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Abstract

Computing systems often deliberately release (or declas-
sify) sensitive information. A principal security concern for
systems permitting information release is whether this re-
lease is safe: is it possible that the attacker compromises the
information release mechanism and extracts more secret in-
formation than intended? While the security community has
recognised the importance of the problem, the state-of-the-
art in information release is, unfortunately, a number of ap-
proaches with somewhat unconnected semantic goals. We
provide a road map of the main directions of current re-
search, by classifying the basic goals according to what in-
formation is released, who releases information, where in
the system information is released, and when information
can be released. With a general declassification framework
as a long-term goal, we identify some prudent principles of
declassification. These principles shed light on existing de-
finitions and may also serve as useful “sanity checks” for
emerging models.

1. Introduction

Computing systems often deliberately release (i.e, de-
classify or downgrade) sensitive information. Without a
possibility to leak secrets, some systems would be of no
practical use. For example, releasing the average salary
from a secret database of salaries is sometimes needed for
statistical purposes. Another example of deliberate informa-
tion release is information purchase. An information pur-
chase protocol reveals the secret information once a con-
dition (such as “payment transferred”) has been fulfilled.
Yet another example is a password checking program that
leaks some information about the password. Some informa-
tion is released even if a log-in attempt fails: the attacker
learns that the attempted sequence is not the same as the
password.
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Information release is a necessity in these scenarios.
However, a principal security concern for systems permit-
ting information release is whether this release is safe. In
other words, is it possible that the attacker compromises the
mechanism for information release and extracts more se-
cret information than intended? Applying this question to
the examples above: can individual salaries be (accidentally
or maliciously) released to the attacker in the average salary
computation? Can the attacker break an information pur-
chase protocol to extract sensitive information before the
payment is transferred? Is it possible that along with the re-
sult of password matching some other secret information is
sneaked to the attacker? This leads to the following gen-
eral problem:

What are the policies for expressing intentional
information release by programs?

Answering this questions is a crucial challenge [SM03,
Zda04] for information security. Because many systems
rely on information release, we believe that answering this
question satisfactorily is the key to enabling technology
transfer from existing information security research into
standard security practice.

While the security research community has recognised
the importance of the problem, the state-of-the-art in infor-
mation release comprises a fast growing number of defini-
tions and analyses for different kinds of information release
policies over a variety of languages and calculi. The rela-
tionship between different definitions of release is often un-
clear and, in our opinion, the relationships that do exist be-
tween methods are often inaccurately portrayed. This cre-
ates hazardous situations where policies provide only par-
tial assurance that information release mechanisms cannot
be compromised.

For example, consider a policy for describing what infor-
mation is released. This policy stipulates that at most four
digits of a credit card number might be released when a pur-
chase is made (as often needed for logging purposes). This
policy specifies what can be released but says nothing about
who controls which of the numbers are revealed. Leaving
this information unspecified leads to an attack where the at-
tacker launders the entire credit card number by asking to
reveal different digits under different purchases.
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This article does not propose any new declassification
mechanisms. Instead we focus on the variety of defini-
tions of security, in a language-based setting, which em-
ploy some form of declassification. We do not study spe-
cific proof methods, program logics, types systems or other
static analysis methods. The contributions of this article are
twofold:

Firstly, we provide a road map of the main declassi-
fication definitions in current language-based security re-
search (as a timely update on security policies from a survey
on language-based information-flow security [SM03]). We
classify the basic declassification goals according to four
axes: what information is released, who releases informa-
tion, where in the system information is released, and when
information can be released. Our classification includes at-
tempts to outline connections between hitherto unrelated
methods, as well as mark some clear distinctions, seeking to
crystallise the security assurance provided by some known
approaches.

Secondly, we identify some common semantic principles
for declassification mechanisms:

• semantic consistency , which states that security defini-
tions should be invariant under equivalence-preserving
transformations;

• conservativity, which states that the definition of secu-
rity should be a weakening of noninterference;

• monotonicity of release, which states that adding de-
classification annotations cannot make a secure pro-
gram become insecure. Roughly speaking: the more
you choose to declassify, the weaker the security guar-
antee. and

• non-occlusion, which states that the presence of de-
classifications cannot mask other covert information
leaks.

These principles help shed light on existing approaches and
should also serve as useful “sanity checks” for emerging
models.

2. Dimensions of declassification

This section provides a classification of the basic declas-
sification goals according to four axes: what information
is released, who releases information, where in the system
information is released, and when information can be re-
leased.

2.1. What

Partial, or selective, information flow policies [Coh77,
Coh78, JL00, SS01, GM04, GM05] regulate what informa-
tion may be released. Partial release guarantees that only a

part of a secret is released to a public domain. Partial re-
lease can be specified in terms of precisely which parts of
the secret are released, or more abstractly as a pure quan-
tity. This is useful, for example, when partial information
about a credit card number or a social security number is
used for logging.

The PER model of information A number of partial infor-
mation flow policies can be uniformly expressed by using
equivalence relations to model attacker knowledge (or, per-
haps more precisely, to model attacker uncertainty). Here
we outline this idea (and where it has been used previously),
before we go on to show how some recent approaches to de-
classification can be understood in these terms.

Suppose that the values of a particular secret range over
int, and that the value of the secret is not fixed—it is a pa-
rameter of the system. Without fixing a particular value for
the secret, one way to describe how much an attacker knows
(or can learn) about the secret is in terms of an equivalence
relation. In this approach an attacker’s knowledge about the
secret is modelled in terms of the attacker’s ability to distin-
guish elements of int. If the attacker knows nothing about
the secret then this corresponds to saying that, from the at-
tacker’s viewpoint, any value in int looks the same as any
other value. This is captured by the equivalence relation All

satisfying ∀m, n ∈ int, m All n. I.e., all values (or varia-
tions) of the secret look the same to the attacker. Knowledge
about the secret can be modelled by other, finer, equivalence
relations. For example, if the parity of a secret is to be re-
leased (and nothing else about the secret), then this knowl-
edge corresponds to a partition of the domain into the even
and the odd integers, i.e., the relation Parity satisfying:

m Parity n ⇐⇒ m mod 2 = n mod 2

Thus an attacker cannot distinguish any two elements in the
same equivalence class of Parity , because at most the par-
ity is known. At the other extreme, total knowledge of the
secret corresponds to the identity relation Id .

