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This article studies composed reduction systems: systems of programs built up
from the reduction relations of some reduction system, by means of parallel and
sequential composition operators. The Calculus of Gamma Programs previously
studied by Hankin et al are an instance of these systems in the case where the
reduction relations are a certain class of multi-set rewriting relations. The trace-
based compositional semantics of composed reduction systems is considered, and
a new graph-representation is introduced as an intermediate program form which
seems well-suited to the study of compositional semantics and program logics.

1 Introduction

Reduction systems ? are simply sets equipped with some collection of binary

“rewrite” relations. A reduction systems can be thought of as an abstract
view of computation, embodying the fundamental computational concepts of
wteration, termination, and nontermination. Computation is the process of
repeatedly rewriting, beginning with some object of the set, and termination
corresponds to obtaining an object which cannot be rewritten further; nonter-
mination is the ability to rewrite indefinitely.

Since reduction systems have little structure, there are relatively few prop-
erties one can state about theses systems, although unique-termination (aka
“Church-Rosser”) properties of reduction systems have been studied by eg.
Rosen ', Hindley 2, Staples?.

In this paper we consider systems (“programs”) whose basic components
are the reduction relations of some reduction system. These systems, which
we call composed reduction systems, are built by composing reduction relations
with two natural composition operators: parallel and sequential composition.
Composed reduction systems are not necessarily reduction systems, but they
possess a notion of a “reduction step”, and a corresponding notion of termina-
tion.

e Parallel composition allows arbitrary interleaving of reduction steps. In
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the simplest case, the parallel composition of two reduction relations cor-
responds to the union of these relations. Parallel composition terminates
when, simultaneously, both sub-systems have terminated.

e Sequential composition, on the other hand, takes us outside the realm of
reduction systems (over the given set). The sequential composition of two
reduction relations is the system which behaves like the first reduction
relation, until termination of the first system, after which it behaves
like the second system. The sequentially composed system is said to
terminate when the second sub-system has terminated.

Note, then, that the sequential composition of two reduction relations (the
simplest case) is not the relational composition of these relations. Composed
reduction systems over a given reduction system are built from arbitrary se-
quential and parallel compositions of reduction relations.

In this paper we study the semantics of composed reduction systems, ex-
pressed in terms of its constituent reduction relations.

In the first part of the paper (Section 2) we consider a standard composi-
tional semantics based on transition traces (sequences of object-pairs) derived
from the SOS-like rules which give the operational semantics for composed
reduction systems. Transition traces are adequate for describing various ob-
servational precongruences. We outline some of the program laws that can be
obtained. Section 3 introduces a static graph representation for programs as
an intermediate form. This representation is sufficiently abstract to describe a
number of refinement laws, and reasoning about refinement based on graphs (or
more specifically, on the paths of graphs) is described in Section 4. Section 5
presents a simple Hoare-logic for reasoning about graphs. Section 6 discusses
the specific instance of composed reduction systems, namely the Calculus of
Gamma programs *, and shows how a number of properties of an alternative
definition of parallel composition® are made transparent by representation in
graph-form.

Related Work and Applications This work grew out of the study of com-
position of specific kind of reduction system, namely programs in the Gamma
model, which can be thought of as conditional associative-commutative string
rewriting. The composition operators for Gamma were introduced by Hankin
et al?. The compositional semantics and laws were studied by Sands 7 8; the
development of section 2 is a direct (and straightforward) adaptation to this
more general setting. The graph representation in section 3 is new, and is
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particularly relevant from the point of view of composed Gamma programs. ¢

The techniques given here may also be interesting when applied to other
concrete reduction systems. In particular we have in mind rewriting systems
in which the objects rewritten have some structure (eg. trees, graphs, strings),
and the reduction relation is specified by rules for rewriting a substructure,
in terms of purely local conditions. For such systems (eg. the usual notion
of term rewriting ? 1) there is a natural (implicit) notion of concurrency, viz.
disjoint parts of a substructure can be rewritten asynchronously, and hence
concurrently. This view of rewriting as a natural vehicle for concurrency and
parallel programming is central to Meseguer’s approach ' 12; the composition
operators studied here also make sense in that setting.

