dm
is

si
bi

lit
y

[1
8,

29
]

×
X

×
X

N
on

in
te

rf
er

en
ce

“u
nt

il”
[9

]
×

×
X

X
Ty

pe
le

ss
no

ni
nt

er
fe

re
nc

e
“u

nt
il”

X
∗

X
×

×

∗
Se

m
an

tic
an

om
al

ie
s

Ta
bl

e
1:

C
he

ck
in

g
pr

in
ci

pl
es

of
de

cl
as

si
fic

at
io

n.

14

SEMANTIC CONSISTENCY

The (in)security of a program is invariant under semantics-preserving
transformations of declassification-free subprograms.

This principle aids in modular design for secure systems. It allows for independent
modification of parts of the system with no information release, as long as these modi-
fications are semantics-preserving. A possible extension of this principle would be one
that also allows modification of code with information release, as long as new code
does not release more information.

We inspect each of the release dimensions and list some approaches that satisfy this
principle (and some that do not).

What Models capturing what is released are generally semantically consistent. Be-
cause what is released is described in terms of program semantics, changing sub-
programs by semantically equivalent ones does not make a difference from the
security definition’s point of view. This argument applies to partial release [16,
38, 70, 27, 28] and delimited release [68]7. Relaxed noninterference [42] aims
to provide more than just “what” properties, and does so through the use of a
decidable notion of equivalence (as discussed in Section 2.1). Thus semantic
consistency fails when we transform outside of this relation.

Who The attacker’s view in the robust declassification specification [56] is defined by
low-level indistinguishability of traces up to high-stuttering (traces must agree on
the sequence of assignments to low variables). Assuming that semantic equality
implies low-level indistinguishability, the end-to-end nature of robustness en-
sures that exchanging semantically equivalent subprograms may not affect pro-
gram security. This argument extends to qualified robustness [56]. This char-
acterisation is insensitive to syntactic variations of subprograms that are free of
declassification as long as their semantics are preserved (which, for example,
means that reachability is not affected).

Where The language-based intransitive noninterference condition of Mantel and Sands
[49] satisfies semantic consistency. The definition of intransitive noninterference
is built on top of a notion of k-bisimulation, where k is a security level. The basic
idea is that when a declassification step occurs between two levels l and m, then
(i) nothing other than that visible at level l is released, and (ii) it is only visible
to the observer at level k if m ≤ k (i.e., k is authorised to see information at
level m). After each step the bisimulation definition (following [69]) requires
the program parts of the configurations be again bisimilar in all states. This is a
form of “policy reset,” and the same approach is adopted in non-disclosure [4].

Bossi et al’s condition [8] is described in an extensional way which strongly sug-
gests that it also satisfies semantic consistency. Echahed and Prost’s condition
[22, 23] is based on a rather unusual general computational model (a mixture

7As elsewhere, we state this without proof (and hence with due reservations), as proofs would require a
lot of detail to be given.

15

of term-rewriting, constraint and concurrent declarative programming) which
makes it more difficult to assess.

When The semantic consistency principle critically depends on the underlying seman-
tics. For complexity-sensitive security definitions [76, 75, 40, 41, 44, 52], seman-
tic consistency requires complexity-preserving transformations. Otherwise, for
example, a program which cannot leak in polynomial time could be sped up by
a transformation that compromises security.

Dam and Giambiagi’s admissibility [18, 29] does not satisfy the semantic con-
sistency principle. Due to the syntactic nature of admissibility, it is possible to
replace functions in the declassification protocol with semantically equivalent
ones so that admissibility is not preserved. Take policy P that only allows leak-
ing secrets via function f (which could be, for example, an encryption function).
A program S = f(h) is then admissible with respect to P . However, suppose the
semantics of f is the identity function. Changing the program S by a semanti-
cally equivalent program S′ = h results in a program that is not admissible with
respect to P . Notice that this is an instance of a general phenomenon: syntac-
tic definitions of security are bound to violate the semantic robustness property.
In the case of admissibility, recent unpublished results [19] introduce semantic
information into admissibility policies via flow automata. This appears to be a
useful feature for recovering semantic consistency.

Chong and Myers’ noninterference “until” [9] is somewhat different, in that they
first define a base security type-system for a mini ML-like language for handling
noninterference, and then define the intended security condition, but only over
terms which are typable according to the base security type system.

No security definition which demands that terms are typed according to a se-
curity type system (or any other computable analysis) can satisfy the semantic
consistency principle with respect to all programs. This follows from a simple
computability argument: semantic equivalence is typically not recursively enu-
merable, but the set of “typable” programs is either recursive or at the very least
recursively enumerable. Thus there are pairs of equivalent terms for which one
is typable and the other is untypable. An untypable term, according to such a
definition, cannot be considered secure.

Definitions which depend on such specific analyses are not entirely satisfactory
as semantic definitions. For example, a program such as

if h > h then l := 0

would be considered insecure by the definition since the type system makes the
usual coarse approximations. In order to recover semantic consistency, the obvi-
ous fix is to lift the restriction that the definition applies to well-typed programs.
Along with our analysis of the noninterference “until” definition [9], presently
we also explore the consequences of this generalised definition, which we refer
to as typeless noninterference “until”. Most recently, a similar generalisation
has been defined by Chong and Myers in order to combine declassification and
so-called erasure policies [10].

