
Probabilistic Noninterference for Multi-threaded Programs
�

Andrei Sabelfeld David Sands

Department of Computer Science
Chalmers University of Technology and the University of Göteborg

412 96 Göteborg, Sweden
E-mail:

�
andrei,dave � @cs.chalmers.se

Abstract

We present a probability-sensitive confidentiality speci-
fication – a form of probabilistic noninterference – for a
small multi-threaded programming language with dynamic
thread creation. Probabilistic covert channels arise from
a scheduler which is probabilistic. Since scheduling pol-
icy is typically outside the language specification for multi-
threaded languages, we describe how to generalise the se-
curity condition in order to define robust security with re-
spect to a wide class of schedulers, not excluding the pos-
sibility of deterministic (e.g., round-robin) schedulers and
program-controlled thread priorities. The formulation is
based on an adaptation of Larsen and Skou’s notion of
probabilistic bisimulation. We show how the security con-
dition satisfies compositionality properties which facilitate
straightforward proofs of correctness for, e.g., security type
systems. We illustrate this by defining a security type system
which improves on previous multi-threaded systems, and by
proving it correct with respect to our stronger scheduler-
independent security condition.

1. Introduction

1.1. Motivation

When is an untrusted program safe to use? One aspect of
safety is confidentiality. Given you have some confidential
(high) data and some public (low) data in your computer,
you want to make sure the attacker – the supplier of the un-
trusted code – will not learn anything about your personal
data, despite the fact that the application (e.g., a spread-
sheet) may require legitimate access to the confidential data
in order to perform its task, and legitimate communication
with the supplier of the code (e.g., a registration process for
all users).�

This paper appeared in the Proceedings of the 13th IEEE Computer
Security Foundations Workshop, Cambridge, England, July 3–5, 2000.

In this study we assume that the attacker is external to the
(trusted) system upon which the program is run. Our aim is
to specify when a program is safe to run – from the point
of view of its confidentiality properties – with an aim to
providing automatic methods for certifying programs prior
to execution.

This paper describes some security specifications for
multi-threaded programs executing on a single processor.
Programs which execute several concurrent processes not
only introduce nondeterminism, but also the potential for
an attacker to observe the internal timing behaviours of
programs, via the effect that the running time of com-
mands might have on the scheduler’s choice of when var-
ious threads are executed. Since a scheduler’s behaviour
might be probabilistic, this opens up an opportunity for the
attacker to set up a probabilistic covert channel whereby in-
formation is obtained by statistical inferences drawn from
the relative frequency of outcomes of a repeated computa-
tion.

We describe how confidentiality (the security property of
not having insecure information flows) can be specified op-
erationally for a simple imperative language with dynamic
thread creation, and how the compositional nature of the
security condition facilitates a straightforward proof of cor-
rectness of type-based program analyses.

An important contribution is to abstract over the sched-
uler’s behaviour, so as to obtain a notion of security which
holds for a broad class of schedulers, possibly including
both probabilistic and deterministic behaviours. We illus-
trate this by defining a security type system which improves
on a previous system of Volpano and Smith [19] for a sim-
pler language), and by proving it correct with respect to
our stronger explicitly scheduler-independent security con-
dition.

1.2. Classification of Insecure Information Flows

It will be useful to informally classify a number of inse-
cure information flows that might arise in programs. Let us

restrict ourselves to a simplified setting: two variables � and�
of high and low confidentiality respectively. Consider the

examples of insecure information flows that security spec-
ifications and specific program analyses might attempt to
rule out:

Direct:
���	� �

Direct information flow from the initial value of � to
the final value of

�
.

Indirect: if � ��

then

���	�

else

���	���
Secret information indirectly leaks from the initial
value of � to the final value of

�
.

Termination behaviour: if � �

then loop

If the program terminates, the attacker knows that �
was not 1.

Probabilistic:
� �	� � mod ����� ����� ������ � ���	��� ���� ������
����
where ���� is a coin-flip choice operator. Here there is
no information flow if we only consider the possible
behaviours of the system, but the final value of

�
will

reveal information about � with a probability of �� .

Externally observable timing: if � ��

then sleep

 �!�
The attacker with a stop-watch can learn information
about � . This paper does not consider externally ob-
servable timing.

Internally observable timing:
�"� if � ��

then sleep

 �#�$� � ���	�%
&�(')���	���

where
'

denotes the concurrent execution of the two
commands. With many schedulers, the timing leaks
will translate into an effect on the (distribution of) final
value(s) of

�
. The information flow in this case is a

combination of the timing and potentially probabilistic
flows in the case that the scheduler exhibits stochastic
behaviour. The ability to dynamically create threads
also leads to similar possibilities.

1.3. Related Work

There is a substantial body of work in the security
community in studying definitions and reasoning princi-
ples relating to information flow and confidentiality. For
an overview see, e.g., [15]. The basic approach we take is
based on an extentional characterisation usually known as
noninterference. The particular flavour of noninterference
studied here is most closely related to Gray’s notion of P-
Restrictiveness [10], since it aims to eliminate dependence
between classified data and the probability distribution of
unclassified outputs.

The use of program analysis as a means to eliminate in-
secure flows was pioneered by Denning [6, 7]. A modern

incarnation of this work which recasts Denning’s analysis
as a type system and proves its correctness is [20].

Semantically, our security condition is founded on a
probabilistic notion of bisimulation. Focardi and Gorrieri
have promoted the use of (non-probabilistic) bisimulation
in formalising and analysing security conditions in process
calculus setting (see, e.g., [8]).

Focusing on concurrent imperative programs, there have
been some recent considerations of concurrent program-
ming languages. Banâtre, Bryce and Le Métayer [4] con-
sider a programming language with static process structure
and CSP-like communication primitives (see also [2]), al-
though there is no extensional specification of correctness
in these studies, and probabilistic information flows are not
considered. Heintze and Riecke [11] present an analysis for
a security-oriented lambda calculus, extended with threads
and imperative features. Although they prove a noninterfer-
ence property for the functional core of the language, they
(quote) “have not proved a noninterference theorem for the
concurrent setting because *+*+* the notion is unclear in the
concurrent setting”. Smith and Volpano [17] extend their
previous work ([20]) with static threads. They prove a pos-
sibilistic correctness result for their analysis, and note that
the analysis does not eliminate probabilistic covert chan-
nels (other than by making it overly restrictive). A later
work [19] shows how to lift this restriction and proves some
correctness properties based on a probabilistic semantics.
We will return to consider this last work in more detail.
In [16] we showed how partial equivalence relations (pers)
and denotational semantics could capture security proper-
ties in sequential languages, including probabilistic infor-
mation flows (noninterference-style) with the help of prob-
abilistic powerdomains. In principle this machinery should
be sufficient to handle concurrent languages, but the mathe-
matical overheads are high. In this paper we also use partial
equivalence relations, but this time operationally-based us-
ing probabilistic-bisimulation-like relations.

1.4. Overview

The rest of the paper is organised as follows. Section
2 introduces syntax and probabilistic semantics of a multi-
threaded language. Section 3 defines the security condition
based on probabilistic bisimulation. In Section 4, we in-
troduce a scheduler-independent security condition. We go
on to strengthen it by defining a strong security and illus-
trate its properties in Section 5. Section 6 considers the
applicability of the conditions to proving the soundness of
compositional security analyses. Section 7 concludes.

2

2. A Simple Concurrent Language

In order to be concrete – and in order to explore the com-
positionality properties of some of our security conditions
– we consider a very simple shared-variable language de-
scribed by the grammar in Figure 1. Let ,.-�/0-�12- *+*+* range
over commands 354)6 , and let 7, denote a vector of com-
mands of the form 89,;:<*+*+*=,;>@?BA+C . Vectors 7,D-<7/E-F712-+* *+*
range over 7354$6 �HG >�I)JF354)6 > , the set of thread pools
(or programs).

We consider a small-step semantics for the language. A
configuration KL�NMO-�PQ-+* *+* � is a pair of a command and a state
(memory). In this paper, a state RTSVUXW is a finite mapping
from variables to values. The set of variables is partitioned
into high and low security classes. � and

�
will denote typ-

ical high and low variables respectively. In concrete exam-
ples we will often take just variables � and

�
, and in this case

we will write the state as a pair. Define low-equivalence
R A �.Y R�Z iff the low components of R A and R�Z are the same.
Let 3[4$\]�^ denote 7354)6`_EUXW . The small-step semantics is
given by transitions between configurations. The determin-
istic part of the semantics is defined by the transition rules in
Figure 2. Arithmetic and boolean expressions are executed
atomically by a transitions. The b transitions are determin-
istic. The general form of a deterministic transition is either
8 ' ,.-cR 'CDbd8 ' 8eCf-cR�g 'C , which means termination with the final
state R&g , or 8 ' ,.-=R 'C;bh8 ' ,ig 7/E-=R g 'C . Here, one step of computa-
tion starting with command , in a state R gives a new main
thread ,ig , (possibly empty) vector of spawned processes 7/
and a new state R g . Command fork �9,
7/ �

dynamically cre-
ates a new vector of processes 7/ which run in parallel with
the main thread , . This has the effect of adding the vector
of processes to the configuration.