Another form of reduction system, where one could reasonably employ
the composition operators studied here, is the guarded iteration statement of
Dijkstra '3, also known as action systems'* 5. Action systems are nondeter-
ministic do-od programs consisting of a collection of guarded atomic actions,
which are executed nondeterministicly so long as some guard remains true.
In their uninitialised form, guarded iteration statements can be thought of as
reduction systems over program states. The method of parallel execution is
to allow actions involving disjoint program variables to be executed in paral-
lel, which is consistent with the rewriting viewpoint above. Back '® studies
compositional notions of refinement for action systems with respect to a meta-
linguistic parallel composition operator. ® The parallel composition studied
here is strictly more general since it permits parallel composition of sequen-
tially composed systems.

2 Operational and Compositional Semantics

In this section we give the operational semantics of composed reduction systems
built from basic reduction relations, parallel and sequential composition.

In what follows, we assume some reduction system (U, {—y},cz), where
U is a set, with typical elements M, N, My . ... We will sometimes refer to the
elements of U as states. The reduction relations, {—y} .z are just binary
relations on states. We will think of the elements of the indexing set R,
ranged over by r,rsy ..., as the basic units of our composed reduction systems.
Somewhat improperly, for more concrete examples we will think of R as the

“?For example, through this representation have discovered additional laws for Gamma
programs.

bUNITY !¢ has a similar composition operator, called union, but UNITY is not a re-
duction system in the same sense because the notion of termination for UNITY is that of
stability—reaching a fixed-point—rather than inactivity.
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set of representations of the corresponding reduction relation.
With respect to some r, we say that

o M reduces to N if M—,N (ie. (M,N) € —=¢);
e M converges immediately, written M |*, if =3IN. M —, N.

For the moment we consider composed reduction systems, ranged over by P,
@, P1, Q, etc, given by the following grammar:

P;Q|IPHQ

Henceforth we will use the terms “composed reduction system” and “program”

P.=r

synonymously.

2.1 S0OS semantics

Because of the presence of sequential composition, programs cannot be viewed
as reduction systems over U, since the program is not a static entity. To define
the semantics for these programs we define a single step transition relation
between configurations. The configurations are program-state pairs, written
(P, M). The final result of a computation is given by an immediate-convergence
predicate, |, on configurations. Single step reduction and immediate-convergence
is given by SOS-style rules in figure 1. It is easily verified that immediate con-

M3 N M (PM)L (@ M)
M) = (0 Ny ® ML (PHQMI
(P,M) — (P',M") (P, M)]

(P;Q,M)—= (P QM) (P;Q M)—=(Q M)
(P,M) — (P', M)
(PH QM) = (P4 QM) (Qf P,M)—=(Q 4 P, M)

Figure 1: Structural Operational Semantics of composed reduction systems

vergence of a configuration corresponds to the absence of any transitions for
that configuration. In other words, (P, M) = (@, N) for some (@, N) if and
only if =({(P, M)]).

Let — denote the transitive, reflexive closure of —. By a small abuse
of the notation, we will write (P, M) =+ N to mean that there exists some

(@, N such that (P, M) —> (Q, N) and (@, N){.
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2.2 Behavioural orderings

There are a variety of possible ways to observe computations, which induce
a number of precongruence relations on programs. Let B() be a mapping
from programs to some set of observable behaviours. Each behaviour induces
an observational precongruence ordering, which is defined to be the largest
(pre)congruence which satisfies

PLC, Q= B(P)C B(Q)

This is given directly by the following;:
Definition 1 Let C range over program contexrts. We define observational
precongruence (Z,) and observational congruence(=, ) respectively by:

PC,Q <= VYC.B(C[P]) C B(C[Q)
P=0Q < PL,QANQL, P

For example, the following example behaviour mappings describe the finite,
and the finite plus the infinite execution traces of a program, respectively:

=
>
|

{<M0,M1, . ..,Mk> | P, ... Py <PZ,MZ> — <Pi+1,Mi+1>,i €0.. k}
Ba(Py) = Bi(Po)
{<M0,M1, . ..,]\Ji7 e | Vi 2 13PZ <P17Mz> — <Pi+1aMi+1>}

-

These induce the orderings C,; and C,o, respectively.