16

Semantic anomalies The notion of semantic consistency is, of course, dependent
on the underlying semantic model. The base-line semantic model can be thought of
as defining the attacker’s intrinsic observational ability. In many cases the base-line
semantics is not given explicitly. However, the definition of security is often built from
a notion of program equivalence which takes into account security levels. In such
cases it is natural to induce the “base-line” semantics—the attacker’s observational
power—by considering the notion of equivalence obtained by assuming the degenerate
one-point security lattice.

Having done this we can observe whether the induced semantics is a “standard”
one. In the case that it is nonstandard we call this a semantic anomaly, which reflects
something about our implicit attacker model. The presence of semantic anomalies
means that semantic consistency only holds for that specific semantics.

We have noted that the complexity-based definitions naturally require that the se-
mantic model which preserves complexity—i.e., that the notion of equivalence must
take into account computational complexity. This is perhaps not standard, but rather
natural in this setting. We point out several examples of clear semantic anomalies,
coming from Myers et al.’s robust declassification [56], Mantel and Sands’ version of
intransitive noninterference [49], Almeida Matos and Boudol’s non-disclosure property
[4] and the typeless variant of noninterference “until.” Each of these has an attacker
model which turns out to be stronger than strictly necessary. Although it is safe to
assume that an attacker has greater powers than he actually possesses, it has a potential
disadvantage of rejecting useful and intuitively secure programs. They only satisfy se-
mantic consistency under a stronger than usual semantic equivalence: this equivalence
is extracted from the underlying indistinguishability relations by viewing all data as
low.

• In the case of robust declassification [56] the semantic model allows the attacker
to observe the sequence of low assignments (up to stuttering). This means that for
any low variable l, the command l := l is considered semantically distinct from
skip, since the former contains a low assignment and the latter does not. Under
more standard semantics, a transformation from if h then skip else skip to
if h then l := l else skip (where h is high and l is low) would be semantics-
preserving. However, the first program satisfies robust declassification whereas
the second one does not, which would break semantic consistency. Similar trans-
formation can be constructed for the following items.

• In the case of intransitive noninterference [49], the semantic model is explicitly
given as a strong bisimulation, so that only computations which proceed at the
same speed are considered equivalent. It is argued, with reference to [69], that
this allows for useful attacker models in which the attacker controls the thread
scheduler. However, with a coarser base-line model it is not immediately clear
what an appropriate definition of intransitive noninterference should be.

• The implicit semantics of Almeida Matos and Boudol [4] is arguably most anom-
alous of those considered here. This is due to the fact that their language contains
local variables. These do not fit well with the stateless bisimulation-based notion
of equivalence that is induced. Consider the following example, using the usual

17

two-level base policy:

let uL = ref false in
if !uL then vL := wH

where !uL returns the value that the reference uL points to. This program is
considered insecure, because the semantics induced by the notion of bisimulation
assumes that the insecure command vL := wH is reachable, even though it is
clearly unreachable in any context. Here the anomaly cannot be described in
terms of what the attacker can observe, but rather as an implicit assumption that
the attacker can even modify the value of local variables. This is clearly stronger
than necessary.

• For typeless noninterference “until,” there are technical issues with the definition
of noninterference which assumes that an attacker can distinguish what would
be normally considered equivalent functions. As a result, the program below is
considered insecure:

if xh then ref(λx.x + 1) else ref(λx.1 + x)

This could be seen as a failure of semantic consistency, since transforming 1+x
into x + 1 would make the program secure. However, we view this problem as
a minor technical artifact that could be fixed for example by only allowing the
attacker to observe stored values of ground type.

3.2 Monotonicity of security
Declassification effectively creates a “hole” in the security policy. For a given security
definition, a program such as l := h might well be considered insecure, but by adding
a declassification annotation to get l := declassify(h) the program may well be
considered secure. So the natural starting point—the base-line policy—is that absence
of declassification in a program or policy implies that the program should have no
insecure information flows. On the other hand, the more declassification annotations
that a program contains, the weaker the overall security guarantee.

This leads to two related principles: conservativity, which says that security con-
servatively extends the notion of security for a language without declassification, and
monotonicity of release based on the monotonicity of security with respect to increase
in declassification annotations in code (the more declassifications you have the more
“secure” you become). Let us consider each of these principles in turn.

It is sensible to require that programs with no declassification annotations or dec-
larations satisfy a standard security property that allows no secret leaks, as commonly
expressed by some form of noninterference [30]. As before, we use the term nonin-
terference to refer to the standard zero information flow policy for the language. We
arrive at a principle that requires declassification policies to be conservative extensions
of noninterference:

CONSERVATIVITY

Security for programs with no declassification is equivalent to nonin-
terference.

18

Notice that this principle is straightforward to enforce by making it a part of security
definition, which would have the flavour of “a program is secure if either it is nonin-
terfering or it contains declassification and satisfies some information release policy.”
Often the conservativity principle holds trivially as it is built directly from a definition
of noninterference.