This model of information extends to a model of infor-
mation flow by describing how systems transform equiva-
lence relations. As shown in [SS01], this is equivalent to Co-
hen’s selective dependency [Coh77, Coh78], and is related
to the so-called unwinding conditions known from Goguen
and Messeguer’s work on noninterference and its descen-
dants [GM82, GM84].

It is worth remarking that noninterference in this pa-
per is mostly concerned with protecting the secret (high)
part of memory from the attacker who can observe the
public (low) part of memory. This view follows the data
protection view of noninterference, as it is often used in
language based security [Coh78, VSI96, SM03]. This is
somewhat different from the interpretation of noninterfer-
ence in event-based systems that is concerned with protect-
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ing the occurrence of secret events from public-level ob-
servers [FG95, Man00, Rya01]. For the relation between
these views, see [MS03, FRS05].

Suppose that we wish to express that a system leaks no
more than the parity of a given secret, then we assume that
the attacker already knows the parity, and show that noth-
ing more is learned. This is expressed by saying that if we
have any two possible values of the secret, m and n, such
that m Parity n, then the attacker-observable results of
running the system will be identical for these secrets. More
precisely, if s : int → int models, for particular public in-
puts, how the system maps the value of the secret to the ob-
servable output, then we write s :Parity⇒Id , meaning that

∀m, n.m Parity n =⇒ s(m) Id s(n)

In this notation standard noninterference (zero information
flow) property corresponds to s :All⇒Id .

The use of explicit equivalence relations to model such
dependencies appears in several places. In the security con-
text it was first introduced by Cohen. Also in the informa-
tion flow context, the mathematical properties of the lat-
tice of equivalence relations was explored by [LR93]. Par-
tial equivalence relations generalise the picture by dropping
the reflexivity requirement. A partial equivalence relation
(PER) over some domain D is just an equivalence relation
on E such that E ⊆ D. Hunt [Hun91], inspired by work
in the semantics of typed lambda calculi, introduced the use
of the lattice of PERs as a general static analysis tool, and
showed that they could be incorporated into a classic ab-
stract interpretation framework. Abadi et. al. [ABHR99] (as
well as Prost [Pro01]) use partial equivalence relations in
essentially the same way to argue the correctness of depen-
dency analyses. The present authors [SS01] showed how the
PER model can also be extended to reason about nonde-
terministic and probabilistic systems, and also showed that
not only the PER model generalises Cohen’s framework but
also other formulations such as Joshi and Leino’s logical
formulation, including the use of abstract variables [JL00].

Recently, abstract noninterference [GM04, GM05] has
been introduced by Giacobazzi and Mastroeni. The proper-
ties expressible using narrow abstract noninterference are
essentially the same as the (partial) equivalence relation
models.1 The relationship between the two approaches is
not completely straightforward, however. On the one hand
abstract noninterference is based on the general concept of
a closure operator, so can also represent classic abstract in-
terpretations. One tangible example of expressive power of-
fered by abstract noninterference is that disjunctive prop-
erties can be expressed. For example one can express that
at most one of secrets A and B are leaked. In the PER

1 Specifically, [GM04] notes “the PER model can easily be adapted to
cope with the weaker notion of abstract noninterference.”

model, this can only be approximated by saying that both
are leaked. On the other hand the use of partiality in the PER
setting – useful for example in describing security prop-
erties of higher-order functions, as well as security prop-
erties of the system as a whole – cannot be directly rep-
resented in the abstract noninterference setting. For non-
disjunctive properties, Clark et al. [CHM04] investigate
more concretely how abstract noninterference relates to the
PER model, and notably how nondeterminism is needed to
model the notion of weak observers—observers who can-
not see all the low values in the system.

The abstract noninterference framework allows for the
derivation of the most powerful attacker model for which a
given program is secure. This is achieved by either hiding
public output data (as little as possible) [GM04] or by re-
vealing secret input data (also as little as possible) [GM05].
Both cases contribute to the attacker’s model of data in-
distinguishability: the former is concerned with the indis-
tinguishability of the output while the latter treats the in-
distinguishability of the input. Yet Giacobazzi and Mas-
troeni refer to the former as “attacker models” and to the
latter—somewhat surprisingly—as “declassification”. The
latter is claimed to be adopted from robust declassifica-
tion [ZM01] by removing active attackers [GM04, GM05].
This classification does not agree with ours because, in our
view, robust declassification [ZM01] addresses the question
whether the declassification mechanism is robust against
active attackers, and therefore is a “who” property (as op-
posed to “what”). The key property of robust declassifica-
tion is that active attackers may not manipulate the system
to learn more about secrets than passive attackers already
know. When there are no active attackers (as in partial re-
lease), declassification is vacuously robust.

The basic idea of partial release based on (partial) equiv-
alence relations is simple and attractive. As we shall see
later, the fact that it is essentially an extensional definition
means that it is semantically well behaved.

Related approaches In the remainder of this section we ar-
gue that two other recent approaches to declassification can
be understood (at least in part) in terms of the “equivalence
class” approaches—even though at first glance they appear
to be of a rather different nature.

Delimited release Recent work by Sabelfeld and My-
ers [SM04] introduces a notion called delimited release.
It enables the declassification policy to be expressed in
terms of a collection of escape hatch expressions which
are marked within the program via a declassify anno-
tation. This policy stipulates that information may only be
released through escape hatches and no additional informa-
tion is leaked.

More precisely stated, a program satisfies delimited re-
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lease if it has the following property: for any initial mem-
ory state s and any state t obtained by varying a secret part
of s, if the value of all escape-hatch expressions is the same
in both s and t, then the publicly observable effect of run-
ning the program in state s and t will be the same.

Interestingly, this definition does not demand that the in-
formation is actually released via the declassify expressions
(even though the specific type system does indeed enforce
this)—only that the declassify expressions within the pro-
gram form the policy. As a rather extreme example, con-
sider

if true then l := h ∗ h else l := declassify(h ∗ h)

This satisfies delimited release: the secret characterised by
the expression h ∗ h is released to the public variable l, i.e.,
if we have two memories which differ only in h and for
which the respective values of h ∗ h are equal, then the re-
spective final values of l after running the above program
will also be equal. This example illustrates that even when
we know what information is released, it may be useful to
also know where it is released.