For illustrative purposes, we will focus on the relational (input-output)
behaviours of a program. A number of “refinement” orderings on programs
arise from the various natural ways to compare programs on the basis of their
input-output (or relational) behaviour. One possible “behaviour” which we
should consider significant is the possibility of nontermination for a given input.
Non-termination, or “divergence” is a predicate on program configurations:
Definition 2 P may diverge on M, (P, M)?1, if there exist {{P;, M;)}icw such
that <P0, M0> = <P, M> and <Pi, Mz> — <Pz’+1;Mi+1>‘

It is convenient to abstract the possible relational behaviours of a program
as a set of possible input-output pairs. This includes the possibility of non-
termination, which we represent as a possible “output” using symbol ‘L’ (¢ U):
Definition 3 The relational behaviours of a program P are given by

B(P) = {(M,N)[(P,M)— N}
U {(M, 1) [ (P, M)T}

Henceforth, C, and =, will denote the observational relations induced by this
observation.



Note that for every P, M, either (M, N) € B(P) for some N, or (M, L) €
B(P) (or both). There are a variety of orderings on programs obtained by
comparing their behaviours: the partial correctness ordering ignores divergent
behaviours; the lower and upper orderings are formed by considering the
associated discrete power-domain orderings on U, rather than the simple
set-theoretic ordering. In this study we only consider the strong correctness
ordering, which attaches the same significance to nonterminating computations
as to the terminating ones.

2.8 Laws

In this section we present a number of the basic laws of strong precongruence,
and show the relationship to an alternative definition of parallel composition.
Let A denote the empty reduction relation, satisfying VM. M [». For example,
in conditional rewriting systems, this could be represented by a reduction rule

with the condition false.
Proposition 4

1. P;(Q;R)=,(P;Q);R 5. A4 P=,PHfA=,P
2. PHQH#R = (PHOQHR 6. PC,P;A
3. PQ=, Q4P 7. P=,A;P
4. Q;(P1HP2)EO(Q§P1)-HP2 8. PEOP-HP

These are just a few of the laws of strong precongruence. In fact, almost
all of the partial correctness laws of composed Gamma programs & hold for
these more general composed reduction systems. Note in particular that law 6
cannot be strengthened to an equality, since, eg.

P;A#, P

The intuition for this is that A acts as a de-synchroniser for parallel compo-
sition: P must synchronise with its context in order to terminate, but with
P ; A P is allowed to terminate autonomously, leaving A to synchronise with
its context—which it 1s trivially always able to do.

2.4 Trace Semantics

We can characterise T, (in order to prove the laws of the previous section)
by finding a compositional semantics which is consistent (ie. sound) with re-
spect to the behaviours. Clearly the behaviours of a program will not suffice
as its denotation. As is well-known from the study state-based concurrency, it
insufficient to use sequences of states as a means of distinguishing programs.
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The solution we adopt follows a simple approach to modelling shared-state
(interleaving) concurrency via sequences of state-pairs (eg. Abrahamson’s se-
quences of “moves™?; Park’s “abstract paths” 2°). Following the terminology
of Brookes?!, we will use the term transition traces, or simply traces to refer to
this kind of sequence. In these models, a pair of states in the trace of a program
represents an atomic computation step of the program; adjacent pairs in any
given sequence model a possible interference by some other process executing
in parallel with the program.
The transition traces have a straightforward operational specification:

Definition 5 The transition traces of a program, T[P], are the finite and
infinite sequences of state-pairs, given by:

TIP] = {(Mo, No)(My, V1) ... (Mg, Ni)|
<P,M0>—)<P1,N0>/\
<P1,M1>%<P2,N1>/\.../\<P]§,Mk>¢/\MkINk}

U
(Mo, No)(My, V1) ... (M;, Ny) . .|
<P, M0> — <P1,N0> A <PZ,MZ> — <PZ'+1,NZ'>,i > 1}

The intuition behind the use of transition traces is that each transition trace
(MO, No)(Ml,Nl) ... € T|IP]]

represents computation steps of program P in some context; starting with
state My, each of the pairs (M;, N;) represents computation steps performed
by (derivatives of) P and the adjacent states N;_1, M; represent possible in-
terfering computation steps performed by the “context”. If the trace is finite
then the last step corresponds to the termination “step” for a derivative of P.