Nevertheless, noninterference “until” [9], in the case when there is no declassifica-
tion in either the policy or code, yields a strict (decidable) subset of noninterference.
So, taking the same example as previously, if h > h then l := 0 is considered in-
secure because the type system rejects it. Thus the definition does not strictly satisfy
conservativity.

Many mechanisms for declassification employ annotations to the code (or some
other specification) which denote where a declassification is intended. Operationally
these declassification annotations do not interfere with normal computation. At the
level of annotations, the more declassify annotations in a program, the weaker the
overall security guarantee. This common-sense reasoning justifies the monotonicity of
release principle:

MONOTONICITY OF RELEASE

Adding further declassifications to a secure program cannot render it
insecure.

or, equivalently, an insecure program cannot be made secure by removing declassifica-
tion annotations.

We now revisit the dimensions of release and apply the monotonicity of release
principle to security characterisations along the different classes.

What Most of the examples in this class (that we have considered) express policies
extensionally, so they do not rely on annotations to define the semantics of de-
classification. One exception is delimited release, which uses the collection of
annotations in the code to determine the global policy. Adding an annotation
gives the attacker more knowledge, so there is less remaining to attack. Thus if
a system is secure with respect to a given degree of attacker knowledge, adding
more knowledge will never make it insecure. In the PER interpretation this is
just a standard monotonicity property: if a system, when presented with any two
states related by some binary relation R produces equivalent observable outputs,
then the same will be true when replacing R by any S such that S ⊆ R.

Who Declassification annotations are not used by the semantic definition of robust-
ness or qualified robustness [56] (although these annotation are used in the sta-
tic analysis). Therefore, program security is invariant under the removal or
addition of declassification annotations. The situation is different with the re-
moval or addition of endorsement annotations for qualified robustness, how-
ever [56]. Endorsement statements have a scrambling semantic interpretation
that allows for arbitrary values to be the outcome of endorse. Inspired by “havoc”
commands [38], this semantic treatment allows the difference between two val-
ues of a variable to be “forgotten” by forcing this variable to take an arbitrary

19

value. This is justified when each endorse is preceded by a placeholder for
attacker-controlled code [57]. In this case, arbitrary values may be set to attacker-
controlled variables when the control reaches the endorse. However, in general
the scrambling interpretation of endorse (or declassify) might lead to the reacha-
bility of code that is otherwise dead. Dead code may mask security flaws, as we
will see below.

It is not necessary to introduce endorsement in order to explain these reacha-
bility issues in security definitions. Consider two types of declassification, by
scrambling the source and target of declassification, respectively. The intention
is to “forget” the effect of declassification by requiring the source h (or target l)
of a declassification operation l := declassify(h) to take any possible value.
Under the former, the semantic treatment of declassification is specified nonde-
terministically by

〈l := declassify(h), s〉 −→ s[h 7→ val , l 7→ val]

for all val , which corresponds to scrambling the values of both h and l with value
val . Under the latter, the scrambling is done at the result of declassification:

〈l := declassify(h), s〉 −→ s[l 7→ val]

which does not affect the value of h but makes any value of l a possible outcome
of declassification. With the respective semantic interpretations of declassify, the
security condition is possibilistic noninterference, requiring the indistinguisha-
bility of possibilities for low-level output as high-level input is varied. We now
see why both of these interpretations break the monotonicity of release. Consider
the program:

h := 0;
l := declassify(h);
if l = 42 then l′ := h′

The program is clearly secure if declassification is removed. In the presence of
declassification, however, the value of l might become 42 under both scrambling
semantics, and thus the insecure code l′ := h′ becomes reachable. Hence, the
program is insecure under both semantics, which would contradict the monotonic-
ity of release.

Where The annotations of [49] apply to simple assignment statements. From a lo-
cal perspective these would seem to satisfy the monotonicity principle, since
the conditions required for a normal assignment statement are strictly stronger
than for a downgrading statement. However, the fly in the ointment, as far as
monotonicity is concerned, is that the definition effectively assumes that the at-
tacker can observe the fact that a declassification operation is being performed,
regardless of its content. Thus a program such as

if h = 42 then [l := l] else l := l

where, as before, [. . .] denotes a declassified assignment, is insecure, because
an attacker observing the presence or absence of a declassification action learns

20

whether h was 42 or not. Removing the declassification makes the program
secure.

However, in this case the fix to the definition from [49] seems straightforward:
when nothing is leaked by the declassification then it can be viewed as a non-
declassification, and vice-versa.

When Complexity-based and probabilistic declassifications are expressed extension-
ally, so the monotonicity principle does not apply.

For other temporal declassification conditions there is potential for monotonicity
of release to fail for general reasons. Programs may contain declassifications
which are in fact harmless—i.e., they do not violate noninterference, such as
the declassification of a known constant. But if the policy refers directly to the
presence or absence of the declassification operation itself, then the very fact that
a declassification statement is present in the code—albeit harmless—may cause
it to violate the policy. Removing the declassify annotation might, by the same
token, cause the policy to be satisfied.

By this argument, it is possible to show that admissibility [18, 29] does not sat-
isfy the monotonicity of release principle. The semantics of the protocol that
specifies declassification is abstracted away, enabling harmless declassification
to be disguised by the protocol’s syntactic representation. Similar to semantic
consistency, monotonicity of release is likely to be recovered for admissibility by
introducing semantic information about declassification via flow automata [19].