The concurrent part of the semantics is presented in Fig-
ure 3. The jlk transitions are probabilistic. The scheduler
modelled here is purely probabilistic; it chooses to execute
one of the threads of 7, with equal probability. We call this
a uniform scheduler. In Section 4 we will parameterise over
the choice of scheduler. Write 8 ' 7,T-cR 'Cmjn8 ' 7/E-cR�g 'C whenevero&pEqr� * 8 ' 7,D-cR 'CFjskD8 ' 7/0-=R g 'C .

As is standard, in this paper we use multiset comprehen-
sions

� ' p�' *+* * '� when summing probabilities.
Labelling the transitions in the rules for parallel compo-

sition is performed in order to ensure that the sum of prob-
abilities of transitions from a given nonterminal configura-
tion is one. If there were no labels or rule t , then there
would be 8 ' 8 skip

'
skip Cu-cR 'C0j A�v Z 8 ' 8 skip Cu-cR 'C rather than

8 ' 8 skip
'
skip Cf-cR 'CFj A 8 ' 8 skip Cf-=R 'C , where

'
is used for separat-

ing threads in a thread pool. That is due to the fact that tran-
sition 8 ' 8 skip - skip Cf-cR 'CFj A"v Z 8 ' 8 skip Cf-=R 'C could be performed
by two different rules. That cannot be observed without the
labelling or by making similar distinctions between differ-
ent ways of obtaining the same transition. Similar construc-

, �w�Q�
skip

'�x M ��� 1zy pE' , A �=,<Z'
if { then , A else ,;Z '

while { do , '
fork �9,�7/ �

Figure 1. Command syntax

8 ' skip -=R 'C5bh8 ' 8eCf-cR 'C
8 ' 1zy p -cR 'C�ai|

8 ' x M �	� 1zy p -=R 'CFbh8 ' 8eCf-�} x M � |�~�R 'C
8 ' , A -cR 'C5bh8 ' 89Cu-cR g 'C

8 ' ,(A)�=, Z -=R 'C5bh8 ' , Z -cR g 'C
8 ' , A -cR 'C5b�8 ' , gA 7/E-=R g 'C

8 ' ,(A)�=, Z -cR 'CFbh8 ' �e, gA �c, Z � 7/0-=R g 'C
8 ' {�-=R 'C�a True

8 ' if { then ,mA else , Z -=R 'C5bh8 ' ,(A$-cR 'C
8 ' {�-cR 'C�a False

8 ' if { then ,mA else , Z -=R 'C5bh8 ' , Z -cR 'C
8 ' {�-=R 'C�a True

8 ' while { do ,.-cR 'C<bh8 ' ,D� while { do ,.-=R 'C
8 ' {�-cR 'C�a False

8 ' while { do ,.-cR 'C<bh8 ' 89Cu-cR 'C
8 ' fork �9,%7/ � -=R 'CFbh8 ' ,%7/�-cR 'C

Figure 2. Small-step deterministic semantics
of commands

8 ' ,;�"-=R 'C5bh8 ' 7,2-cR g 'C
8 ' 89,<:F* *+*=,<>�?BAuCu-cR 'CFj � �� 8 ' 89,<:;*+* *�, � ?XAm7,�, �w� A�* *+*c,;>@?XA+Cu-cR g 'C

(�)

p���� � ' ��' 8 ' 7,T-cR 'C5j �� 8 ' 7/0-cR g 'C '�
8 ' 7,D-=R 'CFj k 8 ' 7/0-=R g 'C

Figure 3. Uniform probabilistic semantics of
thread pools

3

tions can be found in other probabilistic semantics.
The probabilistic semantics satisfies the following

“soundness” properties for all nonterminal programs 7, :

��� ��� R#* � � ' p�' 8 ' 7,2-cR 'C5jskD8 ' 7/�-cR g 'C '� �

 -
����� � 8 ' 7,2-cR 'C5jskT8 ' 7/0-cR g 'Cf-�8 ' 7,2-=R 'C5j � 8 ' 7/E-cR g 'C ����p���� *

Observe that rule t guarantees property (ii) while property
(i) must be independently enforced (and is dependent on
expressions being total). Given these soundness conditions,
the semantics can be viewed as an unlabelled probabilistic
transition system [13], or a simple probabilistic automaton.

3. Probabilistic Noninterference

3.1. Background

Now that we have defined the syntax and semantics of
the multi-threaded language, we are ready to specify what
it means for a program to be secure. We are taking the view
of noninterference to express the confidentiality property of
a program. The central idea of noninterference [9] is that
a program is secure whenever varying the initial values of
high variables cannot change the low-observable (observ-
able by the attacker) behaviour of the program.

A natural covert channel generalising the nontermina-
tion channel is the timing channel. A realistic version of
noninterference should include timing as a possibly low-
observable action. The first step in the direction of incor-
porating timing into noninterference was made by Volpano
and Smith [19]. Volpano and Smith’s noninterference is
based on a lock-step execution of probabilistic states. A
distribution � of a set � (write ��S������ �

) is a function
��Sl��j�} � -
 ~ such that ��� I!� �By ��

. A probabilistic
state � is a distribution of configurations � Ss�¡�¢7,£_sUBW � .
The computation is modelled by a Markov chain of proba-
bilistic states. The initial probabilistic state is 8 ' 7,D-=R 'Cz¤j

where R is the initial memory and 7, is a static pool of
threads (they do not handle new thread generation). Every
following probabilistic state �¢g is computed by multiply-
ing the row vector of probabilities from � by the stochas-
tic transition matrix ¥ . The rows and columns of ¥ corre-
spond to possible configurations reachable from the initial
one. There might be a countably infinite number of such
states, so the matrix might be countably infinite. The ele-
ments ¥¦�N�c-�§ � of ¥ are the probabilities of a transition from
configuration � to configuration § .

From the point of view of the low observer two proba-
bilistic states are indistinguishable (write ¨z©) iff projecting
out high variables (which involves collapsing several prob-
abilistic states into one in case the commands and low parts
of the memories are the same; see [19] for the formal defi-
nition) makes the two states the same.

From the main correctness theorem we can extract the
following probabilistic noninterference condition for a pro-
gram 7, with stochastic transition matrix ¥ :

� A ¨ª©��XZ implies � A ¥�¨ª©��XZu¥«* � � �

While intuitive and adequate to prove the security of Vol-
pano and Smith’s type-system based analysis as an analysis-
independent definition of security it suffers from the three
drawbacks:

Noncompositional The probabilistic states are distribu-
tions of configurations (elements of ����7,�_¡UBW �). This
makes compositional reasoning at the command level
impossible – commands are parts of configurations to-
gether with memories, i.e., the meaning of a term con-
tains syntax.

Imprecise Since syntactic equality for commands is in-
volved in the definition of low-equivalence, there is
also a loss of precision. Consider the following ex-
ample (or indeed any program with conditionals and
no low variables):

if �­¬ �
then � ��� �¦®

else � ��� �T¯
 *
Intuitively, for the low observer this program has the
same behaviour regardless of the initial value of � –
since the program does not modify

�
. However, it is

considered insecure if one takes � � � as a definition. In-
deed, take ��A � � 8 ' if �E¬ �

then � �	� �¦®

else � �	�

�¡¯
 - ��°@- �Q�+'Cz¤j
 � and � Z � � 8 ' if �±¬ �
then � �	�

�m®

else � �	� �.¯
 -��²¯ª°�- �#� 'C�¤j
 � . Note �¢A(¨ © � Z .

Now, �¢A=¥ � � 8 ' � ��� �±¯
 -��e°@- �#� 'C�¤j
 � and
�XZu¥ � � 8 ' � �	� �(®
 - �²¯ª°�- �Q�+'C�¤j
 � . After projecting
out the high variable we are still left with syntactically
different commands which implies � A ¥´³¨ª©(�XZu¥ . To
make the above example secure according to � � � , Vol-
pano and Smith require that any such conditional with
a high guard be executed atomically.

Scheduler Specific The security condition is specific to a
particular scheduler, namely the scheduler with uni-
form probability of picking every thread. If the sched-
uler is changed then secure programs may become in-
secure. 1

In the remainder of this section we begin by address-
ing the question of precision in the definition of security.
The central problem of � � � is that it does not abstract suffi-
ciently from the syntactic program state. To abstract from
the state we should factor in this (probabilistic) equivalence,

1Note that this is not a problem for the actual security type system
presented by Volpano and Smith; the proofs of correctness of their type
system are easily seen to go through with other choices of probabilities in
the transition matrix.

4

in the manner of Gray’s P-Restrictiveness condition [10].
We will develop probabilistic noninterference criteria based
on probabilistic bisimulation. The idea is based on the def-
inition of bisimulation on probabilistic transition systems
[13, 3].

3.2. Relational Definitions and Notation

Let us first introduce some standard definitions and no-
tation for relations. Let µª¶u·¸�9¹ �

denote the set of binary re-
lations on ¹ . If º�S0µª¶u·¸�N¹ �

is an equivalence relation then
¹.»)º is the set of º¼¯ equivalence classes, ¹.»)º¾½À¿[�N¹ �

.Á+Â�Ã
denotes the identity relation on some set ¹ ; we write

just
Á Â

when ¹ is clear from the context. As usual, º �
denotes the transitive closure of º and º¼Ä denotes the
transitive and reflexive closure of º . For binary relationsÅ S0µ«¶+·¸�N¹ �

, ÆÇS­µª¶u·²�9{ �
we define the relation

Å _�Æ on
¹%_¡{ by

��y¢-"È � Å _­ÆÉ��y g -"È g �sÊT� y Å y g2Ë ÈDÆ�È g *
A partial equivalence relation (per) on a set ¹ is a binary

relation on ¹ which is symmetric and transitive. If
Å

is such
a per let

Â 4$60� Å �
denote the domain of

Å
, given by

Â 4$60� Å �F� � y0S­¹ ' y Å yX�F*
Note that the domain and range of a per

Å
are both equal

to
Â 4)60� Å �

(so for any y�-�È
S�¹ , if y Å È then y Å y
and È Å È), and that the restriction of

Å
to

Â 4)60� Å �
is an

equivalence relation. Clearly, an equivalence relation is just
a per which is reflexive (so

Â 4)60� Å �5� ¹).