To see how delimited release relates to the PER model,
we note that every expression (or collection of expressions)
over variables in some memory state induces an equivalence
relation on the state. For any expression e, let JeK denote
the corresponding (partial) function from states to some do-
main of values. Let 〈e〉 denote the equivalence relation on
states (s, t, . . .) induced by JeK as follows:

s〈e〉t ⇐⇒ JeKs = JeKt

We generalise this to a set of expressions E as

s〈E〉t ⇐⇒ ∀e ∈ E.JeKs = JeKt

If we restrict ourselves to the two-point security lattice (for
simplicity) the delimited release property can be expressed
in the PER model as:

If E is the set of declassify expressions in the pro-
gram, then for all memory states s and t such that
the low parts of s and t are equal, and such that
s〈E〉t, then the respective low observable parts of
the output of running the program on s and t are
equal.

Sabelfeld and Myers also point out that delimited release
is more general than Cohen’s simple equivalence relation
view: declassification expressions may combine both high
and low parts of the state. This provides a form of condi-
tional release.2 For example, to express the policy: “declas-
sify h only when the initial value of l is non-zero” we can

2 The conditional noninterference notion from [GM84] is a predecessor
to the notion of intransitive noninterference discussed in Section 2.3
on “where” definitions.

just use the expression declassify(h ∗ l) since from this
the low observer can always reconstruct the value of h—
except when l is zero. A more general form of conditional
release is specified by expressions such as

if (payment > threshold ) then topsecret else secret

with the guarantee that the sensitive information stored in
topsecret is released if the value of the public variable
payment is greater than some constant threshold . Other-
wise, the less sensitive information secret is released.

Reflecting this idea back into the equivalence relation
view, this just corresponds to the class of equivalence re-
lations which are expressed in terms of the whole state and
not just the high part of the state.

Relaxed noninterference Li and Zdancewic [LZ05] ex-
press downgrading policies by labelling subprograms with
sets of lambda-terms which specify how an integer can
be leaked.3 They show that these labels form a lattice
based on the amount of information that they leak. This
is claimed to be closely related to intransitive noninterfer-
ence (discussed below). Here, however, we argue that the
lattice of labels from [LZ05] is closely related to the lat-
tice of equivalence relations, and thus the class of declas-
sification properties that can be expressed is similar to the
equivalence-relation class. The semantic interpretation of a
label l [LZ05][Def. 4.2.1] is closure operation:

{g′ | g′ ≡ g ◦ f, f ∈ l}

Intuitively we can think of the meaning of a given f ∈ l

as an abstraction of all possible ways in which a program
might use the result of the “leaky component” f .

In [LZ05] the equality relation (≡) in the above defini-
tion is taken to be a particular decidable syntactic equiva-
lence. We will refer to this original definition as an inten-
tional interpretation of labels. To relate labels to the PER
model we consider an extensional interpretation of labels
in which ≡ is taken to be semantic (extensional) equality.

We can map labels to equivalence relations (over the do-
main of secrets) using the same mapping as for delimited
release: if l is a set of lambda-terms, each with an integer-
typed argument, then we define the equivalence relation on
integers as:

m〈l〉n ⇐⇒ ∀f ∈ l.fm = fn

Without going into a detailed argument, we claim that the
extensional semantic interpretation of labels yields a sublat-
tice of the lattice of equivalence relations. Note in particu-
lar (as with the intentional definition) that the top and bot-
tom points in the lattice of labels are H ≡ {λx : int.c}

3 We focus here on the so-called local policies.
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(for some constant c), and L ≡ {λx : int.x}, which fol-
lowing the construction above can easily be seen to yield
the largest equivalence relation (All, which relates every-
thing to everything), and the smallest (the identity relation
Id ), respectively.

Downgrading is specified by actions of the form l1
a
 l2.

In the equivalence relation view this corresponds to saying,
roughly, that the action a maps arguments related by 〈l1〉
to results related by 〈l2〉, or, using the PER notation from
[Hun91, SS01]:

a : 〈l1〉 ⇒ 〈l2〉

The intentional interpretation makes finer distinctions
than the equivalence relation interpretation, and these dis-
tinctions are motivated by the requirement to express not
only what is released, but to provide some control of how
information is leaked. Take for example the policy consist-
ing of the single function λx.λy.x == y. In principle this
function can reveal everything about a given secret first ar-
gument, via suitably chosen applications. In the extensional
interpretation this policy is therefore equivalent to the pol-
icy represented by λx.x. However, the intentional interpre-
tation of labels distinguishes these policies – the intuition
being that it is much harder (slower) to leak information us-
ing the first function than using the second.

In conclusion we see that relaxed noninterference can be
understood in terms of PERS under an extensional interpre-
tation, but provides potentially more information with an
intentional interpretation. What is missing in this charac-
terisation is a clear semantic motivation for which inten-
tional equivalence is appropriate, and what general guar-
antees it provides. One suggestion4 is to use a complexity
preserving subset of extensional equivalence. This should
guarantee that the attacker cannot leak secrets faster than if
he literally used the policy functions. However it should be
noted that the syntactic equivalence from [LZ05] (which in-
clude, amongst other things, call-by-name β-equivalence)
is not complexity-preserving for the call-by-value compu-
tation model used therein. See [SGM02] for an exploration
of complexity preservation issues.

Quantitative abstractions Under the category “what” we
also include properties which are abstractions of “what.”
One extreme abstraction is to consider the quantity of in-
formation released. Thus we consider “how much” to be an
abstraction of “what.” The most direct representation of this
idea is perhaps the information-theoretic approach by Clark
et al [CHM02], which aims to express leakage in terms of
an upper bound on the number of information-theoretic bits.
The approach of Lowe [Low02] can be thought of as an ap-
proximation of this in which we assume the worst-case dis-
tribution. With this approximation the measure corresponds,

4 [Peng Li, personal communication]

roughly, to counting the number of equivalence classes in an
equivalence-relation model. For a framework that integrates
attacker belief into the analysis of quantitative information
flow in a language-based setting see recent work by Clark-
son et al. [CMS05].