Typeless noninterference “until” also fails monotonicity of release. One exam-
ple, following the general reasoning above, is when the conditions used to trigger
declassifications refer to declassifications themselves. A natural example would
be a policy that says that A can be declassified if B has not been declassified,
and vice-versa. This ensures that at most one of A and B are declassified—an
interesting policy if A is the one-time pad and B is the encrypted secret. Now
suppose that a program declassifies A, but contains a harmless declassification
for B (i.e., one that does not actually reveal anything about B). The program
is insecure according to the policy, but if the declassification is removed from
the harmless release of B, the program becomes secure. Note that monotonic-
ity of release is preserved by noninterference “until” [9] because declassification
conditions are simply assumed to always be guaranteed by typed programs.

3.3 Non-occlusion
Whenever declassification is possible, there is a risk of laundering secrets not intended
for declassification. Laundering is possible when, for example, declassification in-
tended only for encrypted data is applied to high plaintext. This is an instance of
occlusion. A principle that rules out occlusion can be informally stated as follows:

NON-OCCLUSION

The presence of a declassification operation cannot mask other covert
information leaks.

21

The absence of occlusion is a useful property of information release. Generally, de-
classification models along the “what” dimension satisfy this principle. Occlusion is
avoided because covert flows, by the spirit of “what” models, should not increase the
effect of legitimate declassification. An exception is the delimited release policy where
globally declassified expressions are extracted from everywhere in the code. Recall the
example:

if true then l := h ∗ h else l := declassify(h ∗ h)

Unreachable declassification in the else branch covers up the leak in the then branch.
Occlusion is prevented in robust declassification [56] because declassification an-

notations in code may not affect robustness (and hence all declassification is consid-
ered intended as long as the attacker may not affect it). Also, intransitive noninterfer-
ence [49] successfully avoids occlusion by resetting the state (and thus the effect of
each declassification), as a consequence of small-step compositional semantics.

However, qualified robustness [56] and noninterference “until” [9] (when typability
of programs is not required) are both subject to occlusion.

Occlusion in qualified robustness [56] can be illustrated by occlusion in the source-
and target-scrambling release definitions from Section 3.2 (examples for the actual
qualified robustness definition can be found in [57]). Indeed, slightly modifying the
example we receive the program:

h := 0;
l := declassify(h);
if l = 42 then l′ := declassify(h′);
l′ := h′

The program is insecure because it leaks h′ into l′, and because l′ := declassify(h′)
is not reachable. However, under the scrambling semantics, the value of l might be-
come 42 after the first declassification, implying possible reachability of the second
declassification in dead code which masks the real leak l′ := h′. Indeed, any value is
a possible final value for l′ in the above program regardless of the initial value for h′.
Hence the program is deemed secure with respect to both source- and target-scrambling
definitions.

A generalisation of security policies “until” [9] to all programs (typeless nonin-
terference “until”) leads to occlusion. Because the security condition only considers
c1 . . . ck-free traces, i.e., traces that have not reached the last declared declassification,
it is insensitive to injections of harmful code with unintended leaks after the last de-
classification. For instance, consider a password checking example from [9]:

intHsecret := . . . ;
intHpwd := . . . ;
intHguess := getUserInput();
booleanH test := (guess == pwd);
booleanLresult := declassify(test ,H L);
. . .

and inject code that leaks secret at level H after the password is checked. This leak
is not prevented despite the fact that the security condition is variable-specific (i.e.,

22

it states noninterference “until” for each variable separately). Note that the original
version of noninterference “until” [9] prevents such attacks by considering untyped
programs as insecure from the outset. The two programs above inspire the following
general principle (which can be viewed as an instance of non-occlusion):

TRAILING ATTACKS

Appending an insecure program with fresh variables to a secure ter-
minating program should not result in a secure program.

One way of protecting against trailing attacks could be to introduce a special level `T

that corresponds to termination and require that any declassified data be declassified to
`T at the end of overall computation.

Consider a naive release policy that states that a program is secure if for any two
runs either they preserve low equivalence of traces, or one of them executes a declassify
statement. Clearly, this policy satisfies semantic consistency as semantics-preserving
transformation of subprograms without declassification may not affect indistinguisha-
bility of traces for low-level observer. It also satisfies conservativity, by definition. Fur-
ther, monotonicity of release also holds because the removal of declassification from
an insecure program (there must exist a pair of traces without declassification that are
not low-indistinguishable) may only result in an insecure program (by the same pair of
traces). Although these principles hold, they are not sufficient for security assurance.
This is reflected by occlusion, which naive release suffers from.

A final remark on the principles is that they are not intended to be universally nec-
essary for all declassification policies. For example, sometimes policies are of syntactic
nature by choice (as, for instance, admissibility), which makes it infeasible to guaran-
tee appealing semantic principles. However, we argue that if one of the principles fails,
it is an indication of a potential vulnerability that calls for particular attention as to why
the principle can be relaxed.