The key point about transition traces is that they can be described com-
positionally. Define P C; @ if and only if T[P] C T[Q]. Clearly the be-
haviours of a program are obtainable from its transition traces, by considering
the “chained” traces of the form: (Mg, M1)(My, M) ..., and hence P C; @
implies P C,; @ (i = 1,2). Transition traces are adequate for giving a compo-
sitional semantics to composed reduction systems, by interpreting sequential
composition as (set-wise) trace concatenation, and parallel composition as in-
terleaving (with the proviso that interleaved finite traces must agree on their
last elements).

“The set of all such sequences for a program can be thought of as an “unraveling” of the

program’s resumption semantics (see Plotkin and Hennessy 7 18)

. This “unraveling” leads
to a mathematically simpler domain (no powerdomains) which is more amenable to further

refinements than resumptions.



Stuttering

The transition trace ordering is also contained in the relational ordering C,.
However, here it is not sufficiently abstract to prove many of the properties
that we expect. The transition traces distinguish between programs which
compute at different “speeds”. For example, considering the empty action
system DO OD, then the transition traces of DO OD are different from
those of (DO OD) ; (DO OD) ¢ The key to obtaining a better level of
abstraction is to equate processes which only vary by “uninteresting” steps.
This is a variation of the “stuttering equivalence” well-known from Lamport’s
work on temporal logics for concurrent systems 22, Closure under stuttering
equivalence has been used by de Boer et al?3, and by Brookes?! to provide fully
abstract semantics for languages with shared-state and parallel composition.
Following Brookes 2! we define a closure operation for sets of transition
traces:
Definition 6 Let ¢ denote the empty sequence. Let a range over finite se-
quences of state pairs, and 3 range over finite or infinite sequences. A set T
of finite and infinite traces is closed under left-stuttering and absorption if it
satisfies the following two conditions

afeT, B+e¢ bsort a(M,N)(N,M"\peT
a(M,M)BeT PN A(M MBEeT

left-stuttering

Let 1T denote the left-stuttering and absorption closure (henceforth just clo-
sure) of a set T.

In de Boer et al’s approach?® a slightly different closure operation is used,
in which only stuttered steps can be absorbed. With respect to the above
closure conditions, the difference is that in the clause for absorption we should
also require that either M = N or N = M’. This leads to a coarser abstrac-
tion for specific reduction systems; for example, the composed string-rewriting
systems: (1,1 = 2,2)4 (1 — 2) and (1 — 2) have different traces under the
stuttering-closure operation of de Boer et al?3, but are the same under .

Clearly the behaviours are also derivable from IT[P], and what is more,
IT[P] can be specified compositionally (using monotonic operators) which
gives the following;:

Proposition 7 {T[P]CiT[Q] = P C, @

4Tn order to obtain full abstraction for a while-language with parallel composition, Hen-
nessy and Plotkin added a co-routine command, which is able to distinguish these programs.

“Notice that we say left-stuttering to reflect that the context is not permitted to change
the state after the termination of the program. In this way each transition trace of a program
only charts interactions with its context up to the point of the programs termination.
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We omit the compositional definition of transition traces, but its construction
is straightforward.

For a specific collection of reduction relations over some given universe,
the transition traces may not be fully abstract. In other words, we cannot
reverse the implication in the above proposition. For a specific example where
full abstraction fails, see 7. Arguing full abstraction for this kind of language
seems generally problematic, since the language does not possess the kinds of
operators necessary to mimic the simple proofs of Brookes?! and de Boer et al
23 As an indication of the difficulty in proving full abstraction, even for very
simple shared-variable languages and very simple observations (like Bs), see
Horita et al2* Fully abstract semantics for these kinds of systems remains an
area for future work.

3 Graph Representation

In this section we outline a static graph-representation for composed reduction
systems. The graph representation is an intermediate program representa-
tion, which simplifies reasoning about composed reduction systems, and (more
subjectively) makes their operational behaviour more transparent.

The transition-traces of a program are easily constructed from the paths
through its graph. However, we will show that the paths of a program can
be described compositionally, and thus the properties of composed reduction
systems which are not specific to the particular reductions — such as the re-
finement laws of Proposition 4 — can be obtained by certain path-comparison
relations.

The graph representation we will develop is something like a finite, acyclic
control-flow graph, where each node corresponds to a simple form of loop. A
node carries a set of reduction relations which are (con)currently active; an
edge represents an internal termination step, where the child node may inherit
some reductions from the parent but adds some new active reductions. From
the viewpoint of the observational semantics (namely the transition traces), it
will be safe to identify the graph with its set of complete paths.