3.3. Probabilistic Bisimulation

In this subsection we recall the definition of probabilistic
bisimulation, specialising it to the case of unlabelled sys-
tems.

An unlabelled probabilistic transition system (following
[13]) is a set of states Ì and a set of transitions of the formÍ j � where Í SÎÌ and �ÏS£���9Ì � . The probabilistic
semantics corresponds to a transition system where prob-
abilistic transition states are identified with configurations.
A small-step transition from a configuration to a distribution
on configurations 8 ' 7,T-cR 'C5j´� where �ÐS¡���+354)\]�^ � can be
viewed as a transition in the unlabelled probabilistic transi-
tion system such that �5��8 ' 7/�-cR�g 'C �F�lp

iff 8 ' 7,T-=R 'C5jskT8 ' 7/E-=R g 'C .
Define small-step semantics transitions from a configu-

ration K to a set of configurations Ñ by

Kmj k Ñ ÊT�`pÒ� � � ' ��' Kmj � MÓ-cM2S­Ñ '�#*
Inspired by the definition of Larsen and Skou, let us define
probabilistic bisimulation on program configurations.

Definition 1 ([13]) An equivalence relation º S
µ«¶+·¸�u354)\�]¢^ � is a probabilistic bisimulation if when-
ever KLº�M then

� ÑÔSr354)\�]¢^Ó»$ºD*¢KmjÕkzÑ ��� M¼jskiÑ�*
Two configurations are probabilistically bisimilar if there

is a probabilistic bisimulation which relates them. In the re-
mainder of this article we will use a weakening of the defini-
tion of probabilistic bisimulation by relaxing the reflexivity
condition.

Definition 2 A per ºÖS�µ«¶+·¸�u354)\�]¢^ � is a partial proba-
bilistic bisimulation if whenever KLº�M then

��� ��� ÑVS 354)\�]¢^Ó»$º¼*�KmjÕk�Ñ �X� M¼jÕk�Ñ�-
����� � KmjV:�354)\�]¢^z× Â 4$60�Nº � *

The partiality introduced here can be thought of as simply
removing “unreachable” parts of the relation. The modifi-
cation will be useful when we specify security, but other-
wise does not significantly change the definition. Note that
any probabilistic bisimulation is also a partial probabilistic
bisimulation. In the other direction we have:

Proposition 1 º is a partial probabilistic bisimulation im-
plies º�Ä is a probabilistic bisimulation.

From this it follows that any two configurations which are
contained in some partial probabilistic bisimulation º are
also probabilistically bisimilar, and vice-versa.

Since we are interested in studying programs rather than
configurations, we recover an equivalence relation on pro-
grams (vectors of commands) as follows.

Definition 3 A per º�SVµ«¶+·�� 7354)6 �
is a partial probabilis-

tic bisimulation on thread pools iff º�_ Á Â�Ø&Ù
is a partial

probabilistic bisimulation on configurations.

We write KÉ¨ÚM (resp. ,Û¨Ü/) iff there exists a
partial probabilistic bisimulation on configurations (com-
mands) relating K and M (, and /).

It is possible to show that both ¨ relations are themselves
(partial) probabilistic bisimulations (c.f. [3]). We sketch a
proof of this fact in Appendix A.

The partial probabilistic bisimulation on thread pools
could form the basis of a compositional semantics – al-
though one must at least restrict it to relations between
equal-length vectors to obtain compositionality. We will not
pursue this investigation further in this paper since we are
not particularly interested in the uniform scheduler.

3.4. Noninterference Based on Partial Probabilistic
Bisimulation

Our aim at this point is to construct a modification of
probabilistic bisimulation that reflects the “equivalence” on

5

program behaviour visible for the attacker. The intuition
behind the construction is that a program is secure iff for
any two states which differ only in the values of high vari-
ables, two configurations containing the program and each
of the states, execute in such a way that their behaviour is
indistinguishable (or “low-equivalent”) from the attacker’s
observation of the low parts of the state and the probability
with which they occur. Let us formally define such a “low-
equivalence” as a partial probabilistic bisimulation. The de-
velopment parallels Section 3.3, with the modification that
the states of equivalent configurations can be different in the
high components.

Definition 4 A per º�SVµª¶u·²�À7354)6 �
is a partial probabilis-

tic low-bisimulation iff ºÇ_V� � Y �
is a partial probabilistic

bisimulation on configurations.

Write ,
¨ Y / (, and / are low-bisimilar) iff there exists
a partial probabilistic low-bisimulation relating programs ,
and / .

There is an alternative and equivalent way to define this
partial probabilistic low-bisimulation directly in terms of
the operational semantics:

Proposition 2 A per º is a partial probabilistic low-
bisimulation on commands iff whenever 7,Ýº�7/ then
� R)A � Y R Z *Þ8 ' 7,T-cR)A 'C5jh8 ' 7, g -=R g A 'C �X�

o 7/ g -cR gZ *�8 ' 7/E-cR Z 'C5j�8 ' 7/ g -cR gZ 'C
�N� �Ó� � ' p�' 8 ' 7,D-cR)A 'CFjskD8 ' 7ÑL-cR 'Cf- 7ÑÔSl} 7, g ~�ßL-cR � Y R g A '� �

� � ' p�' 8 ' 7/E-cR Z 'CFjskD8 ' 7ÑL-=R 'Cf-¢7ÑrSs}B7/ g ~Þß;-=R � Y R gZ '�
����� � 7, g º 7/ g -cR g A � Y R gZ -

where } 71i~�ß stands for the ºD¯ equivalence class which con-
tains 71 .

With this formulation the (informal) connection to Gray’s
P-restrictiveness condition becomes clearer.

Analogously to Section 3.3, we obtain the result that ¨ Y
is itself a partial probabilistic low-bisimulation and it is the
greatest fixed point of the corresponding functor. We are
now ready for the culmination of this section, the security
specification for a thread pool:

7, is secure
ÊT� 7,%¨ Y 7, .

The observations about proof techniques for ¨ from Ap-
pendix A hold for the case of ¨ Y

as well.

4. Scheduler-independent Noninterference

The security specification above captures the probabilis-
tic and internal timing covert channels. We have so far pre-
sumed the uniform scheduler is used for choosing the next

thread. However, the scheduler is typically not specified by
the language definition, and may vary from implementation
to implementation. In different implementations, different
probabilistic policies of a scheduler can be used, and these
specific policies can be exploited by the attacker. Under
the worst case assumption the security condition should be
scheduler-independent – in other words we should assume
that the attacker chooses the scheduler. In this section, we
generalise the security condition to be robust with respect
to any particular scheduler used – for a reasonable class
of schedulers. The schedulers in question will be defined
as a function from the history of the computation (and the
low variables) to a probability distribution on the set of live
threads.

Let us start with an example that illustrates that the uni-
form scheduler assumption does not imply security for other
schedulers. Suppose that � is a boolean. Consider the fol-
lowing program:

�­��� � '«�­���Hà �X* While this is a se-
cure program for the uniform scheduler2 that picks threads
with equal probability, it is insecure for any other sched-
uler. For example, a round-robin scheduler might execute
threads in a deterministic order. Although the attacker may
not know this in advance, he may easily be able to deter-
mine it with reasonable certainty (using a program which
does not touch high data), and thus deduce the value of � .
This motivates the introduction of a scheduler-independent
low-bisimulation (á Y

).

4.1. Semantics with Schedulers

In order to obtain a security condition which is robust
with respect to schedulers we extend the semantics of the
language to explicitly schedule threads.

But what is a scheduler? Abstractly we will take a sched-
uler to be a mechanism for selecting threads which itself
satisfies some noninterference property, i.e., its behaviour is
independent of high data. Why should a scheduler have ac-
cess to the state at all? By allowing the scheduler to depend
on the low variable, it becomes possible to model threads
with dynamic priorities, i.e., where the program can control
the scheduler’s behaviour using the values of certain distin-
guished low program variables.

The scheduler needs more than the low part of the state
however. A minimum requirement of any reasonable sched-
uler is that it also knows the number of threads from which
it can choose. This information will be part of the history
of the computation so far. A scheduler will be defined to

2Following the execution of the command with the initial state âwã$ä�åeæ	äuç ,
we have è é æ�ê ërã¡é!æ�ê ëÔìÓã@å²âÞã$ä�å9æ	äuç"éí[î¡ï9ð"ñ è é æ�ê ëÔìÓã@å²âÞã$ä�å9ã$äfç²éí[î ï
è é è í å"âÞã$ä�åeìÓã$äuç²éí and è é æEê ëòã£ézæ0ê ëòì�ã@å²âÞã$ä�å9æ	äuç"éíÐî­ï9ð"ñ è é æ0ê ëã@å²âÞã ä åeì�ã ä ç"éí(î ï è é è í å�âwã ä åeã ä ç²éí . Since the probabilities of transitions
as well as timing are mirrored in the two transition sequences, varying ã!ä
from True to False will affect no low-observable behaviour (neither low-
observable probabilities nor timing).