4 Conclusion
Seeking to enhance understanding of declassification, we have provided a road map to
the area of information release. The classification of declassification policies accord-
ing to “what,” “who,” “where” and “when” dimensions has helped clarify connections
between existing models, including the cases when these connections were not, in our
opinion, made entirely accurate in the literature. For example, abstract noninterfer-
ence [27, 28] and relaxed noninterference [42] fall under “what” models in our classifi-
cation, which disagrees with connections to “who” and “where” definitions made in the
respective original work. Another example is the deceptively akin admissibility [18]
and admissible interference [53] that address different dimensions of declassification
(“when” and “where”).

A reasonable question is to what extent the dimensions can be made formally pre-
cise. For a given model, the “what” and “when” dimensions seem relatively straight-
forward to define formally. The “what” dimension abstracts the extensional semantics
of the system; the “when” dimension can be distinguished from this since it requires an

23

intensional semantics that (also) models time, either abstractly in terms of complexity
or via intermediate events in a computation. The “who” and “where” dimensions are
harder to formalise in a general way, beyond saying that they cannot be captured by the
“what” and “when” dimensions.

Why not “how” or “why”? It is natural to ask whether the interrogative words “how”
and “why” are also reasonable dimensions. Regarding specifications of “how” infor-
mation is released, we argue that these are covered by some combination of “what”
and “when” and “where”. For example, suppose that some particular functions may
be used for declassification. With an intensional view this can be modelled simply
in the “where” dimension (code locality). At the other extreme we may want a more
extensional view, in which case we are in the purely “what” dimension. In between
we have many possibilities using the “when” dimension to capture the speed of release
(the essence of the algorithm) or some other temporal constraints.

Why is information released? It is clearly important to know the reason behind the
intentional release of information. But this dimension seems inappropriate to consider
at the code level since it deals with issues that come before the coding phase. In general
the “why” dimension is application-specific, and its study is more naturally part of the
software design and development process. See, e.g., [33] for one of the few works that
aim to integrate security specification and declassification (via the decentralised label
model) into language-based security.

Dimensions for integrity From the point of view of information flow, integrity is often
seen as a natural dual of confidentiality. One wishes to prevent information flows from
untrusted (low integrity) data sources to trusted data or events. As for confidentiality,
there are many situations where we might wish to upgrade the integrity levels of data
(so-called endorsement). It seems that the dimensions for declassification could also
be applied to endorsement:

What The “what” dimension can be studied with essentially the same semantics, and
thus deals with what parts of information are endorsed. Interestingly, Li and
Zdancewic [43] in a study of the dualisation of relaxed noninterference [42],
discuss some non-dual aspects of policies, stemming from whether the code itself
is trusted or not.

When Certain temporal endorsements are very natural from an integrity perspective.
For example, if you choose to trust some low integrity data only after a digi-
tal signature has been verified. Other, complexity-theoretic notions are perhaps
less natural in the integrity setting. Although one is able to say that, e.g., “low
integrity data remains untrusted in any polynomial time computation,” it is less
obvious how this kind of property might be useful.

Where Both policy locality and code locality are natural for endorsement. For pol-
icy locality we may wish to ensure that untrusted data only becomes trusted by
following a particular path (i.e., intransitive noninterference). From the point of
view of code locality it is again natural to require that endorsement only takes
place at the corresponding points in the program.

24

Who The “who” dimension is interesting because the notion already embodies a form
of integrity. Robust declassification, for example, argues that low integrity data
should not effect the decision of what gets declassified [56]. For integrity we
might thus define a notion of robust endorsement to mean that the decision to
endorse data should not itself be influenced by low integrity data. This approach
can benefit from a non-dual treatment of endorsement. Because the potentially
dangerous operations like declassification and endorsement are “privileged” op-
erations, it might make sense to apply similar, not dual constrains.

Challenges for enforcement mechanisms This paper is concerned with policies for
information release. While a comprehensive treatment of declassification policy en-
forcement is outside the scope of this paper, we briefly highlight some challenges for
enforcing policies along each of the dimensions.

What Enforcement of “what” policies can be delicate, which we demonstrate by ex-
amples of delimited release and information-theoretic policies. In delimited re-
lease, declassification policies are expressed in code by declassify(e, `) an-
notations. Programmers may use these annotations in order to declare that the
value of expression e can be released to level `, naturally suggesting what is
released. However, care must be taken in order for the declaration not to open
up possibilities for leaks unrelated to e. Indeed, the value e may change as the
program is executed (and can be affected by different secrets—either explicitly
or via control flow). An enforcement mechanism that ignores what secrets can
affect e over the course of computation might be open to laundering attacks.
Preventing secret variables in escape hatches e from depending on other data is
a possibility [68] although more permissive enforcement mechanisms (which, in
general, might require human assistance) are possible (cf. [7, 20, 73]).

Information-theoretic release policies are notoriously hard to enforce. Tracking
the quantity of information through loops is particularly challenging. Known
approaches are only able to handle rudimentary loops [13].

When Enforcement of “when” policies can be particularly challenging. Such a mech-
anism needs to be able to verify that release may only take place when some
condition c is satisfied, which often requires temporal reasoning about program
behaviour. Furthermore, it is important that no leaks are introduced through de-
pendencies from secrets to condition c itself.