2.2. Who

It is essential to specify who controls information release
in a computing system. Ignoring the issue of control opens
up attacks where the attacker “hijacks” release mechanisms
to launder secret information. Myers and Liskov’s decen-
tralized label model [ML00] offers security labels with
explicit ownership information (see, e.g., [FSBJ97, PC00,
BN05] for further ways of combining information flow and
access control). According to this approach, information re-
lease of some data is safe if it is performed by the owner
who is explicitly recorded in the data security label. This
model has been used for enhancing Java with information
flow controls [Mye99] and has been implemented in the Jif
compiler [MZZ+04].

The key concern about ownership-based models in gen-
eral is assurance that information release cannot be
abused by attackers. As a step to offer such an assur-
ance, Zdancewic and Myers have proposed robust declassi-
fication [ZM01] which guarantees that if a passive attacker
may not distinguish between two memories where the se-
cret part is altered then no active attacker may distinguish
between these memories.

Recent work by Myers et al. [MSZ04a] connects
ownership-based security labels and robust declassifica-
tion by treating ownership information as integrity infor-
mation in the data security labels. In this interpretation of
robust declassification, information release is safe when-
ever no change in the attacker-controlled code may ex-
tract additional information about secrets. Furthermore,
qualified robustness is introduced, which provides the at-
tacker with a limited ability to affect what information
may be released by programs. Dually to declassifica-
tion, an endorse primitive is used for upgrading the in-
tegrity of data. Once data is endorsed to be trusted, it can be
used in decisions on what may be declassified. Qualified ro-
bustness intentionally disregards the values of endorsed
expressions by considering arbitrary values to be possi-
ble outcomes of endorsement.

Tse and Zdancewic also take the decentralized label
model as a starting point. They suggest expressing own-
ership relations via subtyping in a monadic calculus and
show that typable programs satisfy two weakened versions
of noninterference: conditioned noninterference and certi-
fied noninterference [TZ05].
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2.3. Where

Where in a system information is released is an impor-
tant aspect of information release. By delegating particular
parts of the system to release information, one can ensure
that no other (potentially untrusted) part can release further
information.

Considering where information is released, we identify
two principal forms of locality:

Level locality policies describing where information may
flow relative to the security levels of the system, and

Code locality policies describing where physically in the
code information may leak.

The common approach to expressing the level local-
ity policies is intransitive noninterference [Rus92, Pin95,
RG99, Man01]. Recall that confidentiality policies in the
absence of information release are often regulated by con-
ventional noninterference [GM82, VSI96], which means
that public output data may not depend on (or interfere
with) secret input data. However, noninterference is over-
restrictive for programs with intentional information release
(average salary, information purchase, and password check-
ing programs are flatly rejected by noninterference). Intran-
sitive noninterference is a flow-control mechanism which
controls the path of information flow with respect to the var-
ious security levels of the system. For standard noninterfer-
ence the policy is that information may flow from lower to
higher security levels in a partial order (usually a lattice)
of security levels. The partial order relation between levels
x ≤ y means that information may freely flow from level
x to level y, and that an observer at level y can see infor-
mation at level x. Since the flow relation ≤ is a partial or-
der it is thus always transitive. Intransitive noninterference
allows more general flow policies, and in particular flow re-
lations which are not transitive. The canonical example (but
not the only use of intransitive noninterference) is the pol-
icy that says that information may flow from low to high,
and from high to a declassifier level, and from the declassi-
fier level to low, but not directly from high to low. The de-
finition of intransitive noninterference must ensure that all
the downgraded information indeed passes through the de-
classifier, and is thereby controlled.

Mantel [Man01] introduced a variant of this idea which
separates the flow policy into two parts: a standard flow lat-
tice (≤), together an intransitive downgrading relation ( )
for exceptions to the standard flow. This has been adapted
to a language-based setting by Mantel and Sands [MS04],
in which both kinds of locality are addressed: intransitive
flows at the lattice level, associated to specific downgrad-
ing points in the code.

Code locality can be thought of as a simple instance of
intransitive noninterference based loosely on the idea of all

“leaks” passing through a declassification level. Roughly
speaking, the declassification constructs in the code can be
thought of as the sole place where information should vi-
olate the standard flow policy. Thus the definition of in-
transitive noninterference should ensure that the only in-
formation release in the system passes through the in-
tended declassifications and nothing more. With this simple
view, the approaches of Ryan and Schneider (so called con-
strained noninterference [RS99]), Mullins5 [Mul00], Bossi
et al. [BPR04], and Echahed and Prost [EP05] could also be
seen as forms of intransitive noninterference.

Most recently, Almeida Matos and Boudol [AB05] de-
fine a notion of non-disclosure. They introduce an elegant
language construct flow F in M to allow the current flow
policy to be extended with flows F during the computation
of M . To define the semantics of non-disclosure the opera-
tional semantics is extended with policy labels. This could
be seen as a generalisation of the “default base-policy +
downgrading transitions” found in Mantel and Sands’ work.
Although developed independently, the bisimulation-based
definition of security is very close to that of Mantel and
Sands, albeit less fine grained and focused purely on code
locality.

2.4. When

The fourth dimension of declassification is the tempo-
ral dimension, pertaining to when information is released.
We identify three broad classes of temporal release specifi-
cation:

Time-complexity based Information will not be released
until, at the earliest, after a certain time. Time is an as-
ymptotic notion typically relative to the size of the se-
cret.

Examples of this category include Volpano
and Smith’s relative secrecy and one-way func-
tions [VS00, Vol00]. In these cases the security
definition says that the attacker cannot learn the (en-
tire) value of a secret of size n in polynomial time.
Putting it another way, the secret may be leaked only
after non-polynomial time. This is related to the ap-
proaches found in Laud’s work [Lau01, Lau03] and
Mitchell et. al.’s work on polynomial-time process cal-
culus (see, e.g., [LMMS98, Mit01]). Here the attacker
is explicitly given only polynomial computational
power, and under these assumptions the system satis-
fies a noninterference property.

5 Despite the similarity in terminology, there is no tight relation between
Mullins’ admissible interference [Mul00] and Dam and Giambiagi’s
admissibility [DG00]; in fact the two conditions emphasise different
dimensions of declassification.
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Probabilistic With probabilistic considerations one can
talk about the probability of a leak being very small.
This aspect is also included in Mitchell et. al.’s work,
and complexity-theoretic, probabilistic and intransi-
tive noninterference are combined in recent work of
Backes and Pfitzmann [BP03]. The notion of approx-
imate noninterference from [DHW02] is more purely
probabilistic: a system is secure if the chance of an at-
tacker making distinctions in the values of secrets
is smaller than some constant ε. We view this (ar-
guably) as a temporal declassification since it es-
sentially captures the fact that secrets are revealed
infrequently.