6

be a function with arguments (i) the history of the compu-
tation so far, and (ii) the low part of a state, and yielding as
its result a probability distribution on the number of threads
currently in the configuration.

Let us first inductively define the set of possible sched-
ule histories óE�²R+ô . A history ó is a sequence of pairs óòS
�Nõ%_0õ � Ä , representing information about the computation
steps so far. In each pair of the sequence, the first compo-
nent is the index of the thread last chosen for computation,
and the second component is the total number of threads
that remained in the configuration after that thread’s com-
putation step. Not all sequences describe valid histories. In
any two adjacent pairs in a history, *+*+*����=-"ö � �w§#-"| � * *+* , the
tread § that is selected must be in the range

� *+*+*"ö�¯

, and

the number of threads remaining after § ’s step (|) cannot
be smaller than öò¯

, since at most one thread can die
in any computation step (although many may be created).
Assuming without loss of generality that a computation al-
ways starts with a single thread and the empty history, we
have the following inductive rules that define óE�²R+ô :

÷ S¡óE�²R ô � � -"| � SEóE�²R ô
óV�N�c-�ö � S­óE�²R ô

óÔ���=-"ö � �w§!-�| � S­óE�²R+ô �w§2ø ö�¯
 ø | �

Define the number of live processes for a given history by

� ��ùQP@� ÷ �[��
 - � �eù@P@�NóV�N�=-"| �"�[� |[*
A scheduler ú is any function that given a history ó and

the low part
�

of a state returns a probability distribution on
live processes. The dependent type of ú[�NóE- �9� is

ú[�Nó0- �9� S¡��� � � * *+* � ��ùQP@�Nó � ¯
 � � *
Given a scheduler ú not all histories are feasible under

ú . Define the set of ú -feasible histories óE�²R+ôcû�½±óE�²R ô by

÷ SEóE�²R ô û
óüS­óE�²R ô û óV�N�=-"ö � S¡óE�²R ô oL� *�ú[�9óE- �e� � q±�

óV���=-"ö � S­óE�²R+ô²û
At each step of a computation with low-state

�
, only those

threads can be picked for which ú[�NóE- �9�Tqý�
. óE�²R+ô�û will

be used in the definition of ú -specific low-bisimulation –
although it should be noted that óE�²R ô�û is still, in general,
a superset of the histories which are actually feasible since
not all

�
are necessarily feasible.

To introduce the scheduler to the semantics, we need to
update the computation history with each successive com-
putation step. We extend configurations to contain a his-
tory along with a command vector and a state. An initial

configuration has the form 8 ' ÷ -=,.-cR 'C . Now we replace the
semantics of thread pools in Figure 3 by the rule

8 ' , � -=R 'C5bþ8 ' 7,D-cR g 'C
8 ' óE- 8e,<:F*+* *c, � * *+*c,;>@?XA+Cu-cR 'C5jÕk28 ' ó g -�89,<:F* *+*F7,Ô* *+*�,;>@?XA+Cu-cR g 'C
where ó0g � óV�N�c-�|«® ' 7, ' ¯
&� - pÒ� ú[�NóE- �9� � and R � �e�X- �9�
for some � . The history is updated with the number of the
thread being picked and the new thread-pool size. In a con-
text where we are discussing several different schedulers,
we will explicitly label the transition arrow thus j ûk .

This model of the semantics with schedulers is general
enough to describe any scheduler that uses the full history of
thread creation/deletion to generate probabilities for picking
the threads. Note however that it cannot model a scheduler
which uses real-time. Consider some examples of common
schedulers. Any scheduler must pick the first (and the only)
thread given the empty history, so we can safely omit this
case in the following examples.

For any history ó , the deterministic round robin sched-
uler is defined by

ÿ���� |XM ÿ �9óV���=-"| � - �e� y � �
 - if y � ����®
�� ö � Mª| ,� - otherwise.

A round-robin scheduler which chooses the same thread for
several steps before switching would need to look further
back in the history.

The uniform scheduler presented in Section 2 is simply� |B�=�9óE- �e� y �

 » � ��ùQP@�Nó � -
for any y�S � � *+*+* � ��ùQP@�9ó � ¯
 � . As in the example above,
the previous history and the value of the low variable are
disregarded. Note that the history contains sufficient infor-
mation to calculate the individual lifetimes of threads, or the
creation hierarchy of the threads in order that these may be
used to influence – either deterministically or stochastically
– the policy of the scheduler.

4.2. Probabilistic Noninterference with Schedulers

Given a scheduler ú , let us define the scheduler-specific
partial probabilistic low-bisimulation. This bisimulation is
a kind of lock-step execution as we have already seen for
¨ Y

. For two bisimilar configurations, if one makes a tran-
sition to an equivalence class then the other configuration
should also be able to make a transition with the same prob-
ability to the same class. However, the history in the second
configuration can vary from the one in the first configura-
tion. Let us capture the degree of how the history can vary
by defining a relation

� û on ú -feasible histories. It relates
ú -feasible histories which are indistinguishable for ú . De-
fine

� û S0µ«¶+·¸�NóE�²R ô û � to be the largest relation satisfying

ó � û ó g��� *�ú[�9óE- �e��� ú[�Nó g - �9�
ó � û ó g

óV�N�c-�ö �5� û¼ó g ���=-"ö �

7

For example,
��� > � relates any two histories such that the

number of live threads is the same.
Using the method of Section 3 define the scheduler-

specific partial probabilistic bisimulation on configurations
who now include histories. We have now everything we
need to define a scheduler-specific partial probabilistic low-
bisimulation on thread pools.

Definition 5 Given a scheduler ú , a per º�SEµ«¶+·²� 7354$6 �
is

a ú -specific partial probabilistic low-bisimulation iff � � û � _
º�_V� � Y �

is a ú -specific partial probabilistic bisimulation
on configurations.

Write 7,¾¨ ûY 7/ (7, and 7/ are low-bisimilar under ú) iff
there exists a partial probabilistic low-bisimulation relating
programs 7, and 7/ .

Note that for the uniform scheduler � |B� , we have
¨
� > �Y � ¨ Y

, where ¨ Y
is the low-bisimulation from Sec-

tion 3. Given a scheduler ú and a program 7, ,

7, is ú -secure
ÊD� 7,%¨ ûY 7, .

4.3. Scheduler-independent Noninterference

As we have argued, a realistic security condition should
be scheduler-independent. We are now ready to define
the scheduler-independent low-bisimulation á Y

and the
scheduler-independent security (SI-security). Define

7,%á Y 7/ ÊT� � ú�*57,%¨ ûY 7/ , and

7, is SI-secure
ÊT� 7,
á Y 7, .

Trivially, á Y ½ª¨ Y
. The example in the beginning of this

section shows that the reverse inclusion does not hold. As a
corollary, we have 7, is SI-secure implies 7, is secure.

On a side note, the quantification over schedulers is
somewhat reminiscent of the “strategies” in the adversary
model used by Syverson and Gray [18], which are also func-
tions from computation histories to distributions. Note how-
ever that we are not using them to model attacker behaviour
(e.g., I/O) – but rather an internal component of the system.

We define yet another low-bisimulation along with a se-
curity condition as an aid to prove various analyses secure.
This condition is potentially the strongest of all considered
in the paper; and proofs of the soundness of particular anal-
yses go through easiest just with this one. Call the new
low-bisimulation strong.

In order to achieve a compositional bisimulation we
want to restrict the strong low-bisimulation so that any two
strongly low-bisimilar thread pools must be of equal size
and must create/kill exactly the same number of processes
at each step under any scheduler. This means that we do not
need the machinery for explicit scheduling. In fact, the new
low-bisimulation is purely nondeterministic.

Definition 6 Define the strong low-bisimulation � Y
to

be the union of all symmetric relations º on thread
pools of equal size, such that whenever 89, : *+* *c, >@?XA C¡º
8N/ : * *+*�/ >@?XA C then

� R)A � Y R Z � �=* 8 ' , � -cR)A 'C5bh8 ' 7, g -cR g A 'C �X�
o 7/ g -cR gZ *Þ8 ' / � -=R Z 'CFbh8 ' 7/ g -cR gZ 'Cu- 7, g º 7/ g -cR g A � Y R gZ *

The strong security specification goes:

7, is strongly secure
ÊT� 7,�� Y 7, .

We are going to use this specification of security in the
proofs of analyses correctness. Let us first show that
the strong low-bisimulation is indeed stronger than the
scheduler-independent one.

Proposition 3 7, is strongly secure
�X� 7, is SI-secure.