The idea 1s best illustrated with an example. Consider a program consist-
ing of four reduction relations: (r; ; ra) # (rs ; r4). Initially r; and rz are
active and thereby able to contribute to the reduction steps. At some time,
r; or r3 may be able to terminate. Suppose r; terminates first; then rs and

r3 become active. Symmetrically, if rz terminates first then r; and r4 become
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active. Continuing in this way we construct the graph for this program:

{r1,r3}

{Fs‘}/ \{xrl}
{ri,ra} {rs,r3}
{roN ez}
ra, 1‘4}

The operational semantics of such graphs should be transparent: control be-
gins at the root-node of the graph, and each node is labeled with a set of
concurrently active reduction-relations; each arc is labeled with a set of reduc-
tion relations which must converge with respect to the current state for the
control to be allowed move along that edge.

3.1 From SOS rules to Graph Representation

The graph representation will be constructed from two “abstract interpre-
tations” of the one-step evaluation relation. Consider any possible one-step
reduction on configurations: (P, M) — (P’, M'). From inspection of the rules
it is clear that either:

1. P#P and M = M', or
2. P =P and M —=, M’ for some reduction r in P.

In the terminology of Hankin et al*, we call a transition of the first kind as a
passive step, and one of the second kind as an active step. The passive step
corresponds to some internal termination step in which the left-operand of a
sequential composition is discarded. The convergence of a configuration can
similarly be considered to be a passive step. An active step corresponds to a
reduction step on the state-component of a configuration.

We construct the graph representation of a given program by separately
abstracting:

1. the passive steps, which will give us the arcs in the graph, and

2. the active steps which will tell us what reductions are contained in the
nodes.

Abstract Passive Steps We abstract the passive steps performable by a

program via a (labeled) transition system with judgements of the form P 5
@, where R is a set of reductions. As an auxiliary, we define a notion of
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convergence for programs which is an abstraction of the convergence predicate
for configurations. The abstract convergence predicate is trivial: a program
can converge only if it does not contain any sequential compositions. Let [P)]
denote the set of reduction relations that comprise the program P. Figure 2
defines the rules, closely following the form of the rules of figure 1.

pE p Pl
orietrsg Pl

pLp QL ¢ Pl Q|
Pl Pt Plelrge PR

Figure 2: Abstract Passive Steps

Active Region We abstract the active steps of a program simply by saying
which reductions in the program are immediately applicable. The immediately-
applicable reductions are just those which are not “guarded” by a sequential
composition on their left. The active region of a program P, written [P], is
defined inductively by:

[r]
[P;Q]
[P Q]

{r}
[P]
[PTUTQ]

The following proposition states the precise relationship between the above
abstractions and the transition relation of the structural operational semantics:

Proposition 8 For all composed reduction systems P over some universe U,
and for all M, N € U,
(P, M) = {(Q, N) if and only if either

1. M =N and P K Q@ for some R such that for allr € R, M|*, or

2. P =@, and there exits some r € [P] such that M—.N.

The graph form will be constructed by combining the passive steps with the
active regions. We note the following facts about the passive steps.
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e Passive steps are normalising: ie. there are no infinite chains of the form

P B P i Ps B -, since the size of the programs are strictly decreas-
ing with each passive step.

e For any P, the number of R and @) such that P K3 Q@ is finite.

In fact, ~» satisfies a “strong diamond property”, namely that if P ! Py and

P E,% P, with Py # Ps, then there is a @) such that P, E,% @ and P, ']\E Q.

The graph form of a program P is rooted directed finite acyclic graph
formed by (i) forming the passive-graph according to the ~» relation, and then
(i1) mapping the function [_] over the nodes of the passive-graph to extract
their active reductions. So, for example, taking the program (ry ; ra) # (r3 ; r4)
we (i) construct the passive graph:

(1‘1 ; 1‘2)-H (1‘3 ; 1‘4)

{rsl}/ \{‘rl}
(1‘1 ; 1‘2) -H ry ry -H (1‘3 ; 1‘4)
{Pl}\‘ ‘/{rS}

rs -H Ty

and (ii) abstract the active region from each node to obtain:

{1‘1,1‘3}

{Fsl}/ \{:rl}
{111 ) 114} {1127 113}
{roN ez}
Ty, Tq

4 Reasoning from Graphs

It should be clear from Proposition 8 that the transition traces of a program
can be constructed from its graph. In fact, from the point of view of giving
the operational semantics a program P, the tree corresponding to the graph is
adequate.