Relative A non-quantitative temporal abstraction involves
relating the time at which downgrading may occur to
other actions in the system. For example: “downgrad-
ing of a software key may occur after confirmation of
payment has been received.”

The work of Giambiagi and Dam [GD03] focuses
on the correct implementation of security protocols.
Here the goal is not to prove a noninterference prop-
erty of the protocol, but to use the components of
the protocol description as a specification of what and
when information may be released. The idea underly-
ing the definition of security in this setting is admissi-
bility [DG00]. Admissibility is based on invariance of
the system under systematic permutations of secrets.

Chong and Myers’ security policies [CM04] ad-
dress when information is released. This is achieved
by annotating variables with types of the form `0

c1

 

· · ·
ck

 `k, which intuitively means that a variable with
such an annotation may be subsequently declassified to
the levels `1, . . . , `k, and that the conditions c1, . . . , ck

will hold at the execution of the corresponding declas-
sification points. An example of a possible domain of
conditions is predicates on the variables in the pro-
gram.

3. Some principles for declassification

In addressing the issue of what constitutes a satisfactory
information release policy, it is crucial to adequately rep-
resent the attacker model against which the system is pro-
tected. A highly desired goal is a declassification framework
that allows for modelling the different aspects of attackers,
enabling the system designer to tune the level of protec-
tion against each of the dimensions. As a first step toward
such a framework, we suggest some principles for declassi-
fication intended to serve as sanity checks for existing and
emerging declassification models.

This section discusses the semantic consistency, conser-
vativity, monotonicity of release, non-occlusion, and trail-
ing attack principles. For convenience, a partial mapping of

these principles to some of the models from the literature is
collected in Figure 1.

3.1. Semantic consistency

This principle has its roots in the full abstraction prob-
lem [Plo77, Mit93], which has important implications for
computer security [Aba98]. Full abstraction is about pre-
serving equivalence by translation from one language to an-
other. Viewing equivalence as the attacker’s view (cf. Sec-
tion 2) of the system, semantic consistency ensures that the
view (and hence the security of the system) is preserved
whenever some subprogram c is replaced by a semantically
equivalent program d (where neither c nor d contains de-
classification). Hence, the first principle:

SEMANTIC CONSISTENCY

The (in)security of a program is invariant
under semantics-preserving transformations of
declassification-free subprograms.

This principle aids in modular design for secure systems.
It allows for independent modification of parts of the sys-
tem with no information release, as long as these modifica-
tions are semantics-preserving. A possible extension of this
principle would be one that also allows modification of code
with information release, as long as new code does not re-
lease more information.

We inspect each of the release dimensions and list some
approaches that satisfy this principle (and some that do not).

What Models capturing what is released are generally se-
mantically consistent. Because what is released is
described in terms of program semantics, chang-
ing subprograms by semantically equivalent ones
does not make a difference from the security defini-
tion’s point of view. This argument applies to partial
release [Coh78, JL00, SS01, GM04, GM05], delim-
ited release [SM04]6. Relaxed noninterference [LZ05]
aims to provide more than just “what” proper-
ties, and does so through the use of a decidable notion
of equivalence (as discussed in section 2.1). Thus se-
mantic consistency fails when we transform outside of
this relation.

Who The attacker’s view in the robust declassification
specification [MSZ04a] is defined by low-level indis-
tinguishability of traces up to high-stuttering (traces
must agree on the sequence of assignments to low
variables). Assuming that semantic equality im-
plies low-level indistinguishability, the end-to-end

6 As elsewhere, we state this without proof (and hence with due reser-
vations), as proofs would require a lot of detail to be given.

7



What

Property
Semantic

consistency
Conservativity

Monotonicity
of release

Non-
occlusion

Partial release [Coh78, JL00, SS01, GM04, GM05] X X N/A X

Delimited release [SM04] X X X X

Relaxed noninterference [LZ05] × X X X

Naive release X X X ×

Who
Robust declassification [MSZ04a] X∗ X X X

Qualified robust declassification [MSZ04a] X∗ X × ×

Where
Intransitive noninterference [MS04] X∗ X × X

When
Admissibility [DG00, GD03] × X × X

Noninterference “until” [CM04] × × X X

Typeless noninterference “until” X
∗

X × ×

∗ Semantic anomalies

Figure 1. Checking principles of declassification.

nature of robustness ensures that exchanging semanti-
cally equivalent subprograms may not affect program
security. This argument extends to qualified robust-
ness [MSZ04a]. This characterisation is insensitive to
syntactic variations of subprograms that are free of de-
classification as long as their semantics are preserved
(which, for example, means that reachability is not af-
fected).

Where The language-based intransitive noninterfer-
ence condition of Mantel and Sands [MS04] satisfies
semantic consistency. The definition of intransi-
tive noninterference is built on top of a notion of
k-bisimulation, where k is a security level. The ba-
sic idea is that when a declassification step occurs be-
tween two levels l and m, then (i) nothing other than
that visible at level l is released, and (ii) it is only vis-
ible to the observer at level k if m ≤ k (i.e. k is au-
thorised to see information at level m). After each
step the bisimulation definition (following [SS00]) re-
quires the program parts of the configurations be
again bisimilar in all states. This is a form of “pol-
icy reset”, and the same approach is adopted in
non-disclosure [AB05].

Bossi et al’s condition [BPR04] is described in an
extensional way which strongly suggests that it also
satisfies semantic consistency. Echahed and Prost’s
condition [EP05] is based on a rather unusual gen-
eral computational model (a mixture of term-rewriting,

constraint, and concurrent declarative programming)
which makes it more difficult to assess.

When The semantic consistency principle critically de-
pends on the underlying semantics. For complexity-
sensitive security definitions [VS00, Vol00, Lau01,
Lau03, LMMS98, Mit01], semantic consistency re-
quires complexity-preserving transformations. Other-
wise, for example, a program which cannot leak in
polynomial time could be sped up by a transformation
that compromises security.