Proof. In order to show � Y ½ªá Y
, let us check that � Y

is
a ú -specific partial probabilistic low-bisimulation for all ú .
Assuming 7,	� Y 7/ , we need to show that for any ú :
� ó A � û óTZ!-�R A �.Y R�Z!*Þ8 ' ó A -<7,D-cR A 'CFjh8 ' ó gA -m7, g -cR g A 'C �X�
o ó gZ -i7/ g -cR gZ *�8 ' ó Z -<7/0-cR Z 'CFjh8 ' ó gZ -i7/ g -cR gZ 'C

�N� �Ó� � ' p�' 8 ' ó A -F7,D-=R A 'C<j k 8 ' ó0-¢7ÑL-=R 'Cf-¢7ÑrSs}Ó7, g ~�

�X-
ó � û¦ó gA -=R � Y R g A '� �

� � ' p�' 8 ' ó Z -<7/E-=R Z 'CFjÕkT8 ' óE-¢7ÑL-=R 'Cu-¢7ÑrSl}�7/ g ~
 ��-
ó � û¦ó gZ -=R � Y R gZ '�Q-

�N�e� � ó gA � û ó gZ -ª7, g � Y 7/ g -=R g A �.Y R gZ *
Given arbitrary óÒA � ûÔó Z and R)A � Y R Z , suppose 7, �
89,<:F* *+*�,;>@?XA+C and 8 ' ó�A)- 7,D-cR)A 'CFjh8 ' ó�gA - 7, g -cR�gA 'C . Then there
exists � such that the probabilistic transition was triggered
by a deterministic transition within , � using the rule

8 ' , � -=R)A 'CFbh8 ' 7x -cR g A 'C
8 ' ó2A$-F7,D-=R)A 'CFjÕkT8 ' ó gA - 8e,<:F*+* *O7x * *+*=,<>�?BAuCu-cR g A 'C

where ó0gA � ó A �N�c-�| ® ' 7x�' ¯
��
,
p¾� ú[�9ó A - �9� � and

R A � �9� A - �9� for some � A and
p�qý�

. From the definition
of � Y

deduce that 7/ has the form 89/D:5* *+*c/D>�?BAuC such thato 7� -cR�gZ *Þ8 ' / � -=R Z 'C5b�8 ' 7� -cR�gZ 'C and 7x � Y 7� -=R gA � Y R�gZ . Hence,

8 ' / � -=R Z 'C<bh8 ' 7� -cR gZ 'C
8 ' ó Z -<7/E-=R Z 'C<j � 8 ' ó gZ -�8N/D:5* *+*<7� *+* *"/T>@?BA+Cf-=R gZ 'C

where ó0gZ � óTZ!�N�c-�|�® ' 7� ' ¯
&�
,
��� ú[�9óTZ!- �9� � and R�Z �

�9�OZ$- �9� for some �OZ and
�¼q �

. Observe that ó A � û óTZ im-
mediately yields

pÕ���
. Note that

' 7x�'��Î' 7� ' implies ó�gA �
ó0gZ which, in turn, gives óÐgA � û­ó0gZ . Since , � � Y / � for

8

all � ��� - *+* *B-"|5¯

and 7x � Y 7� , looking ahead in Section 5,

apply the secure congruence theorem (Theorem 1) to obtain
7, g � 89, : * *+*�7x *+* *�, >@?BA C�� Y 8N/ : * *+*;7� * *+*�/ >@?XA C � 7/ g .

This completes the proof of the condition �N��� � . The sum
equality of ��� � holds since there is a one-to-one correspon-
dence between the two multisets that are summed over. �

We suspect that the reverse inclusion may also hold in
case the SI-security condition is required to be composi-
tional. Notice for example that the quantification over all
schedulers in the SI-security condition forces the restric-
tion on the number of threads of two bisimilar programs,
i.e., if 7,Àá Y 7/ then

' 7, '��´' 7/ '
. Indeed, otherwise there

is a scheduler that can use the difference in the number of
threads to modify the low variable which can be used to
leak information. For example, it holds that skip

'
skip á Y

skip � skip – for any scheduler the two programs execute de-
terministically in lock-step. However, the parallel compo-
sition of the each of the two with the thread

�������
will not

preserve the bisimulation
���	���l'

skip
'

skip ³á Y ���	���l'
� skip � skip

�
since the probability of

�
to become

�
depends

on the number of threads and many schedulers will reflect it
in the semantics. This applies, for example, to the uniform
scheduler:

���	���T'
skip

'
skip ³¨ Y ���	���T' � skip � skip

� *
5. Hook-up Properties

In this section, we investigate the hook-up properties of
strong security. Strong bisimulation is constructed to be
suitable for compositional reasoning and yet to be general
enough to be able to prove security of known analyses. The
type-based program analyses that we have considered all
satisfy the strongest notion of security. For the rest of the
paper “secure” will mean strongly secure.

In the standard security terminology, the hook-up prop-
erty [14] says that if two programs are secure then their
composition (parallel, sequential or some other kind) is se-
cure is well. We will show what kinds of composition are
allowed. These properties are important since they are the
key to the utility of the specification for the purpose of prov-
ing the correctness of syntax-directed program analyses.

The low-bisimulation is not a congruence. (Take, for
example, any ground context that is insecure.) The low-
bisimulation is preserved by secure contexts, i.e., contexts
built with secure components. Let } 7� ~ be a hole for a com-
mand vector and } � ~ be a hole for a singleton command. A
context �<} 7� A�- 7� Z ~ is secure iff it has one of these forms:

�;} 7� A - 7� Zf~ �w�Q� skip
' � �	� 1zy p0'+���	� 1�y p �N1zy p is low

�
' } � A ~e��} � Zf~ ' if { then } � A ~ else } � Zf~X�N{ is low

�
'
while { do } � A ~X�N{ is low

�
'
fork �"} � A ~�} 7� Zu~ �;' 8"} 7� A ~�} 7� Zu~�C

where a (boolean or arithmetic) expression 1zy p is defined
to be low iff

� R$A � Y R Z * o |[* 8 ' 1zy p -=R&A 'C;aD| Ë 8 ' 1zy p -cR Z 'C<a
| . Otherwise, the expression is high.

Theorem 1 (Secure congruence) If 7,(A�� Y 7, gA , 7, Z � Y
7, gZ and �;} 7� A - 7� Z=~ is a secure context, then it is the

case that �;}<7, A -�7,<Zu~�� Y �L} 7, gA - 7, gZ ~ . If �<} 7� A - 7� Zf~ �
if { then } � A=~ else } � Z ~ ({ is high), then �;} 7,mA�- 7, Z ~�� Y
�L} 7, gA - 7, gZ ~ provided 7, A � Y 7,;Z .
Proof. Cases on � . Consider first the single-threaded case�L} 7,(A�- 7, Z ~ � , and �L} 7, gA - 7, gZ ~ � ,ig . Let us start off
with the cases skip -"y �	� PQ- if { then } � A ~ else } � Zu~m�N{ �
· 4�� � - if { then } � A ~ else } � Zu~B�9{ ����� ^ ��� and fork ��} � A ~ 7} � Zf~ � .

In the proof below, let us make use of the so-called “up-
to” technique for proving two programs 7x and 7� bisimi-
lar. In such a technique, one constructs a relation º�S
µ«¶+·¸�`7354)6 �

such that 7x º 7� and ºÇ½���

���9º G � YB�
where�
 ���! � is the corresponding function on relations such that

º is a strong low-bisimulation whenever º is a subset of�2�Nº �
(c.f. Appendix A).

The standard nondeterministic bisimulation theory guar-
antees us then that º ½"� Y

and thereby 7x � Y 7� . It is in-
deed enough to have the singleton relation º � � �e,.-c,¦g � �
for a proof of the first cases in question. Let us inspect these
cases of � :

skip
Start with R A and R�Z (R A �.Y R�Z). With either state,
the computation of skip terminates in one step with the
same states. So, the final states are low-equal as well.

����� 1zy p (1�y p is low)
Since 1zy p is a low expression, the computation of the
command with different initial states R!A and R Z (R)A � Y
R Z) terminates in one step with the same states that are
still low-equal.

� �	� 1zy p
1zy p can be arbitrary. Computing the command will
not change the low component of the states.

if { then } � Ac~ else } � Z ~X�N{ � · 4�� �
Start with 8 ' if { then ,«A else , Z -=R)A 'C and
8 ' if { then ,zgA else ,igZ -cR Z 'C (R)A � Y R Z). { has
the same value in either state. Thus, one step of com-
putation will lead to the configuration with bisimilar
commands (, A and ,igA , or ,LZ and ,igZ) and low-equal
states. Further, we know , A � Y ,igA and ,;Z#� Y ,igZ .

if { then } � A ~ else } � Zf~X�N{ ����� ^ ���
Start with R A and R�Z (R A �.Y R�Z). Here the value of
{ might differ for R A and R�Z , but since ,;�$� Y ,ig% for
�=-e§ �£
 -=� one step of computation ends up in bisimi-
lar commands and and low-equal states in this case as
well.

9

fork ��} � Ac~¸} 7� Z ~ �
Trivial, as computation does not depend on � .

We have three cases left:

} � A ~e��} � Zf~
,(A (and ,igA) might spawn new processes, so we need to
have all possible bisimilar postfix vectors after , Z (,igZ)
in º . º � � ���N12�=, Z � 7& - �91�ge�c,igZ � 7& g �+' 1"� Y 1¦gN-F7& � Y
7& g � . Then º
½'�
 �¢�Nº G � Y �

.

while { do } � Ac~ ({ is low)
Choose º to be the relation� ���N12� while { do ,mA � 7& - �91�g9� while { do ,zgA � 7& g �+' 1"� Y
1�g9- 7& � Y 7& g � . Start with R$A and R Z (R)A � Y R Z). {
has the same value in either state. Thus, one step of
computation will lead both configurations either to the
termination of the loop (with low-equal states) or to
configurations with commands , A � while { do , A and
, gA � while { do , gA and low-equal states. , A and , gA
might also spawn new processes.