We will show how the graph representation can be used to reason about
strong equivalence and strong approximation between programs. For the pur-
pose of the behaviours (or transition traces) of programs, we only need the set
of complete paths through the graph.
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Let paths(P) denote the complete (and necessarily finite) paths in the

graph of P. So the graph of a program ry ; (r2 4 r3) is just {ry} 1} {rs,r3},
and so the program has just a single path, ({r1} {r1} {rs,rs})

The domain of paths (ranged over by p1, ps etc.) are the finite, nonempty
odd-length sequences of sets of reduction relations. Writing concatenation
of sequences by juxtaposition, if R, Ry, Ra etc. range over sets of reduction
relations, then a path is either a sequence of length one, (R), or a sequence
of the form (Ry, Ra)p for some path p. Alternatively we will denote a path
by (niaingas . ..ak_1n;) where the n; (nodes) and a; (arcs) are again sets of
reduction relations.

The paths of a composed reduction system can be defined directly by
induction on the passive steps:

Definition 9 The paths of a program P, paths(P), is the least set of nonempty
sequences of sets of reduction relations, such that:

e if P| then [P] € paths(P)

e if P B prand p' € paths(P’) then ([P], R)p’ € paths(P).

Now, in turn, the transition traces of a program can be defined in terms
of 1ts paths.

4.1 Transition Traces from Paths

Notation In what follows, we adopt the following notation. If S is a set, then
S* will denote the set of finite sequences of elements from S, St will denote
the finite non-empty sequences, and S* will denote the infinite sequences. The
power-set is denoted by p(5).

Note in particular that for a reduction relation —, we will write (—)*
to denote the finite sequence of pairs contained in —,.. We will write =, to
denote the transitive-reflexive closure of —,.

The transition traces can be constructed from the paths as follows:

PTI(R)] = (UR)™ U((UR)" O Ry)

PT(R,R)e] = (UR)*U((UR)" ® R © PT[o])
where Ry ={(M,M)|r € R, M|"})

Proposition 10 Let S be the set of paths of a program P. Then T[P] =
UO‘ES PT[[U]]

The first implication of this is that if two programs have equivalent paths,
then they must be strongly equivalent. But proving inequalities from the
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transition traces (so far the only method we have) is rather tedious. Now we
consider how to reason about C, by building comparison relations on path-sets.
The following compositional construction of paths makes this possible:
Proposition 11 The following equations uniquely characterise the paths of a
program:

paths(r) = ({r})
paths(P; Q) = {o1(R)os| o1 € paths(P),oq € paths(Q), R = last(o1)}
paths(P4 Q) = {01 ® 02|01 € paths(P), o3 € paths(Q)}
where (Ry®(R"Y = (RUR')

(Ri, Ra)o ® (R')

(R) ® (R1 Ra)o

= [{(RIUR'),R)o’ | o' € (R) @ o}

(Ri, Ro)o1 @ (RY, Ro)oy 0|0 €0 @Ry, Ry)or}

), R
{((R1 U RY), Ry)
U {<(R1UR/1),R/2>0'I |UIE<R1,R2>0'1®O'"1}

4.2 Path Comparisons

Each “node” represent the reductions possible at that node. The reductions
on each “edge” represent the termination condition—a set of reductions which
must be inapplicable for control to transfer along that edge. Comparing two
paths of the same length, one path describes a broader range of behaviours
than another, if it has at least as many reductions at each corresponding node
(the odd elements of the sequence) but no more reductions on each edge (the
even elements of the sequence). This leads to the following:
Definition 12 (Path Inclusion)
Two paths of equal length,

p={(ni,a1,ny...a5_1,n%) and p' = (nf,a},nh. . .a)_,, n),
are in the path-inclusion ordering, written p < p’, if

1. ng=nj,
2. n; Cn and a; C a;, foralli <k

The path inclusion ordering s defined on composed reduction systems as:

P < Q if and only if for all p € paths(P) there exists a path q € paths(Q)
such that p < gq.
Note that (i) there is a stronger condition on the last node of a path; this is
because the last node carries additional significance, since it is also a termi-
nation condition, and (ii) the ordering is “contravariant” in the arcs, since a
larger set on an arc is a stronger (internal) termination condition, and hence
gives rise to fewer traces.
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Proposition 13 P < @Q = T[P] C T[Q]

PROOF  Using proposition 10, the proposition can be proved by showing that
if P < @ then the transition traces of P are contained in those of ). Given
the fact that the behaviours are extractable from the paths, a more direct (and
arguably more useful) proof can be given by a compositional definition of the
paths of a program. a

Consider, for example, the composed reduction system ry ; r3; (raff ra):
paths(ry ;r3; (ro4f ra)) = {({r1} {r1} {rs} {rs} {r2,ra})}.

Since we have ({r1,rz}{ri} {re,rs}{rs} {rs,rs}) € paths((r; ; r2) § (rs ;
r4)) then we can conclude that vy ;r3; (raff ra) S, (r1;r2) 4 (r3; r4).

4.3 Path Stuttering

The main limitation of the path-inclusion ordering is that we can only compare
paths of equal length. So, for example, we cannot prove the inequality:

(vt ra) 5 (24t va) o (r1 5 02) 4f (r3 ;1)

since the path of (r1 4} r3) ; (ro 4} ra) (there is only one) is shorter than all the
paths of (r1;ra) 4 (rs;ra).

The solution is to define an analogue of closure under stuttering and
absorption, at the level of paths. We do not literally add stuttering paths,
but rather, paths which give rise to stuttering. Consider a path of the form
p1{n,a)ps. The arc a represents an internal termination step. Operationally,
after this step is performed, we could offer some reductions from a, say n’, and
none will be applicable—and hence we can converge for all reductions in n’.
Hence the path pi(n,a,n’, n")py describes no more (but no fewer) behaviours
than p1(n,a)ps. This leads us to a definition of path stuttering equivalence
Definition 14 Let path stuttering equivalence, =4, be the least equivalence
relation on paths such that

for all paths p1, p2 (p2 # 0), and for all sets of reductions n, a, n' such
that n' C a C n,

pi(ma)ps =s pr(n,a,n’,n')ps
p1<n> =s p1<n,n,n>

For example, ({r1,ra} {r1,r2}{rs}) =s {{ri,r2}{r1,ra} {r1} {r1} {rs}).

With the development that follows, we will be able to conclude that

(1‘1 -H 1‘2) '3 = (1‘1 -H 1‘2) ;T ;T3

15



Now we use path stuttering equivalence to coarsen the path inclusion or-
dering. As before we define a preorder on paths, and extend this to programs
in the obvious way:

Definition 15 (Stuttered Path Inclusion) Two paths, p and p’, are in the
stuttered path-inclusion ordering, written p <, p' if there exists p1, ps such that

P=sP1 <P2=s pl~

On composed reduction systems we define P <; @ if and only if for all
p € paths(P) there exists a path q € paths(Q) such that p <; q.
Proposition 16 P<; Q= PLC, @
PROOF  (Outline) Tt is sufficient to show that P <, @ = 1T[P] C iT[Q].
The main step is to show that the closed (I) traces corresponding to a path
p1{n, a)ps are equal to the closed traces of p1(n,a,n’, n')p2, whenever n’ C a C
n. We omit the details. a

Semantic Paths Our description of paths have been deliberately rather
syntactic in nature. This is because we are emphasising the study of properties
which are common to all composed reduction systems. However, the paths
are, in some cases, too concrete. Consider some reduction system including
some reductions —y,, =y, and —y,. Now if =y, = =4, U =y, then T[r1] =
Trs 4 rs], but their paths are different.

In these cases it is useful to construct more abstract representations of
paths. The following small modification/ of the paths makes this possible:
instead of the nodes and arcs in a path being sets of reduction relations, we can
replace them by their respective union. Furthermore, if we are only interested
in properties which are closed under stuttering and absorption, then we can
abstract the nodes (but not the arcs) further still, by taking the transitive-
reflexive closure of their union.

5 Further Reasoning from Graphs: Program Logic

In this section we sketch how the graph representation can be used to recover
a simple Hoare-like logic of composed reduction systems.