Dam and Giambiagi’s admissibility [DG00, GD03]
does not satisfy the semantic consistency principle.
Due to the syntactic nature of admissibility, it is pos-
sible to replace functions in the declassification proto-
col with semantically equivalent ones so that admissi-
bility is not preserved. Take policy P that only allows
leaking secrets via function f (which could be, for ex-
ample, an encryption function). A program S = f(h)
is then admissible with respect to P . However, sup-
pose the semantics of f is the identity function. Chang-
ing the program S by a semantically equivalent pro-
gram S′ = h results in a program that is not admissi-
ble with respect to P . Notice that this is an instance of
a general phenomenon: syntactic definitions of secu-
rity are bound to violate the semantic robustness prop-
erty. In the case of admissibility, recent unpublished re-
sults [DG03] introduce semantic information into ad-
missibility policies via flow automata. This appears
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to be a useful feature for recovering semantic consis-
tency.

Chong and Myers’ noninterference “until” [CM04]
is somewhat different, in that they first define a base
security type-system for a mini ML-like language for
handling noninterference, and then define the intended
security condition, but only over terms which are ty-
pable according to the base security type system.

No security definition which demands that terms are
typed according to a security type system (or any other
computable analysis) can satisfy the semantic consis-
tency principle with respect to all programs. This fol-
lows from a simple computability argument: seman-
tic equivalence is typically not recursively enumerable,
but the set of “typable” programs is either recursive or
at the very least recursively enumerable. Thus there are
pairs of equivalent terms for which one is typable and
the other is untypable. An untypable term, according
to such a definition, cannot be considered secure.

Definitions which depend on such specific analy-
ses are not entirely satisfactory as semantic definitions.
For example, a program such as

if h > h then l := 0

would be considered insecure by the definition since
the type system makes the usual coarse approxima-
tions. In order to recover semantic consistency, the ob-
vious fix is to lift the restriction that the definition ap-
plies to well-typed programs. Along with our analysis
of the noninterference “until” definition from [CM04],
presently we also explore the consequences of this
generalised definition, which we refer to as typeless
noninterference “until”. Most recently, a similar gen-
eralisation has been defined by Chong and Myers in or-
der to combine declassification and so-called erasure
policies [CM05].

Semantic anomalies The notion of semantic consistency
is, of course, dependent on the underlying semantic model.
The base-line semantic model can be thought of as defin-
ing the attacker’s intrinsic observational ability. In many
cases the base-line semantics is not given explicitly. How-
ever, the definition of security is often built from a notion
of program equivalence which takes into account security
levels. In such cases it is natural to induce the “base-line”
semantics—the attacker’s observational power—by consid-
ering the notion of equivalence obtained by assuming the
degenerate one-point security lattice.

Having done this we can observe whether the induced se-
mantics is a “standard” one. In the case that it is nonstandard
we call this a semantic anomaly, which reflects something
about our implicit attacker model. The presence of seman-

tic anomalies means that semantic consistency only holds
for that specific semantics.

We noted that the complexity-based definitions nat-
urally require that the semantic model which preserves
complexity—i.e., that the notion of equivalence must
take into account computational complexity. This is per-
haps not standard, but rather natural in this setting. We
point out several examples of clear semantic anom-
alies, coming from Myers et al.’s robust declassifica-
tion [MSZ04a], Mantel and Sands’ version of intransi-
tive noninterference [MS04], Almeida Matos and Boudol’s
non-disclosure property [AB05], and the typeless vari-
ant of noninterference “until.” Each of these has an attacker
model which turns out to be stronger than strictly neces-
sary, and thus only satisfy semantic consistency under a
stronger than usual semantic model.

• In the case of [MSZ04a] the semantic model allows the
attacker to observe the sequence of low assignments
(up to stuttering). This means that for any low vari-
able l, the command l := l is considered semantically
distinct from skip, since the former contains a low as-
signment and the latter does not.

• In the case of [MS04], the semantic model is explic-
itly given as a strong bisimulation, so that only com-
putations which proceed at the same speed are consid-
ered equivalent. It is argued, with reference to [SS00],
that this allows for useful attacker models in which the
attacker controls the thread scheduler. However, with
a courser base-line model it is not immediately clear
what an appropriate definition of intransitive noninter-
ference should be.

• The implicit semantics of [AB05] is arguably most
anomalous of those considered here. This is due to the
fact that their language contains local variables. These
do not fit well with the stateless bisimulation-based no-
tion of equivalence that is induced. Consider the fol-
lowing example, using the usual two level base policy:

let uL = ref false in

if !uL then vL := wH

where !uL returns the value that the reference uL

points to. This program is considered insecure, be-
cause the semantics induced by the notion of bisim-
ulation assumes that the insecure command vL := wH

is reachable, even though it is clearly unreachable in
any context. Here the anomaly cannot be described in
terms of what the attacker can observe, but rather as
an implicit assumption that the attacker can even mod-
ify the value of local variables. This is clearly stronger
than necessary.

• For typeless noninterference “until”, there are techni-
cal issues with the definition of noninterference which
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assumes that an attacker can distinguish what would
be normally considered equivalent functions. As a re-
sult, the program below is considered insecure:

if xh then ref(λx.x + 1) else ref(λx.1 + x)

This could be seen as a failure of semantic consistency,
since transforming 1 + x into x + 1 would make the
program secure. However, we view this problem as a
minor technical artifact that could be fixed for example
by only allowing the attacker to observe stored values
of ground type.

3.2. Monotonicity of security

Declassification effectively creates a “hole” in the secu-
rity policy. For a given security definition, a program such
as l := h might well be considered insecure, but adding a
declassification to get l := declassify(h) and the pro-
gram may well be considered secure. So the natural starting
point—the base-line policy—is that absence of declassifica-
tion in a program or policy implies that the program should
have no insecure information flows. On the other hand, the
more declassifications that a program contains, the weaker
the overall security guarantee.

This leads to two related principles: conservativ-
ity, which says that security conservatively extends the no-
tion of security for a language without declassification, and
monotonicity of release based on the monotonicity of secu-
rity with respect to increase in declassification annotations
in code (the more declassifications you have the more “se-
cure” you become). Let us consider each of these principles
in turn.