8"} 7� A ~¸} 7� Zf~�C
Finally, the case of multiple threads. Take º �
� �m71 A 71mZ#-D7& A 7& Z � ' 71m�(� Y 7& ��-"� �
 -c��� . Suppose
71 � � 891 :� * *+*�1 >*)�?BA� C and 7& � g � 8 & : � * *+* &,+)�?XA� C for
� ��
 -c� . Let us prove º
½-�.
/�¢�0� YX�

by showing:

�N� �+' 71ªA 71 Z '!�Ç' 7& A 7& Z '
�N��� �Q� R A �.Y R�Z � �c-�§#* 8 ' 1 %� -=R A 'C5bh8 ' 71�-=R g A 'C ���o 7& -cR gZ *Þ8 ' & % � -=R Z 'C5bþ8 ' 7& -cR gZ 'Cf-

711� Y 7& -=R g A � Y R gZ *
The (i)-item is straightforward, as

' 71 � '�� ' 7& � ' for
� �Ü
 -=� . The (ii)-item follows from the two sep-
arate (ii)-items (when � is fixed to be either

or �)

which come from the unwinding of the definition of
the strong bisimulation for each of the 71m�
� Y 7& � . �

An immediate corollary is the hook-up property result.

Corollary 1 (Hook-up) If 7,(A$-z7, Z are secure and �L} 7� A�- 7� Z ~
is a secure context, then �L} 7,mA�- 7, Z ~ is secure. If �L} 7� A�- 7� Z ~ �
if { then } � A ~ else } � Zf~ ({ is high), then �L}<7, A -�7,<Z+~ is secure
provided 7, A � Y 7,;Z .
Proof. Observe that 7, A -z7,;Z are secure implies 7,<�,� Y 7,;�
for � �
 -c� . Thus by the security congruence theorem�;}F7, A -�7,;Zu~2� Y �L}F7, A -z7,;Zf~ , i.e., �L}<7, A -z7,;Z+~ is secure. �
6. Proving Analyses Secure

The compositionality of the security condition can be
fruitfully exploited when proving the correctness of various

compositional program analyses. In this section we develop
one such analysis.

A popular form for presenting program analysis is as
a nonstandard type system – as exemplified in the present
context by Volpano, Smith and Irvine’s type system [20] ex-
pressing Denning’s flow analysis [6]. The type system was
extended to a statically-threaded language with a uniform
scheduler in [19]. The style of such type systems is to give
security types to expressions (

��� ^ � or ·w4��) and commands
(
��� ^ �43 6 Â

or · 4�� 3 6 Â
) and make sure that these types do

not mismatch when composing the commands.
The hook-up properties of Corollary 1 are sufficient to

make the correctness proof of Volpano and Smith’s analy-
sis extremely simple – and the proof thereby includes cor-
rectness with respect to, e.g., round-robin schedulers and
schedulers using dynamic priorities (via dependence on low
“priority” variables in the program).

As an example we will consider a useful improvement
of Volpano and Smith’s system (for our slightly richer lan-
guage) based on ideas from a recent analysis developed by
Johan Agat [1] which shows how timing channels can be
eliminated from sequential programs by a combination of
typing and code transformation.

The improvement in question concerns the treatment of
the security of conditional expressions in the case when the
boolean depends on high variables. Consider a command
of the form if { then , A else ,;Z where { �5��� ^ � . Volpano
and Smith’s analysis requires that (i) no low assignments are
made within , A or ,;Z , (ii) no while loops occur within the
branches, and (iii) the whole conditional is executed atomi-
cally (i.e., without interruption by another thread.) The last
of these points is enforced in the Volpano-Smith system by
an additional language construct called protect. A disadvan-
tage of using protect is that it is not a typical synchronisation
primitive of modern concurrent languages.3

We will instead use a technique due to Agat to avoid the
need for protect statements, and obtain an analysis that is
more permissive than Volpano and Smith’s analysis.

6.1. Agat’s Approach

As Agat observed in the sequential case, each of the re-
strictions on a high conditional can be lifted to some degree
by observing that it is sufficient for , A and ,;Z to be low-
bisimilar. The hook-up result shows that this is true in the
present setting also.

Agat’s approach is to transform the branches of the con-
ditional so that they become bisimilar in a manner that is
easily checked by a syntax directed set of rules. The essence

3The protect statement also appears prohibitively expensive to imple-
ment using, e.g., locks, since in order to block all threads during a pro-
tect, every atomic command 6 in the program must be transformed into
getlock 70687 releaselock.

10

of the transformation is to pad the branches of the condi-
tionals. In our case this padding will add skip instructions
and possibly dummy forks. Agat’s aim was the elimination
of external timing attacks; we can also argue this here, al-
though we simply focus on the internal timing leaks.

In the rest of the section we present the combined anal-
ysis and transformation system, prove its correctness with
respect to strong security and show how this approach elim-
inates the need for protect’s.

6.2. The Type System

The analysis is based on a type system that transforms a
given program into a new program. If the initial program is
free of direct and indirect insecure flows then it might be ac-
cepted by the system and transformed into a program free of
timing leaks. Otherwise the initial program is rejected. The
transformation rules have the form 7,:9 j 7, g � 7Ñ � , where
7, is a program, ,zg is the result of its transformation and
7Ñ � is the “type” of 7, g . The types of programs are their low

slices. A low slice is essentially a copy of a secure program
in which assignments to high variables have been replaced
by skip’s. The slice Ñ � does not have any occurrences of
� , but has the same structure as ,�g and models the timing
behaviour of ,zg , as observable by other threads.

The typing and transformation rules are presented in Fig-
ure 4. The variables � and

�
have the types

��� ^ � and ·w4��
respectively. Integer literals | may be considered as either��� ^ � or · 4*� . An arbitrary expression 1�y p may be consid-
ered as

��� ^ � . In all but If ;=<?>@; rules, the transformed program
is constructed compositionally using the same constructs as
the original program. The information about the low slice
of the new program is recorded in the typing. Command
skip is its own low slice and therefore its own type. The
rule Assign A?B!C prevents direct insecure information flows –
the assignment

�«�	� � is not typable. The rule Assign ;=<D>@;
types an assignment to the high variable with the low slice
skip. The rules Arithm AEB!C , Seq, If AEB!C , Par and Fork propa-
gate types compositionally. The guard of the while-loop in
the rule While has to be low in order to prevent the timing
(and nontermination) flow from the loop’s guard.

The rule If ;=<D>F; prevents indirect insecure flows and tim-
ing flows. Let G � �9, �

be a predicate returning True whenever
there is a syntactic occurrence of an assignment to low vari-
able

�
in the command , and returning False otherwise. The

condition G � �eÑ � A �«� G � �9Ñ � Z �«�
False prevents the indirect

leaks.
The interesting rule is the case when the guard of an

if command is high. In this case both branches must be
typable (i.e., they must have a low slice). For the trans-
formed program to be secure it is also necessary that the
two branches be low-bisimilar. This is achieved by cross-
copying the low slice of one branch into the other. The slice

of the overall command is the sequential composition of the
slices of the branches prefixed with a skip corresponding to
the time tick for the guard inspection.

6.3. An Example Code Transformation

Let us give a simple example of the application of the
transformation system. The example is based on one in [1],
and is used to illustrate the effect of the transformation. The
heart of RSA encryption is the computation of G5H;ö � M2| ,
where G is an integer representing the plaintext and I is the
integer encryption key. To efficiently compute G H ö � M2| ,
the modular exponentiation algorithm can be used, but, as
shown by Kocher [12], a careless implementation will leak I
through timing. On the left in Figure 5, we give an example
of such an implementation. (Assume we have an if without
an else with the obvious semantics.) All variables except for
� and J in the program are high. The result of computation
is stored in M .

We represent I as a JÐ®

element long array of se-

cret booleans, with the most significant bit of I at I$} JQ~ .
The initial program is not secure since the two branches of
the if have different timing behaviours (they are not low-
bisimilar). For some schedulers, a (secure) thread running
in parallel with this code may compute different low outputs
depending on the values of the I+� (we omit a concrete ex-
ample for reasons of space). The transformation algorithm
presented in Figure 4 (with the minor extension necessary
to handle arrays with a low index) will close these timing
leaks by transforming the program into the one given in the
middle of Figure 5. The security of this padded program
relies on atomic execution of the assignment operators. Fi-
nally, the low slice of the padded program is shown on the
right in Figure 5.

6.4. Correctness of the Analysis

Let us prove the security of Agat’s analysis extended to
the multi-threaded language. The following theorem is a
straightforward use of the secure congruence properties of
the security condition proved in Theorem 1.