Where Enforcement of “where” policies is more natural. An occurrence of a declas-
sification annotation declassify(e, `) reflects both policy locality and code lo-
cality. Policy locality is represented by label `, localising the destination of in-
formation release. Code locality is represented by where in code the annotation
occurs.

Who The decentralised label model [55] is an example of a release mechanism with
explicit ownership information. Declassification declassify(e, `) is allowed
if the level of e is downgraded in a way that only affects the owner of the code

25

that runs the declassification command. While this is an intuitive enforcement
mechanism, only recently have there been attempts to connect this mechanisms
to semantic goals [74].

While the Jif compiler [58] provides support for declassification, its enforcement mech-
anism is only concerned with the “who” dimension of declassification via ownership
in the decentralised label model [55]. In general, it is crucial that enforcement mecha-
nisms are capable of handling release policies along each of the dimensions.

Summing up This paper is a step toward the goal of developing policies that allow
combinations of policies from the individual dimensions into solid policy perimeter
defence. Perimeter defence is a standard principle of network security: as systems
are no more secure than their weakest points, they must be defended across the entire
perimeter of the network. The ambition with policy perimeter is to prevent attackers
from penetrating systems via weakly defended dimensions of information release.

For this to be possible we must have a better understanding of the implications of
our security definitions—even more so in the presence of declassification. We have
suggested some prudent principles of declassification that further help to avoid vulner-
abilities in release policies, and provide tools for better understanding declassification
definitions. Measuring our own previous work on declassification against these princi-
ples has revealed anomalies and “artifacts” that had previously gone unnoticed, and we
suggest that the principles should serve as useful “sanity checks” for emerging models.

Acknowledgements
Thanks are due to Andrew C. Myers and Pablo Giambiagi for fruitful discussions.
The paper has also benefited from the comments of Gerard Boudol, Stephen Chong,
Mads Dam, Roberto Giacobazzi, Sebastian Hunt, Peng Li, Isabella Mastroeni, David
Naumann and the anonymous reviewers.

This work was funded in part by the Sixth Framework programme of the European
Community under the MOBIUS project FP6-015905, and by National project fund-
ing from VINNOVA (Swedish Governmental Agency for Innovation Systems), SSF
(Swedish Foundation for Strategic Research) and VR (Swedish Research Council).

References
[1] M. Abadi. Protection in programming-language translations. In Proc. Interna-

tional Colloquium on Automata, Languages and Programming, volume 1443 of
LNCS, pages 868–883. Springer-Verlag, July 1998.

[2] M. Abadi. Secrecy by typing in security protocols. J. ACM, 46(5):749–786,
September 1999.

[3] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency.
In Proc. ACM Symp. on Principles of Programming Languages, pages 147–160,
January 1999.

26

[4] A. Almeida Matos and G. Boudol. On declassification and the non-disclosure
policy. In Proc. IEEE Computer Security Foundations Workshop, pages 226–240,
June 2005.

[5] M. Backes and B. Pfitzmann. Intransitive non-interference for cryptographic pur-
poses. In Proc. IEEE Symp. on Security and Privacy, pages 140–153, May 2003.

[6] A. Banerjee and D. A. Naumann. Stack-based access control and secure informa-
tion flow. Journal of Functional Programming, 15(2):131–177, March 2005.

[7] G. Barthe, P. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In Proc. IEEE Computer Security Foundations Workshop, pages
100–114, June 2004.

[8] A. Bossi, C. Piazza, and S. Rossi. Modelling downgrading in information flow
security. In Proc. IEEE Computer Security Foundations Workshop, pages 187–
201, June 2004.

[9] S. Chong and A. C. Myers. Security policies for downgrading. In ACM Confer-
ence on Computer and Communications Security, pages 198–209, October 2004.

[10] S. Chong and A. C. Myers. Language-based information erasure. In Proc. IEEE
Computer Security Foundations Workshop, pages 241–254, June 2005.

[11] D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the leakage of con-
fidential data. In QAPL’01, Proc. Quantitative Aspects of Programming Lan-
guages, volume 59 of ENTCS. Elsevier, 2002.

[12] D. Clark, S. Hunt, and P. Malacaria. Non-interference for weak observers.
In Proc. Programming Language Interference and Dependence (PLID), August
2004.

[13] D. Clark, S. Hunt, and P. Malacaria. Quantified interference for a While lan-
guage. In QAPL’04, Proc. Quantitative Aspects of Programming Languages,
volume 112, pages 149–166, January 2005.

[14] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Belief in information flow. In
Proc. IEEE Computer Security Foundations Workshop, pages 31–45, June 2005.

[15] E. S. Cohen. Information transmission in computational systems. ACM SIGOPS
Operating Systems Review, 11(5):133–139, 1977.

[16] E. S. Cohen. Information transmission in sequential programs. In R. A. De-
Millo, D. P. Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations of Secure
Computation, pages 297–335. Academic Press, 1978.

[17] M. Dam. Decidability and proof systems for language-based noninterference
relations. In Proc. ACM Symp. on Principles of Programming Languages, 2006.

27

[18] M. Dam and P. Giambiagi. Confidentiality for mobile code: The case of a sim-
ple payment protocol. In Proc. IEEE Computer Security Foundations Workshop,
pages 233–244, July 2000.