It is sensible to require that programs with no declassi-
fication satisfy a standard security property that allows no
secret leaks, as commonly expressed by some form of non-
interference [GM82]. As before, we use the term noninter-
ference to refer to the standard zero information flow policy
for the language. We arrive at a principle that requires de-
classification policies to be conservative extensions of non-
interference:

CONSERVATIVITY

Security for programs with no declassification
is equivalent to noninterference.

Notice that this principle is straightforward to enforce by
making it a part of security definition, which would have
the flavour of “a program is secure if either it is noninter-
fering or it contains declassification and satisfies some in-
formation release policy.” Often the conservativity princi-
ple holds trivially as it is built directly from a definition of
noninterference.

Nevertheless, noninterference “until” [CM04], in the
case when there is no declassification in either the pol-
icy or code, yields a strict (decidable) subset of nonin-
terference. So, taking the same example as previously,
if h > h then l := 0 is considered insecure be-
cause the type system rejects it. Thus the definition does
not strictly satisfy conservativity.

Many mechanisms for declassification employ annota-
tions to the code (or some other specification) which denote
where a declassification is intended. Operationally these
declassification annotations do not interfere with normal
computation. At the level of annotations, the more declas-
sify statements in a program, the weaker the overall secu-
rity guarantee. This common-sense reasoning justifies the
monotonicity of release principle:

MONOTONICITY OF RELEASE

Adding further declassifications to a secure pro-
gram cannot render it insecure.

or, equivalently, an insecure program cannot be made se-
cure by removing declassification annotations.

We now revisit the dimensions of release and apply the
monotonicity of release principle to security characterisa-
tions along the different classes.

What Most of the examples in this class (that we have con-
sidered) express policies extensionally, so they do not
rely on annotations to define the semantics of declas-
sification. One exception is delimited release, which
uses the collection of annotations in the code to de-
termine the global policy. Adding an annotation gives
the attacker more knowledge, so there is less remain-
ing to attack. Thus if a system is secure with respect
to a given degree of attacker knowledge, adding more
knowledge will never make it insecure. In the PER in-
terpretation this is just a standard monotonicity prop-
erty: if a system, when presented with any two states
related by some binary relation R produces equivalent
observable outputs, then the same will be true when re-
placing R by any S such that S ⊆ R.

Who Declassification annotations are not used by the se-
mantic definition of robustness [MSZ04a] (although
these annotation are used in the static analysis). There-
fore, program security is invariant under the removal
or addition of declassification annotations. The sit-
uation is different with qualified robustness, how-
ever [MSZ04a]. Endorsement statements have a
scrambling semantic interpretation that allows for ar-
bitrary values to be the outcome of endorse. Inspired
by “havoc” commands [JL00], this semantic treat-
ment allows the difference between two values of
a variable to be “forgotten” by forcing this vari-
able to take an arbitrary value. This is justified
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when each endorse is preceded by a placeholder for
attacker-controlled code [MSZ04b]. In this case, ar-
bitrary values may be set to attacker-controlled
variables when the control reaches the endorse. How-
ever, in general the scrambling interpretation of
endorse (or declassify) might lead to the reachabil-
ity of code that is otherwise dead. Dead code may
mask security flaws in the program by, for instance, di-
verging.

It is not necessary to introduce endorsement in or-
der to explain these reachability issues in security de-
finitions. Consider two types of declassification, by
scrambling the source and target of declassification, re-
spectively. The intention is to “forget” the effect of de-
classification by requiring the source h (or target l) of
a declassification operation l := declassify(h) to
take any possible value. Under the former, the seman-
tic treatment of declassification is specified nondeter-
ministically by

〈declassify(h), s〉 −→ val

for all val , which corresponds to the configuration with
the expression declassify(h) under some memory s

that evaluates to any val . Under the latter, the scram-
bling is done at the result of declassification:

〈l := declassify(h), s〉 −→ s [l 7→ val ]

which does not affect the value of h but makes
any value of l a possible outcome of declassifica-
tion. With the respective semantic interpretations of
declassify, the security condition is possibilistic non-
interference, requiring the indistinguishability of pos-
sibilities for low-level output as high-level input is
varied. We now see why both of these interpreta-
tions break the monotonicity of release. Consider the
program:

h := 0;
l := declassify(h);
if l = 42 then l′ := h′

The programs is clearly secure if declassification is re-
moved. In the presence of declassification, however,
the value of l might become 42 under both scrambling
semantics, and thus the insecure code l′ := h′ becomes
reachable. Hence, the program is insecure under both
semantics, which contradicts the monotonicity of re-
lease.

Where The annotations of [MS04] apply to simple assign-
ment statements. From a local perspective these would
seem to satisfy the monotonicity principle, since the
conditions required for a normal assignment statement
are strictly stronger than for a downgrading statement.

However, the fly in the ointment, as far as monotonic-
ity is concerned, is that the definition effectively as-
sumes that the attacker can observe the fact that a de-
classification operation is being performed, regardless
of its content. Thus a program such as

if h = 42 then declassify(l := l) else l := l

is insecure, because an attacker observing the presence
or absence of a declassification action learns whether
h was 42 or not. Removing the declassification makes
the program secure.

However, in this case the fix to the definition from
[MS04] seems straightforward: when nothing is leaked
by the declassification then it can be viewed as a non-
declassification, and vice-versa.

When Complexity-based and probabilistic declassifica-
tions are expressed extensionally, so the monotonicity
principle does not apply.

For other temporal declassification conditions there
is potential for monotonicity of release to fail for gen-
eral reasons. Programs may contain declassifications
which are in fact harmless—i.e., they do not violate
noninterference, such as the declassification of a con-
stant. But if the policy refers directly to the presence
or absence of the declassification operation itself, then
the very fact that a declassification statement is present
in the code—albeit harmless—may cause it to violate
the policy. Removing the declassify annotation might,
by the same token, cause the policy to be satisfied.

By this argument, it is possible to show that admis-
sibility [DG00, GD03] does not satisfy the monotonic-
ity of release principle. The semantics of the proto-
col that specifies declassification is abstracted away,
enabling harmless declassification to be disguised by
the protocol’s syntactic representation. Similar to se-
mantic consistency, monotonicity of release is likely
to be recovered for admissibility by introducing se-
mantic information about declassification via flow au-
tomata [DG03].