Theorem 2 7,�9 j 7, g � 7Ñ �X�X� 7, g � Y 7Ñ �
Proof. Proceed by structural induction on the thread
pool 7, g . Let us consider the cases by which 7, g �
7Ñ � . In the cases skip

�
skip,

�´��� 1zy p ���ü���
1zy p �N1�y p � · 4*� � and � �	� 1zy pò�

skip the program
7, g is low-bisimilar to it’s low slice. The cases , A �c,;Z ,

while { do , A �
while { do Ñ � g��N{ � · 4*� � , 89, : * *+*=, >�?BA C �

89Ñ � : *+*+*cÑ � >@?BA C , fork �e, A 7,;Z � and if { then , A else ,;Z �
if { then Ñ � A else Ñ � Z2�N{ � · 4�� � provide secure contexts
} � Ac~�� } � Z ~ , while { do } � ~ , 8"} � :u~Q*+*+*�} � >@?BA=~�C , fork �"} � Ac~¸} 7� Z ~ � and
if { then } � A=~ else } � Z ~5�N{ � ·w4�� � respectively. By the the

11

} Var ~ � ����� ^ � ��� · 4*�
} Exp~ | �*K 1zy pE�L��� ^ �

} Arithm AEB!C ~ 1�y p A � · 4�� 1zy p Z � · 4*�� p �91zy p A)-c1zy p Z �;� · 4��
} Skip ~ skip 9 j skip

�
skip

} Assign AEB!C ~ 1zy pE� ·w4�����	� 1�y p 9 j ���	� 1zy pE�#���	� 1zy p

} Assign ;=<?>@;$~ � ��� 1zy p 9 j � ��� 1zy pE�
skip

} Seq ~ ,(AM9 j , gA � Ñ � A , Z 9 j¾, gZ � Ñ � Z
,(A)�c, Z 9 j , gA �=, gZ � Ñ � A&�=Ñ � Z

} While ~ { � · 4�� ,N9 j , g � Ñ �
while { do ,�9 j while { do , g � while { do Ñ �

} Par ~ , : 9 j , g: � Ñ � : * *+*�, >�?BA 9 j , g>@?XA � Ñ � >@?XA
8e,<:F*+* *�,;>@?BA C.9 j�8e, g: *+*+*=, g>@?BA C � 89Ñ � :5*+* *cÑ � >@?XAfC

} Fork~ , A 9 j¾, gA � Ñ � A 7,;ZO9 j 7, gZ � 7Ñ � Z
fork �9,(A 7, Z � 9 j fork �9, gA 7, gZ �L�

fork �9Ñ � A 7Ñ � Z �

} If AEB!C¢~ { � · 4*� , A 9 j , gA � Ñ � A ,;ZO9 j , gZ � Ñ � Z
if { then ,mA else , Z 9 j if { then , gA else , gZ �

if { then Ñ � A else Ñ � Z

} If ;=<?>@;$~ { ����� ^ � ,(A$9 j , gA � Ñ � A , Z 9 j , gZ � Ñ � Z G � �9Ñ � A �<� G � �eÑ � Z �F�
False

if { then , A else ,;ZO9 j if { then , gA �cÑ � Z else Ñ � A �=, gZ �
skip �cÑ � A �=Ñ � Z

Figure 4. Transformation to eliminate timing leaks

12

Original program ���=-FJ � ·w4�� �
K �	��� �¢M �	�%
 �¢� ��� J��
while �QP �

do � ��� ��¯
 �
K �	� �� K)�
M ��� �NMR M � ö � M.|[�
if If� �

then K �	� KF®
 �
M �	� �9MS TG � ö � M.|

9 j

Transformed program ���=-FJ � · 4*� �
K ����� ��M ����
 �¢� �	� J��
while �UP �

do � �	� �¢¯
 �
K ��� �� K)�
M �	� �9MS +M � ö � M.|[�
if Iu� �

then K ��� K5®
 �
M ��� �NMR TG � ö � Mi|

else skip �
skip

�

Low slice

skip � skip �¢� ��� J��
while �8P �

do � ��� ��¯
 �
skip �
skip �
skip �
skip �
skip

Figure 5. Producing a secure modular exponentiation thread

induction hypothesis the sub-commands have low-bisimilar
low slices, so the conclusion follows by the hook-up prop-
erty.

The last case is if { then , gA �cÑ � Z else Ñ � A �c, gZ �
skip �cÑ � A �cÑ � Z . In order to apply the special if-on-high case
of the hook-up property we need to show ,¦gA �cÑ � ZV� Y
Ñ � A��c,igZ . By the induction hypothesis, ,�g� � Y Ñ � � (� �

 -c�). Now since } � Ac~�� } � Z ~ is a secure context, we have that
,igA �cÑ � Z � Y Ñ � A��c,igZ . Finally, this is sufficient to argue that� � if { then ,zgA �cÑ � Z else Ñ � A)�c,igZ - skip �cÑ � A&�=Ñ � Z � � is a strong
bisimulation up to � Y

(which requires just a case analysis
on the outcome of {). �
Corollary 2 (Security of the Analysis) 7,	9 j 7, g � 7Ñ ���X�
7, g is secure.

Proof. Theorem 2 gives 7, g � Y 7Ñ � . The symmetry and
transitivity of � Y

entails 7, g � Y 7, g , i.e., 7, g is secure. �
6.5. Soundness of the Transformation

We have shown that the result of the transformation is
secure, but what of its relation to the original program? We
argue below that the transformed program is a possibilistic
refinement of the original program, and that under certain
additional assumptions, that it is equivalent.

Clearly, the padding introduced by the transformation
can change the timing and thereby the program’s probabilis-
tic behaviour, but otherwise it is just additional “stuttering”.
A more serious problem is that it might introduce extra non-
termination, in the case that a nonterminating loop is cross-
copied into a branch that would otherwise have terminated.

To make the first point precise, let us define a possibilis-
tic (bi)simulation on programs. To obtain a possibilistic
transition relation we can simply erase the probability from
the uniform scheduler semantics defined in Section 2.

Definition 7 Define the possibilistic simulation W (resp.,
bisimulation X) to be the the union of all (resp. symmet-
ric) relations º on thread pools such that whenever 7,Ýº 7/
then for all R , R&g , ,zg , there exists a /�g such that

8 ' 7,T-cR 'C5jh8 ' 7, g -cR g 'C �X� 8 ' 7/�-cR 'C5j Ä 8 ' 7/ g -=R g 'C and 7, g ºÜ7/ g *
Intuitively, 7,YW 7/ holds whenever 7, performs a (maybe
infinitely) slowed down version of the computation of 7/ .

Proposition 4 W is reflexive, transitive and preserved by all
contexts (not necessarily secure), i.e., W is a precongruence.

Proposition 5 7,�9 j 7, g � 7Ñ �X�X� 7, g WH7, .

Proof. Induction on the height of the transformation
derivation. The cases Skip, Assign AEB!C , Assign ;=<?>@; follow
from the reflexivity of W . The cases Seq, While, Par, Fork
and If AEB!C are implied by the induction hypotheses and the
precongruence of W . The remaining case is If ;=<?>@; , i.e.,
if { then ,zgA �=Ñ � Z else Ñ � A �c,igZ �

skip �=Ñ � A �cÑ � Z . By induction
we have ,igA W�, A and ,igZ W ,;Z . The side condition guaran-
tees that there are no assignments in the slices Ñ � A and Ñ � Z
of the branches ,mA and , Z of the if. Thus Ñ � A and Ñ � Z con-
tain only dummy computation without changing the state.
The insertion of such a computation might only slow down
the computation. Thus, ,�gA �cÑ � Z W£,(A and Ñ � A��=,igZ WÉ, Z .
The precongruence of W yields ,zg/W±, . �
6.6. Elimination of the protect

Let us define the notion of a protected program from
[19]. A program 7, is protected iff any conditional on the
high variable is wrapped in a protect term. A protect cannot
have other protect’s or while’s within its scope of protection.
We are now ready to sketch the protect elimination result.

13

Theorem 3 (Protect elimination) If 7,5k is well-typed and
protected in Volpano-Smith’s type system then 7,�9 j 7, g � 7Ñ �
where 7, is the result of erasing the protect’s from 7, k , for
some secure 7, g and some 7Ñ � such that 7,�X 7, g .
Proof. (Sketch) Although there are only two types of
commands in Volpano-Smith’s system (· 4*� 3 6 Â

and��� ^ �43 6 Â
), the type inference is still performed compo-

sitionally and similarly to the transformation in Figure 4.
Hence we are able to type all programs that are typable in
Volpano-Smith’s system. Whenever 7,5k is well-typed then
7,Z9 j 7, g � 7Ñ � . By Proposition 5 we immediately have
7, g WH7, .

The program 7, has no occurrences of fork (no dynamic
thread creation in Volpano-Smith’s language). Therefore,
the padding transformation cannot introduce new fork’s.
While-loops cannot be introduced since the only place
where the transformation generates new code is the if-on-
high case, and since such terms are protected they contain
no occurrences of while. What the transformation might in-
troduce in the branches of a high if is a sequential compo-
sition of low if’s and skip’s (these are the only possibilities
for the low slices of the branches). The insertion of these
commands does not affect the possibilistic semantics or the
termination properties of the initial program (we omit the
routine proofs of these laws). Using this intuition, the rest
of the proof of 7, g X�7, follows similarly to Proposition 5. �
7. Conclusions

We have developed extensional semantics-based speci-
fications of secure information flow for multi-threaded pro-
grams. The specifications capture probabilistic covert chan-
nels that arise from the scheduling of concurrent threads.
We have argued that under the worst case assumption the
security condition should be scheduler-independent.

By defining security specifications as noninterference
based on a probabilistic bisimulation, we have achieved
compositional reasoning (build secure programs from se-
cure components) and precision over approaches proposed
in the literature, without the mathematical overheads of a
denotational approach using, e.g., probabilistic powerdo-
mains. Proving type-system based analyses is simple since
such analyses are usually compositional as well.