[19] M. Dam and P. Giambiagi. Information flow control for cryptographic applets.
Presentation at the Dagstuhl Seminar on Language-Based Security, October 2003.
www.dagstuhl.de/03411/Materials/.

[20] Á. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of
secure information flow. In Dieter Hutter and Markus Ullmann, editors, Proc. 2nd
International Conference on Security in Pervasive Computing, volume 3450 of
LNCS, pages 193–209. Springer-Verlag, 2005. (A preliminary version appeared
in WITS’03).

[21] A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate non-interference. In
Proc. IEEE Computer Security Foundations Workshop, pages 1–17, June 2002.

[22] R. Echahed and F. Prost. Handling declared information leakage. In Proc. Work-
shop on Issues in the Theory of Security, January 2005.

[23] R. Echahed and F. Prost. Security policy in a declarative style. In ACM Interna-
tional Conference on Principles and Practice of Declarative Programming, pages
153–163, July 2005.

[24] E. Ferrari, P. Samarati, E. Bertino, and S. Jajodia. Providing flexibility in infor-
mation flow control for object-oriented systems. In Proc. IEEE Symp. on Security
and Privacy, pages 130–140, May 1997.

[25] R. Focardi and R. Gorrieri. A classification of security properties for process
algebras. J. Computer Security, 3(1):5–33, 1995.

[26] R. Focardi, S. Rossi, and A. Sabelfeld. Bridging language-based and process cal-
culi security. In Proc. Foundations of Software Science and Computation Struc-
ture, volume 3441 of LNCS, pages 299–315. Springer-Verlag, April 2005.

[27] R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In Proc. ACM Symp. on Principles of
Programming Languages, pages 186–197, January 2004.

[28] R. Giacobazzi and I. Mastroeni. Adjoining declassification and attack models by
abstract interpretation. In Proc. European Symp. on Programming, volume 3444
of LNCS, pages 295–310. Springer-Verlag, April 2005.

[29] P. Giambiagi and M. Dam. On the secure implementation of security protocols. In
Proc. European Symp. on Programming, volume 2618 of LNCS, pages 144–158.
Springer-Verlag, April 2003.

[30] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc.
IEEE Symp. on Security and Privacy, pages 11–20, April 1982.

28

[31] J. A. Goguen and J. Meseguer. Unwinding and inference control. In Proc. IEEE
Symp. on Security and Privacy, pages 75–86, April 1984.

[32] A. Gordon and A. Jeffrey. Secrecy despite compromise: Types, cryptography, and
the pi-calculus. In Proc. CONCUR’05, number 3653 in LNCS, pages 186–201.
Springer-Verlag, August 2005.

[33] R. Heldal and F. Hultin. Bridging model-based and language-based security. In
Proc. European Symp. on Research in Computer Security, volume 2808 of LNCS,
pages 235–252. Springer-Verlag, October 2003.

[34] B. Hicks, D. King, and P. McDaniel. Declassification with cryptographic func-
tions in a security-typed language. Technical Report NAS-TR-0004-2005, Net-
work and Security Center, Department of Computer Science, Pennsylvania State
University, May 2005.

[35] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic updating of information-
flow policies. In Workshop on Foundations of Computer Security, pages 7–18,
June 2005.

[36] L. S. Hunt. Abstract Interpretation of Functional Languages: From Theory to
Practice. PhD thesis, Department of Computing, Imperial College of Science,
Technology and Medicine, 1991.

[37] Sebastian Hunt and Isabella Mastroeni. The per model of abstract non-
interference. In R. Giacobazzi, editor, Proc. Static Analysis, 12th International
Symposium (SAS’05), volume 3184 of LNCS. Springer-Verlag, 2005.

[38] R. Joshi and K. R. M. Leino. A semantic approach to secure information flow.
Science of Computer Programming, 37(1–3):113–138, 2000.

[39] J. Landauer and T. Redmond. A lattice of information. In Proc. IEEE Computer
Security Foundations Workshop, pages 65–70, June 1993.

[40] P. Laud. Semantics and program analysis of computationally secure information
flow. In Proc. European Symp. on Programming, volume 2028 of LNCS, pages
77–91. Springer-Verlag, April 2001.

[41] P. Laud. Handling encryption in an analysis for secure information flow. In
Proc. European Symp. on Programming, volume 2618 of LNCS, pages 159–173.
Springer-Verlag, April 2003.

[42] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In
Proc. ACM Symp. on Principles of Programming Languages, pages 158–170,
January 2005.

[43] P. Li and S. Zdancewic. Unifying confidentiality and integrity in downgrading
policies. In Workshop on Foundations of Computer Security, pages 45–54, June
2005.

29

[44] P. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-
time framework for protocol analysis. In ACM Conference on Computer and
Communications Security, pages 112–121, November 1998.

[45] G. Lowe. Quantifying information flow. In Proc. IEEE Computer Security Foun-
dations Workshop, pages 18–31, June 2002.

[46] H. Mantel. Possibilistic definitions of security – An assembly kit –. In Proc. IEEE
Computer Security Foundations Workshop, pages 185–199, July 2000.