Typeless noninterference “until” also fails
monotonicity of release. One example, following
the general reasoning above, is when the conditions
used to trigger declassifications refer to declassifica-
tions themselves. A natural example would be a pol-
icy that says that A can be declassified if B has not
been declassified, and vice-versa. This ensures that
at most one of A and B are declassified—an inter-
esting policy if A is the one-time pad and B is the
encrypted secret. Now suppose that a program de-
classifies A, but contains a harmless declassification
for B (i.e. one that does not actually reveal any-
thing about B). The program is insecure accord-
ing to the policy, but if the declassification is removed
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from the harmless release of B the program be-
comes secure. Note that monotonicity of release is
preserved by noninterference “until” [CM04] be-
cause declassification conditions are simply assumed
to always be guaranteed by typed programs.

3.3. Non-occlusion

Whenever declassification is possible, there is a risk of
laundering secrets not intended for declassification. Laun-
dering is possible when, for example, declassification in-
tended only for encrypted data is applied to high plaintext.
This is an instance of occlusion. A principle that rules out
occlusion can be informally stated as follows:

NON-OCCLUSION

The presence of a declassification operation
cannot mask other covert information leaks.

The absence of occlusion is a useful property of information
release. Generally, declassification models along the “what”
dimension satisfy this principle. Occlusion is avoided be-
cause covert flows, by the spirit of “what” models, should
not increase the effect of legitimate declassification.

Occlusion is prevented in robust declassifica-
tion [MSZ04a] because declassification annotations in
code may not affect robustness (and hence all declassifica-
tion is considered intended as long as the attacker may not
affect it). Also, intransitive noninterference [MS04] suc-
cessfully avoids occlusion by resetting the state (and
thus the effect of each declassification), as a conse-
quence of small-step compositional semantics.

However, qualified robustness [MSZ04a] and noninter-
ference “until” [CM04] (when typability of programs is not
required) are both subject to occlusion.

Occlusion in qualified robustness [MSZ04a] can be il-
lustrated by occlusion in the source- and target-scrambling
release definitions from Section 3.2. Indeed, slightly modi-
fying the example we receive the program:

h := 0;
l := declassify(h);
if l = 42 then loop;
l′ := h′

where loop is an always diverging program. The program
is clearly insecure because it leaks h′ into l′. However,
under the scrambling semantics, the value of l might be-
come 42 after declassification, implying possible nonter-
mination for any input state. Under termination-insensitive
possibilistic noninterference (as, e.g., described by lower-
powerdomain PERs [SS01]), possible nontermination un-
der all initial memories implies security. Hence the program
above is deemed secure with respect to both source- and
target-scrambling definitions.

A generalisation of security policies “until” [CM04]
to all programs (typeless noninterference “until”) leads to
occlusion. Because the security condition only considers
c1 . . . ck-free traces, i.e., traces that have not reached the
last declared declassification, it is insensitive to injections
of harmful code with unintended leaks after the last declas-
sification. For instance, consider a password checking ex-
ample from [CM04]:

intHsecret := . . . ;
intHpwd := . . . ;
intHguess := getUserInput();
booleanH test := (guess == pwd );
booleanLresult := declassify(test , H  L);
. . .

and inject code that leaks secret at level H after the pass-
word is checked. This leak is not prevented despite the fact
that the security condition is variable-specific (i.e., it states
noninterference “until” for each variable separately). Note
that the original version of noninterference “until” [CM04]
prevents such attacks by considering untyped programs as
insecure from the outset. The two programs above provide
evidence that the following general principle (which can be
viewed as an instance of non-occlusion) is not satisfied:

TRAILING ATTACKS

Appending an insecure program with fresh vari-
ables to a secure terminating program should
not result in a secure program.

One way of protecting against trailing attacks could be to
introduce a special level `T that corresponds to termination
and require that any declassified data be declassified to `T

at the end of overall computation.
Consider a naive release policy that states that a program

is secure if for any two runs either they preserve low equiv-
alence of traces, or one of them executes a declassify state-
ment. Clearly, this policy satisfies semantic consistency as
semantics-preserving transformation of subprograms with-
out declassification may not affect indistinguishability of
traces for low-level observer. It also satisfies conservativity,
by definition. Further, monotonicity of release also holds
because the removal of declassification from an insecure
program (there must exist a pair of traces without declas-
sification that are not low-indistinguishable) may only re-
sult in an insecure program (by the same pair of traces). Al-
though these principles hold, they are not sufficient for se-
curity assurance. This is reflected by occlusion, which naive
release suffers from.

A final remark on the principles is that they are not in-
tended to be universally necessary for all declassification
policies. For example, sometimes policies are of syntac-
tic nature by choice (as, for instance, admissibility), which
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makes it infeasible to guarantee appealing semantic princi-
ples. However, we argue that if one of the principles fails, it
is an indication of a potential vulnerability that calls for par-
ticular attention as to why the principle can be relaxed.

4. Conclusion

Seeking to enhance understanding of declassification,
we have provided a road map to the area of information
release. The classification of declassification policies ac-
cording to “what,” “who,” “where,” and “when” dimen-
sions has helped clarify connections between existing mod-
els, including the cases when these connections were not,
in our opinion, made entirely accurate in the literature.
For example, abstract noninterference [GM04, GM05] and
relaxed noninterference [LZ05] fall under “what” models
in our classification, which disagrees with connections to
“who” and “where” definitions made in the respective orig-
inal work. Another example is the deceptively akin admissi-
bility [DG00] and admissible interference [Mul00] that ad-
dress different dimensions of declassification (“when” and
“where”).

This paper is a step toward the goal of developing poli-
cies that allow combinations of policies from the individ-
ual dimensions into solid policy perimeter defence. Perime-
ter defence is a standard principle of network security: as
systems are no more secure than their weakest points, they
must be defended across the entire perimeter of the network.
The ambition with policy perimeter is to prevent attackers
from penetrating systems via weakly defended dimensions
of information release.

For this to be possible we must have a better understand-
ing of the implications of our security definitions—even
more so in the presence of declassification. We have sug-
gested some prudent principles of declassification that fur-
ther help to avoid vulnerabilities in release policies, and pro-
vide tools for better understanding declassification defini-
tions. Measuring our own previous work on declassification
against these principles has revealed anomalies and “arti-
facts” that had previously gone unnoticed, and we suggest
that the principles should serve as useful “sanity checks” for
emerging models.
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