In this paper, we have been considering unsynchronised
multi-threaded concurrency with dynamic thread creation.
Future work must include the study of synchronisation
primitives.

Another simplification is in our treatment of I/O. Implic-
itly, we permit the attacker (the external supplier of the pro-
gram) to observer intermediate low outputs, and even pro-
vide the initial low input, but not to selectively provide in-
puts to the program as it runs. Blocking input gives the

attacker(s) the ability to externally control the timing be-
haviour of threads. To study the essence of these prob-
lems, it might be appropriate to extend Focardi and Gor-
rieri’s process-calculus-based study [8]) to the probabilistic
case. This should also enable a more rigorous connection to
be made to Gray’s P-Restrictiveness.

References

[1] J. Agat. Transforming out timing leaks. In POPL’00:
The 27:th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 40–53. ACM, Jan-
uary 2000.

[2] G. R. Andrews and R. P. Reitman. An axiomatic approach to
information flow in programs. ACM TOPLAS, 2(1):56–75,
January 1980.

[3] C. Baier and M. Z. Kwiatkowska. Domain equations for
probabilistic processes. Mathematical Structures in Com-
puter Science, June 1999. To appear.

[4] J.-P. Banatre, C. Bryce, and D. Le Metayer. An approach to
information security in distributed systems. In Proceedings
of the 5th IEEE International Workshop on Future Trends in
Distributed Computing Systems, pages 384–394, 1995.

[5] B. Davey and H. Priestley. Introduction to Lattices and Or-
der. Cambridge University Press, 1990.

[6] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, May 1976.

[7] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Communications of the ACM,
20(7):504–513, July 1977.

[8] R. Focardi and R. Gorrieri. A classification of security prop-
erties for process algebra. J. Computer Security, 3(1):5–33,
1994/1995.

[9] J. Goguen and J. Meseguer. Security policies and security
models. In Proceedings of the IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, April 1982.

[10] J. Gray III. Probabilistic interference. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 170–179,
Oakland, California, May 1990.

[11] N. Heintze and J. G. Riecke. The SLam calculus: program-
ming with secrecy and integrity. In Conference Record of
the Twenty-Fifth Annual ACM Symposium on Principles of
Programming Languages, pages 365–377. ACM, 1998.

[12] P. C. Kocher. Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems. In N. Koblitz, edi-
tor, Advances in Cryptology – CRYPTO’96, volume 1109 of
LNCS, pages 104–113. Springer-Verlag, 1996.

[13] K. G. Larsen and A. Skou. Bisimulation through probabilis-
tic testing. Information and Computation, 94(1):1–28, 1991.

[14] D. McCullough. Specifications for multi-level security and
hook-up property. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 161–166. 1987.

[15] J. McLean. The specification and modeling of computer se-
curity. Computer, 23(1), January 1990.

[16] A. Sabelfeld and D. Sands. A per model of secure informa-
tion flow in sequential programs. In Proceedings of the 8th
European Symposium on Programming, ESOP’99, LNCS
1576, pages 40–58, Amsterdam, Springer-Verlag, March
1999.

14

[17] G. Smith and D. Volpano. Secure information flow in a
multi-threaded imperative language. In Conference Record
of POPL ’98: The 25th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 355–
364, San Diego, California, 19–21 January 1998.

[18] P. Syverson and J. Gray III. The epistemic representation of
information flow security in probabilistic systems. In Proc.
8th IEEE Computer Security Foundations Workshop, 1995.

[19] D. Volpano and G. Smith. Probabilistic noninterference
in a concurrent language. Journal of Computer Security,
7(2,3):231–253, November 1999.

[20] D. Volpano, G. Smith, and C. Irvine. A sound type system
for secure flow analysis. J. Computer Security, 4(3):1–21,
1996.

A. Observations on Partial Probabilistic
Bisimulation

This appendix presents some observations on properties
of partial probabilistic bisimulations. The union of all par-
tial probabilistic bisimulations can itself be shown to be a
partial probabilistic bisimulation. This follows from a stan-
dard Tarski fixed-point argument (although to our knowl-
edge this argument has not been used elsewhere for prob-
abilistic bisimulation). The key is to note that pers on a
given set form a complete lattice (with meet given by set-
intersection, and join given by the transitive closure of the
set-union), and that the definition can be phrased in terms
of a continuous functional.

Recall that an unlabelled probabilistic transition system
is a set of states Ì and a set of transitions of the form Í j´�
where Í SsÌ and �rS����9Ì � . Let us restrict our attention to
probabilistic transition systems such that Í j´� and Í j´��g
implies � � �Xg (which is clearly the case for the transition
system that corresponds to the probabilistic semantics of the
multi-threaded language).

Fix such a probabilistic transition system. Let � denote
the function from pers to pers (over Ì) given by:

Í �2�Nº � Í g ÊD� �N� �B� ÑÔS­Ì�»)ºD* Í jskiÑ �X� Í g jskiÑ
����� � Í jV:«Ì�× Â 4)60�9º �

It is straightforward to check that �2�Nº �
is indeed transitive

and symmetric. The following two propositions state the
monotonicity and co-continuity of � .

Proposition 6 Suppose
Å -=Æ�SEµ«¶+·²�NÌ � are pers. Then

Å ½
Æ �X� �2� Å � ½'�2�9Æ �

.

Proof. Given Í �2� Å � Í g , we need to show Í �2�eÆ � Í g . Sup-
pose Í j � Ñ\[for some Ñ][�S0Ì�»)Æ . Since

Å ½�Æ , we can
partition Ñ][into

G ��Ñ �^ G Ñ , where the Ñ �^ are equivalence
classes of

Å
, and Ñ is a subset of Ì�× Â 4)60� Å �

. SupposeÍ j k)[Ñ �^ . Note Í j : Ñ . By Í �2� Å � Í g we have Í gOj k)[Ñ �^
and Í g�jV:¦Ñ . This implies Í g¢j � Ñ [by simple summing.
Conclude Í �2�9Æ � Í g . �

Proposition 7 For a nonincreasing _ -chain of pers º�:�`
+ *a`rº � `Ý*+*+* , � preserves co-limits, i.e.,

�2�0b �dcfe º � �5� b �gc5e �2�9º � � *
Proof. Since b �dcfe º � ½´º % for any § , apply the mono-
tonicity of � to get, for all § , �2�0b5�dcfeBºª� � ½��2�Nº % � which
implies the ½ part of the set equality. For the reverse in-
clusion, we need to show that if for some Í and Í g we haveÍ �hb��gc5e\�2�9ºª� �"� Í g then Í �2�hb[�dcfe�º.� � Í g . The assumption
that Í �0b��gc5e\�2�Nº.� �"� Í g entails Í �2�Nºi� � Í g for all � , which
can be rewritten as

��� �B� ÑÔS¡Ì[»&º � * Í jskiÑ �X� Í g jskiÑ
�N�e� � Í jl:mÌ�× Â 4)60�Nº � �

for all � . Suppose now for some ÑÝSlÌ�»Ub �dcfe º � we haveÍ jsk�Ñ . There exists a sequence of pers
� Ñ � � �gc5e such

that Ñ � � Ì�»&º � and Ñ � b �gc5e Ñ � . Note that ÑB:�` *+*+*U`
Ñ � `¾* *+*i`´Ñ . Consider the sequence of nonincreasing
probabilities

� p � � �dcfe such that Í jskT)0Ñ � . The fact that
the summing operation over countable sets is continuous
guarantees

pÉ�kjml�n � p �¸�&�dcfe . Thus, Í gDj k)0ÑB� for all � ,
implying Í gªj k Ñ . Analogously,

� �c* Í j : ÌÒ× Â 4)60�9ºª� �
implies Í j : Ì.× Â 4$60�hb��gc5eBºª� � which concludes the proof
of Í �2�hb��gc5eBº.� � Í g . �
Let us define ¨ �ÎG � º ' º is a per -cº�½-�2�Nº � � . We are
now in a position to establish the fixed-point result.

Proposition 8 (Fixed point) The relation ¨ is the greatest
fixed point of � in the lattice of pers. It can be alternatively
represented by ¨ � b �gc5e � � �9Ì­_¡Ì � *
Proof. The proof is a standard argument, by appeal to the
Knaster-Tarski fixed-point theorem (see, e.g., [5]). The
alternative representation statement holds due to the co-
continuity of � . Observe that since, by induction, � � �9Ì�_(Ì �
is a per for any � then so is ¨ itself. �

When proving a per º to be a partial probabilistic bisim-
ulation (or ºÉ½Ý¨) one can use the the following analogue
of the standard “up-to” technique.

Proposition 9 Given a per º�S0µª¶u·¸�NÌ � ,
º�½'�2�"�9º G ¨ � � �5��� º�½�¨¦*

Proof. Assume º�½-�2���Nº G ¨ � � � . Note that ¨
½-�2��¨ � ½�2�"�9º G ¨ � � � due to the fixed-point proposition and � ’s
monotonicity. Thus, º G ¨ ½V�2�"�9º G ¨ � � � . Since the
relation on the right-hand side is a per, it must be true that
�Nº G ¨ � � ½'�2�"�9º G ¨ � � �

. By the definition of ¨ , we have
�Nº G ¨ � � ½�¨ which, in particular, implies º�½�¨ . �

15