[47] H. Mantel. Information flow control and applications—Bridging a gap. In Proc.
Formal Methods Europe, volume 2021 of LNCS, pages 153–172. Springer-Verlag,
March 2001.

[48] H. Mantel and A. Sabelfeld. A unifying approach to the security of distributed
and multi-threaded programs. J. Computer Security, 11(4):615–676, September
2003.

[49] H. Mantel and D. Sands. Controlled downgrading based on intransitive
(non)interference. In Proc. Asian Symp. on Programming Languages and Sys-
tems, volume 3302 of LNCS, pages 129–145. Springer-Verlag, November 2004.

[50] I. Mastroeni. On the role of abstract non-interference in language-based security.
In Proc. Asian Symp. on Programming Languages and Systems, volume 3780 of
LNCS. Springer-Verlag, November 2005.

[51] J. C. Mitchell. On abstraction and the expressive power of programming lan-
guages. Science of Computer Programming, 212:141–163, 1993.

[52] J. C. Mitchell. Probabilistic polynomial-time process calculus and security proto-
col analysis. In Proc. European Symp. on Programming, volume 2028 of LNCS,
pages 23–29. Springer-Verlag, April 2001.

[53] J. Mullins. Non-deterministic admissible interference. J. of Universal Computer
Science, 6(11):1054–1070, 2000.

[54] A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc.
ACM Symp. on Principles of Programming Languages, pages 228–241, January
1999.

[55] A. C. Myers and B. Liskov. A decentralized model for information flow control.
In Proc. ACM Symp. on Operating System Principles, pages 129–142, October
1997.

[56] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification.
In Proc. IEEE Computer Security Foundations Workshop, pages 172–186, June
2004.

[57] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification.
J. Computer Security, 14(2):157–196, May 2006.

30

[58] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nys-
trom. Jif: Java information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001–2004.

[59] S. Pinsky. Absorbing covers and intransitive non-interference. In Proc. IEEE
Symp. on Security and Privacy, pages 102–113, May 1995.

[60] G. D. Plotkin. LCF considered as a programming language. Theoretical Com-
puter Science, 5(1):223–255, December 1977.

[61] F. Pottier and S. Conchon. Information flow inference for free. In Proc. ACM
International Conference on Functional Programming, pages 46–57, September
2000.

[62] F. Prost. On the semantics of non-interference type-based analyses. In JFLA’001,
Journées Francophones des Langages Applicatifs, January 2001.

[63] A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterference? In
Proc. IEEE Computer Security Foundations Workshop, pages 228–238, June
1999.

[64] J. M. Rushby. Noninterference, transitivity, and channel-control security policies.
Technical Report CSL-92-02, SRI International, 1992.

[65] P. Ryan. Mathematical models of computer security—tutorial lectures. In R. Fo-
cardi and R. Gorrieri, editors, Foundations of Security Analysis and Design, vol-
ume 2171 of LNCS, pages 1–62. Springer-Verlag, 2001.

[66] P. Ryan and S. Schneider. Process algebra and non-interference. In Proc. IEEE
Computer Security Foundations Workshop, pages 214–227, June 1999.

[67] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
J. Selected Areas in Communications, 21(1):5–19, January 2003.

[68] A. Sabelfeld and A. C. Myers. A model for delimited information release. In
Proc. International Symp. on Software Security (ISSS’03), volume 3233 of LNCS,
pages 174–191. Springer-Verlag, October 2004.

[69] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded pro-
grams. In Proc. IEEE Computer Security Foundations Workshop, pages 200–214,
July 2000.

[70] A. Sabelfeld and D. Sands. A per model of secure information flow in sequential
programs. Higher Order and Symbolic Computation, 14(1):59–91, March 2001.

[71] A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In
Proc. IEEE Computer Security Foundations Workshop, pages 255–269, June
2005.

31

[72] D. Sands, J. Gustavsson, and A. Moran. Lambda calculi and linear speedups. In
The essence of computation: complexity, analysis, transformation, volume 2566
of LNCS, pages 60–82. Springer-Verlag, 2002.

[73] T. Terauchi and A. Aiken. Secure information flow as a safety problem. In
Proc. Symp. on Static Analysis, volume 3672 of LNCS, pages 352–367. Springer-
Verlag, September 2005.

[74] S. Tse and S. Zdancewic. Designing a security-typed language with certificate-
based declassification. In Proc. European Symp. on Programming, volume 3444
of LNCS, pages 279–294. Springer-Verlag, April 2005.

[75] D. Volpano. Secure introduction of one-way functions. In Proc. IEEE Computer
Security Foundations Workshop, pages 246–254, July 2000.

[76] D. Volpano and G. Smith. Verifying secrets and relative secrecy. In Proc. ACM
Symp. on Principles of Programming Languages, pages 268–276, January 2000.

[77] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analy-
sis. J. Computer Security, 4(3):167–187, 1996.

[78] S. Zdancewic. Challenges for information-flow security. In Proc. Programming
Language Interference and Dependence (PLID), August 2004.

[79] S. Zdancewic and A. C. Myers. Robust declassification. In Proc. IEEE Computer
Security Foundations Workshop, pages 15–23, June 2001.

32