For simplicity of presentation we will associate a graph with its correspond-
ing rooted tree. A program tree is either a single node R, or a node with several
arcs leading to some sub-trees. We will write such a tree as R(R1T1, ..., RaTy),
where R ...R, are the sets of reductions on the respective arcs, and 77 ...7T,
are the respective sub-trees.

/ As pointed out by one of the referees.
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We will consider an extensional view where logical formulae, A, B are just
mappings from states to the truth values.

To simplify presentation we introduce the following notations for logical
formulae:

A €invariant(R) = Vre R.A(M) and M—, N implies A(N)
A= B T YM.A(M) implies B(M)
AANB = Am.(A(m) and B(m))
term(R) = Am.(Vr € R.M|¥)

Now the logic of program trees allows the conclusion of triples of the form
{A}T{ B}, with the usual interpretation that if execution of T is started in
a state satisfying A, then if the computation terminates, it will be left in a
state satisfying B.
A € invariant(R)
{A}R{A A term(R) }

A= invariant(R)  {A Aterm(Ry) }TA{B} - {AAterm(R,)}T. {B}
[AYR(R\T .. RuTy) { B}

A=A {A}T{B'} B =B
{A}YT{B}

The usefulness of the logic can be seen in the special case of the Gamma
model, where term(R) can be constructed from the local reaction conditions of
the rewriting relations in R in the manner of the example program derivations
found in Banatre and Le Métayer’s article2®

6 Calculi of Gamma Programs

The calculus of Gamma programs studied by Hankin et al* is an instance of
the composed reduction systems. In this case, the universe U is the set of
finite multisets (of some unspecified element type), and the reduction relations
are “local” rewrite relations on finite multisets.

The local nature of the reduction relations, and other properties specific
to this set of reduction relations can be characterised in a syntax-independent
way as follows: For all —, representing the multiset rewrite of a Gamma
reaction-action pair,

1. (Computations are local) If M— N then for all M/, MW M'—, N W& M’.
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2. (The arity of reactions is fixed) There exists an integer k such that

M—N <— dMy, My, N;. M = My W M;
A N =MywN;
A My =k
A Ml—)er

3. (Computation steps are image-finite) For all M, the set {N | M—,.N} is
finite.

6.1 Alternative Semantics for Parallel Composition

An alternative parallel composition operator for Gamma is introduced in 7.
The principal difference is that it does not require that the two sub-programs
terminate synchronously. It is shown how the operator can be “simulated”
using the standard parallel composition, using a “skip” program which can
always converge. This study generalises to composed reduction systems which
contain the empty reduction relation.

A radically different parallel composition operator is proposed by Cian-
carini, Gorrieri and Zavattaro (CGZ)®. They propose a parallel composition
operator in which every internal termination step of one component of a par-
allel composition must synchronise with an internal termination step of the
other component. They argue that this is a more useful and modular program
composition operator.

Here we give an alternative way to understand the semantics of their par-
allel composition operator (and its generalisation to arbitrary reduction sys-
tems) by representing it in graph-form. The characteristic feature of graphs
from programs of the CGZ-language is that they are just a single path!

Instead of describing the full SOS of the language from®, we can summarise
the difference by looking at the passive and active reduction steps. Let +
denote the CGZ alternative parallel composition. The rules for the active
region are the same for + as for 4. The only rule which is different the rule for
the passive steps of parallel composition. The passive rules are described in
Figure 3. The transitions rules of the system can be constructed in the manner
of Prop. 8.

The following is an easy consequence of the definition:

Proposition 17 The alternative abstract passive steps are deterministic; ie.
PEQand PEQ thn R=R and Q = ¢’

As a consequence, the graph of any program in the language of CGZ consists
of a single path, (ni,a1,...,ax,ng). What is more, in this path we always
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Figure 3: Alternative Abstract Passive Steps

have n; = a;, reflecting the fact that at each stage of the computation all
the active reductions must synchronise their termination. For example, the
program (r; ; rs) + (r4 ; rs5 ; v6) has the single path

({r1,ra}, {r1,ra}, {r2,v5}, {ra, 5}, {r2, v6})

The compositional construction of the path is similarly straightforward, and
we omit the details.

The “bisimulation” equivalence laws of CGZ-programs can essentially be
obtained by path equivalence modulo the equation: pi(n) = p1{(n, n,n).
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